ON THE COMMUTATIVITY OF THE RADICAL OF
THE GROUP ALGEBRA OF A FINITE GROUP

KAORU MOTOSE AND YASUSHI NINOMIYA

(Received December 27, 1978)

Let K be an algebraically closed field of characteristic $p>0$, and G a finite
group of order $p^a m$ where $(p, m)=1$ and $a>0$. We denote by $J(KG)$ the radical
of the group algebra KG. In case p is odd, D.A.R. Wallace [6] proved that
$J(KG)$ is commutative if and only if G is abelian or $G'P$ is a Frobenius group
with complement P and kernel G', where P is a Sylow p-subgroup of G and
G' the commutator subgroup of G. On the other hand, in case $p=2$, S. Koshi-
tani [1] has recently given a necessary and sufficient condition for $J(KG)$ to be
commutative. In this paper, we shall give alternative conditions for $J(KG)$
to be commutative.

If $J(KG)$ is commutative, then G is a p-nilpotent group and a Sylow p-
subgroup of G is abelian ([6], Theorem 2). We may therefore restrict our
attention to a p-nilpotent group. Now, we put $N=O_p'(G)$. For a central
primitive idempotent ε of KN, we put $G_\varepsilon = \{g \in G \mid g\varepsilon g^{-1}=\varepsilon\}$. Let a_i ($i=1,
2, \cdots, s$) be a complete residue system of $G(mod G_\varepsilon)$

$G = G_\varepsilon a_1 \cup G_\varepsilon a_2 \cup \cdots \cup G_\varepsilon a_s$.

Then K. Morita [2] proved the following:

Theorem 1. If G is a p-nilpotent group, then $e=\sum_{i=1}^s \varepsilon^i$ is a central
primitive idempotent of KG and KG_ε is isomorphic to the matrix ring $(KP_\varepsilon)^f$
of degree f over KP_ε for some f, where P_ε is a Sylow p-subgroup of G_ε.

In what follows, for a subset S of G, we denote by \hat{S} the element $\sum_{x \in S} x$ of
KG. By [5], Theorem, it holds that $J(KG)^2=0$ if and only if $p^a=2$. When this
is the case, $J(KG)$ is trivially commutative. Therefore we may restrict our
attention to the case $p^a \geq 3$. The following proposition contains [1], Theorem 2.

Proposition. If G is a non-abelian group and $p^a \geq 3$, then the following
conditions are equivalent:

(1) $J(KG)$ is commutative.

(2) $(G'P)'=G'$ and $J(KG'P)$ is commutative.

(3) (i) G' is a p'-group, and
(ii) each block of KG'P, which is not the principal block, is of defect 0 if \(p \neq 2 \) and of defect 1 or 0 if \(p = 2 \).

(4) (i) \(G' \) is a \(p' \)-group, and

(ii) for each \(x \in G' \), \(C_{a'P}(x) \) is a \(p' \)-group if \(p \neq 2 \) and its order is not divisible by 4 if \(p = 2 \).

Proof. (1)\(\Rightarrow \) (2): We put \(H = G'P \). Since \(H \) is a normal subgroup of \(G \), we have \(J(KH) \subseteq J(KG) \). Hence \(J(KH) \) is commutative, and so, by [6], Theorem 2, \(|H'| \) is not divisible by \(p \). Since \(J(KG) \) is commutative and \(J(KG'P) \supseteq J(KH) \supseteq H'J(KP) \), by [6], Lemma 3, we have \(\hat{G}'KG'P \supseteq J(KG) \supseteq H'J(KP) = \hat{H}'J(KP) \). Thus, we have \(G' \subseteq H'P \). Since \(G' \) is a \(p' \)-group by [6], Theorem 2, we have \(G' = H' \).

(2)\(\Rightarrow \) (3): Since \(J(KG'P) \) is commutative and \((G'P)' = G' \), \(G' \) is a \(p' \)-group by [6], Theorem 2. Now, we put \(e_1 = |G'|^{-1}G' \), and \(e_2 = 1 - e_1 \). Then \(e_1 \) and \(e_2 \) are central idempotents of \(KG'P \). Thus we have \(J(KG'P) = e_1J(KG'P) \oplus e_2J(KG'P) \). Since \(J(KG'P) \) is commutative, by [6], Lemma 3, we have \(J(KG'P)^2 = e_1J(KG'P)^2 \oplus e_2J(KG'P)^2 = \hat{G}'KG'P = e_1KG'P \). Therefore \(e_1J(KG'P)^2 = 0 \), and so by Theorem 1, every non-simple block of \(e_1KG'P \) is isomorphic to the matrix ring over \(KD \), where \(K \) is of characteristic 2 and \(D \) is a group of order 2. Hence \(e_1KG'P \) is a direct sum of blocks of defect 0 or of defect 1 or 0 according as \(p \) is odd or 2. Since \(e_1KG'P(=e_1KP) \) is the principal block, we obtain (3).

(3)\(\Rightarrow \) (4): This is easy by [3], Theorem 4.

(4)\(\Rightarrow \) (3) is trivial.

(3)\(\Rightarrow \) (1): Since \(G'P \) is a normal subgroup of \(G \) and \([G: G'P] \) is not divisible by \(p \), we have \(J(KG) = J(KG'P)KG \). We put \(e_1 = |G'|^{-1}G' \), and \(e_2 = 1 - e_1 \). Then \(e_1 \) and \(e_2 \) are central idempotents of \(KG \) and \(J(KG) = e_1J(KG'P) \cdot KG \oplus e_2J(KG'P)KG \). Since \(e_1J(KG'P)KG \subseteq \hat{G}'KG \), \(e_2J(KG'P)KG \) is a central ideal of \(KG \) by [4], Lemma 5. By Theorem 1, every block of \(e_2KG'P \) is isomorphic to the matrix ring over \(KD \), where \(D \) is a \(p' \)-group. From our assumption, every non-simple block of \(e_2KG'P \) has the radical of square zero. Thus, \(J(KG) \) is commutative.

Remark. The condition (4) of Proposition for \(p \) odd is equivalent to the condition of Wallace’s result ([6]) that \(G'P \) is a Frobenius group with complement \(P \) and kernel \(G' \).

Now, in case \(p = 2 \), we shall give the conditions for \(J(KG) \) to be commutative.

Theorem 2. Assume that \(p = 2 \), \(2^s \geq 4 \) and \(G' \neq 1 \). Then the following conditions are equivalent:
(1) $J(KG)$ is commutative.

(2) G' is of odd order and $|P \cap P^h| \leq 2$ for every $h \in G'P - P$.

(3) G' is of odd order and $C_{G'}(s)/\langle s \rangle$ is either a 2-group or a Frobenius group with complement $P/\langle s \rangle$ for every involution s of P.

Proof. (1)\Rightarrow(2): Suppose that $J(KG)$ is commutative. Then, by Proposition, G' is of odd order. Let h be an arbitrary element of $G'P - P$, and x an arbitrary element of $P \cap P^h$. Then $hxh^{-1}x^{-1} \in P \cap G' = 1$, and so $x \in C_{G'}(h)$. Thus, $P \cap P^h \subseteq C_{G'}(h)$. Since we may assume that $h \in G' - 1$, we obtain $|P \cap P^h| \leq 2$ by Proposition.

(2)\Rightarrow(3): Let s be an arbitrary involution of P such that $C_{G'}(s) \neq P$. Then $P \cap P^s = \langle s \rangle$ for $x \in C_{G'}(s) - P$, and so $C_{G'}(s)/\langle s \rangle$ is a Frobenius group with complement $P/\langle s \rangle$.

(3)\Rightarrow(1): Let x be an element of $G' - 1$, and S a Sylow 2-subgroup of $C_{G'}(x)$. Suppose that $S \neq 1$. Then $S \subseteq P^u$ for some $u \in G'P$, and $x \in C_{G'}(S) \subseteq C_{G'}(s)$ for every involution s of S. Hence, $C_{G'}(s)$ is not a 2-group, and so $C_{G'}(s)/\langle s \rangle$ is a Frobenius group with complement $P/\langle s \rangle$. Thus, we have $S \subseteq P^u \cap P^s = \langle s \rangle$, and hence $|C_{G'}(x)|$ is not divisible by 4, which implies (1) by Proposition.

Corollary. Assume that $p=2, 2^s \geq 4$ and $G' \neq 1$. If $J(KG)$ is commutative, then a Sylow 2-subgroup of G is a cyclic group or an abelian group of type $(2, 2^s-1)$.

Proof. Suppose that $J(KG)$ is commutative. Then, by Theorem 2, $|P \cap P^h| \leq 2$ for every $h \in G'P - P$. If $P \cap P^h = 1$ for all $h \in G'P - P$, then $G'P$ is a Frobenius group with complement P and kernel G'. Hence P is cyclic. On the other hand, if $P \cap P^h = \langle s \rangle$ for some $h \in G'P - P$ and some involution s of P, then $hsh^{-1}s^{-1} \in P \cap G' = 1$, and so $h \in C_{G'}(s)$ and $h \in P$. Therefore $C_{G'}(s)/\langle s \rangle$ properly contains P. Hence, $C_{G'}(s)/\langle s \rangle$ is a Frobenius group with complement $P/\langle s \rangle$ by the condition (3) of Theorem 2. Hence $P/\langle s \rangle$ is cyclic, and so P is a cyclic group or an abelian group of type $(2, 2^s-1)$.

Remark. In case G is a non-abelian group and $p^s \geq 3$, S. Koshitani [1] proved that if $J(KG)$ is commutative, then $N_G(P)$ is abelian. This is included in the following proposition: Let G be a non-abelian group, and $p^s \geq 3$. If $J(KG)$ is commutative then G is a semi-direct product of G' by (abelian) $N_G(P)$.

Proof. It is easy to see $G = G'N_G(P)$. Suppose that $J(KG)$ is commutative. Let x be a p'-element of $N_{G'}(P)$. Since $G'P$ is a p-nilpotent group, $N_{G'}(P)$ is the direct product of P and a normal p'-subgroup, and so $C_{G'}(x)$ contains P. Hence, by Proposition (4), we have $x=1$, which implies that $G' \cap N_G(P) = 1$.
References

Department of Mathematics
Shinshu University
Matsumoto 390, Japan