UNIPOTENT CHARACTERS OF SO_{2n}^+, SP_{2n} AND SO_{2n+1}
OVER F_q WITH SMALL q

TERUAKI ASAI

(Received April 30, 1981)

0. Introduction. Let G be a special orthogonal group or symplectic group over a finite field F_q, F the Frobenius mapping and G^F the group of all F-stable points of G. G. Lusztig [7], [8] has obtained explicit formulas for the characters of the unipotent representations of G^F on any regular semisimple element of G^F provided that the order q of the defining field F_q is sufficiently large. Our purpose in this paper is to show that his formulas are valid for any q.

Let W be the Weyl group of G and m an odd positive integer. For $w \in W$, let $R_w^{(m)}$ be the Deligne-Lusztig virtual representation [2], [6, 3.4] of G^{F^m}. By [2, 7.9], to determine the values of the character of a unipotent representation ρ of G^{F^m} on regular semisimple elements, it suffices to determine the inner product

$$\langle R_w^{(m)}, \rho \rangle$$

for any $w \in W$. This has been done by G. Lusztig [7], [8] for a sufficiently large q^m. Let n be the rank of G and Ψ_n be the set of symbol classes (cf. [5, §3]) that parameterizes the unipotent representations (up to equivalence) of G^F or G^{F^m}, i.e.

$$\Psi_n = \begin{cases} \Phi_n & \text{if } G = SO_{2n+1} \text{ or } Sp_{2n} \\ \Phi_n^\pm & \text{if } G = SO_{2n} \end{cases}$$

in the notations in [5, §3]. For $\Lambda \in \Psi_n$, let $\rho_\Lambda^{(1)}$ and $\rho_\Lambda^{(m)}$ be the corresponding unipotent representations of G^F and G^{F^m} respectively. Our main result (Theorem 4.2, (iii)) is

$$(*) \quad \langle R_w^{(m)}, \rho_\Lambda^{(m)} \rangle = \langle R_w^{(1)}, \rho_\Lambda^{(1)} \rangle$$

for any $\Lambda \in \Psi_n$ and $w \in W$ if m is any sufficiently large positive integer prime to $2p$ with p the characteristic of F_q. Hence the required character formula is obtained for any q.

Our proof goes as follows. Firstly, we write the Frobenius mapping F
as $F=jF_0$ with F_0 a split Frobenius mapping and j an automorphism of G of finite order commuting with F_0, and let $\sigma_0=F_0|G^{\sigma_0}$ and $\langle \sigma_0 \rangle$ be the cyclic group generated by σ_0. Let $X_w^{(m)}$ ($w \in W$) be the Deligne-Lusztig varieties [2], [6] of G defined using the Frobenius mapping F^m. Then G^{σ_0} and F_0 act naturally on $X_w^{(m)}$, hence on their ℓ-adic cohomology spaces $H^i(X_w^{(m)})$.

Then we prove (Theorem 3.2) the relation
\[(**)
Tr((xF_0)^*, \sum_{i=0}^{\infty} (-1)^i H^i(X_w^{(m)})) = Tr((yF_0)^*, \sum_{i=0}^{\infty} (-1)^i H^i(X_w^{(1)}))
\]
for any odd integer m and any $x \in G^{\sigma_0}$, where $y=N^{(m)}(x)$ and $N^{(m)}$ is the norm mapping defined by N. Kawanaka (see our definition preceding Theorem 3.2).

As a next step, we show that any unipotent representation of G^{σ_0} is σ_0-invariant if m is odd. Then by applying N. Kawanaka's result on the lifting [3], [4], we prove (Theorem 4.2) that
\[(***)
Tr(xj\sigma, \rho_\Lambda^{(m)}) = Tr(N^{(m)}(x)j, \rho_\Lambda^{(1)})
\]
for any $x \in G^{\sigma_0}$, any symbol class $\Lambda \in \Psi_n$ and any positive integer prime to $2p$, where $\rho_\Lambda^{(m)}$ and $\rho_\Lambda^{(1)}$ are the representations of the semi-direct product groups $G^{\sigma_0}\langle \sigma_0 \rangle$ and $G^{\sigma_0}\langle j \rangle$ that extend $\rho_\Lambda^{(m)}$ and $\rho_\Lambda^{(1)}$ respectively in a normalized manner. Combining polynomial equations (in q) obtained from (**) and (***) with a result on Frobenius eigenvalues given in [1] (resp. [8]), we get the asserted relation (*) for $G=Sp_{2n}$, SO_{2n+1} (resp. SO_{2n}^*.)

Finally the author is very grateful to Professor N. Kawanaka for his kind conversations, through which a perspective on the lifting theory was shown to the author.

1. First we need a generalization of Lusztig [6, 3.9]. Let G be a connected reductive group defined over a finite field F_q and F the Frobenius mapping. Let B be a fixed F-stable Borel subgroup, T a fixed F-stable maximal torus in B, U the unipotent radical of B and W the Weyl group of G relative to T. There exists an automorphism j of G of finite order δ defined over F_q such that j stabilizes B, T and induces the same action on W as that of F. For a positive integer m, we set
\[
\sigma = F|G^{\sigma_0}, \quad F_0 = j^{-1}F, \quad \sigma_0 = j^{-1}\sigma.
\]
σ and σ_0 generate the cyclic groups $\langle \sigma \rangle$ of order m and $\langle \sigma_0 \rangle$ of order $m\delta$ respectively. We denote by X the variety G/B of all Borel subgroups. For our purpose we have to borrow almost all the notations in [6, 3.3–3.9] such as
\[
X_w, Y_{w,w',w''}, Z_{w,w',w''}, \quad (w, w', w'' \in W).
\]
But to specify the Frobenius mapping (either F or F^m), we write as follows (cf. [6, 3.3–3.4]).
Theorem 1.1. For \(w, w' \in W, F_0 \) acts naturally on the variety \(G^{F_w} \backslash (X^{(m)}_w \times X^{(m)}_{w'}) \), and

(i) all the eigenvalues of \(F^*_0 \) on \(H^i_c(G^{F_w} \backslash (X^{(m)}_w \times X^{(m)}_{w'})) \) are integral powers of \(q \),

(ii) for a positive integer \(e \), the number of \(F^*_0 \)-fixed points of the quotient variety \(G^{F_w} \backslash (X^{(m)}_w \times X^{(m)}_{w'}) \) is equal to the trace of the linear transformation \(x \to t_wF_0(x)t^{-1}_w \) of \(\mathcal{B}(W, q') \).

Proof. The proof of \([6, 3.8] \) shows that it suffices to prove the following variation of \([6, 3.5] \):

There exists a natural isomorphism \(H^i_c(Y^{(m)}_{w, w'}) \cong H^i_c(Z^{(m)}_{w, w'}) \) for any \(i \geq 0 \) which commutes with the action of \(F^*_0 \).

But this can be proved by almost the same argument as in the proof of \([6, 3.5] \).

Let \(\rho \) be a unipotent representation of \(G^{F_w} \). For \(w \in W \) and \(i \geq 0 \), \(H^i_c(X^{(m)}_w)_\rho \) denotes the largest subspace of \(H^i_c(X^{(m)}_w) \) on which \(G^{F_w} \) acts by a multiple of \(\rho \). We choose \(w \) and \(i \) in such a way that \(H^i_c(X^{(m)}_w)_\rho \neq 0 \). Fix a decomposition

\[
H^i_c(X^{(m)}_w)_\rho = (\bar{Q}_l \oplus \cdots \oplus \bar{Q}_l) \otimes \rho
\]

\[\text{r-times} \]

as a \(G^{F_w} \)-module. Then the \(G^{F_w} \)-module endomorphism algebra of \(H^i_c(X^{(m)}_w)_\rho \) is identified with the matrix algebra \(M_r(\bar{Q}_l) \) of rank \(r \). Assume that \(\rho \) is \(\sigma_0 \)-invariant (up to equivalence). Then \(\rho \) is extended to an irreducible representation \(\bar{\rho} \) of the semi-direct product \(G^{F_w} \langle \sigma_0 \rangle \). There are \(m \delta \)-choices for such \(\bar{\rho} \). We fix \(\bar{\rho} \) to be one of them. We may regard \(H^i_c(X^{(m)}_w)_\rho \) as a \(G^{F_w} \langle \sigma_0 \rangle \)-module by the identification

\[
H^i_c(X^{(m)}_w)_\rho = (\bar{Q}_l \oplus \cdots \oplus \bar{Q}_l) \otimes \bar{\rho}
\]

\[\text{r-times} \]

Since \(\rho \) is \(\sigma_0 \)-invariant, \(F^*_0 \) stabilizes \(H^i_c(X^{(m)}_w)_\rho \) and \(F^*_0 \) acts on \(H^i_c(X^{(m)}_w)_\rho \) by
Let \(\rho \) be a \(\sigma_0 \)-invariant unipotent representation of \(G^{p_m} \) and \(\bar{\rho} \) be its extension to an irreducible representation of \(G^{p_m} \langle \sigma_0 \rangle \). Let \(\mu \) be any eigenvalue of the matrix \(\xi \) defined as above for some \(i \) and \(w \). Then \(\mu \) is uniquely determined by \(\bar{\rho} \) up to a multiplicative factor \(q^a \) for an integer \(a \) and does not depend on the choice of \(i \) and \(w \).

Proof. We proceed quite identically with the proof of [6, 3.9]. Let \(\bar{\rho} \) be the dual representation of \(\rho \). Obviously the representation \(\bar{\rho} \) restricted to \(G^{p_m} \) is the dual representation \(\bar{\rho} \) of \(\rho \). Take \(w' \in W, i' \geq 0 \) such that \(\bar{\rho} \) is a subrepresentation of \(H_i^{w'}(X^{p_m}) \). Fix an identification

\[H_{i'}^{w'}(X^{p_m})_{\bar{\rho}} = (\mathcal{Q}_{\xi} \oplus \cdots \oplus \mathcal{Q}_{\xi}) \otimes \rho \]

d and write \(F_\sigma^\times = \xi' \otimes \bar{\rho}(\sigma^{-1}) \) on \(H_{i'}^{w'}(X^{p_m})_{\bar{\rho}} \) with \(\xi' \in M_r(\mathcal{Q}_{\xi}) \). First we consider the orthogonal projection from the space \(\bar{\rho} \otimes \bar{\rho} \) to the \(G^{p_m} \)-invariant subspace \((\bar{\rho} \otimes \bar{\rho}) G^{p_m} = \mathcal{Q}_{\rho} \), which is defined by

\[v_1 \otimes v_2 \rightarrow \left| G^{p_m} \right|^{-1} \sum_{s \in G^{p_m}} \bar{\rho}(x)v_1 \otimes \bar{\rho}(x)v_2 \]

Since \(Tr(\left| G^{p_m} \right|^{-1} \sum_{s \in G^{p_m}} \bar{\rho}(x\sigma_0) \otimes \bar{\rho}(x\sigma_0) = 1 \), the following diagram commutes.

The commutativity of this diagram in turn shows the commutativity of the following.

\[H_{i'}^{w'}(X^{p_m})_{\bar{\rho}} \otimes H_{i'}^{w'}(X^{p_m})_{\bar{\rho}} \rightarrow (H_{i'}^{w'}(X^{p_m})_{\bar{\rho}} \otimes H_{i'}^{w'}(X^{p_m})_{\bar{\rho}}) G^{p_m} \]

Thus the induced action of \(F_\sigma^\times \) on

\[(H_{i'}^{w'}(X^{p_m})_{\bar{\rho}} \otimes H_{i'}^{w'}(X^{p_m})_{\bar{\rho}}) G^{p_m} \approx (\mathcal{Q}_{\xi} \oplus \cdots \oplus \mathcal{Q}_{\xi}) \otimes (\mathcal{Q}_{\xi} \oplus \cdots \oplus \mathcal{Q}_{\xi}) \]

\[r\text{-times} \]

[Diagram]

[Diagram]
is identified with $\xi \otimes \xi'$. Now, the canonical inclusion

$$(H^i_\epsilon(X^{(m)}_w)_\rho \otimes H^i_\epsilon'(X^{(m)}_w)_\rho)^{G^{F^m}} \to H^i_\epsilon(X^{(m)}_w \times X^{(m)}_w))$$

commutes with the action of $F^\#$. Therefore, Theorem 1.1 shows that all the eigenvalues of $\xi \otimes \xi'$ have the form q^a for some integer a. Since another choice of i and w yields the same result, the required statement follows.

Definition 1.3. Let ρ, μ be as in Theorem 1.2. We define μ_ρ by

$$1 \leq |\mu_\rho| < q, \quad \mu_\rho = q^a$$

for some integer a.

Corollary 1.4. For $w \in W$, there exists a unique polynomial $f_{\rho,w}(X)$ such that

(i) $Tr((xF^\rho_\delta)^t, \sum_{i=0}^\infty (-1)^i H^i_\epsilon(X^{(m)}_w)_\rho) = f_{\rho,w}(q^t) Tr((x\sigma_\delta)^{-1}, \rho)$

for any $x \in G^{F^m}$ and positive integer e,

(ii) $f_{\rho,w}(1) = \langle \rho_w^{(m)}, R^{(m)}_w \rangle$,

where $R^{(m)}_w$ denotes the virtual G^{F^m}-module $\sum_{i=0}^\infty (-1)^i H^i_\epsilon(X^{(m)}_w)$.

Since $j^t=1$, $F^m_{0^{m^5}}=F^{m^5}$. Let λ_ρ be the normalized eigenvalue of $(F^{m^5})^*$ associated with ρ, i.e. λ_ρ is equal to an eigenvalue of $(F^{m^5})^*$ (acting on $H^i_\epsilon(X^{(m)}_w)_\rho$ for some i and w) up to a multiplicative factor q^{m^5a} for some integer a, and satisfies

$$1 \leq |\lambda_\rho| < q^{m^5}$$

By [6, 3.9], λ_ρ is uniquely determined by ρ. Let $\bar{\rho}$, $\mu_\bar{\rho}$ be as in Definition 1.3. Obviously $\mu^{m^5}_\bar{\rho} = \lambda_\rho$. There are $m^5\delta$-extensions $\bar{\rho}$ for the fixed σ_0-invariant ρ and there are $m^5\delta$-constants μ such that $\mu^{m^5}_\bar{\rho} = \lambda_\rho$. Therefore we have

Lemma 1.5. Let ρ be a σ_0-invariant unipotent representation of G^{F^m}. Then the mapping $\bar{\rho} \mapsto \mu_\bar{\rho}$ induces the bijection

$$\{\bar{\rho} \in (G^{F^m}\langle \sigma_0 \rangle) \cap \bar{\rho} | G^{F^m} = \rho \} \to \{\mu ; \mu^{m^5} = \lambda_\rho\}$$

where $(G^{F^m}\langle \sigma_0 \rangle) \cap \bar{\rho}$ denotes the set of irreducible representations of $G^{F^m}\langle \sigma_0 \rangle$ (up to equivalence).

2. Henceforth we assume that the positive integer m is prime to the order δ of j. Let S be the set of simple reflections of W associated with the Borel subgroup B. For $I \subseteq S$, let P_I be the corresponding standard parabolic subgroup and L_I its standard Levi subgroup. Let I_0 be an F-stable subset of S. Let ρ_0 be a unipotent cuspidal representation of $L^{F^m}_I$. Let ρ be a unipotent representation of G^{F^m}. If ρ appears in the induced representation of G^{F^m} from
the representation \(\rho_0 \) inflated to \(P^F_0 \), then we call \(\rho \) a unipotent representation of \(G^F \) in the series of \(\rho_0 \). Now, we assume that \(\rho_0 \) is \(\sigma_0 \)-invariant, and we fix a representation \(\bar{\rho}_0 \) of the semi-direct product \(L^F_0 \langle \sigma_0 \rangle \) that extends \(\rho_0 \). Let \(J \) be any \(F \)-stable subset of \(S \) containing \(I_0 \). We further assume that any unipotent representation \(\rho \) of \(L^F_j \) in the series of \(\rho_0 \) is \(\sigma_0 \)-invariant (for any \(j \)). By [2, 8.2], the eigenvalues of \((F^F)^* \) associated with \(\rho \) and \(\rho_0 \) coincide with each other (up to a multiplicative factor \(q^{\text{mult}} \) for some integer \(a \)). Therefore we may fix a representation \(\bar{\rho} \) of \(L^F_j \langle \sigma_0 \rangle \) extending \(\rho \) by the condition

\[
\mu_{\bar{\rho}} = \mu_{\rho_0}
\]

(cf. Lemma 1.5).

Lemma 2.1. Let the assumptions be as above. Let \(J \) be an \(F \)-stable subset of \(S \) such that \(I_0 \subseteq J \subseteq S \). Let \(\rho \) be a unipotent representation of \(L^F_j \) in the series of \(\rho_0 \). Assume that

\[
\text{Ind}_{P^F_j}^{G^F} \rho = \sum_{1 \leq i \leq r} m_i \rho_i
\]

with each \(\rho_i \) a unipotent representation of \(G^F \) in the series of \(\rho_0 \) and \(m_i \) a positive integer. Then

\[
\text{Ind}_{P^F_j}^{G^F} \langle \sigma_0 \rangle \bar{\rho} = \sum_{1 \leq i \leq r} m_i \bar{\rho}_i
\]

Proof. There are two methods in extending a unipotent representation of \(G^F \) in the series of \(\rho_0 \) to a representation of \(G^F \langle \sigma_0 \rangle \) in normalized manners:

One is by using the eigenvalues of the Frobenius mapping \(F^F \) (the method which we have adopted here). The other is simply inducing the action of \(\sigma_0 \) on the representation \(\bar{\rho}_0 \).

To prove our lemma it suffices to show that these two methods yield the same extension for any \(\rho_i \) (or \(\rho \)). But this is apparent from the proof of [2, 8.2].

3. Let \(H \) be a finite group and \(\alpha \) an automorphism of \(H \). For \(h_1, h_2 \in H \), we define the equivalence relation \(\tilde{\alpha} \) by

\[
h_1 \tilde{\alpha} h_2 \Leftrightarrow h_1 = h^{-1} h_2^a h \quad \text{for some} \ h \in H.
\]

For \(x \in G^F \), write \(x = a^{-1} r_0 a \) with \(a \in G \) and put \(y = F^a a^{-1} \). Then \(x \to y \) defines the bijection

\[
G^F \to G^F / \bar{F}^m
\]

which will be denoted by \(n_{F^m / F_0} \). Quite analogously to Lemma 1.2.1 of [1], we obtain
Lemma 3.1. For any $x \in G^{\pi m}$ and $w \in W$,

$$\text{Tr}((xF_0)^*, \sum_{i \in \mathbb{Z}} (-1)^i H_i^i(X^w))$$

$$= \left((1 + q)^{-d \# \{ h \in G^F_0; h^{-1}n_{F_0}(x)^{-1}w h \in \mathcal{W}B \} \right),$$

where $d = \dim(U \cap wUw^{-1})$, and \mathcal{W} is an F_0-stable representative of w in the normalizer $N_G(T)$ of T in G.

Assume $m \equiv 1 \mod 2$. Then we may define the mapping

$$N^{(\pi)} = n_{F_0}^{1/2n_0} \circ n_{F_0}^{x \in F_0} : G^{\pi m} | \tilde{P}_0 \to G^F | \tilde{P}_0$$

Thus by the relation in the lemma combined with that relation with $m = 1$, we obtain

Theorem 3.2. Assume $m \equiv 1 \mod 2$. For any $x \in G^{\pi m}$ and $w \in W$,

$$\text{Tr}((xF_0)^*, \sum_{i \in \mathbb{Z}} (-1)^i H_i^i(X^w))$$

$$= \text{Tr}((N^{(\pi)}(x)F_0)^*, \sum_{i \in \mathbb{Z}} (-1)^i H_i^i(X^w)).$$

4. We preserve the notations used until now. Assume $G = SO^+_{2n}$, Sp_{2n} or SO_{2n+1}. In some cases, G is also denoted by G_n to specify n. If $G \neq SO_{2n}$, we take j to be of length, and if $G = SO_{2n}$, we take j to be of order 2. Let \mathcal{W} be the semi-direct product $G \langle j \rangle$. If $m \equiv 1 \mod 2$, then $G^{\pi m} \langle \sigma \rangle = G^{\pi m} \langle \sigma_0 \rangle$.

First we need

Lemma 4.1. Assume $m \equiv 1 \mod 2$. Then all the unipotent representations of $G^{\pi m}$ (resp. G^F) are σ_0-invariant.

Proof. For an F-stable closed subgroup H of G, we denote by $H^{(\pi)}$ the group of all F^{π}-stable points of H. Let I_0 be a subset of \mathcal{S} such that there exists a unipotent cuspidal representation ρ_0 of $L^{(\pi)}_{I_0}$. To prove the lemma it suffices to prove that any unipotent representation of $G^{(\pi)}$ in the series of ρ_0 is σ_0-invariant. We recall a result of Lusztig [5, §5]. Let $\mathcal{W} = (N_\mathcal{W}(L_{I_0})/L_{I_0})^{\pi m}$, where $N_{\mathcal{W}}(L_{I_0})$ is the normalizer of L_{I_0} in G. \mathcal{W} has a natural structure as a Coxeter group with the canonical set of generators \mathcal{S}. For a subset J of \mathcal{S} with $I_0 \subseteq J \subseteq \mathcal{S}$, a subset J of \mathcal{S} is associated in a natural manner and any subset of \mathcal{S} is obtained in this form. We denote by \mathcal{W}_J the subgroup of \mathcal{W} generated by $J(\subseteq \mathcal{S})$. Then unipotent representations (up to equivalence) of $G^{(\pi)}$ (resp. $L^{(\pi)}_J$) in the series of ρ_0 are parameterized by the set of irreducible representations \mathcal{W}_J (resp. $(\mathcal{W}_J)^{\pi m}$) of \mathcal{W} (resp. \mathcal{W}_J). And this parameterization is compatible with the inductions:
\[\begin{align*}
\chi & \in R(W_T) \sim \{ \text{Z-linear combi. of unip. char. of } L_j^{(m)} \} \text{ in the series of } \rho_0 \\
\text{Ind}_W^{W_T} \chi & \in R(W) \sim \{ \text{Z-linear combi. of unip. char. of } G^{(m)} \} \text{ in the series of } \rho_0
\end{align*} \]

where \(R(W_T) \) and \(R(W) \) denote the group of all virtual characters of \(W_T \) and \(W \) respectively, and irreducible characters are mapped to the irreducible characters by the horizontal isomorphisms. Now, \((W, \tilde{S})\) is isomorphic to a classical Weyl group. Thus, if \(\text{rank}(W, \tilde{S}) \geq 2 \), then we have:

For \(\chi_1, \chi_2 \in \tilde{W} \), if \(\chi_1 | W_T = \chi_2 | W_T \) for any \(j \in \tilde{S} \), then \(\chi_1 = \chi_2 \).

Therefore to prove that any unipotent representation \(\rho \) in the series of \(\rho_0 \) is \(\sigma_0 \)-invariant, it suffices to prove the statement only when \(\rho \) is a cuspidal (i.e. \(I_0 = S \)) or subcuspidal (i.e. \(|S \setminus I_0| = 1\)) representation (see [5]). Assume that \(\rho \) is cuspidal, i.e. \(\rho = \rho_0 \). Then \(\rho \) is the unique unipotent cuspidal representation. Therefore \(\rho \) is \(\sigma_0 \)-invariant. Assume that \(\rho \) is subcuspidal. Let \(\rho' \) be another unipotent subcuspidal representation (see [5]). Since \(\dim \rho = \dim \rho' \) (cf. [4]) and there is no other unipotent subcuspidal representation, \(\rho \) and \(\rho' \) are both \(\sigma_0 \)-invariant.

Henceforth we assume that \(m \) is prime to \(2p \) with \(p \) the characteristic of \(\mathbb{F}_q \). Then by N. Kawanaka [3], [4], the following statement is true:

For any \(\sigma_0 \)-invariant irreducible representation \(\rho^{(m)} \) of \(G^{(m)} \), there exists a \(\sigma_0 \)-invariant (or \(j \)-invariant) irreducible representation \(\rho^{(1)} \) of \(G^f \) such that

\[\text{Tr}(xy^j, \rho^{(m)}) = c \text{Tr}(N^{(m)}(x)^j, \rho^{(1)}) \]

for any \(x \in G^f \), where \(\rho^{(m)} \) (resp. \(\rho^{(1)} \)) is an irreducible representation of \(G^f \langle \sigma \rangle \) (resp. \(G^f \)) that extends \(\rho^{(m)} \) (resp. \(\rho^{(1)} \)), and \(c \) is a root of unity. We now assume that \(m \) is sufficiently large so that the main theorem in [7] (resp. [8]) holds for the group \(G^f \) if \(G = SO_{2n+1} \) or \(Sp_{2n} \) (resp. \(G = SO_{5n}^* \)). Let \(\Phi^*_n, \Phi^*_n \) be the sets of symbol classes defined in [5, § 3]. We set

\[\Psi^*_n = \begin{cases}
\Phi^*_n & \text{if } G = SO_{2n+1} \text{ or } Sp_{2n} \\
\Phi^*_n (\text{resp. } \Phi^*_n) & \text{if } G = SO_{5n}^* (\text{resp. } SO_{5n}^*)
\end{cases} \]

By [5], the unipotent representations of \(G^f \) (resp. \(G^f \)) are parameterized by the symbol classes in \(\Psi^*_n \). For \(\Lambda \in \Psi^*_n \), we denote by \(\rho^{(m)}_\Lambda \) (resp. \(\rho^{(1)}_\Lambda \)) the corresponding unipotent representation of \(G^f \) (resp. \(G^f \)), and by \(\lambda^{(m)}_\Lambda \) (resp. \(\lambda^{(1)}_\Lambda \)) the normalized eigenvalue of \((F^m)^* \) (resp. \((F^1)^* \)) associated with the unipotent representation \(\rho^{(m)}_\Lambda \) (resp. \(\rho^{(1)}_\Lambda \)). By [1], \(\lambda^{(m)}_\Lambda = 1 \) or \(-1\) if \(G = SO_{2n+1}, Sp_{2n} \) or \(SO_{5n}^* \). By [8, 3.4], \(\lambda^{(m)}_\Lambda = \lambda^{(1)}_\Lambda = 1 \) for any \(\Lambda \in \Psi^*_n \) if \(G = SO_{5n}^* \).
UNIPOTENT CHARACTERS OF SO^\pm_{2n}, Sp_{2n} AND SO_{2n+1}

Since m is odd, we may choose the extension $\tilde{\rho}^{(m)}_\Lambda \in (G^{F^m} \langle \sigma \rangle)^\wedge$ of $\rho^{(m)}_\Lambda$ by the condition

$$\mu_\rho^{(m)} = \lambda_{\rho^{(m)}_\Lambda}$$

(See Lemma 1.5). And we may choose the extension $\tilde{\rho}^{(1)}_\Lambda \in (G^{F} \langle j \rangle)^\wedge$ of $\rho^{(1)}_\Lambda$ by the condition

$$\mu_\rho^{(1)} = \lambda_{\rho^{(1)}_\Lambda};$$

Here we applied Lemma 1.5 with $m=1$. Let $(W \langle j \rangle)^*\Lambda$ be the set of irreducible representations χ (up to equivalence) of the semi-direct product $W \langle j \rangle$ such that $\chi|_W$ is irreducible. For any $\chi \in (W \langle j \rangle)^*\Lambda$, let $R^{(m)}_\chi$ be the class function of G^{F^m} defined in [6, (3.17.1)], i.e.

$$R^{(m)}_\chi = |W|^{-1}\sum_{w \in W} \text{Tr}(w, \chi) R^{(m)}_w$$

where $R^{(m)}_w$ is the character of the virtual G^{F^m}-module $\sum_{i \geq 0} (-1)^i H^{i}_C(X^{(m)}_w)$. We are to prove

Theorem 4.2. Let $\tilde{\rho}^{(m)}_\Lambda$ and $\tilde{\rho}^{(1)}_\Lambda (\Lambda \in \Psi)$ be the extensions of $\rho^{(m)}_\Lambda$ and $\rho^{(1)}_\Lambda$ chosen as above. Then we have

1. $\chi_{\rho^{(m)}_\Lambda}(\tilde{\rho}^{(m)}_\Lambda) = \chi_{\rho^{(1)}_\Lambda}(\tilde{\rho}^{(1)}_\Lambda)$ for any $\chi \in G^{F^m}$,
2. $\chi_{\rho^{(m)}_\Lambda}(\tilde{\rho}^{(m)}_\Lambda) = \chi_{\rho^{(1)}_\Lambda}(\tilde{\rho}^{(1)}_\Lambda)$
3. $\langle \rho^{(m)}_\Lambda, R^{(m)}_\chi \rangle = \langle \rho^{(1)}_\Lambda, R^{(1)}_\chi \rangle$ for any $\chi \in (W \langle j \rangle)^*\Lambda$, $\Lambda \in \Psi$,
4. $f_{\rho^{(m)}_\Lambda, \chi}(X) = f_{\rho^{(1)}_\Lambda, \chi}(X)$ for any $\chi \in (W \langle j \rangle)^*\Lambda$, $\Lambda \in \Psi$.

Corollary 4.3 The main theorems in G. Lusztig [7], [8] are true for any finite field.

Lemma 4.4. Let $\Lambda_1, \Lambda_2 \in \Psi$. Assume

(*) $\text{Tr}(xj\sigma, \tilde{\rho}^{(m)}_\Lambda) = c \text{Tr}(N^{(m)}(x), j, \tilde{\rho}^{(1)}_\Lambda)$

for any $x \in G^{F^m}$ with some root c of 1. Then

1. $\chi_{\rho^{(m)}_{\Lambda_1}}(\tilde{\rho}^{(m)}_{\Lambda_2}) = \chi_{\rho^{(1)}_{\Lambda_2}}(\tilde{\rho}^{(1)}_{\Lambda_2})$
2. $\dim \rho^{(1)}_{\Lambda_1} = \dim \rho^{(1)}_{\Lambda_2}$
3. $\langle \rho^{(1)}_{\Lambda_2}, R^{(m)}_\chi \rangle = \langle \rho^{(1)}_{\Lambda_2}, R^{(1)}_\chi \rangle$ for any $\chi \in (W \langle j \rangle)^*\Lambda$, $\Lambda \in \Psi$,
4. $f_{\rho^{(m)}_{\Lambda_1}, \chi}(X) = f_{\rho^{(m)}_{\Lambda_2}, \chi}(X)$ for any $\chi \in (W \langle j \rangle)^*\Lambda$, $\Lambda \in \Psi$.

To prove the lemma we need some preparations. Let $H(W)$ be the generalized Hecke algebra of the Coxeter group (W, S) over the polynomial ring $Q[X]$ that yields by the specialization $(X \rightarrow q)$ the G^F-module endomorphism algebra of the induced representation of G^F from the trivial representation of
Let \(\{ a_w; w \in W \} \) be the canonical basis of \(H(W) \). \(H(W) \) is a subalgebra of an algebra \(H(W \langle j \rangle) \) defined as follows.

\[
H(W \langle j \rangle) = H(W) \oplus a_j H(W)
\]

as linear spaces,

\[
a_j a_w a_i^{-1} = a_{w_{ij}} a_i^{-1} \quad \text{for } w \in W,
\]

\[
a_j^i = 1
\]

We put \(a_w a_j = a_{w_{ij}} \) \((w \in W)\). Let \(H^{(m)}(W \langle j \rangle) \) (resp. \(H^{(1)}(W \langle j \rangle) \)) denote the algebra obtained by specializing \(X \to q^m \) (resp. \(X \to q \)) in the defining relations of \(H(W \langle j \rangle) \). For \(w \in W \langle j \rangle \), let \(a_w^{(m)} \) (resp. \(a_w^{(1)} \)) denote the specialized element of \(a_w \) in \(H^{(m)}(W \langle j \rangle) \) (resp. \(H^{(1)}(W \langle j \rangle) \)). For \(x \in (W \langle j \rangle) \), let \(\nu_x \) be the corresponding irreducible representation of \(H(W \langle j \rangle) \otimes \Phi(X) \) and \(\nu_x^{(m)} \) (resp. \(\nu_x^{(1)} \)) its specialized representation of \(H^{(m)}(W \langle j \rangle) \) (resp. \(H^{(1)}(W \langle j \rangle) \)).

Proof of Lemma 4.4. By Corollary 1.4 and Lemma 3.1 we have

\[
\sum_{\lambda \in \Psi_*} f_{\rho_\Lambda, \psi}(q) \lambda_{\rho_\Lambda} \text{ Tr} \left((Xj)^{-1}, \rho_\Lambda \right)
\]

for any \(w \in W \) and \(x \in G^{m} \). The relation (1) and the relation (*) in the lemma together with the orthogonality relations (cf. [1]) imply

\[
f_{\rho_\Lambda, \psi}(q) \lambda_{\rho_\Lambda} = f_{\rho_\Lambda, \psi}(q) \lambda_{\rho_\Lambda}^{(1)}
\]

for any \(w \in W \). By [1, 2.4.7] and by [8, 3.5], we have

\[
f_{\rho_\Lambda, \psi}(X) = \delta^{-1} \sum_{x \in (W \langle j \rangle)_{\lambda}} \text{Tr} (a_w, \nu_x) \langle R_x^{(m)}, \rho_\Lambda \rangle
\]

for \(a=1, m \) and \(\Lambda \in \Psi_* \). By (2) and (3),

\[
\{ \delta^{-1} \sum_{x \in (W \langle j \rangle)_{\lambda}} \text{Tr} (a_w^{(1)}, \nu_x^{(1)}) \langle R_x^{(1)}, \rho_\Lambda \rangle \lambda_{\rho_\Lambda} \}
\]

\[
= \{ \delta^{-1} \sum_{x \in (W \langle j \rangle)_{\lambda}} \text{Tr} (a_w^{(1)}, \nu_x^{(1)}) \langle R_x^{(1)}, \rho_\Lambda \rangle \lambda_{\rho_\Lambda}^{(1)} \}
\]

Let \(\{ a_w'; w \in W \} \) be the dual basis of \(\{ a_w; w \in W \} \). We put \(a_w^* = a_{w'}^{-1} a_w \) for \(w \in W \). Then for \(\chi, \chi' \in (W \langle j \rangle)^* \),

\[
\sum_{w \in W} \text{Tr} (a_w^* \chi, \nu_x^{(1)}) \text{Tr} (a_w^{(1)}, \nu_x^{(1)}) \neq 0
\]

if and only if \(\chi \mid W = \chi' \mid W \), where \(a_w^{*(1)} \) is the specialized element of \(a_w^* \). Thus by (4),

\[
\langle R_x^{(m)}, \rho_{\Lambda}^{(m)} \rangle \lambda_{\rho_\Lambda} = \langle R_x^{(1)}, \rho_{\Lambda_2}^{(1)} \rangle \lambda_{\rho_\Lambda}^{(1)}
\]

for any \(\chi \in (W \langle j \rangle)^* \). By [6, 3.12],

\[
\]
\[
\dim \rho_{\Lambda_1}^{(m)}(x) = \delta^{-1} \sum_{\chi \in \Psi_{\Lambda_1}^{(m)}} <R_{\chi}^{(m)}, \rho_{\Lambda_1}^{(m)}> \dim R_{\chi}^{(m)}
\]

By [4], \(\dim \rho_{\Lambda_1}^{(m)}\) and \(\dim R_{\chi}^{(m)}\) are expressed as polynomials in \(q^m\). By Lusztig [7] and [8], \(<R_{\chi}^{(m)}, \rho_{\Lambda_1}^{(m)}>\) is independent of \(m\), since we have assumed that \(m\) is a sufficiently large odd integer. Thus the relation (6) holds with each term regarded as polynomials in \(q^m\). Hence by replacing \(q^m\) with \(q\) in (6) we have

\[
\dim \rho_{\Lambda_1}^{(1)} = \delta^{-1} \sum_{\chi \in \Psi_{\Lambda_1}^{(1)}} <R_{\chi}^{(1)}, \rho_{\Lambda_1}^{(1)}> \dim R_{\chi}^{(1)}
\]

By (5) and (7),

\[
\dim \rho_{\Lambda_1}^{(1)} = c \lambda^{-1}_{\Lambda_1} \lambda_{\Lambda_2} \delta^{-1} \sum_{\chi \in \Psi_{\Lambda_2}^{(1)}} <R_{\chi}^{(1)}, \rho_{\Lambda_2}^{(1)}> \dim R_{\chi}^{(1)}
\]

Since \(c\) is of absolute value 1, \(c \lambda^{-1}_{\Lambda_1} \lambda_{\Lambda_2}\) is also of absolute value 1. Considering that \(\dim \rho_{\Lambda_1}^{(1)}\) and \(\dim \rho_{\Lambda_2}^{(1)}\) are positive integers, we see that (i), (ii) of the lemma are true. (iii) is obtained by (5) and (i). (iv) is obtained by (3), (4) and (iii).

Lemma 4.5. Let \(n_0\) be a non-negative integer. We assume that there exists a symbol class \(\Lambda_0 \in \Psi_{n_0}\) of defect \(d\) corresponding to the unipotent cuspidal representation. Let \(\Lambda_1 \neq \Lambda_2 \in \Psi_{n_0 + 1}\) be the symbol classes of defect \(d\) corresponding to the subcuspidal representations.

(i) Assume \(\text{Tr}(xj \sigma, \rho_{\Lambda_0}^{(m)}) = \text{Tr}(N^{(m)}(xj), \rho_{\Lambda_1}^{(1)})\) for any \(x \in G_{\Psi_{n_0}}^{E}\). Then

\[
\text{Tr}(xj \sigma, \rho_{\Lambda}^{(m)}) = \text{Tr}(N^{(m)}(xj), \rho_{\Lambda}^{(1)})
\]

for any \(x \in G_{\Psi_{n_0 + 1}}^{E}\) with \((\Lambda, \Lambda')\) one of the following conditions (A) and (B):

(A) \((\Lambda, \Lambda') = (\Lambda_1, \Lambda_1), (\Lambda_2, \Lambda_2)\)

(B) \((\Lambda, \Lambda') = (\Lambda_1, \Lambda_2), (\Lambda_2, \Lambda_1)\)

(ii) Let \(n \geq n_0 + 1\) and assume that the statement (i) with the condition (A) is true. Then

\[
\text{Tr}(xj \sigma, \rho_{\Lambda}^{(m)}) = \text{Tr}(N^{(m)}(xj), \rho_{\Lambda}^{(1)})
\]

for any \(x \in G_{\Psi_{n}}^{E}\) and any \(\Lambda \in \Psi_{n}\) of defect \(d\).

Proof. By Lemma 2.1, we can apply the arguments employed in [1, 2.2.3]. (See Lemma 4.1)

Proof of Theorem 4.2. By Lemma 4.4, to prove the theorem it suffices to prove (i) of the theorem for any \(\Lambda \in \Psi_{n}\). And Lemma 4.5 shows that it suffices to prove (i) of the theorem only when \(\rho_{\Lambda}^{(m)}\) is cuspidal or subcuspidal.
Let \(n_0, \Lambda_0, \Lambda_1, \Lambda_2 \) be as in Lemma 4.5.

Assume \(n = n_0 \). \(\rho_{\Lambda_0}^{(m)} \) (resp. \(\rho_{\Lambda_0}^{(1)} \)) is the unique unipotent cuspidal representation of \(G_f^m \) (resp. \(G_f \)) and there is no unipotent subcuspidal representation of \(G_f^m \) (resp. \(G_f \)). By the induction, the statements of the theorem are true if \(\Lambda = \Lambda_0 \).

In particular, the lifting of a non-cuspidal unipotent representation is a non-cuspidal unipotent representation, whereas the relation (1) in the proof of Lemma 4.4 shows that the lifting of \(\tilde{\rho}_{\Lambda_0}^{(1)} \) is unipotent (or its restriction to \(G_f^m \) is unipotent if \(G = SO_{2n} \)), and therefore must be \(\tilde{\rho}_{\Lambda_0}^{(m)} | G_f^m \). Thus

\[
\text{Tr}(xj^\sigma, \tilde{\rho}_{\Lambda_0}^{(m)}) = c \text{ Tr}(N(x)j, \tilde{\rho}_{\Lambda_0}^{(1)})
\]

for any \(x \in G_f^m \) with a constant \(c \). Assume \(G = SO_{2n} \). Then \(\lambda_{\rho_{\Lambda_0}^{(m)}} = \lambda_{\rho_{\Lambda_0}^{(1)}} = 1 \).

Thus \(c = 1 \) by Lemma 4.4, (i). Assume \(G \neq SO_{2n} \), (hence \(j = \text{id.} \)). We are to prove \(c = 1 \). By [1, 2.4.6], for any \(\chi \in W^\wedge \),

\[
\begin{align*}
\text{(1)} & \quad \dim \rho_{\chi}^{(m)} = \sum_{\Lambda \in W^\wedge} \langle R_{\chi}^{(m)}, \rho_{\Lambda}^{(m)} \rangle \chi_{\rho_{\Lambda}^{(m)}} \dim \rho_{\Lambda}^{(m)}, \\
\text{(2)} & \quad \dim \rho_{\chi}^{(1)} = \sum_{\Lambda \in W^\wedge} \langle R_{\chi}^{(1)}, \rho_{\Lambda}^{(1)} \rangle \chi_{\rho_{\Lambda}^{(1)}} \dim \rho_{\Lambda}^{(1)},
\end{align*}
\]

where \(\rho_{\chi}^{(m)} \) (resp. \(\rho_{\chi}^{(1)} \)) denotes the unipotent representation of \(G_f^m \) (resp. \(G_f \)) in the principal series corresponding with \(\chi \) (cf. [1]). Since \(\langle R_{\chi}^{(m)}, \rho_{\Lambda}^{(m)} \rangle \) is independent of the odd integer \(m \) (\(m \) sufficiently large), the relation (1) holds with each term regarded as a polynomial in \(q^m \). Thus by replacing \(q^m \) with \(q \) in (1),

\[
\text{(3)} \quad \dim \rho_{\chi}^{(1)} = \sum_{\Lambda \in W^\wedge} \langle R_{\chi}^{(1)}, \rho_{\Lambda}^{(1)} \rangle \chi_{\rho_{\Lambda}^{(1)}} \dim \rho_{\Lambda}^{(1)}
\]

If \(\Lambda \neq \Lambda_0 \), we have already \(\langle R_{\chi}^{(m)}, \rho_{\Lambda}^{(m)} \rangle = \langle R_{\chi}^{(1)}, \rho_{\Lambda}^{(1)} \rangle \) and \(\lambda_{\rho_{\Lambda}^{(m)}} = \lambda_{\rho_{\Lambda}^{(1)}} \). Thus, by comparing the relation (2) and the relation (3), we obtain

\[
\langle R_{\chi}^{(m)}, \rho_{\Lambda_0}^{(m)} \rangle \lambda_{\rho_{\Lambda_0}^{(m)}} = \langle R_{\chi}^{(1)}, \rho_{\Lambda_0}^{(1)} \rangle \lambda_{\rho_{\Lambda_0}^{(1)}}
\]

for any \(\chi \in W^\wedge \). Thus by (iii) of Lemma 4.4, we have \(\lambda_{\rho_{\Lambda_0}^{(m)}} = \lambda_{\rho_{\Lambda_0}^{(1)}} \). (Note that there exists \(\chi \in W^\wedge \) such that \(\langle R_{\chi}^{(1)}, \rho_{\Lambda_0}^{(1)} \rangle \neq 0 \).) Hence by (i) of Lemma 4.4, we have \(c = 1 \). Therefore we have proved the theorem for \(\Lambda = \Lambda_0 \).

Assume \(n = n_0 + 1 \). \(\rho_{\Lambda_1}^{(m)} \) (resp. \(\rho_{\Lambda_2}^{(1)} \)) (\(i = 1, 2 \)) are subcuspidal representations of \(G_f^m \) (resp. \(G_f \)) and the other unipotent representations of \(G_f^m \) (resp. \(G_f \)) are neither cuspidal nor subcuspidal. Let \(i = 1 \) or 2. By Lemma 4.5, there exists \(i' = 1 \) or 2 such that

\[
\text{Tr}(xj^\sigma, \tilde{\rho}_{\Lambda_i}^{(m)}) = \text{Tr}(N(x)j, \tilde{\rho}_{\Lambda_i}^{(1)})
\]

for any \(x \in G_f^m \). Then by Lemma 4.4, \(\dim \rho_{\Lambda_i}^{(1)} = \dim \rho_{\Lambda_i}^{(1)} \). Since \(\dim \rho_{\Lambda_i}^{(1)} = \dim \rho_{\Lambda_{i'}}^{(3)} \), we must have \(i = i' \). This proves the theorem for \(\Lambda = \Lambda_1, \Lambda_2 \).
References

Department of Mathematics
Nara University of Education
Nara-City, Nara, Japan