MINIMAL IMMERSIONS OF 3-DIMENSIONAL SPHERE INTO SPHERES

KATSUYA MASHIMO

(Received April 8, 1983)
(Revised March 19, 1984)

Introduction

Let \(S^n \) be the \(n \)-dimensional sphere with constant curvature \(c \). Let \(\Delta \) be the Laplace-Beltrami operator on \(S^n \). The spectre and eigen-functions of \(\Delta \) are well-known [2]. Let \(V^d \) be the eigen-space of \(\Delta \) corresponding to the \(d \)-th eigen-value \(\lambda_d = d(d+n-1) \). Let \(f_0, f_1, \ldots, f_{m(d)} \) be an orthonormal basis of \(V^d \) with respect to the inner product. Then

\[
\psi_{n,d}: S^n \rightarrow \mathbb{S}^m(d)(\subset \mathbb{R}^m(d)+1)
; \quad p \rightarrow 1/(m(d)+1)(f_0(p), f_1(p), \ldots, f_{m(d)}(p)),
\]

is an isometric minimal immersion, where \(k(d) \) and \(m(d) \) are as follows [6];

\[
k(d) = n/d(d+n-1),
m(d) = (2d+n-1)(d+n-2)!/d!(n-1)! - 1.
\]

It is proved that any isometric minimal immersion of \(S^n \) into \(S^n \) is equivalent to \(\psi_{2,d} \) for some \(d \), [3], [6]. But it is not true if the dimension \(n \) is greater than 3. In fact do Carmo and Wallach proved the following

Theorem 0.1 (do Carmo and Wallach, [7]). Let \(f: S^n \rightarrow S^n \) be an isometric minimal immersion. Then

(i) there exists an integer \(d \) such that \(c = k(d) \).
(ii) There exists a positive semi-definite matrix \(A \) of size \((m(d)+1) \times (m(d)+1)\) such that \(f \) is equivalent to \(A \circ \psi_{n,d} \).
(iii) If \(n=2 \) or \(d=3 \), then \(A \) is the identity matrix.
(iv) If \(n \geq 3 \) and \(d \geq 4 \), then \(A \) is parametrized by a compact convex body \(L \) in some finite dimensional vector space, \(\dim L \geq 18 \). If \(A \) is an interior point of \(L \) then \(N = m(d) \), and if \(A \) is a boundary point of \(L \) then \(N < m(d) \).

There are some problems concerning (iv) of the above Theorem.
Problem 0.2 (Chern, [4]). Let \(S^3 \to S^1 \) be an isometric minimal immersion. Is it totally geodesic?

In [5], do Carmo posed a more general

Problem 0.3. Determine the lower bound \(1(d) \) of the dimension \(N \) of the sphere \(S^N \) into which a given \(S^8 \) can be isometrically and minimally immersed.

Recently Problem 0.2 was negatively answered by N. Ejiri [8]. In fact he proved that there exists an isometric minimal immersion \(S^3_1 \to S^0 \).

As for the Problem 0.3, scarcely anything is known.

In this paper we confine our consideration to the case \(n=3 \). In this case \(S^3 \) has a structure of a Lie group, \(S^3 = SU(2) \). We investigate whether there exists an orbit in a representation space \(V \) of \(SU(2) \), which is a minimal submanifold in the unit sphere in \(V \). And we give an estimate for \(1(d) \) (of the Problem 0.3 in the case \(n=3 \)). The following will be proved.

Theorem A. Let \(d \) be an integer, \(d \geq 4 \). Then there exists an isometric minimal immersion of \(S^3_{3d(d+2)} \) into \(S^1_{d(d+2)} \).

Theorem B. Let \(d \) be an even integer, \(d \geq 6 \). Then there exists an isometric minimal immersion of \(S^3_{3d(d+2)} \) into \(S^1_{d} \).

1. Complex linear representations of \(SU(2) \)

In this section we give a brief review on the complex linear representation of \(SU(2) \).

The special unitary group \(SU(2) \) is the group of matrices which acts on \(C^2 \) and leaves invariant the usual Hermitian inner product on \(C \). We can identify \(SU(2) \) with the 3-dimensional unit sphere \(S_1^3 \) by

\[
SU(2) \to S_1^3: g \rightarrow g \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad g \in SU(2).
\]

Then the induced metric on \(SU(2) \) by the above diffeomorphism is the bi-invariant metric on \(SU(2) \).

A homogeneous polynomial on \(C^2 \) is called of degree \(d \) if it satisfies

\[
P(\lambda z, \lambda w) = \lambda^d P(z, w), \quad \lambda \in C, \ z, w \in C.
\]

For each positive integer \(d \), let \(V(d) \) be the space of homogeneous polynomials of type \((d, 0)\) on \(C^2 \). Then \(SU(2) \) acts on \(V(d) \) as follows

\[
(\rho(g)(P))(z, w) = P((g^{-1} \cdot (z, w))), \quad g \in SU(2), \ z, w \in C, \ P \in V(d).
\]

Then \((V(d), \rho) \) is a complex irreducible representation and each complex irreducible representation of \(SU(2) \) is equivalent to \((V(d), \rho) \) for some \(d \) [12].
Define a Hermitian inner product in $V(d)$ by
\[(P, Q) = (d+1) \int_{g \in SU(2)} P((g \cdot (1.0))) Q((g \cdot (1.0))) \, dg\]
where dg is the normalized Haar measure on $SU(2)$. Let P_i be the polynomial in $V(d)$ defined by
\[P_i(z, w) = (\alpha C_i)^{1/2} z^{-i} w^i, \quad z, w \in \mathbb{C}.
\]
Then P_0, P_1, \ldots, P_d is an orthonormal basis of $V(d)$.

Let $\mathfrak{su}(2)$ be the Lie algebra of $SU(2)$. Take the following basis of $\mathfrak{su}(2)$ and fix them once for all.

\[
X_1 = \begin{bmatrix}
(-1)^{1/2} & 0 \\
0 & -(-1)^{1/2}
\end{bmatrix}, \quad X_2 = \begin{bmatrix}
0 & 1 \\
-1 & 0
\end{bmatrix}, \quad X_3 = \begin{bmatrix}
0 & -(-1)^{1/2} \\
(-1)^{1/2} & 0
\end{bmatrix}.
\]

Then the bracket relations of X_1, X_2, and X_3 are
\[
[X_1, X_2] = 2X_3, \quad [X_2, X_3] = 2X_1, \quad [X_3, X_1] = 2X_2.
\]

We denote also by ρ the representation of $\mathfrak{su}(2)$ induced by the representation of $SU(2)$, i.e.,
\[
\rho(A)(P) = d/dt|_{t=0} \rho(\exp tA)(P), \quad A \in \mathfrak{su}(2).
\]

Then by a direct calculation we get
\[
\begin{align*}
(1.2)_1 & \quad \rho(X_1)(P_j) = (-1)^{j/2}(2j-d)P_j, \quad 0 \leq j \leq d, \\
(1.2)_2 & \quad \rho(X_2)(P_j) = -((-d-j)(j+1))^{1/2} P_{j+1} + (j(d-j+1))^{1/2} P_{j-1}, \quad 0 \leq j \leq d, \\
(1.2)_3 & \quad \rho(X_3)(P_j) = -((d-j)(j+1))^{1/2} P_{j+1} - (j(d-j+1))^{1/2} P_{j-1}, \quad 0 \leq j \leq d,
\end{align*}
\]
where we put $P_{-1} = P_{d+1} = 0$.

2. **Real irreducible representations of $SU(2)$**

In this section we give a brief review on real irreducible representations of $SU(2)$.

Let G be a compact Lie group and (V, ρ) be a complex irreducible representation of G. Then (V, ρ) is said to be self-conjugate if V has a structure map j, i.e., a conjugate linear map on V such that
\[
\begin{align*}
& j(\rho(g)v) = \rho(g)j(v), \quad g \in G, \ v \in V, \\
& j(\alpha v + \beta w) = \alpha j(v) + \beta j(w), \quad \alpha, \beta \in \mathbb{C}, \ v, w \in V, \\
& j^2 = \pm 1.
\end{align*}
\]
A self-conjugate representation \((V, \rho)\) is said to be of index 1 (resp. \(-1\)) if
\[j^2 = 1 \text{ (resp. } j^2 = -1). \]
For simple Lie groups self-conjugate representations and their indices are known [13]. We denote by \((V_R, \rho)\) the representation of \(G\) over \(R\) obtained by the restriction of the coefficient field from \(C\) to \(R\).

Let \((V, \rho)\) be a self-conjugate representation of \(G\) of index \(-1\). Then \((V_R, \rho)\) is also irreducible. But \((V_R, \rho)\) is reducible if \((V, \rho)\) is a self-conjugate representation of \(G\) of index 1. Namely \((1+j)V_R\) and \((1-j)V_R\) are mutually equivalent real irreducible representation of \(G\) and
\[V_R = (1+j)V_R + (1-j)V_R, \text{ (direct sum)}. \]

For these facts we refer, for instance, to [1].

Now we confine our attention to the case \(G = SU(2)\).

Let \(j\) be a conjugate-linear automorphism on \(C^2\) defined by
\[j(z, w) = (-\bar{w}, \bar{z}), \quad z, w \in C. \]
Extend \(j\) to an automorphism on \(V(d)\) by
\[(jP)(z, w) = P(j(z, w)), \quad z, w \in C. \]

Then \(j\) is a structure map on \(V(d)\) with \(j^2 = (-1)^d 1\). So \((V(d)_R, \rho)\) is a self-conjugate representation of index \((-1)^d\). Let \(d\) be an even integer \(d = 2d'\) and put \(Q_i = (-1)^i P_i, 0 \leq i \leq d\). Then
\[jP_i = (-1)^i P_{d-i}, \quad jQ_i = -(-1)^i Q_{d-i}, \quad 0 \leq i \leq d. \]

Since \(P_0, P_1, \ldots, P_d, Q_0, Q_1, \ldots, Q_d\) are basis of \((V(d)_R, (1+j)P, (1+j)Q, 0 \leq i \leq d,\) are generators of \((1+j)V(d)_R\). It is easily seen that \((1+j)P_i, (1-j)Q_i, 0 \leq i \leq d-1\) and \((1+j)P_{d'}\) [resp. \((1+j)Q_{d'}\)] are basis of \((1+j)V(d)_R\) if \(a'\) is an even [resp. odd] integer. We denote \((1+j)V(d)_R\) by \(V_0(d)\).

Lemma 2.1. Let \(d\) be an even integer, \(d = 2d'\). Then \(\sum_{i=0}^{d} z_i P_i\) is contained in \(V_0(d)\) if and only if
\[z_i = (-1)^i \bar{z}_{d-i}, \quad 0 \leq i \leq d'. \]

Proof.
\[\sum_{i=0}^{d} z_i P_i = (\text{Re } z_0 P_0 + \text{Re } z_d P_d) + (\text{Im } z_0 Q_0 + \text{Im } z_d Q_d) \]
\[+ (\text{Re } z_1 P_1 + \text{Re } z_{d-1} P_{d-1}) + (\text{Im } z_1 Q_1 + \text{Im } z_{d-1} Q_{d-1}) \]
\[+ \cdots + z_{d'} P_{d'}. \]

Remember that \(P_{-j}, (1+j)P_{-j}, Q_{-j}, (1+j)Q_{-j}, 0 \leq j \leq d' - 1\) and \(P_{d'}, \) [resp. \(Q_{d'}\)] are basis of \(V_0(d)\) if \(d'\) is an even [resp. odd] integer. So \(\sum_{i=0}^{d} z_i P_i\) is contained in \(V_0(d)\) if and only if
MINIMAL IMMERSEMENTS OF 3-DIMENSIONAL SPHERE 725

\[
\text{Re } z_i = (-1)^i \text{Re } z_{d-i}, \quad \text{Im } z_i = -(-1)^i \text{Im } z_{d-i}, \quad 0 \leq i \leq d' - 1.
\]

\[
\text{Im } z_{d'} = 0 \text{ [resp. Re } z_{d'} = 0\text{] if } d' \text{ is even [resp. odd].}
\]

So we get the Lemma.

Q.E.D.

3. Orbits in a sphere

Let \(G \) be a Lie subgroup in \(SO(N+1) \). Then \(G \) acts on the unit sphere \(S^N_1 \) in \(\mathbb{R}^{N+1} \) centered at the origin in a natural manner. Take a point \(p_0 \) in \(S^N_1 \) and let \(M \) be the orbit of the action of \(G \) through \(p_0 \).

Let \(\mathfrak{g} \) be the Lie algebra of \(G \). We denote by \(A^* \) the vector field on \(S^N_1 \) defined by

\[
A^*_{|p} = d/dt|_{t=0} \exp(tA)(p), \quad p \in S^N_1.
\]

We consider elements of \(\mathfrak{g} \) as skew symmetric \((N+1) \times (N+1)\)-matrices in a natural manner. Then we get from (3.1) the following

\[
A^*_{|p} = A(p), \quad A \in \mathfrak{g}, \quad p \in S^N_1.
\]

So the tangent space of \(M \) at \(p \) is

\[
T_p(M) = \{A(p) | A \in \mathfrak{g}\}.
\]

Let \(N_p(M) \) be the normal space at \(p \) in \(S^N_1 \). Consider the tangent space \(T_p(M) \) and the normal space \(N_p(M) \) as a subspace in \(\mathbb{R}^{N+1} \). Then \(\mathbb{R}^{N+1} \) is decomposed into the direct sum

\[
\mathbb{R}^{N+1} = \mathbb{R}p + T_p(M) + N_p(M).
\]

For a vector \(A \) in \(\mathbb{R}^{N+1} \), we denote \(A^T \) and \(A^N \) the \(T_p(M) \)-component and \(N_p(M) \)-component of \(A \) in the decomposition (3.2) respectively.

Lemma 3.1. Let \(G \) be a Lie subgroup in \(SO(N+1) \). Let \(\alpha \) be the second fundamental form of the orbit \(G \cdot p \) in \(S^N_1 \). Then

\[
\alpha(A^*, B^*)_{|p} = (A(B(p)))^N, \quad (3.3)
\]

\[
\nabla_{B^*} A^*_{|p} = (A(B(p)))^T, \quad A, B \in \mathfrak{g}. \quad (3.4)
\]

where \(\nabla \) is the Riemannian connection on \(M \).

Proof. Let \(D \) be the Riemannian connection in \(\mathbb{R}^{N+1} \). Then

\[
D_{B^*} A^*_{|p} = d/dt|_{t=0} A^*_{|\exp(tB)(p)}
\]

\[
= d/dt|_{t=0} A(\exp(tB)(p))
\]

\[
= A(B(p)).
\]
Since \(\alpha(A^*, B^*)_{\mu} = (D_{B^*}A^*_{\mu})^N \) and \(\nabla_{B^*}A^*_{\mu} = (D_{B^*}A^*_{\mu})^* \), we get the Lemma.

Q.E.D.

4. Left invariant metrics on \(SU(2) \) and \(SO(3) \)

In this section we denote by \(G \) the Lie group \(SU(2) \) or \(SO(3) \). The Lie algebras of \(SU(2) \) and \(SO(3) \) are mutually isomorphic. We denote them by \(\mathfrak{su}(2) \).

Let \(B \) be the Killing form of \(\mathfrak{su}(2) \). Then \(X_1, X_2, X_3 \) defined in § 1 are orthonormal with respect to \(-B/8 \). Let \(g_0 \) be the Riemannian metric on \(G \) which is the bi-invariant extension of \(-B/8 \).

Lemma 4.1. [11]. Let \(g \) be an inner product on \(\mathfrak{su}(2) \). Then there exists an element \(\sigma \) in \(G \) such that

(i) \(X_i' = \text{Ad}(\sigma)(X_i), \ i = 1, 2, 3, \) are mutually orthogonal with respect to \(g \).

(ii) \(g = \lambda_1 \omega_1^2 + \lambda_2 \omega_2^2 + \lambda_3 \omega_3^2, \) where \(\lambda_i \) are positive constants and \(\omega_i(\cdot) = g_0(X_i', \cdot), \ i = 1, 2, 3. \)

Let \(g \) be the Riemannian metric on \(G \) which is the left invariant extension of the inner product \(g \) on \(\mathfrak{su}(2) \). Extend \(X_i/\sqrt{\lambda_i}, 1 \leq i \leq 3, \) to the left invariant vector fields \(Y_i, 1 \leq i \leq 3. \) Let \(\theta_i, 1 \leq i \leq 3, \) be the dual coframe fields on \(G \) to \(Y_i, 1 \leq i \leq 3. \) Let \(\Theta_{ij} \) (resp. \(\Omega_{ij} \)) be the connection (resp. curvature) form of \((G, g) \) with respect to the orthonormal frame fields \(Y_1, Y_2, Y_3. \) Then we get easily

\[
\begin{align*}
\theta_{12} &= -\frac{(\lambda_1 + \lambda_2 - \lambda_3)\lambda_1 \lambda_2 \lambda_3}{(\lambda_1 \lambda_2 \lambda_3)^2} \theta_3, \\
\theta_{23} &= -\frac{(\lambda_2 + \lambda_3 - \lambda_1)\lambda_1 \lambda_2 \lambda_3}{(\lambda_1 \lambda_2 \lambda_3)^2} \theta_1, \\
\theta_{31} &= -\frac{(\lambda_3 + \lambda_1 - \lambda_2)\lambda_1 \lambda_2 \lambda_3}{(\lambda_1 \lambda_2 \lambda_3)^2} \theta_2, \\
\Omega_{12} &= \frac{(\lambda_1 - \lambda_2)^2 - 3\lambda_3 + 2\lambda_3 - \lambda_1 \lambda_3 \lambda_3 - \lambda_2 \lambda_3}{(\lambda_1 \lambda_2 \lambda_3)^2} \theta_1 \Lambda \theta_2, \\
\Omega_{23} &= \frac{(\lambda_2 - \lambda_3)^2 - 3\lambda_1 + 2\lambda_1 - \lambda_1 \lambda_3 \lambda_3 - \lambda_2 \lambda_3}{(\lambda_1 \lambda_2 \lambda_3)^2} \theta_2 \Lambda \theta_3, \\
\Omega_{31} &= \frac{(\lambda_3 - \lambda_1)^2 - 3\lambda_2 + 2\lambda_2 - \lambda_1 \lambda_3 \lambda_3 - \lambda_2 \lambda_3}{(\lambda_1 \lambda_2 \lambda_3)^2} \theta_3 \Lambda \theta_1.
\end{align*}
\]

So \((G, g) \) is a space of constant curvature \(k \) if and only if \(\lambda_1 = \lambda_2 = \lambda_3 = 1/k, \) i.e.,

\(g = (1/k)g_0. \)

Let \((V, \rho) \) be a real representation of \(G \) and \(\langle \cdot, \cdot \rangle \) be a \(G \)-invariant inner product on \(V. \) Then an orbit \(M \) of \(G \) through a unit vector \(p \in V \) is contained in the unit sphere \(S_1 \) (in \(V \) centered at the origin).

Lemma 4.2. (i) The orbit \(M \) is a 3-dimensional space of constant curvature \(k \) if and only if

\[
\langle \rho(X_i)(p), \rho(X_j)(p) \rangle = \delta_{ij}/k, \quad 1 \leq i, j \leq 3.
\]

(ii) Assume that the orbit \(M \) is a 3-dimensional space of constant curvature \(k. \)
Then M is a minimal submanifold in S_1 if and only if

$$\sum_{i=1}^{3} \rho(X_i)^2(p) = -3kp .$$

Proof. Define a map $f: G \to S_1$ by

$$f(\sigma) = \rho(\sigma)(p) , \quad \sigma \in S_1 .$$

Then

$$f_*(X_i) = \rho(X_i)(p) .$$

Let g be the induced metric on G of f_*. Then g is a left invariant metric. So (G, g) is a 3-dimensional space of constant curvature k if and only if $g=(1/k)g_0$. By definition of g

$$g(X_i, X_j) = \langle \rho(X_i)(p), \rho(X_j)(p) \rangle$$

$$= \frac{g(X_i, X_j)}{k}$$

$$= \delta_{ij}/k , \quad 1 \leq i, j \leq 3 ,$$

if and only if $g=(1/k)g_0$.

(ii) Since (G, g) is a space of constant curvature, $\exp tX_i$ are geodesics in (G, g). By Lemma 3.1, $(\rho(X_i))^2(p)$ is normal to M. Consider the vector $\sum_{i=1}^{3} (\rho(X_i))^2(p)$ in V, which is normal to M. Then its $N_{\rho}(M)$-components in the decomposition (3.2) is the mean curvature vector of M in S_1 at p. Since M is an orbit of a representation of G, M is a minimal submanifold in S_1 if and only if the mean curvature vector of M in S_1 at one point is 0. So M is a minimal submanifold if and only if

$$(4.1) \quad \sum_{i=1}^{3} (\rho(X_i))^2(p) = cp ,$$

for some constant c. Assume that (4.1) holds, then

$$c = \langle \sum_{i=1}^{3} (\rho(X_i))^2(p), p \rangle$$

$$= -\sum_{i=1}^{3} \langle \rho(X_i)(p), \rho(X_i)(p) \rangle$$

$$= -3k .$$

Q.E.D.

5. **Proof of Theorems**

For each integer d, there exists a (complex) irreducible linear representation of $SU(2)$. We denote by $(V(d)_R, \rho)$ the real representation of $SU(2)$ obtained by the restriction of the coefficient field. Then $(V(d)_R, \rho)$ is irreducible if d is odd. $(V(d)_R, \rho)$ is reducible if d is even and we denote by $V_0(d)$ one of the irreducible component of $V(d)_R$. In this section we study whether there exists an orbit of constant curvature which is a minimal submanifold in the unit sphere in $V(d)_R$ or $V_0(d)$.
Let \langle , \rangle be the real part of the $SU(2)$-invariant Hermitian inner product (\cdot , \cdot) on $V(d)$ defined in (1.1). Then \langle , \rangle is an $SU(2)$-invariant inner product on $V(d)$. Let $p = \sum_{i=0}^{d} z_i P_i \in S_{1}^{2d+1}$, i.e.,
\begin{equation}
\sum_{i=0}^{d} z_i \bar{z}_i = 1.
\end{equation}
Then from (1.2), we get
\begin{equation}
\rho(H)(P_j) = (2j-d)P_j , \quad 0 \leq j \leq d ,
\end{equation}
\begin{equation}
\rho(X)(P_j) = -2((d-j)(j+1))^{1/2}P_{j+1} , \quad 0 \leq j \leq d ,
\end{equation}
\begin{equation}
\rho(Y)(P_j) = -2(j(d-j+1))^{1/2}P_{j-1} , \quad 0 \leq j \leq d .
\end{equation}
where we put $P_{-1} = P_{d+1} = 0$.

Lemma 5.1. If an orbit $M = \rho(SU(2)) \ (p)$ is a space of constant curvature k, then
(i) $k = \frac{3}{d(d+2)}$,
(ii) M is a minimal submanifold in S_{1}^{2d+1}.

By virtue of the above Lemma, we have only to verify the existence of an orbit of constant curvature in S_{1}^{2d+1} to prove Theorem A.

Extend $\rho: \mathfrak{s}u(2) \rightarrow gI(d+1, \mathbb{C})$ to $\mathfrak{s}l(2, \mathbb{C}) = (\mathfrak{s}u(2))^C$ and put
\begin{align*}
H &= -(-1)^{1/2}X_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \\
X &= X_2 - (-1)^{1/2}X_3 = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}, \\
Y &= -X_2 - (-1)^{1/2}X_3 = \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix}.
\end{align*}
Then from (1.2), we get
\begin{align*}
(5.3)_1 & \quad \rho(H)(P_j) = (2j-d)P_j , \quad 0 \leq j \leq d , \\
(5.3)_2 & \quad \rho(X)(P_j) = -2((d-j)(j+1))^{1/2}P_{j+1} , \quad 0 \leq j \leq d , \\
(5.3)_3 & \quad \rho(Y)(P_j) = -2(j(d-j+1))^{1/2}P_{j-1} , \quad 0 \leq j \leq d .
\end{align*}

Lemma 5.2. An orbit $M = \rho(SU(2)) \ (p)$ is a space of constant curvature $3/d(d+2)$ if and only if
\begin{align*}
(5.4)_1 & \quad (\rho(H)(p), \rho(X)(p)) + (\rho(H)(p), \rho(Y)(p)) = 0 , \\
(5.4)_2 & \quad (\rho(X)(p), \rho(Y)(p)) = 0 , \\
(5.4)_3 & \quad (\rho(H)(p), \rho(H)(p)) = d(d+2)/3 .
\end{align*}

Proof. By definition of H, X and Y
\begin{align*}
X_1 &= (-1)^{1/2}H , \quad X_2 = X - Y , \quad X_3 = (-1)^{1/2}(X + Y) .
\end{align*}
A simple computation shows
\[\langle \rho(X_i)(p), \rho(X_j)(p) \rangle = \langle (-1)^{d_i} \rho(H)(p), \rho(X)(p) - \rho(Y)(p) \rangle = -\text{Im} \left(\rho(H)(p), \rho(X)(p) \right) + \text{Im} \left(\rho(H)(p), \rho(Y)(p) \right). \]
Similarly
\[\langle \rho(X_i)(p), \rho(X_j)(p) \rangle = \text{Re} \left(\rho(H)(p), \rho(X)(p) \right) + \text{Re} \left(\rho(H)(p), \rho(Y)(p) \right), \]
\[\langle \rho(X_i)(p), \rho(X_j)(p) \rangle = 2 \text{Im} \left(\rho(X)(p), \rho(Y)(p) \right), \]
\[\langle \rho(X_i)(p), \rho(X_j)(p) \rangle = \langle \rho(H)(p), \rho(H)(p) \rangle, \]
\[\langle \rho(X_i)(p), \rho(X_j)(p) \rangle = \langle \rho(X)(p), \rho(X)(p) \rangle + \langle \rho(Y)(p), \rho(Y)(p) \rangle - 2 \text{Re} \left(\rho(X)(p), \rho(Y)(p) \right), \]
\[\langle \rho(X_i)(p), \rho(X_j)(p) \rangle = \langle \rho(X)(p), \rho(X)(p) \rangle + \langle \rho(Y)(p), \rho(Y)(p) \rangle + 2 \text{Re} \left(\rho(X)(p), \rho(Y)(p) \right). \]
An orbit \(M = \rho(SU(2))(p) \) is a space of constant curvature \(\frac{3}{d(d+2)} \) if and only if
\[\langle \rho(X_i)(p), \rho(X_j)(p) \rangle = \frac{d(d+2)}{3} \delta_{ij}, \quad 1 \leq i, j \leq 3, \]
by Lemma 4.2. Taking (5.2) into account, the Lemma is an immediate consequence. Q.E.D.

Proof of Theorems. Let \(p = \sum_{j=0}^{d} z_j P_j \) be a point in \(S^d_{2d+1} \), i.e.,
\[
\sum_{j=0}^{d} z_j = 1.
\]
From (5.3), (5.3) and (5.3), we get
\[
\rho(H)(p) = \sum_{j=0}^{d} (2j-d)z_j P_j, \\
\rho(X)(p) = -2 \sum_{j=0}^{d} ((d-j)(j+1))^{1/2} z_j P_{j+1}, \\
\rho(Y)(p) = -2 \sum_{j=0}^{d} (j(d-j+1))^{1/2} z_j P_{j+1}.
\]
Then
\[
\rho((H)(p), \rho(X)(p)) + \rho(H)(p), \rho(Y)(p)) = -2 \sum_{j=0}^{d} (2j-d)(j(d-j+1))^{1/2} z_j \bar{z}_{j-1} - 2 \sum_{j=0}^{d} (2j-d)(j+1)(d-j))^{1/2} z_j \bar{z}_{j+1}, \\
\rho(X)(p), \rho(Y)(p)) = 4 \sum_{j=0}^{d} (j(d-j+1)(d-j))^{1/2} z_j \bar{z}_{j+1}, \\
\rho(H)(p), \rho(H)(p)) = \sum_{j=0}^{d} (d^2 - 4dj + 4j^2) z_j \bar{z}_j.
So (5.4)\(_1\) and (5.4)\(_2\) is equivalent to the following
\[(5.5)_1\Sigma_{j=1}^{d} (2j-d)(j(j+1))^{1/2}z_j z_{j-1} + \Sigma_{j=1}^{d-1} (2j-d)(j+1)(d-j))^{1/2}z_{j+1} = 0,\]
\[(5.5)_2\Sigma_{j=1}^{d-1} (j(j+1)(d-j+1)(d-j))^{1/2}z_{j+1} = 0.\]

Taking (5.1) into account, (5.4)\(_3\) is equivalent to
\[(5.5)_3\Sigma_{j=0}^{d} (6j^2-6dj+d^2-d) z_j z_j = 0.\]

Now we prove the system of equations (5.5)\(_1\), (5.5)\(_2\) and (5.5)\(_3\) has a solution under the condition (5.1).

When \(d=4\) we put
\[z_i = \begin{cases} 1/2 & , \text{ if } i = 0, 4, \\ (-2)^{i/2}/2, \text{ if } i = 2, \\ 0 \text{, if } i = 1, 3. \end{cases}\]

When \(d\) is an even integer \(d=2d'\) and \(d\geq 6\), we put
\[z_i = \begin{cases} ((d'+1)/6d')^{1/2} & , \text{ if } i = 0, d, \\ (-1)^{d/2}(2d'-1)/3d')^{1/2}, \text{ if } j = d', \\ 0 \text{, if otherwise.} \end{cases}\]

When \(d\) is an odd integer \(d=2d'+1\), \(d'\geq 2\), we put
\[z_i = \begin{cases} ((d'+2)/(3d'+3))^{1/2} & , \text{ if } i = 0, \\ ((2d'+1)/(3d'+3))^{1/2}, \text{ if } i = d'+1, \\ 0 \text{, if otherwise.} \end{cases}\]

Then it is easily verified that \((z_0, z_1, \ldots, z_d)\) is a solution of the equation. So Theorem A is proved.

When \(d\) is an even integer, \(d\geq 6\), \(\Sigma_{i=0}^{d} z_i P_i\) is contained in \(V_0(d)\) by Lemma 2.1. So the orbit passing this point must be contained in the unit sphere in \(V_0(d)\). So we get Theorem B. Q E.D.

In Theorem B the case \(d=4\) is excluded. But this is a natural consequence of the following

Theorem 5.7 (J.D. Moore, [10]). Let \(M\) be a connected \(n\)-dimensional Riemannian manifold of constant curvature \(k\) isometrically and minimally immersed in a simply connected \((2n-1)\)-dimensional Riemannian manifold \(N\) of constant curvature \(K\). Then either \(M\) is totally geodesic or it is flat.

Recently Li [9] proved the following
Theorem. If \(\Phi: S^m \to S^1 \) is an isometric minimal immersion, then \(\Phi(S^m) \) is either an embedded sphere or an embedded projective space.

But this is not true if the codimension is not maximal. Let \(M \) be the orbit passing \((2^{1/2}P_0-(-5)^{1/2}P_3+2^{1/2}P_6)/3 \) in \(V_3(6) \). As we proved, \(M \) is a space of constant curvature \(1/16 \) and is a minimal submanifold in \(S^6 \). But the orbit is neither an embedded sphere nor an embedded projective space in \(S^6 \). Namely we have the following Proposition 5.8. Let \(\pi \) be the covering map
\[
\pi: SU(2) \to M; \ g \to \rho(g)((2^{1/2}P_0-(-5)^{1/2}P_3+2^{1/2}P_6)/3).
\]
Then \(\pi \) is at least 6-fold.

Proof. Put \(g = \left[\begin{array}{cc} \alpha & \alpha^{-1} \\ \end{array} \right] \), \(\alpha = e^{-i \sqrt{k} \pi/3} \) (\(0 \leq k \leq 5 \)). Then
\[
\begin{align*}
\rho(g)((2^{1/2}P_0-(-5)^{1/2}P_3+2^{1/2}P_6)/3) \\
= (2^{1/2}P_0-(-5)^{1/2}P_3+2^{1/2}P_6)/3 \\
= (2^{1/2}P_0-(-5)^{1/2}P_3+2^{1/2}P_6)/3
\end{align*}
\]
So the covering \(\pi \) is at least 6-fold. Q.E.D.

References

Institute of Mathematics
University of Tsukuba
Sakura-mura Niihari-gun
Ibaraki 305 Japan