1. Introduction

Let G be a finite group and k be a field of characteristic $p>0$. Let Θ be a connected component of the stable Auslander-Reiten quiver $\Gamma_{s}(kG)$ of the group algebra kG and set $V(\Theta)=\{\text{vx}(M)|M \text{ is an indecomposable } kG\text{-module in } \Theta\}$, where $\text{vx}(M)$ denotes the vertex of M. As we shall see in Proposition 3.2 below, if Q is a minimal element in $V(\Theta)$, then $Q \leq_{c} H$ for all $H \in V(\Theta)$. In particular we see that Q is uniquely determined up to conjugation in G.

Let $N=N_{G}(Q)$ and let f be the Green correspondence with respect to (G, Q, N). Choose an indecomposable kG-module M_{o} in Θ with Q its vertex. Let Δ be the connected component of $\Gamma_{s}(kN)$ containing fM_{o}. The purpose of this paper is to show that there is a subquiver Λ of Δ and a graph isomorphism $\psi: \Lambda \rightarrow \Theta$ such that ψ^{-1} behaves like the Green correspondence f as a bijective map between modules in Λ and those in Θ. In particular Θ is isomorphic with a subquiver of Δ. Also it will be shown that if $H\in V(\Theta)$, then $H \leq_{c} N_{G}(Q)$.

The notation is almost standard. All the modules considered here are finite dimensional over k. We write $W \mid W'$ for kG-modules W and W', if W is isomorphic to a direct summand of W'. For an indecomposable non-projective kG-module M, we write $\mathcal{A}(M)$ to denote the Auslander-Reiten sequence terminating at M. A sequence $M_{0}-M_{1}-\cdots-M_{t}$ of indecomposable kG-modules M_{i} ($0\leq i \leq t$) is said to be a walk if there exists either an irreducible map from M_{i} to M_{i+1} or an irreducible map from M_{i+1} to M_{i} for $0\leq i \leq t-1$. Concerning some basic facts and terminologies used here, we refer to [1], [5], [6] and [8].

The author would like to thank Dr. T. Okuyama for his helpful advice.
The trace map \(t^G_H : (W, W')^H \rightarrow (W, W')^G \) is defined by \(t^G_H(\phi) = \sum_{i=1}^n \phi \cdot g_i \), for \(\phi \in (W, W')^H \). For a set \(\mathcal{S} \) of subgroups of \(G \), write \((W, W')^\mathcal{S} = \sum_{V \in \mathcal{S}} \text{Im}(t^G_H) \) and \((W, W')^\mathcal{S,G} = (W, W')^G/(W, W')^\mathcal{S} \). A \(kG \)-homomorphism \(\phi \) is said to be \(\mathcal{S} \)-projective, if \(\phi \in (W, W')^\mathcal{S} \). A \(kG \)-module \(W \) is said to be \(\mathcal{S} \)-projective, if \(W \mid \sum_{V \in \mathcal{S}} \oplus (W \downarrow V) \downarrow G \).

For a set \(\mathcal{S} \) of subgroups of \(G \), we set \(\mathcal{S} = \mathcal{S} \cap eH = \{ V \in \mathcal{S} \mid V \in \mathcal{S}, g \in G \} \).

Lemma 2.1 ([8], Theorem 2.3). With the notation above, let \(\phi \in (W, W')^G \).

1. \(\phi \) is \(\mathcal{S} \)-projective if and only if \(\phi \) factors through a \(\mathcal{S} \)-projective module.
2. If \(W \) or \(W' \) is \(\mathcal{S} \)-projective, then \(\phi \) is \(\mathcal{S} \)-projective.

Lemma 2.2.

1. ([8], Cor. 5.4) For a \(kG \)-module \(A \) and a \(kH \)-module \(B \), the following \(k \)-isomorphisms hold:

 \[
 (A \downarrow H, B)^{S,H} = (A, B^G)^{S,G},

 (B, A \downarrow H)^{S,H} = (B^G, A)^{S,G}.

 2. In particular, for \(kH \)-modules \(A \) and \(B \), the following \(k \)-isomorphism holds:

 \[
 ((A^G) \downarrow H, B)^{S,H} = (A, (B^G) \downarrow H)^{S,H}.

 The next two results are also well-known.

Lemma 2.3 ([1], Prop. 2.17.10). Let \(M \) be an indecomposable non-projective \(kG \)-module and \(H \) be a subgroup of \(G \). Then the Auslander-Reiten sequence \(\mathcal{A}(M) \) splits on restriction to \(H \) if and only if \(H \) does not contain \(\text{vx}(M) \).

Lemma 2.4 ([4], Lemma 1.5 and [7], Theorem 7.5). Let \(H \) be a subgroup of \(G \). Let \(M \) and \(L \) be indecomposable non-projective modules for \(G \) and \(H \) respectively. Assume that \(L \) is a direct summand of \((L^G) \downarrow H \) with multiplicity one, and that \(M \) is a direct summand of \(L^G \) such that \(L \mid M \downarrow H \). Then \(\mathcal{A}(L)^G = \mathcal{A}(M) \oplus E \), where \(E \) is a split sequence.

Finally we note:

Lemma 2.5. Let \(P \) be a non-trivial \(p \)-subgroup of \(G \). Let \(M \) and \(L \) be indecomposable non-projective modules for \(G \) and \(N_G(P) \) respectively. Assume that \(\mathcal{A}(L)^G = \mathcal{A}(M) \oplus E \), where \(E \) is a split sequence and that \(P \leq \text{vx}(L) \). If \(M \) is not a direct summand of the middle term of \(\mathcal{A}(L)^G \), then \(\mathcal{A}(M) \downarrow_{N_G(P)} = \mathcal{A}(L) \oplus E' \), where \(E' \) is a \(P \)-split sequence.
Proof. Using the same argument as in the proof of [3], (2.3) Lemma (a), we have $\mathcal{A}(M) \downarrow_{N_G(P)} = \mathcal{A}(L) \oplus \mathcal{C}'$, where \mathcal{C}' is some exact sequence. Therefore we have only to show that \mathcal{C}' is a P-split sequence. Let $(,)$ denote the inner product on the Green ring $a(kG)$ induced by $\dim_k \Hom_{kG}(,)$ [2]. For an exact sequence of kG-modules $\iota: 0 \to A \to B \to C \to 0$, put $\mathcal{A}(\iota) = B - A - C$. By [2], Theorem 3.4, it is sufficient to show that $(\mathcal{A}(\mathcal{C}') \downarrow_P, W) = 0$ for any kP-module W. Using the Frobenius reciprocity, we have

\[
(\mathcal{A}(\mathcal{C}') \downarrow_P, W) = (\mathcal{A}(\mathcal{A}(M)) \downarrow_P, W) - (\mathcal{A}(\mathcal{A}(L)) \downarrow_P, W) = (\mathcal{A}(\mathcal{A}(M)), W^\mathcal{A}) - (\mathcal{A}(\mathcal{A}(L)), W^\mathcal{A}) = (\mathcal{A}(\mathcal{A}(L)), (W^\mathcal{A}) \downarrow_N) - (\mathcal{A}(\mathcal{A}(L)), (W^\mathcal{A}) \downarrow_N),
\]

where $N = N_G(P)$. By the Mackey decomposition, $(W^\mathcal{A}) \downarrow_N = W^\mathcal{A} \oplus W'$, where W' is $\{P \cap N | g \in G \backslash N\}$-projective. Since L is not $\{P \cap N | g \in G \backslash N\}$-projective, we have $(\mathcal{A}(\mathcal{A}(L)), W') = 0$. Consequently we get $(\mathcal{A}(\mathcal{C}') \downarrow_P, W) = 0$ as desired.

3. Minimal element in $V(\Theta)$

Let Ξ be a subgraph of the stable Auslander-Reiten quiver $\Gamma_s(kG)$ and set $V(\Xi) = \{v_x(M) | M \in \Xi\}$. Note that every element in $V(\Xi)$ is a non-trivial p-subgroup of G since every M is non-projective. The following Lemma 3.1 is essential in our argument.

Lemma 3.1. Let Ξ be a subgraph of $\Gamma_s(kG)$. Assume that Ξ is connected. Take any $Q \in V(\Xi)$ with the smallest order among those p-subgroups in $V(\Xi)$. Then for any indecomposable module $M \in \Xi$, $M \downarrow_Q$ has an indecomposable direct summand whose vertex is Q.

Proof. Let $M_0 \in \Xi$ be such that $Q = v_x(M_0)$. As Ξ is connected, there is a walk $M_0 - M_1 - \cdots - M_t = M$, so that M_i is a direct summand of the middle term of the Auslander-Reiten sequence $\mathcal{A}(M_{i+1})$ or $\mathcal{A}(\Omega^{-2}M_{i+1})$. We proceed by induction on the “distance” t. Suppose that $M_{t-1} \downarrow_Q$ has an indecomposable direct summand whose vertex is Q. We may assume that $v_x(M_t) \equiv_c Q$, since otherwise $v_x(M_t) =_c Q$ and Q-source of M_t is a direct summand of $M_t \downarrow_Q$. By Lemma 2.3, $\mathcal{A}(M_t) \downarrow_Q$ and $\mathcal{A}(\Omega^{-2}M_t) \downarrow_Q$ split. Since M_{t-1} is a direct summand of the middle term of $\mathcal{A}(M_t)$ or $\mathcal{A}(\Omega^{-2}M_t)$, $M_t \downarrow_Q$ has an indecomposable direct summand whose vertex is Q.

Lemma 3.1 implies that the minimal elements with respect to the partial order \leq_c are those that have the smallest order. Thus the following holds.

Proposition 3.2. Let Θ be a connected component of $\Gamma_s(kG)$. Let Q be
an element of $V(\Theta)$ which is minimal with respect to the partial order \leq_G. Then for any $H \in V(\Theta)$, we have $Q \leq_G H$. In particular Q is uniquely determined up to conjugation in G.

4. Module correspondence

Now returning to the situation of the introduction, let Q be a minimal element in $V(\Theta)$ throughout this section. Let Λ be the subquiver of Δ consisting of those kN-modules L in Δ such that there exists a walk $fM_0=L_0-L_1-\cdots-L_t=L$ with $Q \leq_G \text{vx}(L_i)$ ($i=0,1,\ldots,t$).

First of all we note

Lemma 4.1. Let L be an indecomposable kN-module in Λ. Then $Q \leq \text{vx}(L)$.

Proof. This follows immediately from Lemma 3.1.

Let \(\mathfrak{X} \) be the set of all \(p \)-subgroups of N of order smaller than $|Q|$. Also let \(\mathfrak{Y} = \{ N \cap Q^g | g \in G \setminus N \} \).

Lemma 4.2. Let W be an indecomposable kG-module in Θ. Then there exists a kN-module T satisfying the following two conditions:

(i) \((T \downderarrow q)^\uparrow N = T \oplus T' \), where T' is \(\mathfrak{Y} \)-projective.

(ii) \((W \downderarrow q, T)^\mathfrak{X},N \neq 0 \).

Proof. By Lemma 3.1, $W \downderarrow q$ has an indecomposable direct summand S whose vertex is Q. Let $T'=S^\uparrow N$. We show that T satisfies the above two conditions. By the Mackey decomposition we have $T \downderarrow q = \sum_{g \in Q^g \setminus N \in G} \oplus (S \otimes g)$ and so every indecomposable direct summand of T has Q as a vertex. Hence by the Green correspondence $(T \downderarrow q)^\uparrow N \cong T \oplus T'$, where T' is \mathfrak{Y}-projective. Let us show the condition (ii). Letting $X = \mathfrak{X} \cap N Q$, we have by Lemma 2.2 (1)

\[
(W \downderarrow q, T)^\mathfrak{X},N = (W \downderarrow q, S^\uparrow N)^\mathfrak{X},N
\]

\[
\cong (W \downderarrow q, S)^\mathfrak{X},Q \oplus (S, S)^\mathfrak{X},Q \neq 0
\]

and the assertion follows.

Lemma 4.3. Let T be a kN-module satisfying the condition (i) of Lemma 4.2. Let L be an indecomposable kN-module in Λ. Then the following k-isomorphisms hold:

\[
((L \downderarrow q)^\uparrow N, T)^\mathfrak{X},N \cong (L, (T \downderarrow q)^\uparrow N)^\mathfrak{X},N \cong (L, T)^\mathfrak{X},N.
\]

Proof. The first k-isomorphism holds by Lemma 2.2 (2).

Let $(T \downderarrow q)^\uparrow N = T \oplus (\Sigma_i \oplus X_i)$, where X_i is an indecomposable \mathfrak{Y}-projective kN-module. It is enough to show that $(L, X_i)^\mathfrak{X},N = 0$ for all X_i. So we have to show that any $\alpha \in (L, X_i)^N$ is \mathfrak{X}-projective. Since X_i is $Q=(Q^\mathfrak{X} \cap N)$-projective
for some $g \in G \setminus \mathcal{N}$, there exists $\beta \in (L \downarrow \mathfrak{g}, X_{\mathfrak{g}}) \mathfrak{g}$ such that $\alpha = \iota_{\mathfrak{g}}^\mathfrak{g}(\beta)$. Now, there exists a walk $fM_0 = L_0 - L_1 - \cdots - L_t = L$ such that $Q \leq \text{vex}(L_i) (i = 0, 1, \ldots, t)$ by Lemma 4.1. As Q is not conjugate to Q in \mathcal{N}, $\mathcal{A}(L_0) \downarrow \mathfrak{g}$ splits $(i = 0, 1, \ldots, t)$ by Lemma 2.3. Since $L_0 \downarrow \mathfrak{g}$ is \mathfrak{x}-projective and L_1 is a direct summand of the middle term of $\mathcal{A}(L_0)$, it follows that $L_1 \downarrow \mathfrak{g}$ is also \mathfrak{x}-projective. Using this argument repeatedly, we conclude that $L \downarrow \mathfrak{g}$ is \mathfrak{x}-projective. Therefore β is \mathfrak{x}-projective by Lemma 2.1 and hence α is \mathfrak{x}-projective.

Lemma 4.4. Let L be an indecomposable $k\mathfrak{N}$-module in Λ. Then $L \uparrow \mathfrak{g}$ has a unique indecomposable direct summand M whose vertex contains Q, and we have

1. L is a direct summand of $M \downarrow \mathcal{N}$, and
2. M lies in Θ.

Moreover letting T be a $k\mathfrak{N}$-module satisfying the conditions in Lemma 4.2 for M, we have:

$$((L \uparrow \mathfrak{g}) \downarrow \mathcal{N}, T)_{\mathfrak{x}, \mathcal{N}} = (M \downarrow \mathcal{N}, T)_{\mathfrak{x}, \mathcal{N}} = (L, T)_{\mathfrak{x}, \mathcal{N}} \neq 0.$$

In particular, L is a direct summand of $(L \uparrow \mathfrak{g}) \downarrow \mathcal{N}$ with multiplicity one.

Proof. Since $L \mid (L \uparrow \mathfrak{g}) \downarrow \mathcal{N}$, $L \uparrow \mathfrak{g}$ has an indecomposable direct summand M such that $L \mid M \downarrow \mathcal{N}$. Therefore the vertex of M contains Q and $L \uparrow \mathfrak{g}$ has at least one indecomposable direct summand whose vertex contains Q.

Let $fM_0 = L_0 - L_1 - \cdots - L_t = L$ be a walk. We prove the assertion by induction on the t.

If $t = 0$, i.e., $L = fM_0$, then the assertion follows since f is the Green correspondence.

Suppose the assertion holds for L_{t-1}. We shall derive a contradiction assuming that $L \uparrow \mathfrak{g}$ has two indecomposable direct summands M and W whose vertices contain Q. Let $L \uparrow \mathfrak{g} = M \oplus W \oplus W'$. We may assume that $L \mid M \downarrow \mathcal{N}$. By Lemma 2.4 $\mathcal{A}(L_{t-1}) \uparrow \mathfrak{g} = \mathcal{A}(M_{t-1}) \oplus \mathcal{E}$, where M_{t-1} is the unique indecomposable direct summand of $L_{t-1} \uparrow \mathfrak{g}$ whose vertex contains Q and \mathcal{E} is a split sequence. Note that the middle term of \mathcal{E} does not have an indecomposable direct summand whose vertex contains Q, since M_{t-1} (resp. $\Omega^2 M_{t-1}$) is a unique indecomposable direct summand of $L_{t-1} \uparrow \mathfrak{g}$ (resp. $(\Omega^2 L_{t-1}) \uparrow \mathfrak{g}$) whose vertex contains Q. Let Y (resp. Y') be the middle term of $\mathcal{A}(M_{t-1})$ (resp. $\mathcal{A}(\Omega^2 M_{t-1})$). Since L is a direct summand of the middle term of $\mathcal{A}(L_{t-1})$ or $\mathcal{A}(\Omega^2 L_{t-1})$, it follows that $M \oplus W | Y$ or $M \oplus W | Y'$. In particular both M and W lie in Θ.

Let T and U be $k\mathfrak{N}$-modules satisfying the conditions (i) and (ii) for M and W respectively in Lemma 4.2 and put $T' = T \oplus U$. Then
\[(L^\uparrow \wp) \downarrow_N, \quad T')^\wp,N\]
\[= (M \downarrow_N, \quad T')^\wp,N \oplus (W\downarrow_N, \quad T')^\wp,N \oplus (W'^\downarrow_N, \quad T')^\wp,N\]
\[= (L, \quad T')^\wp,N \oplus (Z, \quad T')^\wp,N \oplus (W\downarrow_N, \quad T')^\wp,N \oplus (W'^\downarrow_N, \quad T')^\wp,N,\]

where \(M \downarrow_N = L \oplus Z\). But by Lemma 4.3, \(((L^\uparrow \wp) \downarrow_N, \quad T')^\wp,N \simeq (L, \quad T')^\wp,N\). This implies that \((W\downarrow_N, \quad U')^\wp,N \subset (W\downarrow_N, \quad T')^\wp,N = 0\), which is a desired contradiction. Thus \(L^\uparrow \wp\) has a unique indecomposable direct summand \(M\) whose vertex contains \(Q\), and the statements (1) and (2) hold. Moreover we obtain that

\(((L^\uparrow \wp) \downarrow_N, \quad T')^\wp,N \simeq (M \downarrow_N, \quad T')^\wp,N \simeq (L, \quad T')^\wp,N \neq 0,\]

since \(M \mid L^\uparrow \wp\) and \(L \mid M \downarrow_N\). Hence \(L\) is a direct summand of \((L^\uparrow \wp) \downarrow_N\) with multiplicity one; for otherwise

\[(L, \quad T')^\wp,N \oplus (L, \quad T')^\wp,N \subset ((L^\uparrow \wp) \downarrow_N, \quad T')^\wp,N \simeq (L, \quad T')^\wp,N \neq 0,\]

a contradiction.

For an indecomposable \(kN\)-module \(L\) in \(\Lambda\), let \(\wp\) be a unique indecomposable direct summand of \(L^\uparrow \wp\) whose vertex contains \(Q\).

Lemma 4.5. Let \(L\) and \(L'\) be indecomposable \(kN\)-modules in \(\Lambda\). Then \(\wp L \simeq \wp L'\) if and only if \(L \simeq L'\).

Proof. If \(L \simeq L'\), then \(\wp L \simeq \wp L'\) clearly. To show the converse, assume by way of contradiction that \(\wp L \simeq \wp L'\) but \(L \neq L'\). Since \(L \mid \wp L \downarrow_N\) and \(L' \mid \wp L' \downarrow_N\), we have that \(L \oplus L' \mid \wp L \downarrow_N (L^\uparrow \wp) \downarrow_N\). Let \((L^\uparrow \wp) \downarrow_N = L \oplus L' \oplus W\). Let \(T\) be a \(kN\)-module satisfying the conditions (i) and (ii) of Lemma 4.2 for \(\wp L\). Then

\[((L^\uparrow \wp) \downarrow_N, \quad T)^\wp,N \]
\[= (L, \quad T)^\wp,N \oplus (L', \quad T)^\wp,N \oplus (W, \quad T)^\wp,N.\]

But by Lemma 4.3, \(((L^\uparrow \wp) \downarrow_N, \quad T)^\wp,N \simeq (L, \quad T)^\wp,N\). This implies that \((L', \quad T)^\wp,N = 0\), which is contrary to Lemma 4.4.

We are now ready to prove the main theorem of this paper.

Theorem 4.6. \(\wp\) induces a graph isomorphism from \(\Lambda\) onto \(\Theta\) which preserves edge-multiplicity and direction. Also \(\wp\) gives rise to a one-to-one correspondence between indecomposable modules in \(\Theta\) and those in \(\Lambda\) and the following hold:

1. Let \(M\) be an indecomposable \(kG\)-module in \(\Theta\). Then \(M \downarrow_N = \wp^{-1} M \oplus (\Sigma_i \oplus W_i), \) where \(W_i\) is \(\wp\)-projective for all \(i\).
2. Let \(L\) be an indecomposable \(kN\)-module in \(\Lambda\). Then \(L^\uparrow \wp = \wp L \oplus (\Sigma_i \oplus V_i),\)
where V_i is \mathcal{F}-projective for all i.

Proof. It is a direct consequence of Lemmas 4.4, 4.5 and 2.4 that ψ indeed induces a graph monomorphism. To show that ψ is an epimorphism, let M be an arbitrary element of Θ and let $M_0=M_1=\cdots=M_i=M$ be a walk in Θ. If $t=0$, i.e., $M=M_0$, then $M_0=f^{-1}(fM_0)=\psi L_0$. Now, suppose then that there exists an element L_{t-1} in Λ such that $M_{t-1}=\psi L_{t-1}$. By Lemmas 4.4 and 2.4 we have $A(L_{t-1})^{fg}=A(M_{t-1})\oplus E$ and $A(\Omega^{-2}L_{t-1})^{fg}=A(\Omega^{-2}M_{t-1})\oplus E'$, where E and E' are split sequences. Recall that M_t is a direct summand of the middle term of $A(M_{t-1})$ or $A(\Omega^{-2}M_{t-1})$. Therefore there exists some indecomposable direct summand L of the middle term of $A(L_{t-1})$ or of $A(\Omega^{-2}L_{t-1})$ such that $M|L|E$. Since $Q\subseteq \text{vx}(M)\subseteq \text{vx}(L)$, L lies in Λ. Consequently $M=\psi L$ and ψ is an epimorphism.

Next we prove (1) by induction on the distance t from M_0 to $M=M_t$. If $t=0$, i.e., $M=M_0$, then the statement (1) follows since f is the Green correspondence. Suppose the statement (1) holds for M_{t-1}. We may assume that M_t is a direct summand of the middle term of $A(M_{t-1})$ (otherwise replace M_{t-1} by $\Omega^{-2}M_{t-1}$). Let $M_t\downarrow N:=\psi^{-1}M_t\oplus(\Sigma_t\oplus W_t)$ and let $M_{t-1}\downarrow N:=\psi^{-1}M_{t-1}\oplus(\Sigma_t\oplus W_t)$. By Lemma 2.5, $A(M_{t-1})\downarrow N:=A(\psi^{-1}M_{t-1})\oplus E'$, where E' is a Q-split sequence. Note that E' is an exact sequence terminating at $\Sigma_t\oplus W_t$. If W_t is a direct summand of the middle term of $A(\psi^{-1}M_{t-1})$, then $Q\cong \text{vx}(W_t)$, since otherwise W_t lies in Λ but this contradicts that ψ is a graph isomorphism which preserves edge-multiplicity. Therefore $W_t|Q$ is \mathcal{F}-projective. Suppose then that W_t is a direct summand of the middle term of E'. Then since each $W_t|Q$ is \mathcal{F}-projective and $W_t|Q|(\Sigma_t\oplus W_t)|Q|Q(\Sigma_t\oplus Q2W_t)|Q$, it follows that $W_t|Q$ is \mathcal{F}-projective.

The statement (2) follows similarly by virtue of Lemma 2.4.

As an immediate consequence of the above theorem, we have

Corollary 4.7. Let Θ be a connected component of $\Gamma_s(kG)$ and let Q be a minimal element in $V(\Theta)$. Then for any element H of $V(\Theta)$, we have $H\subseteq N_G(Q)$.

References

Department of Mathematics
Osaka City University
558 Osaka, Japan