EQUIVARIANT CRITICAL POINT THEORY AND IDEAL-VALUED COHOMOLOGICAL INDEX

KATSUHIRO KOMIYA

(Received January 27, 1993)

Introduction

We develop an equivariant critical point theory for differentiable G-functions on a Banach G-manifold with the aid of ideal-valued cohomological index theory, where G is a compact Lie group. We obtain a lower bound for the number of critical orbits with values in a given interval $(a, b) = \{t \in \mathbb{R} \mid a < t \leq b\}$ and for the number of critical values in (a, b). We also obtain cohomological information about the topology of the critical set K of a G-function, which says a lot more about K than that obtained by using the Lusternik-Schnirelmann category.

The Lusternik-Schnirelmann category is a numerical homotopical invariant which gives a lower bound for the number of critical points (see for example [16], [17]), and this category is successfully extended to the equivariant setting [2], [3], [5], [6], [7], [15]. Ideal-valued cohomological index theory also gives important information about the existence of critical points [8], [9], [10]. The index theory in these papers is a priori in the equivariant setting and contains the nonequivariant (absolute) setting as trivial case.

In their paper [6] M. Clapp and D. Puppe developed an equivariant critical point theory using an equivariant Lusternik-Schnirelmann category. In the present paper we will develop one using an ideal-valued cohomological index theory which contains the nonequivariant setting as nontrivial case. We will obtain a type of results corresponding to their Theorem 1.1 of [6] and further results which are derived only from our theory.

Throughout this paper G always denotes a compact Lie group, and spaces considered are all paracompact Hausdorff. Let M be a Banach G-manifold of class at least C^1, i.e., M is a C^1 Banach manifold and G acts differentiably by diffeomorphisms. Let $f : M \to \mathbb{R}$ be a C^1 G-function, i.e., f is of class C^1 and satisfies $f(gx) = f(x)$ for all $x \in M$ and $g \in G$. Let $K = \{x \in M \mid df_x = 0\}$ the critical set of f, $M_c = f^{-1}(-\infty, c]$ and $K_c = K \cap f^{-1}(c)$ for any $c \in \mathbb{R}$.

If $x \in M$ is a critical point of f, then every point of $Gx = \{gx \mid g \in G\}$
is also a critical point, and G_x is called a critical orbit of f. Note that G_x is diffeomorphic to the homogeneous space G/G_x where G_x is the isotropy subgroup at x.

Consider the following deformation conditions (D_0)-(D_2) for $f: M \to \mathbb{R}$ at $c \in \mathbb{R}$:

(D_0) There is an $\varepsilon > 0$ such that $M_{c+\varepsilon}$ is G-deformable to M_c, i.e., there is a G-homotopy $\varphi_t: M_{c+\varepsilon} \to M_{c+\varepsilon}$ $(0 \leq t \leq 1)$ such that $\varphi_0 = \text{id}$ and $\varphi_1(M_{c+\varepsilon}) \subseteq M_c$.

(D_1) K_c is compact.

(D_2) For every $\delta > 0$ and every G-invariant neighborhood U of K_c there is an ε with $0 < \varepsilon < \delta$ such that $M_{c+\varepsilon} - U$ is G-deformable to $M_{c-\varepsilon}$ relative to $M_{c-\delta}$.

A C^1 Banach G-manifold M admits a G-invariant Finsler structure $\| \|: TM \to \mathbb{R}$ (see Palais [16], Krawcewicz-Marzantowicz [14]). The Palais-Smale condition (or (PS) condition for abbreviation) for f is:

(PS) Any sequence $\{x_n\}$ in M such that $\{f(x_n)\}$ is bounded and $\{\|df_{x_n}\|\}$ converges to 0 contains a convergent subsequence.

As is well-known, (D_1) and (D_2) at any $c \in \mathbb{R}$ is a consequence of (PS) under suitable assumptions on differentiability and completeness. See for the proof Palais [16; Theorem 5.11], [17; Theorem 4.6] for the nonequivariant case, and Clapp-Puppe [6; Appendix A], Krawcewicz-Marzantowicz [14; Lemma 1.9] for the equivariant case. If c is a regular value of f, (D_0) is also a consequence of (PS) (see [6; Appendix A]). Even if c is not a regular value we can see that (D_0) follows from (PS) under the assumption that c is an isolated critical value.

By a G-pair (X,A) we mean a G-space X together with a G-invariant subspace A. A G-map $f: (X,A) \to (Y,B)$ means a G-map $f: X \to Y$, i.e., $f(gx) = gf(x)$ for $g \in G$ and $x \in X$, such that $f(A) \subseteq B$. Let \mathcal{P} be the category of such G-pairs and G-maps. Let h^* be a generalized G-cohomology theory on \mathcal{P}, i.e., h^* is a contravariant functor into graded modules and h^* is equipped with long exact sequences, excision and homotopy property. In this paper, moreover we require h^* to be continuous and multiplicative with unit. See section 1 for the definition of the terms.

For $(X,A) \in \mathcal{P}$ the ideal-valued index of A in X, denoted $\text{ind}(A,X)$, is defined to be the kernel of the homomorphism $i^*: h^*(X) \to h^*(A)$ where $i: A \to X$ is the inclusion and $h^*(X) = h^*(X,\emptyset)$. Then $\text{ind}(A,X)$ is an ideal of $h^*(X)$.
We can now state our first theorem, which corresponds to Theorem 2.3 in section 2.

Theorem 0.0. Let M be a C^1 Banach G-manifold with $h^*(M)$ Noetherian, and $f: M \to \mathbb{R}$ a C^1-function. For given $-\infty < a < b \leq \infty$, assume that f satisfies (D_0) at a and $(D_1), (D_2)$ at every $c \in (a,b)$ ($c \neq \infty$). If $b = \infty$, assume in addition that $f(K)$ is bounded above. Then there are a finite number of critical values $c_1, \ldots, c_k \in (a,b]$ of f such that

$$\text{ind}(M_a, M) \cdot \text{ind}(K_{c_1}, M) \cdots \text{ind}(K_{c_k}, M) \subseteq \text{ind}(M_b, M),$$

where \cdot represents the products of ideals [1].

A ring R is said to be nilpotent if $R^n = 0$ for some integer $n > 0$. The least such integer n is called the index of nilpotency and written $\text{nil}(R)$. If no such integer n exists we put $\text{nil}(R) = \infty$.

Remark. See Marzantowicz [15] for the relation between the index of nilpotency of $\tilde{h}^*(X)$ of a G-space X, the cup-length of $\Lambda^*(M)$ and the G-category of X.

If $-\infty < a < b \leq \infty$, we see $\text{ind}(M_b, M) \subseteq \text{ind}(M_a, M)$ in $h^*(M)$ since $M_a \subseteq M_b$. Define for any integer $s \geq 0$,

$$s\text{-nil}(M_a, M_b) = \text{nil}(\text{ind}^{\leq s}(M_a, M) / \text{ind}^{\leq s}(M_b, M)),$$

where

$$\text{ind}^{\leq s}(A, M) = \text{ind}(A, M) \cap h^{\leq s}(M), \ h^{\leq s}(M) = \bigoplus_{n \geq s} h^n(M).$$

Note that if $s \leq t$ then $t\text{-nil}(M_a, M_b) \leq s\text{-nil}(M_a, M_b)$, and if $b = \infty$ then $s\text{-nil}(M_a, M_b) = \text{nil}(\text{ind}^{\leq s}(M_a, M))$ since $M_b = M$ and $\text{ind}(M_b, M) = 0$.

Using a suitable G-cohomology theory h^*, we will derive the following theorem from Theorem 0.0, which summarizes Theorems 3.4, 3.5, 3.6 and 3.9 in section 3.

Theorem 0.1. Let $f: M \to \mathbb{R}$ be as in Theorem 0.0 except that $f(K)$ is bounded if $b = \infty$.

1. f has at least $1\text{-nil}(M_a, M_b) - 1$ critical orbits in $M_{[a,b]} = f^{-1}(a,b]$.
2. If $h^{\leq s}(M) \subseteq \text{ind}(K_c, M)$ for all critical values $c \in (a,b]$, then f has at least $s\text{-nil}(M_a, M_b) - 1$ critical values in $(a,b]$.
3. If $s\text{-nil}(M_a, M_b) - 1$ is greater than the number of critical values of f in $(a,b]$, then there is a critical value $c \in (a,b]$ of f such that $h^{\leq s}(K_c) \neq 0$.

Theorem 0.1.
(4) If \(1\text{-nil}(M_a, M_x) = \infty \) for some \(a \in \mathbb{R} \), then there is an unbounded sequence of critical values of \(f \).

If in the above theorem \(f \) is bounded below and \(a < \inf f(M) \), then we will obtain a bit better results (see Theorem 3.7).

We will also obtain the following theorem more precisely than in Theorem 0.1 (3).

Theorem 0.2. Assume that \(f \) has \(k \) critical values \(c_1, \ldots, c_k \) in \((a, b] \), and that there are \(x_0 \in \text{ind}(M_a, M) \) and \(x_1, \ldots, x_k \in h^*(M) \) such that \(x_0 x_1 \cdots x_k \notin \text{ind}(M_b, M) \). If each of \(x_1, \ldots, x_k \) is homogeneous, then

\[
h^{d_1}(K_{c_1}) \oplus \cdots \oplus h^{d_k}(K_{c_k}) \neq 0,
\]

where \(d_i = \deg x_i \).

This theorem corresponds to Theorem 3.11, and the following corollary corresponds to Corollary 3.13 in section 3.

Corollary 0.3. Assume that \(f \) is bounded (above and below) and has \(k \) critical values. Then \(h^m(K) \neq 0 \) for any integers \(m, l \geq 0 \) with \(kl \leq \cup_{m} (h^*(M)) \).

Here \(\cup_{m}(h^*(M)) \) is the \(\cup_{m}-\text{length} \) of \(h^*(M) \) defined to be the largest integer \(t \) such that \((h_m(M))^t \neq 0 \) in \(h^*(M) \). Corollary 0.3 roughly says that the smaller the number of critical values is, the higher the dimension of the nonzero cohomology of \(K \) is.

1. Ideal-valued cohomological index

Let \(h^* \) be a generalized \(G \)-cohomology theory on \(\mathcal{P} \). \(h^* \) is said to be \textit{multiplicative} if it has products

\[
h^p(X, A) \times h^q(X, B) \rightarrow h^{p+q}(X, A \cup B)
\]

for any \((X, A), (X, B) \in \mathcal{P} \) with \(\{A, B\} \) excisive and any \(p, q \in \mathbb{Z} \), which is natural, bilinear, associative, commutative (up to the sign \((-1)^{pq}) \). \(h^* \) is said to be \textit{continuous} if for any \((X, A) \in \mathcal{P} \) with \(A \) closed,

\[
h^*(A) \cong \lim h^*(U)
\]

where the direct limit is taken over all \(G \)-invariant neighborhoods \(U \) of \(A \) in \(X \), and the isomorphism is induced by the inclusions.
EXAMPLE 1.1. Let H^* be the Alexander-Spanier cohomology theory with coefficients in a field F. The following (1) and (2) are both generalized cohomology theories on \mathcal{P} which are continuous and multiplicative with unit in $h^0(X)$.

(1) The Borel G-cohomology based on H^*,

$$h^*(X,A) := H^*(EG \times G X, EG \times gA; F),$$

where EG is a universal G-space.

(2)

$$h^*(X,A) := H^*(X/G, A/G; F).$$

REMARK 1.2. The equivariant stable cohomotopy theory and the equivariant K-theory are also examples of a generalized G-cohomology theory. The former is employed in Bartsch-Clapp-Puppe [4].

In what follows we assume h^* is a generalized G-cohomology theory on \mathcal{P} which is continuous and multiplicative with unit. For $(X,A) \in \mathcal{P}$ the ideal-valued index $\text{ind}(A, X)$ is defined as in the Introduction. We summarize its properties in the following.

Proposition 1.3. Let (X,A), (X,A_1), $(X,A_2) \in \mathcal{P}$.

(1) Monotonicity: If there is a G-map $\varphi : A_1 \to A_2$ such that $i_2 \varphi$ is G-homotopic to i_1 where $i_1 : A_1 \to X$ and $i_2 : A_2 \to X$ are the inclusions, then

$$\text{ind}(A_2, X) \subseteq \text{ind}(A_1, X).$$

(2) Subadditivity: If $\{A_1, A_2\}$ is an excisive pair, then

$$\text{ind}(A_1, X) \cdot \text{ind}(A_2, X) \subseteq \text{ind}(A_1 \cup A_2, X).$$

(3) Continuity: If A is closed in X and $\text{ind}(A, X)$ is a finitely generated ideal of $h^*(X)$, then there is a G-invariant neighborhood U of A in X such that

$$\text{ind}(A, X) = \text{ind}(U, X).$$

Proof. (1) Easy by the definition of the index.

(2) It suffices to show that if $x_n \in \text{ind}(A_n, X), n = 1, 2$, then $x_1 x_2 \in \text{ind}(A_1 \cup A_2, X)$. Consider the following commutative diagram.
where the homomorphisms are all induced from the inclusions. Note that the two sequences \(\{i^*_1, k^*_1\} \) and \(\{j^*_3, k^*_3\} \) are both exact. By the commutativity of the diagram we see \(h_n^* x_n = 0 \) in \(h^*(A_n) \) for \(n = 1, 2 \), and by the exactness we see that for \(n = 1, 2 \) there are \(y_n \in h^*(A_1 \cup A_2, A_n) \) such that \(j^*_n y_n = i^*_n x_n \). Hence

\[
i^*_3(x_1 x_2) = i^*_3 x_1 \cdot i^*_3 x_2 = j^*_3 y_1 \cdot j^*_3 y_2 = j^*_3(y_1 y_2) = 0.
\]

This implies \(x_1 x_2 \in \text{ind}(A_1 \cup A_2, X) \).

(3) Let \(x_1, \ldots, x_k \) be generators of \(\text{ind}(A, X) \). Since \(x_n \mid A = i^* x_n = 0 \) in \(h^*(A)(n = 1, 2, \ldots, k) \), by the continuity there is a \(G \)-invariant neighborhood \(U_n \) of \(A \) in \(X \) such that \(x_n \mid U = 0 \) in \(h^*(U_n) \). Then \(U = U_1 \cap \cdots \cap U_n \) is also a \(G \)-invariant neighborhood of \(A \), and \(x_n \mid U = 0 \), i.e., \(x_n \in \text{ind}(U, X) \). Hence \(\text{ind}(A, X) \subseteq \text{ind}(U, X) \). On the other hand we see \(\text{ind}(A, X) \supseteq \text{ind}(U, X) \) by the monotonicity of index.

Remark 1.4. In (3) of the above proposition \(\text{ind}(A, X) \) is finitely generated if \(h^*(X) \) is Noetherian. One can find in Fadell [8; §3] some sufficient conditions for \(h^*(X) \) to be Noetherian.

2. Indices of critical sets

Lemma 2.1. Let \(M \) be a \(C^1 \) Banach \(G \)-manifold and \(f : M \to \mathbb{R} \) a \(C^1 \) \(G \)-function. For given \(-\infty < a < b \leq \infty \), assume that \(f \) satisfies \((D_0) \) at \(a \) and \((D_2) \) at every \(c \in (a, b)(c \neq \infty) \). If \(f \) has no critical value in \((a, b) \), then

\[
\text{ind}(M_a, M) = \text{ind}(M_b, M).
\]

Proof. By the conditions \((D_0), (D_2) \) we can see that \(M_b \) is
By the monotonicity of index we see \(\text{ind}(M_a, M) \leq \text{ind}(M_b, M) \). Conversely, by the monotonicity again we see \(\text{ind}(M_a, M) \geq \text{ind}(M_b, M) \) since \(M_a \subseteq M_b \). Thus the lemma is proved.

Lemma 2.2. Let \(M \) be a \(C^1 \) Banach \(G \)-manifold with \(h^*(M) \) Noetherian. If a \(C^1 \) \(G \)-function \(f: M \to \mathbb{R} \) satisfies \((D_1)\) and \((D_2)\) at \(c \), then there is an \(\varepsilon > 0 \) such that

\[
\text{ind}(M_{c-\varepsilon}, M) \cdot \text{ind}(K_c, M) \leq \text{ind}(M_{c+\varepsilon}, M).
\]

In particular, if \(M_{c-\varepsilon} = \emptyset \) then

\[
\text{ind}(K_c, M) = \text{ind}(M_{c+\varepsilon}, M),
\]

and if \(K_c = \emptyset \) then

\[
\text{ind}(M_{c-\varepsilon}, M) = \text{ind}(M_{c+\varepsilon}, M).
\]

Proof. By the assumptions, \(K_c \) is compact and \(h^*(M) \) is Noetherian. So by the continuity of index there is a \(G \)-invariant neighborhood \(U \) of \(K_c \) such that \(\text{ind}(K_c, M) = \text{ind}(U, M) \). There is also a \(G \)-invariant neighborhood \(V \) of \(K_c \) such that \(K_c \subseteq V \subseteq \bar{V} \subseteq \bar{U} \). By the monotonicity we see \(\text{ind}(K_c, M) = \text{ind}(V, M) \). Take an \(\varepsilon > 0 \) satisfying \((D_2)\) for this \(V \). Then we have

\[
\text{ind}(M_{c+\varepsilon}, M) = \text{ind}((M_{c+\varepsilon} - V) \cup U, M)
\]

\[
\geq \text{ind}(M_{c+\varepsilon} - V, M) \cdot \text{ind}(U, M) \quad \text{by subadditivity}
\]

\[
= \text{ind}(M_{c+\varepsilon} - V, M) \cdot \text{ind}(K_c, M)
\]

\[
\geq \text{ind}(M_{c-\varepsilon}, M) \cdot \text{ind}(K_c, M) \quad \text{by \((D_2)\) and monotonicity.}
\]

Thus the first half of the lemma is proved. If \(A = \emptyset \) then \(\text{ind}(A, M) = h^*(M) \). This fact and the monotonicity implies the second half.

We will obtain the following theorem:

Theorem 2.3. Let \(M \) be a \(C^1 \) Banach \(G \)-manifold with \(h^*(M) \) Noetherian. For given \(-\infty < a < b \leq \infty \), assume that \(C^1 \) \(G \)-function \(f: M \to \mathbb{R} \) satisfies \((D_0)\) at \(a \) and \((D_1),(D_2)\) at every \(c \in (a, b) \) \((c \neq \infty)\). If \(b = \infty \), assume in addition that \(f(K) \) is bounded above. Then there are a finite number of critical values \(c_1, \ldots, c_k \in (a, b) \) of \(f \) such that

\[
\text{ind}(M_{a, M}) \cdot \text{ind}(K_{c_1}, M) \cdots \text{ind}(K_{c_k}, M) \leq \text{ind}(M_{b, M}).
\]
Proof. First assume \(b < \infty \). Let \(\varepsilon(a) \) be such an \(\varepsilon > 0 \) as in \((D_0)\) at \(a \). For any \(c \in (a, b] \) let \(\varepsilon(c) \) be such an \(\varepsilon > 0 \) as in Lemma 2.2, i.e.,

\[
\text{ind}(M_{c - \varepsilon(c)}, M) \cdot \text{ind}(K_{c}, M) \subseteq \text{ind}(M_{c + \varepsilon(c)}, M).
\]

Let \(V_c \) denote the open interval \((c - \varepsilon(c), c + \varepsilon(c))\) for any \(c \in [a, b] \). Then \(\{V_c|c\in[a,b]\}\) is an open covering of \([a,b]\). Since \([a,b]\) is compact, there are a finite number of \(d_1, \ldots, d_m \in [a, b] \) such that

\[
[a,b] \subseteq V_{d_1} \cup \cdots \cup V_{d_m}.
\]

By the monotonicity and Lemma 2.2 we have

\[
\text{ind}(M_b, M) \supseteq \text{ind}(M_{b + \varepsilon(b)}, M) \supseteq \text{ind}(K_b, M) \cdot \text{ind}(M_{b - \varepsilon(b)}, M).
\]

\(b - \varepsilon(b) \) is contained in \(V_d \) for some \(d \in \{d_1, \ldots, d_m\} \). Since \(b - \varepsilon(b) < d + \varepsilon(d) \) we have

\[
\text{ind}(M_{b - \varepsilon(b)}, M) \supseteq \text{ind}(M_{d + \varepsilon(d)}, M) \supseteq \text{ind}(K_d, M) \cdot \text{ind}(M_{d - \varepsilon(d)}, M) \text{ by Lemma 2.2}.
\]

By the above we have

\[
\text{ind}(M_b, M) \supseteq \text{ind}(K_b, M) \cdot \text{ind}(K_d, M) \cdot \text{ind}(M_{d - \varepsilon(d)}, M)
\]

Repeating this we have

\[
(2.4) \quad \text{ind}(M_b, M) \supseteq \text{ind}(K_{c_1}, M) \cdots \text{ind}(K_{c_k}, M) \cdot \text{ind}(M_{a}, M)
\]

for some \(c_1, \ldots, c_k \in (a, b] \). If \(c \) is not a critical value then \(K_c = \emptyset \) and \(\text{ind}(K_c, M) = h^*(M) \in 1 \). So we may assume that \(c_1, \ldots, c_k \) in \((2.4)\) are all critical values. Thus the theorem is proved for the case \(b < \infty \).

Now assume \(b = \infty \). Take an \(r > 0 \) such that \(\sup f(K) < r < \infty \). By the above we see that there are a finite number of critical values \(c_1, \ldots, c_k \in (a, r] \) such that

\[
\text{ind}(M_{a}, M) \cdot \text{ind}(K_{c_1}, M) \cdots \text{ind}(K_{c_k}, M) \subseteq \text{ind}(M_{r}, M).
\]

Since there is no critical value in \([r, \infty)\) we can see by \((D_2)\) that \(M_b = M \) is \(G \)-deformable to \(M_r \). Thus \(\text{ind}(M_r, M) = \text{ind}(M_b, M) = 0 \). Thus the theorem is also proved for the case \(b = \infty \). \(\square \)

If \(f \) is bounded below and \(a < \inf f(M) \), then \(M_a = \emptyset \) and \(\text{ind}(M_a, M) = h^*(M) \in 1 \). Thus we obtain the following corollary from Theorem 2.3.
Corollary 2.4. If \(f \) is bounded below and \(a < \inf f(M) \) in Theorem 2.3, then there are a finite number of critical values \(c_1, \ldots, c_k \leq b \) of \(f \) such that

\[
\text{ind}(K_{c_1}, M) \cdots \text{ind}(K_{c_k}, M) \subseteq \text{ind}(M_b, M).
\]

In particular, if \(b = \infty \) then

\[
\text{ind}(K_{c_1}, M) \cdots \text{ind}(K_{c_k}, M) = 0.
\]

3. The number of critical orbits and values

In this section we will derive some results from Theorem 2.3. Before doing that we need a lemma.

Lemma 3.1. Let \(\mathfrak{U} \supseteq \mathfrak{B} \) be two ideals of a ring \(R \). If \(\mathfrak{U} \cdot R^k \subseteq \mathfrak{B} \) for some \(k \geq 0 \), then \(\text{nil}(\mathfrak{U}/\mathfrak{B}) \leq k + 1 \).

Proof. Assume to the contrary that \(k + 1 \leq \text{nil}(\mathfrak{U}/\mathfrak{B}) \). Then there were \(k + 1 \) elements \(x_0, x_1, \ldots, x_k \in \mathfrak{U} \) such that \([x_0] \cdot [x_1] \cdots [x_k] \neq 0 \) in \(\mathfrak{U}/\mathfrak{B} \), i.e., \(x_0 x_1 \cdots x_k \notin \mathfrak{B} \). This contradicts the assumption \(\mathfrak{U} \cdot R^k \subseteq \mathfrak{B} \).

For a function \(f: M \to \mathbb{R} \) and a subset \(S \subseteq \mathbb{R} \) define \(M_s := f^{-1}(S) \) and \(K_s := K \cap M_s \). In the theorems below we will assume (3.2) and (3.3).

Assumption 3.2. A generalized \(G \)-cohomology theory \(h^* \) is continuous and multiplicative with unit and satisfies \(h^{>1}(G/H) = 0 \) for all closed subgroups \(H \) of \(G \).

The \(G \)-cohomology theory of Example 1.1 (2) satisfies Assumption 3.2. Note that if \(K \) is a disjoint union of a finite number of orbits \(G/H_1, \ldots, G/H_m \) in \(M \) then

\[
\text{ind}(K, M) = \bigcap_{i=1}^m \text{ind}(G/H_i, M) \supseteq h^{>1}(M)
\]

under Assumption 3.2.

Assumption 3.3. \(M \) is a \(C^1 \) Banach \(G \)-manifold with \(h^*(M) \) Noetherian. For given \(-\infty < a < b \leq \infty \), a \(C^1 \) \(G \)-function \(f: M \to \mathbb{R} \) satisfies (\(D_0 \)) at \(a \) and (\(D_1 \), (\(D_2 \)) at every \(c \in (a,b) \) (\(c \neq \infty \)).

Theorem 3.4. \(f \) has at least \(1 - \text{nil}(M_a, M_b) - 1 \) critical orbits in \(M_{[a,b]} \). In particular, if \(1 - \text{nil}(M_a, M_b) = \infty \) then \(f \) has infinitely many critical
orbits in $M_{(a,b)}$.

Proof. It suffices to consider only the case where the number of critical values in (a,b) is finite. Let $c_1, \ldots, c_k \in (a, b]$ be such critical values. It also suffices to consider the case where K_{c_i} is a finite union of orbits for all $1 \leq i \leq k$. In this case we see $h^{\geq 1}(M) \subseteq \text{ind}(K_{c_i}, M)$. Thus by Theorem 2.3 we have

$$\text{ind}(M_a, M) \cdot (h^{\geq 1}(M))^k \subseteq \text{ind}(M_b, M).$$

By Lemma 3.1 we see $1\text{-nil}(M_a, M_b) \leq k + 1$. This implies that the number of critical orbits in $M_{(a,b]}$ is at least $1\text{-nil}(M_a, M_b) - 1$.

A similar proof to above also shows the following.

Theorem 3.5. If $h^{\geq s}(M) \subseteq \text{ind}(K_{c_i}, M)$ for all critical values $c \in (a, b]$ and for some integer $s \geq 0$, then f has at least $s\text{-nil}(M_a, M_b) - 1$ critical values in $(a, b]$.

The contraposition of this theorem is:

Theorem 3.6. If $s\text{-nil}(M_a, M_b) - 1$ is greater than the number of critical values of f in $(a, b]$, then there is a critical value $c \in (a, b]$ of f such that

$$h^{\geq s}(M) \nsubseteq \text{ind}(K_{c_i}, M)$$

and hence $h^{\geq s}(K_c) \neq 0$.

If f is bounded below and $a < \inf f(M)$, then we may use Corollary 2.4 instead of Theorem 2.3 in the proofs of Theorems 3.4, 3.5, 3.6, and obtain

Theorem 3.7. Assume that f is bounded below and $a < \inf f(M)$. Then

1. f has at least $1\text{-nil}(0, M_b)$ critical orbits in M_b,
2. if $h^{\geq s}(M) \subseteq \text{ind}(K_{c_i}, M)$ for all critical values $c \leq b$ of f, then f has at least $s\text{-nil}(0, M_b)$ critical values in $(-\infty, b]$,
3. if $s\text{-nil}(0, M_b)$ is greater than the number of critical values of f in $(-\infty, b]$, then there is a critical value $c \leq b$ of f such that $h^{\geq s}(K_c) \neq 0$.

Note that $s\text{-nil}(0, M_b) = \text{nil}(h^{\geq s}(M)/\text{ind}^{\geq s}(M_b, M))$.

Lemma 3.8. If A is a G-invariant compact subspace of a G-space X with $h^*(X)$ Noetherian, then
\[(h^{\geq 1}(X))^k \leq \text{ind}(A, X)\]

for some integer \(k > 0\).

Proof. Since \(A\) is compact, there are a finite number of orbits in \(A\), say \(G/H_i (1 \leq i \leq k)\), and \(G\)-invariant open neighborhoods \(U_i\) of \(G/H_i\) such that \(A\) is covered by \(U_i(1 \leq i \leq k)\) and \(\text{ind}(G/H_i, X) = \text{ind}(U_i, X)\). This fact shows

\[\text{ind}(G/H_1, X) \cdots \text{ind}(G/H_k, X) \leq \text{ind}(A, X)\]

by the monotonicity and subadditivity of index. Then Assumption 3.2 implies the lemma. \(\square\)

Theorem 3.9. If \(1\)-nil\((M_a, M_b) = \infty\) and \(b = \infty\), then \(f(K)\) is not bounded, i.e., there is an unbounded sequence of critical values of \(f\).

Proof. If \(f(K)\) were bounded, then by Theorem 2.3 there were a finite number of critical values \(c_1, \ldots, c_k > a\) such that

\[(3.10) \quad \text{ind}(M_a, M) \cdot \text{ind}(K_{c_1} M) \cdots \text{ind}(K_{c_k} M) = 0.\]

Since \(\text{nil}(\text{ind}^{-1}(M_a, M)) = 1\)-nil\((M_a, M) = \infty\), for every \(n > 0\) there are \(x_1, \ldots, x_n \in \text{ind}^{-1}(M_a, M)\) with \(x_1 \cdots x \neq 0\). Since \(K_{c_i}(1 \leq i \leq k)\) is compact, Lemma 3.8 shows that for a sufficiently large \(n\) there is an \(m < n\) such that

\(x_1 \cdots x_m \in \text{ind}(K_{c_1} M) \cdots \text{ind}(K_{c_k} M)\).

Then (3.10) implies \(x_1 \cdots x_m \cdots x_n = 0\). This is a contradiction. So \(f(K)\) is not bounded. \(\square\)

Theorem 3.11. Assume that \(f\) has \(k\) critical values \(c_1, \ldots, c_k\) in \((a, b]\), and that there are \(x_0 \in \text{ind}(M_a, M)\) and \(x_1, \ldots, x_k \in h^*(M)\) such that \(x_0 x_1 \cdots x_k \notin \text{ind}(M_b, M)\). If each of \(x_1, \ldots, x_k\) is homogeneous, then

\[(3.12) \quad h^{d_1}(K_{c_1}) \bigoplus \cdots \bigoplus h^{d_k}(K_{c_k}) \neq 0,\]

where \(d_i = \deg x_i\).

Proof. If the left hand side of (3.12) were zero, then \(x_i \in \text{ind}(K_{c_i}, M)\) for all \(1 \leq i \leq k\). This implies

\(x_0 x_1 \cdots x_k \in \text{ind}(M_a, M) \cdot \text{ind}(K_{c_1} M) \cdots \text{ind}(K_{c_k} M),\)
and by Theorem 2.3 we see $x_0 x_1 \cdots x_k \in \text{ind}(M_b, M)$. This contradicts the assumption of the theorem.

Corollary 3.13. Assume that f is bounded (above and below) and has k critical values. Then $h^m(K) \neq 0$ for any integers $m, l \geq 0$ with $kl \leq \cup_m (h^*(M))$.

Proof. If $\cup_m (h^*(M)) < k$, then the corollary is trivial since $l = 0$ can only be taken. So assume $k \leq \cup_m (h^*(M)) = t$. Then there are $y_1, \cdots, y_t \in h^m(M)$ for $i = 1, \cdots, t$ such that $y_1, \cdots, y_t \neq 0$. If we take a and b such that $-\infty < a < \inf f(M) \leq \sup f(M) < b < \infty$, then $\text{ind}(M_a, M) = h^*(M)$ and $\text{ind}(M_b, M) = 0$. Thus we can take x_0, x_1, \cdots, x_k in Theorem 3.11 so as

$$x_0 = 1, x_i = y_{i-1} y_{i-1} y_{i-1} y_{i-1} y_{i-1} y_{i-1} y_{i-1} y_{i-1} (1 \leq i \leq k).$$

Since $\deg x_i = ml$ for all i with $1 \leq i \leq k$, Theorem 3.11 shows $h^m(K) \neq 0$.

Finally, we give an application of Corollary 3.13. Let K be the reals R, the complexes C, or the quaternions H, and according to that G be the group Z_2, S^1 or S^3 of $g \in K$ with $|g| = 1$. Then G acts on K^n by coordinate-wise multiplication, and the unit sphere $S(K^n)$ of K^n is a G-invariant submanifold with the orbit space $S(K^n)/G = KP^{n-1}$, the projective space. Let $h^*(X) = H^*(X/G; F)$ where H^* is the Alexander-Spanier cohomology and $F = Z_2, Q$ or Q according to $K = R, C$ or H. Then

$$h^*(S(K^n)) \cong F[x]/(x^n), \quad d = \deg x = 1, 2 \text{ or } 4,$$

and we see $\cup_m (h^*(S(K))) = n - 1$. Thus Corollary 3.13 shows that if a $C^1 G$-function $f : S(K^n) \rightarrow R$ has k critical values, then $h^{dl}(K) \neq 0$ for any integer l with $0 \leq kl \leq n - 1$. This says a lot more about the cohomology of K than in Clapp-Puppe [5; §2].

For many spaces other than $S(K^n)$ we already know the \cup_1-length or a lower bound of that. See for example Fadell-Husseini[10; Theorem 3.16], Hiller [11], Jaworowski [12; §5] and Komiya [13; Remark 5.10]. So we can apply Corollary 3.13 to functions on such spaces.

References

Department of Mathematics
Yamaguchi University
Yamaguchi 753
Japan