A NOTE ON AUSLANDER–REITEN QUIVERS
FOR INTEGRAL GROUP RINGS

TAKAYUKI INOUE AND YOSHIMASA HIEDA

(Received July 7, 1993)

1. Introduction

Let \(G \) be a finite group and \(\mathcal{O} \) be a complete discrete valuation ring, with the maximal ideal \((\pi)\) and residue field \(k = \mathcal{O} / (\pi) \) of characteristic \(p > 0 \). \(R \) will be used to denote either \(\mathcal{O} \) or \(k \). Let \(\Theta \) be a connected component of the stable Auslander-Reiten quiver \(\Gamma_s(RG) \) of the group algebra \(RG \) and set \(\mathcal{V}(\Theta) = \{ \text{vx}(M) | M \text{ is an indecomposable } RG\text{-module in } \Theta \} \), where \(\text{vx}(M) \) denotes the vertex of \(M \). Due to Kawata ([4, Proposition 3.2]), we know that there is a minimal element \(Q \) in \(F(\Theta) \) with respect to the partial order \(\leq_G \) which is uniquely determined up to \(G \)-conjugation. We call \(Q \) a vertex of \(\Theta \).

Let \(N = N_G(Q) \) and \(f \) be the Green correspondence with respect to \((G, Q, N) \). Choose an indecomposable \(RG\)-module \(M_0 \) in \(\Theta \) with \(Q \) as its vertex. Let \(\Delta \) be the connected component of \(\Gamma_s(RN) \) containing \(fM_0 = L_0 \). In the case \(R = k \), Kawata has shown the following theorem, which extends the Green correspondence, in his paper [4]:

There is a graph monomorphism from \(\Theta \) to \(\Delta \) which preserves edge-multiplicity and direction.

The purpose of this note is to ensure that the above result also holds for \(\mathcal{O}G \)-lattices (i.e., finitely generated \(\mathcal{O} \)-free \(\mathcal{O}G \)-modules). The important tools used here can be found in [4], indeed the whole argument in [4] is also valid for \(\mathcal{O}G \)-lattices with some modifications. In this note, we shall provide a slightly simple proof by examining the middle terms of Auslander-Reiten sequences (see Theorem 2.5 and Corollary 2.6 below). Our approach is valid for both \(\mathcal{O}G \) and \(kG \), and will make it clearer that Kawata’s graph morphism is an extension of the Green correspondence. The graph morphism stated above is not always isomorphic. In Section 3, we shall give an example of \(\mathcal{O}G \)-lattices such that the graph morphism is actually not isomorphism on the component containing them.

The notation is almost standard. We shall work over the group ring \(RG \). All the modules considered here are finitely generated free over \(R \). We write \(W|W' \)
for RG-modules W and W', if W is a direct summand of W'. For an indecomposable non-projective RG-module M, we denote by $\mathcal{A}(M)$ the Auslander-Reiten (abbreviated to AR-) sequence terminating at M. Concerning some basic facts and terminologies used here, we refer to [1], [6] and [7], for example.

The authors would like to thank Professor T. Okuyama and Doctor S. Kawata for their helpful advice.

2. The middle terms of AR-sequences

For later use, we shall exhibit some results on the AR-sequences for RG-modules, which are well-known or proved in [4] for kG-modules. We can easily see that they are also valid for CG-lattices.

Lemma 2.1 ([4, Lemma 2.3]). Let M be an indecomposable non-projective RG-module and H be a subgroup of G. Then the restricted exact sequence $\mathcal{A}(M)_H$ does not split if and only if $\text{vx}(M) \leq G/H$.

Lemma 2.2 ([4, Lemma 2.4]). Let H be a subgroup of G. Let M and L be indecomposable non-projective modules for G and H respectively. Assume that L is a direct summand of L^G_H with multiplicity one, and that M is a direct summand of L^G such that $L|\n\n M_H$. Then $\mathcal{A}(L)^G \simeq \mathcal{A}(M) \oplus \mathcal{E}$, where \mathcal{E} is a split sequence.

Let H and K be subgroups of G. By a direct computation, we can see that the Mackey decomposition theorem holds for short exact sequences. Let $\varphi: 0 \to A \to B \to C \to 0$ be an exact sequence of RH-modules. Then the exact sequence φ^G_K of RK-modules have the following form:

$$\bigoplus_{t \in H/G/K} \{0 \to (A^*_{H\cap K})^K \to (B^*_{H\cap K})^K \to (C^*_{H\cap K})^K \to 0\},$$

where α_t and β_t denote RK-homomorphisms $\varphi^G_K(= \text{res}^G_K \circ \text{ind}^G_K(\varphi))$ and φ^G_K, restricted to the appropriate submodules, respectively. For short exact sequences, we shall also use the notation $\varphi^G_K \simeq \bigoplus_{t \in H/G/K} (\varphi^*_{H\cap K})^K$. In particular, $\varphi|\varphi^G_H$ holds as RH-sequences.

Lemma 2.3 (see [4, Lemma 2.5]). Let P be a non-trivial p-subgroup of G. Let L be an indecomposable non-projective module for $N_G(P)$. Assume that $P \leq N_G(P)\text{vx}(L)$. The following hold.

1. $\mathcal{A}(L)^G_{N_G(P)} \simeq \mathcal{A}(L) \oplus \mathcal{E}$, where \mathcal{E} is a P-split sequence.

2. Assume further that $\mathcal{A}(L)^G \simeq \mathcal{A}(M) \oplus \mathcal{E}'$, where M is an indecomposable
non-projective RG-module and δ' is a split sequence. Then $A(M)_{N_G(P)} \simeq A(L) \oplus \delta''$, where δ'' is a P-split sequence.

Proof. (1) For simplicity, put $N = N_G(P)$ and $A = A(L)$. By the Mackey decomposition, $A_N^G \simeq \bigoplus \{ \oplus_{t \in N_G/N, t \not\in N}(A_{N_G/N})^N \}$. We shall show that $(A_{N_G/N})^N$ is a P-split sequence for $t \not\in N$. Again, by the Mackey decomposition, $(A_{N_G/N})^N_P \simeq \bigoplus_{t \in (N_G/N) \setminus N/P}(A_{N_G/N})^P$. Thus, for our purpose, it is enough to show that $A_{N_G/N}^N_P$ splits for $t \not\in N$. If this sequence does not split, we have that $P = N \cdot \text{v}(L)$ by the assumption and Lemma 2.1. So, $P = P'$, but this contradicts the choices of t.

(2) By (1) and Krull-Schmidt theorem for the category of morphisms. ■

As we have mentioned in the introduction, every connected component of $\Gamma_S(RG)$ has a vertex. More precisely, the following holds.

Lemma 2.4 ([4, Lemma 3.1]). Let Ξ be a connected subgraph of $\Gamma_S(RG)$. Take any $Q \in V(\Xi)$ with the smallest order among those p-subgroups in $V(\Xi)$. Then for any indecomposable RG-module $M \in \Xi$, M_Q has an indecomposable direct summand whose vertex is Q.

Now we return to the situation in the introduction. Let Q be a vertex of Θ, put $N = N_G(Q)$. Let Δ be a subquiver of Δ consisting of $L_0 = M_Q$ and all the RN-modules L in Δ with the property: There exist RN-modules $L_0, L_1, L_2, \cdots, L_m = L$ such that L_n and L_{n+1} are connected by an irreducible map for all n with $0 \leq n \leq m - 1$ and $Q \in \text{v}(L_n)$ for all n.

Remark ([4, Lemma 4.1]). For any indecomposable RN-module L in Λ, $Q \leq \text{v}(\Lambda)$ holds by Lemma 2.4.

We shall show that $\Theta \simeq \Lambda$ as graphs. Theorem 2.5 below is essential.

Let \mathfrak{x} be the set of all p-subgroups of N whose orders are smaller than $|Q|$. Let L be an indecomposable RN-module in Λ, and M be an indecomposable RG-module in Θ. Assume that L and M satisfy the following two conditions:

1. $L^G \simeq M \oplus W$, where W is a \mathfrak{x}-projective RG-module.
2. $M_N \simeq L \oplus Z$, where Z_Q is a \mathfrak{x}-projective RQ-module.

Now we examine the relation of the middle terms of $A(L)$ and $A(M)$. Let Y be the set of all indecomposable direct summands of the middle term of $A(L)$ whose vertices contain (a G-conjugation of) Q. Let X be the set of all indecomposable direct summands of the middle term of $A(M)$. Then the modules in Y and X inherit the above conditions (1) and (2). More precisely, the following holds:
Theorem 2.5. Use the above notations. For each \(Y_i \in Y \), \((Y_i)^G\) has a unique indecomposable direct summand, say \(X_i = \Psi(Y_i) \), such that \(Q \leq \sigma^v x(X_i) \). The map \(\Psi \) gives a bijection from \(Y \) to \(X \) satisfying the following two conditions:

\[
\begin{align*}
(1') & \quad (Y_i)^G \simeq X_i \oplus U_i, \text{ where } U_i \text{ is a } \mathfrak{X}\text{-projective } RG\text{-module.} \\
(2') & \quad (X_i)_Q \simeq Y_i \oplus V_i, \text{ where } (V_i)_Q \text{ is a } \mathfrak{X}\text{-projective } RQ\text{-module.}
\end{align*}
\]

Moreover, \(X_i \simeq X_j \) holds if and only if \(Y_i \simeq Y_j \) holds, when \(\Psi(Y_i) = X_i \) and \(\Psi(Y_j) = X_j \).

Proof. Let \(Y_i \) be an element of \(Y \). First, we prove that \((Y_i)^G \simeq Y_i \oplus Y_i' \), where \((Y_i)'_Q \) is \(\mathfrak{X}\)-projective. In particular, \(Y_i[(Y_i)^G] \) with multiplicity one by Lemma 2.4. By the conditions (1) and (2), \(L^G_N = L \oplus L' \), where \(L'_Q \) is \(\mathfrak{X}\)-projective. Let \(Y_i \) be an indecomposable direct summand of \(Y \). If \((Y_i)^G \) and \(X \) have the same indecomposable direct summand, then \(Q \leq \sigma^v x(X_i) \). So, if \(Y_i \notin Y \), \((Y_i)^G \) is \(\mathfrak{X}\)-projective. On the other hand, for \(Y_i \in Y \), \((Y_i)^G \) has a unique indecomposable direct summand, say \(X_i \), satisfying \(Y_i[(Y_i)^G] \), because \(Y_i[(Y_i)^G] \) with multiplicity one. Moreover, the condition \(Y_i[(X_i)^G] \) implies that \(Q \leq \sigma^v x(X_i) \) and \(X_i \in X \). Now we have to show the uniqueness of \(X_i \). Let \(X_i' \) be an indecomposable summand of \((Y_i)^G \) such that \(Q \leq \sigma^v x(X_i') \). Because \(X_i'[(Y_i)^G] \), we have that \((X_i')^G \simeq X_i \oplus Y_i' \) and \((X_i')_Q \simeq (Y_i \oplus Y_i')_Q \). We know that \((Y_i)^G \) is \(\mathfrak{X}\)-projective, and that \((X_i')_Q \) and \((Y_i)^G \) have indecomposable direct summands whose vertices are \(Q \) by Lemma 2.4. This implies that \(X_i[(X_i')_Q] \) and \(X_i' \simeq X_i \).

Thus, for any \(Y_i \in Y \), we have that \((Y_i)^G \simeq X_i \oplus (\mathfrak{X}\text{-projective } RG\text{-modules}) \), where \(X_i \in X \), and that \(\oplus \Sigma(Y_i)^G \simeq X \oplus (\mathfrak{X}\text{-projective } RG\text{-modules}) \), where the left-side sum runs over all \(Y_i \in Y \). Moreover, \((X_i)^G \simeq Y_i \oplus (\text{some direct summands of } Y_i) \). Hence, the correspondence \(\Psi: Y_i \mapsto X_i \) gives a bijective mapping from \(Y \) to \(X \) and we see that \((1') \) and \((2') \) hold. The last statement of the theorem is straightforward by \((1') \) and \((2') \).

Remark for Theorem 2.5. Assume that \(L \in \Lambda \) and \(M \in \Theta \) satisfy the conditions (1) and (2). Then the middle terms of \(\mathfrak{A}(\tau^{-1}(L)) \) and \(\mathfrak{A}(\tau^{-1}(M)) \) have also the properties which are satisfied by \(\mathfrak{A}(L) \) and \(\mathfrak{A}(M) \) in the above theorem.

Corollary 2.6 ([4, Theorem 4.6]). For any RN-module \(L \in \Lambda, L^G \) has a unique indecomposable direct summand \(M \) such that \(Q \leq \sigma^v x(M) \). The correspondence \(L \mapsto M \) gives rise to a graph isomorphism from \(\Lambda \) to \(\Theta \), which preserves edge-multiplicity and direction. And the corresponding modules satisfy the conditions (1) and (2).
Proof. First, we recall that \((L_0)^G\) has a unique indecomposable direct summand \(M_0\) such that \(Q \leq v\chi(M_0)\), and that \(L_0\) and \(M_0\) satisfy (1) and (2). By successive use of Theorem 2.5 and its remark, the proof will be done.

3. An Example

As we have seen in Corollary 2.6, there is a graph monomorphism from \(\Theta\) to \(\Delta\). But this morphism is not always isomorphic (i.e., The case \(\Lambda \not\cong \Delta\) may occur). In this section, we shall provide an example of this type. (See Example 3.12.) Throughout this section, we assume that \(p = 2\), \(\Theta\) is of rank one (i.e., \(\langle n \rangle = \langle p \rangle\)) and has all the 3rd root of unity, and that \(P\) and \(V\) denote the cyclic group of order 2 and the Klein four group respectively, unless otherwise specified. Set \(G = \mathfrak{L}_5 \times P, N = \mathfrak{L}_4 \times P\) and \(Q = V \times P\), where \(\mathfrak{L}_n\) is the alternating group of degree \(n\). \(G\) and \(N\) have the common Sylow 2-subgroup \(Q\) and \(N = N_G(Q)\).

Let \(M\) be an (not necessarily indecomposable) \(\mathcal{O}G\)-lattice. By abuse of the notations, we use the symbol \(\Gamma_{S}(M)\) to denote the union of all the connected components of which contain some direct summand of \(M\). (If \(M\) is indecomposable, \(\Gamma_{S}(M)\) is just the connected component of \(\Gamma_{S}(\mathcal{O}G)\) which contains \(M\).) The map from the connected component \(\Theta\) of \(\Gamma_{S}(\mathcal{O}P)\) to \(\Delta\) of \(\Gamma_{S}(\mathcal{O}P)\), in the notations (3.6) and (3.7) below, is a desired one. (Example 3.12.) We proceed in several steps to achieve our purpose.

Step 1. In this step, \(p\) is an arbitrary prime and we do not assume \((\pi) = \langle p \rangle\). Let \(G\) be a \(p\)-group and \(P\) be a non-trivial normal subgroup of \(G\).

Following [9, §6], we construct the AR-sequence terminating at \(\mathcal{O}P \simeq \hat{P} \mathcal{O}G\), where \(\hat{P} = \sum_{x \in P} x \in \mathcal{O}G\). Let \(\overline{\text{End}}_{\mathcal{O}G}(\mathcal{O}P)\) be the sublattice of \(\text{End}_{\mathcal{O}G}(\mathcal{O}P)\) consisting of all homomorphisms which factor through some projective \(\mathcal{O}G\)-lattice. Put \(\text{End}_{\mathcal{O}G}(\mathcal{O}P) = \text{End}_{\mathcal{O}G}(\mathcal{O}P) / \overline{\text{End}}_{\mathcal{O}G}(\mathcal{O}P)\). Since the \(\mathcal{O}G\)-map \(\mathcal{O}G \to \hat{P} \mathcal{O}G \to 0 (1 \to \hat{P})\) is a projective cover of \(\mathcal{O} \mathcal{O}G\), we have that \(\text{End}_{\mathcal{O}G}(\mathcal{O}P) \simeq \mathcal{O}(G / P)\), \(\overline{\text{End}}_{\mathcal{O}G}(\mathcal{O}P) \simeq \{ f \in \text{End}_{\mathcal{O}G}(\mathcal{O} \mathcal{O}G) / f(\hat{P}) \in |P| \mathcal{O} \mathcal{O}G \} \simeq |P| \mathcal{O} \mathcal{O}G / P\) and \(\text{End}_{\mathcal{O}G}(\mathcal{O}P) \simeq \mathcal{O} / |P| \mathcal{O} \mathcal{O}G / P\). \(\text{End}_{\mathcal{O}G}(\mathcal{O}P) \simeq \mathcal{O} \mathcal{O}G / P\) has the simple socle. Put \(\rho = |P|^{-1} \prod_{x \in P} \in \text{End}_{\mathcal{O}G}(\mathcal{O}P) - \overline{\text{End}}_{\mathcal{O}G}(\mathcal{O}P)\). Then \(\rho + \overline{\text{End}}_{\mathcal{O}G}(\mathcal{O}P)\) is a generator of the simple socle of \(\text{End}_{\mathcal{O}G}(\mathcal{O}P)\).

Thus, we can obtain the AR-sequence \(\mathcal{A}(\mathcal{O}P)\) as a pull-back diagram of a projective cover of \(\mathcal{O}P\) along \(\rho\), that is,

\[
0 \to \Omega(\mathcal{O}P) \to M \to \mathcal{O}P \to 0
\]

(3.1)

\[
\begin{array}{ccc}
0 & \to & \Omega(\mathcal{O}P) \\
\| & & \downarrow \text{P.B.} \\
0 & \to & \mathcal{O}G \\
\end{array}
\]

(\(\rho\))

\[
\mathcal{O}P \to 0
\]
where the first row is \(A(\mathcal{P}_G^G) \) and the second one is a projective cover of \(\mathcal{P}_G^G \).

For the middle term \(M \) of \(A(\mathcal{P}_G^G) \), the following holds.

Proposition 3.2.

1. \(M \) is indecomposable.
2. \(\nu_X(M) = \begin{cases} 1, & \text{if } |G| = p \text{ and } (\pi) = (p) \\ G, & \text{otherwise} \end{cases} \)

Proof. (1) Write \(M = (|P| \pi^{-1} \sum_{\epsilon \mathcal{P}_G^G} \tilde{P}) \mathcal{P}_G + \sum_{x \in \mathcal{P}_G^G(\mathcal{P} \in \mathcal{G} \oplus \tilde{P}\mathcal{G}).} \)

First, we prove that \(\Omega(\mathcal{P}_G^G) = \{ m \in M | m \mathcal{P} = 0 \} \). Put \(X = \{ m \in M | m \tilde{P} = 0 \} \). It is clear that \(\Omega(\mathcal{P}_G^G) \subseteq X \). Take an element \(w = (\sum_{\epsilon \mathcal{P}_G^G} \tilde{P}) \mathcal{P}_G + \sum_{x \in \mathcal{P}_G^G(\mathcal{P} \in \mathcal{G} \oplus \tilde{P}\mathcal{G}.} \)

The equation \(m \tilde{P} = 0 \) implies that \(|P| \pi \alpha = 0 \), so \(\pi \alpha = 0 \). Hence, we have that \(m \in \Omega(\mathcal{P}_G^G) \) by the definition of \(M \).

Next, we shall prove that \(M \) is indecomposable. Take any idempotent \(f \in \text{End}_{\mathcal{G}}(\mathcal{M}) \) and fix it. Then \(f \) induces idempotents \(g \) and \(h \) of \(\text{End}_{\mathcal{G}}(X) \) and \(\text{End}_{\mathcal{G}}(\mathcal{P}_G^G) \) respectively, which satisfy the following commutative diagram with two \(\mathcal{A}(\mathcal{P}_G^G) \)’s as its rows;

\[
\begin{array}{ccc}
\phi_1 & : & 0 \to X \to M \to \mathcal{P}_G^G \to 0 \\
\phi_2 & : & 0 \to X \to M \to \mathcal{P}_G^G \to 0
\end{array}
\]

Then \(g \) and \(h \) are 0 or 1 by the indecomposability of \(X \) and \(\mathcal{P}_G^G \). Note that neither the case \(g = 1 \) and \(h = 0 \) nor \(g = 0 \) and \(h = 1 \) happens; otherwise the sequence \((\phi_1) \) or \((\phi_2) \) splits. If \(g = h = 0 \), then \(f(M) \subseteq X \) and \(f(M) = f^2(M) \subseteq f(X) = 0 \), so \(f = 0 \). If \(g = h = 1 \), we have \(f = 1 \) by the five lemma. Now, the proof of (1) is done.

(2) We prepare the following claim;

Let \(Q \) be a subgroup of \(G \) which contains \(P \). If \(M \) is \(Q \)-projective, then \(Q = G \).

Proof of the claim. We proceed by induction on \(|G:Q| \), so we may assume \(Q < G \) and \(|G:Q| = p \) or 1. To derive a contradiction, we assume that \(Q \not\supseteq G \). By [9, Proposition 4.10] and [3, Proposition 7.9 (ii)] for \(\mathcal{G} \)-lattices (we can verify that the latter proposition holds for \(\mathcal{G} \)-lattices by considering \(\mathcal{G} \)-length instead of \(k \)-dimension), we have

\[
\mathcal{A}(\mathcal{P}_G^G)_Q \simeq \mathcal{A}(\mathcal{P}_G^G) \oplus ((p - 1) \text{ non-zero split sequences}).
\]

By the mackey decomposition, \(M_Q|S_Q = \bigoplus_{s \in Q} S^s, \) where \(S \) is a \(Q \)-source of \(M \). On
AUSLANDER-REITEN QUIVERS FOR INTEGRAL GROUP RINGS

\[(\mathcal{O}_P^G)_Q \simeq |Q|_P^G. \]

But this contradicts that \(\mathcal{A}(\mathcal{O}_P^G)_Q \) has non-zero split part. Now the proof of the claim is complete.

We return to the proof of (2). It is well-known that either \(P \leq \text{vx}(M) \) or \(\text{vx}(M) \leq P \) occurs [2, (2.3) Lemma]. Thanks to the above claim, we know that the first case implies that \(\text{vx}(M) = G \). To examine the second case, let's consider the diagram (3.1) modulo \((\pi) \). Recall that \(P \mathcal{O} G \simeq \mathcal{O}_P^G \). If \(|P|^{-1} \) is not a unit of \(\mathcal{O} \), the induced \(kG \)-map \(\tilde{\rho} : \tilde{P}kG \to \tilde{P}kG \) is the zero map. So \(\tilde{M} \simeq \tilde{X} \oplus \tilde{P}kG \) and \(P = \text{vx}(\tilde{P}kG) \leq \text{vx}(M) \). Thus \(|P|^{-1} \) must be a unit of \(\mathcal{O} \). This fact yields that \(|P| = p, (\pi) = (p) \) and \(\text{vx}(M) = 1 \). Moreover, we have \(P = G \) by making use of our claim. Indeed, if \(|G| = p \) and \((\pi) = (p) \), the map \(\rho \) in (3.1) is just an identity map and a projective cover of \(\mathcal{O}_P^G \) is already \(\mathcal{A}(\mathcal{O}_P^G) \). Now, the proof of (2) is done.

In the rest of this section, let \(p = 2 \) and \((\pi) = (2) \), \(P \) denote the cyclic group of order 2.

Step 2. In this step, set \(G = V \times P \).

Let \(\mathcal{A}(\mathcal{O}_P^G) : 0 \to \Omega(\mathcal{O}_P^G) \to M \to \mathcal{O}_P^G \to 0 \) be the AR-sequence terminating at \(\mathcal{O}_P^G \). By Proposition 3.2, we know that \(M \) is indecomposable and \(\text{vx}(M) = G \). Let \(\Delta_0 \) be the connected component of \(\Gamma(\mathcal{O}_P^G) \). Then \(\Delta_0 \simeq ZA_2 / (2) \) since \(\mathcal{O}_P^G \) is periodic with period 2 (see [1, (2.31.6) and (2.31.11)], for example). And \(\mathcal{O}_P^G \) lies at the end of \(\Delta_0 \) by the indecomposability of \(M \). Moreover, we have

Proposition 3.4. Apart from \(\mathcal{O}_P^G \) and \(\Omega(\mathcal{O}_P^G) \), all the indecomposable \(\mathcal{O}G \)-lattices in \(\Delta_0 \) have \(G \) as their vertices.

Proof. By the shape of \(\Delta_0 \), we know that \(\mathcal{A}(M) \) has the form;

\[0 \to \Omega(M) \to \Omega(\mathcal{O}_P^G) \oplus S \to M \to 0, \]

where \(S \) is an indecomposable \(\mathcal{O}G \)-lattice.

First we shall prove that \(\text{vx}(S) = G \). It is clear that \(\text{vx}(S) \geq P \) by Lemma 2.4. It is well-known, or follows by applying Proposition 3.2 (1), (2) to \(\mathcal{O}P \), that \(\mathcal{O}P \) has three isomorphism classes of indecomposable \(\mathcal{O}P \)-lattices, that is, \(\{ \mathcal{O}_P, \Omega(\mathcal{O}_P), \mathcal{O}P \} \). If \(\text{vx}(S) = P \), then the \(P \)-source of \(S \) must be \(\mathcal{O}_P \) or \(\Omega(\mathcal{O}_P) \), so, \(S = \mathcal{O}_P^G \) or \(S = \Omega(\mathcal{O}_P^G) \). But this is impossible. Hence, \(\text{vx}(S) \geq P \).

Put \(t = (123) \times 1_p \in \mathfrak{A}_4 \times P \). Then, \(t \) acts on \(G \) by conjugation. So, \(t \) acts on the set of \(\mathcal{O}G \)-lattices. By the successive use of the uniqueness of AR-sequence, we have that \(\mathcal{O}_P^G \cong \mathcal{O}_P^G, M \cong M \) and finally \(S \cong S \). Since \(\text{vx}(S) \) is \(t \)-invariant and \(\text{vx}(S) \geq P \), we get \(\text{vx}(S) = G \) as desired. For all the other indecomposable \(\mathcal{O}G \)-lattices in \(\Delta_0 \), we can ensure that their vertices equal \(G \) by a way to similar to that for \(S \).
From now on, we need the assumption that \mathcal{O} has all the 3rd root of unity.

Step 3. In this step, set $G = \mathfrak{A}_4 \times P$ and $Q = V \times P$.

Note that Q is a normal Sylow 2-subgroup of G and $\mathcal{O}_p^G \simeq \mathcal{O}_A \mathfrak{A}_4$ holds. We shall examine the connected components of $\Gamma_s(\mathcal{O}_p^G)$ by making use of the results of Step 2. \mathcal{O}_p^G has just three isomorphism classes of primitive idempotents, say e_1, e_1 and e_2. $\mathcal{O}_p^G \simeq \hat{P} \hat{O} G = e_1 \hat{P} \hat{O} G \oplus e_1 \hat{P} \hat{O} G \oplus e_2 \hat{P} \hat{O} G$ holds $\mathcal{O}G$-lattices. For each primitive idempotent $e \in \{e_1, e_1, e_2\}$, the $\mathcal{O}G$-map $e \mathcal{O} G \to e \hat{P} \hat{O} G \to 0$ $(e \mapsto e \hat{P})$ is a projective cover of $e \hat{P} \hat{O} G$ and the $\mathcal{O}G$-map $e \hat{P} \hat{O} G \to e \hat{P} \hat{O} G$ $(e \mapsto e \hat{V})$ gives a generator of the simple socle of $\text{End}_{\mathcal{O}G}(e \hat{P} \hat{O} G)$ modulo projectives. Then the following holds.

Proposition 3.5. The connected component of $\Gamma_s(e \hat{P} \hat{O} G)$, say Δ, is isomorphic to that of $\Gamma_s(\hat{P} \hat{O} Q)$. In other words, $\Delta \simeq \mathbb{Z} A_\infty / (2)$. Moreover, apart from $e \hat{P} \hat{O} G$ and $\Omega(e \hat{P} \hat{O} G)$, all the $\mathcal{O}G$-lattices in Δ has Q as their vertices.

Proof. It is easy to see that $(e \hat{P} \hat{O} G)_Q \simeq \hat{P} \hat{O} Q$ and $(\hat{P} \hat{O} Q)_G \simeq \mathcal{O}_p^G$. So, $\text{vx}(e \hat{P} \hat{O} G) = o_P$ and $e \hat{P} \hat{O} G$ has period 2. Moreover, $\mathcal{A}(e \hat{P} \hat{O} G)_Q \simeq \mathcal{A}(\hat{P} \hat{O} Q)$ holds, by [9, Proposition 4.10] and that Q is a normal Sylow 2-subgroup of G. Therefore, the middle term of $\mathcal{A}(e \hat{P} \hat{O} G)$, say L, is indecomposable, $\text{vx}(L) = o_Q$ and $e \hat{P} \hat{O} G$ lies at the end of Δ.

Using this argument repeatedly, we can show that the restriction of the AR-sequence of each module in Δ to Q is still an AR-sequence, and consequently, we have a vertex preserving isomorphism $\Delta \simeq \Delta_0$ by restricting the modules in Δ to Q. Now the proof is complete by Proposition 3.4.}

Step 4. In this step, set $G = \mathfrak{A}_4 \times P, N = \mathfrak{A}_4 \times P$ and $Q = V \times P$.

Note that Q is a common Sylow 2-subgroup of G and N. For simplicity we put $Q_i = e_i \hat{P} \hat{O} N$ for $i = 1, 2$. In Proposition 3.5, we have determined the connected component $\Delta(\simeq \mathbb{Z} A_\infty / (2))$ which contains Q_1 as the following:

\[
\begin{align*}
Q_1 & \leftarrow L & \leftarrow L_1 & \leftarrow L_2 & \leftarrow \ldots \\
\Delta : & & \searrow & & \searrow & & \searrow \\
\Omega(Q_1) & \leftarrow \Omega(L) & \leftarrow \Omega(L_1) & \leftarrow \ldots,
\end{align*}
\]

where $\text{vx}(Q_1) = P, \text{vx}(L) = Q$ and $\text{vx}(L_i) = Q$ for $i = 1, 2, \ldots$.

Let M be the Green correspondent of L with respect to (G, Q, N) and Θ be the connected component which contains M. M has period 2, so $\Theta \simeq \mathbb{Z} A_\infty / (2)$.

The rest of this section is devoted to proving that Θ has the following form;
AUSLANDER-REITEN QUIVERS FOR INTEGRAL GROUP RINGS

\[\begin{array}{c}
M \leftarrow M_1 \leftarrow M_2 \leftarrow M_3 \leftarrow \cdots \cdots \\
\end{array} \]

(3.7) \[\Theta: \]

\[\begin{array}{c}
\Omega(M) \leftarrow \Omega(M_1) \leftarrow \Omega(M_2) \leftarrow \cdots \\
\end{array} \]

where \(M_i \) is the Green correspondent of \(L_i \) for \(i = 1, 2, \cdots \), and all the indecomposable \(\mathcal{O}G \)-lattices in \(\Theta \) have \(Q \) as their vertices.

Kawata’s result ([5, Theorem]) guarantees that \(\mathcal{A}(M_i) \) has the form just as in (3.7) for \(i = 1, 2, \cdots \). (Kawata’s theorem in [5] is valid for \(\mathcal{O}G \)-lattices.) So, for our purpose, it is enough to prove:

Proposition 3.8. The middle term of \(\mathcal{A}(M) \) is just \(M_1 \).

To derive a contradiction, we assume to the contrary that the middle term of \(\mathcal{A}(M) \) is not indecomposable. Let \(\Omega(U) \) be the direct summand of it which is not \(M_1 \). By [5, Theorem] and the Green correspondence, \(\nu(x(U)) \leq P \). If \(\nu(x(U)) = 1 \), there is nothing to prove, so we may assume that \(\nu(x(U)) = P \). The isomorphism classes of indecomposable \(\mathcal{O}G \)-lattices with vertex \(P \) are \(\{P_1, P_1, P_2, P_3, \Omega(P_1), \Omega(P_1), \Omega(P_2), \Omega(P_3)\} \), where each \(P_i \) is projective as \(\mathcal{O}G \)-lattice and \(P \) acts trivially on it, and they have ranks 12, 8, 8 and 4 in turn for \(i = 1, 2, 3 \). We shall eliminate the possibility that \(U \) might be isomorphic to any of them. Before doing so, we prepare the following lemma.

Lemma 3.9. The following holds.

1. There are exact sequences of the forms:
 (i) \(0 \rightarrow \Omega(P_2) \rightarrow M \oplus X \rightarrow P_1 \rightarrow 0 \) and
 (ii) \(0 \rightarrow \Omega(P_1) \rightarrow M \oplus X' \rightarrow P_2 \rightarrow 0 \),
 where \(X \) and \(X' \) are some \(P \)-projective \(\mathcal{O}G \)-lattices. (\(X \) and \(X' \) may be zero.)

2. \(\mathcal{A}(Q_1)^G \simeq \mathcal{A}(P_1) \oplus \mathcal{A}(P_3) \oplus (a \; split \; sequence) \).

Proof. (1) The proofs for the sequences (i) and (ii) are given in entirely the same way. Here we refer to sequence (ii) only. Let’s consider the diagram induced to \(\mathcal{O}G \) from the following pull-back diagram of \(\mathcal{O}N \)-lattices:

\[\begin{array}{cccc}
0 & \rightarrow & \Omega(Q_1) & \rightarrow & L & \rightarrow & Q_1 & \rightarrow & 0 \\
\| & & \downarrow \text{P.B.} \downarrow \sigma_1 & & & & & & \\
0 & \rightarrow & \Omega(Q_1) & \rightarrow & P(Q_1) & \rightarrow & Q_1 & \rightarrow & 0,
\end{array} \]

where the first row is \(\mathcal{A}(Q_1) \), the second one is a projective cover of \(Q_1 \) and the map \(\sigma_1: Q_1 \rightarrow Q_1 \) is given by \(e_1 \mapsto e_1 \hat{V} \). Note that the induced diagram is also a pull-back and \((Q_1)^G = P_1 \oplus P_2 \oplus P_3 \).
We shall examine $\sigma_G^\mathfrak{b}$: $(\beta_i)^G \twoheadrightarrow (\delta_i)^G$. Following [6, p.77 and p.185] (and keeping his notations), $\mathcal{O}G$-lattices P_1, P_2 and $\text{Im}(\sigma_1^G)$ has the following Loewy series:

$$
P_1: 2_1 \quad P_2: 2_2$$. 2

Thus, we may regard P_1 as an injective hull of $\text{Im}(\sigma_1^G)$ as $\mathcal{O}\Sigma$-lattices. Let $\sigma_1^\mathfrak{b} \mid P_2: P_2 \twoheadrightarrow \text{Im}(\sigma_1^G)$ be a projective cover of $\text{Im}(\sigma_1^G)$ as $\mathcal{O}\Sigma$-lattices. By composing suitable isomorphisms to σ_1^G, we may assume $P_2 = P_2$ by which the diagram is still pull-back. Therefore, we can conclude that $\sigma_1^G: (Q_1)^G \twoheadrightarrow (Q_1)^G$ is the sum of a projective cover $\sigma_1^\mathfrak{b} \mid P_2: P_2 \twoheadrightarrow \text{Im}(\sigma_1^G)(\cong P_1)$ as $\mathcal{O}\Sigma$-lattices and two zero maps $P_1 \to 0$, $P_3 \to 0$. On the other hand, the projective cover of Q_1 is induced to a direct sum of three projective covers of P_1, P_2 and P_3. Now, we have that

$$
\mathcal{A}(Q_1)^G \simeq (0 \to \Omega(P_1) \to M \oplus X' \to P_2 \to 0) \oplus \text{(two split sequences)}
$$

and X' is a P-projective $\mathcal{O}G$-lattice, since $X'|L^G$.

(2) Next, we shall induce the pull-back diagram of $\mathcal{A}(Q_1)$ to $\mathcal{O}G$. Let σ_1 be the $\mathcal{O}N$-map $Q_1 \to Q_1$ ($e_i \mapsto e_i \bar{V}$). Note that $(Q_1)^G = P_1 \oplus P_3 \oplus P_3$ and $\text{Im}(\sigma_1^G) \simeq I \oplus P_3$, where I is the simple socle of P_1. By the same argument as in (1), we have that $\sigma_1^G: (Q_1)^G \to (Q_1)^G$ is the sum of a projective cover $\kappa: P_1 \to \text{Im}(\sigma_1^G)(\cong P_1)$ as $\mathcal{O}\Sigma$-lattices, identity map $P_3 \to P_3$ and zero map $P_3 \to 0$, and that the projective cover of Q_1 is induced to a direct sum of three projective covers of P_1, P_3 and P_3. Since κ is (left-)annihilated by any non-automorphism in $\text{End}_{\mathcal{O}G}(P_1)$, $\bar{\kappa} = \kappa + \text{End}_{\mathcal{O}G}(P_1) \in \text{Soc}(\text{End}_{\mathcal{O}G}(P_1))$ and we have (2). ($\mathcal{A}(P_3)$ is just a projective cover of P_3.)

Now, we return to the proof of Proposition 3.8. By the Brauer's third main theorem and [7, Corollary 3.11 on p.325], U belongs to the principal block of G, so, we have that $U \not\cong P_3$. If P_1 is connected to M, then Q_1 and L are connected by the Green correspondence and Lemma 3.9(2). But this does not happen since Q_1 and Q_1 belong to the different components (see Proposition 3.5). So, $U \not\cong P_1$.

Next we shall prove $U \not\cong P_1$. We assume by way of contradiction that $\mathcal{A}(P_1)$ is of the form:

$$
(3.10) \quad 0 \to \Omega(P_1) \to M \oplus \Omega(Y) \to P_1 \to 0,
$$

where Y is an indecomposable $\mathcal{O}G$-lattice (possibly $Y = 0$). We shall compare two sequences (3.10) and (3.9) (1)(i). We need to consider the following two cases.
Case 1. Let $Y=0$.
Then we have that $\text{rank}_e M = 16$ and $X=0$ by Lemma 3.9 (1)(i). For simplicity, put $H=\mathfrak{A}_4$. Recall that $\Omega(P_i)_H \simeq (P_i)_H$ holds for $i=1,2$. Since the restrictions of (3.10) and (3.9)(1)(i) to $\mathfrak{O}H$ split, we have that $M_H \simeq (P_1)_H \oplus (P_2)_H$ and $M_H \simeq (P_1)_H \oplus (P_2)_H$. This is a contradiction.

Case 2. Let $Y \neq 0$.
Then $X \neq 0$ and $M \neq 0$. The P-projectivity of X implies that X is indecomposable and $\text{rank}_e X = 8$, since the ranks of projective (resp. P-projective) indecomposable modules which may occur are 24 or 16 (resp. 12 or 8). So, we have $\text{rank}_e M = 8$ and $\text{rank}_e \Omega(Y) = 8$. Moreover,

Lemma 3.11.

1. $\text{rank}_e \Omega(M) = 8$.
2. $\text{rank}_e Y = 8$.

Proof. First we note that $\text{rank}_e \Omega(X) = 8$ since $X \simeq P_1, P_2, \Omega(P_1)$, or $\Omega(P_2)$.

(1) The tensor product of the sequence (3.9)(1)(i) with $\Omega(\mathfrak{O})$ is a direct sum of $0 \to P_1 \to \Omega(M) \oplus \Omega(X) \oplus (\text{projective}) \to \Omega(P_1) \to 0$ and a split sequence. The argument over the ranks tells us that the above (projective) $= 0$ and $\text{rank}_e \Omega(M) = 8$.

(2) This follows immediately from $\mathcal{A}(\Omega(P_1))$ and (1).

Now let the tree class of Θ be $\cdots Y_2 - Y_1 - Y - P_1 - M - M_1 - M_2 - \cdots$.

Let $\mathcal{A}(Y)$ be $0 \to \Omega(Y) \to P_1 \oplus \Omega(Y) \oplus (\text{projective}) \to Y \to 0$. Since the ranks of $Y, P_1, \Omega(Y)$ and $\Omega(P_1)$ are 8, we have that (a) (projective) = 0, (b) $\Omega(Y_1) \neq 0$ and its rank is 8, and from $\mathcal{A}(\Omega(Y))$, (c) $\text{rank}_e(Y_1) = 8$. Similarly, for $\mathcal{A}(Y_1)$, we have that (d) its middle term has no projective modules, (b_1) $\Omega(Y_2) \neq 0$ and its rank is 8, and (c_1) $\text{rank}_e(Y_2) = 8$, since the ranks of $Y_1, Y_2, \Omega(Y_1)$ and $\Omega(Y)$ are 8. This inductive argument can be continued for $Y_i (i=2,3,\cdots)$. But this contradicts that Θ has tree class A_∞.

In both cases, (3.10) gives a contradiction. So we have that $U \neq P_1$. In the same way, we have that $U \neq P_2$, using the sequence (ii) in Lemma 3.9(1).

Finally, it is easy to see that $U \neq \Omega(P_i)$ ($i=1,2,3$) by virtue of the above argument for $P_i (i=1,2,3)$. Hence, such a U does not exist. Now, the proof of Proposition 3.8 is done and we are ready to exhibit the example that we have mentioned;

Example 3.12. With the above notations. Put $M=M_0$ and $L=L_0$. Let Λ be the subquiver of Δ obtained by removing Q_1 and $\Omega(Q_1)$ from Δ. Then $\Lambda \simeq \Theta$ holds by Corollary 2.6. That is, Kawata's morphism from $\Theta(3.7)$ to $\Delta(3.6)$ is not isomorphic.
REMARK. In the case $R=k$, an example similar to ours has already given by Okuyama in [8].

REFERENCES

Department of Mathematics
Osaka City University
Sumiyoshi-ku, Osaka, 558, Japan