INJECTIVE PAIRS IN PERFECT RINGS

MITSUO HOSHINO and TAKESHI SUMIOKA

(Received April 21, 1997)

Throughout this note, rings are associative rings with identity and modules are unitary modules. Sometimes, we use the notation $A X$ (resp. $X A$) to signify that the module X considered is a left (resp. right) A-module. For each pair of subsets X and M of a ring A, we set $\ell_X(M) = \{a \in X | aM = 0\}$ and $r_M(X) = \{a \in M | Xa = 0\}$.

Following Baba and Oshiro [1], we call a pair (eA, Af) of a right ideal eA and a left ideal Af in a ring A an i-pair if (a) e and f are local idempotents; (b) eA_A and AAf have essential socles; and (c) $\text{soc}(eA_A) \cong fA/fJ$ and $\text{soc}(Af) \cong Ae/J e$, where J is the Jacobson radical of A.

Generalizing a result of Fuller [3], Baba and Oshiro [1] showed that for a local idempotent e in a semiprimary ring A, eA_A is injective if and only if there exists a local idempotent f in A such that (eA, Af) is an i-pair in A and $r_{Af}(\ell_{eA}(M)) = M$ for every submodule M of Af/Af, and that for an i-pair (eA, Af) in a semiprimary ring A the following are equivalent: (1) eA_A is artinian; (2) Af_Af is artinian; and (3) both eA_A and Af are injective.

Our aim is to extend the results mentioned above to perfect rings. Following Harada [4], we call a module $L_A M$-simple-injective if for any submodule N of M_A every $\theta : N_A \to L_A$ with $\text{Im} \theta$ simple can be extended to some $\phi : M_A \to L_A$. For a local idempotent e in a left perfect ring A, we will show that eA_A is A-simple-injective if and only if there exists a local idempotent f in A such that (eA, Af) is an i-pair in A and $r_{Af}(\ell_{eA}(M)) = M$ for every submodule M of Af_Af, and that eA_A is injective if it is A-simple-injective and has finite Loewy length. We will show also that for an i-pair (eA, Af) in a left perfect ring A the following are equivalent: (1) eA_A is artinian; (2) Af_Af is artinian; and (3) both eA_A and Af are injective.

1. Localization and injective objects

Let \mathcal{A} and \mathcal{B} be abelian categories, $F : \mathcal{A} \to \mathcal{B}$ and $G : \mathcal{B} \to \mathcal{A}$ covariant functors, and $\varepsilon : 1_{\mathcal{A}} \to GF$ and $\delta : FG \to 1_{\mathcal{B}}$ homomorphisms of functors, where $1_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}$ and $1_{\mathcal{B}} : \mathcal{B} \to \mathcal{B}$ are identity functors. We assume the conditions: (a) $\delta_F \circ F \varepsilon = \text{id}_F$; (b) $G \delta \circ \varepsilon = \text{id}_G$; (c) F is exact; and (d) δ is an isomorphism.

Remark 1. (1) By the conditions (a) and (b), for each pair of $X \in \text{Ob}(\mathcal{A})$ and
$M \in \text{Ob}(B)$ we have a natural isomorphism

$$
\theta_{X,M} : \text{Hom}_B(FX, M) \rightarrow \text{Hom}_A(X, GM), \beta \mapsto G\beta \circ \epsilon_X
$$

with $\theta_{X,M}^{-1}(\alpha) = \delta_M \circ F\alpha$ for $\alpha \in \text{Hom}_A(X, GM)$. Namely, G is a right adjoint of F. In particular, G is left exact.

(2) By the conditions (a), (b) and (d), $G : B \rightarrow A$ is fully faithful.

(3) By the conditions (a) and (d), $F\epsilon : F \rightarrow FG\delta$ is an isomorphism with $F\epsilon^{-1} = \delta_F$.

(4) By the conditions (b) and (d), $\epsilon_G : G \rightarrow GFG$ is an isomorphism with $\epsilon_G^{-1} = G\delta$.

Though the following lemmas are well known and more or less obvious, we include proofs for completeness.

Lemma 1.1. Let $X \in \text{Ob}(A)$ be simple with $FX \neq 0$. Then $FX \in \text{Ob}(B)$ is simple.

Proof. Let $\beta : FX \rightarrow M$ be a nonzero morphism in B. We claim β monic. Note that $\beta = \delta_M \circ F(G\beta \circ \epsilon_X)$. Thus $G\beta \circ \epsilon_X : X \rightarrow GM$ is nonzero and monic, so is $\beta = \delta_M \circ F(G\beta \circ \epsilon_X)$.

Lemma 1.2. Let $\mu : Y \rightarrow X$ be an essential monomorphism in A with ϵ_Y monic. Then $F\mu : FY \rightarrow FX$ is an essential monomorphism in B.

Proof. Let $\beta : FX \rightarrow M$ be a morphism in B with $\beta \circ F\mu$ monic. We claim β monic. Since $(G\beta \circ \epsilon_X) \circ \mu = G\beta \circ GF\mu \circ \epsilon_Y = G(\beta \circ F\mu) \circ \epsilon_Y$ is monic, $G\beta \circ \epsilon_X$ is monic and so is $\beta = \delta_M \circ F(G\beta \circ \epsilon_X)$.

Lemma 1.3. Let $X \in \text{Ob}(A)$ be injective with ϵ_X monic. Then $\epsilon_X : X \rightarrow GFX$ is an isomorphism and $FX \in \text{Ob}(B)$ is injective.

Proof. Since $F\epsilon_X$ is an isomorphism, $F(\text{Cok} \epsilon_X) \cong \text{Cok} F\epsilon_X = 0$ and $\text{Hom}_A(\text{Cok} \epsilon_X, GFX) \cong \text{Hom}_B(F(\text{Cok} \epsilon_X), FX) = 0$. Thus, since $\epsilon_X : X \rightarrow GFX$ is a split monomorphism, $\text{Cok} \epsilon_X = 0$. Hence for each $M \in \text{Ob}(B)$ we have a natural isomorphism

$$
\eta_M : \text{Hom}_B(M, FX) \rightarrow \text{Hom}_A(GM, X), \beta \mapsto \epsilon_X^{-1} \circ G\beta.
$$

Let $\nu : N \rightarrow M$ be a monomorphism in B. Since $G\nu$ is monic, $\text{Hom}_A(G\nu, X)$ is epic and so is $\text{Hom}_B(\nu, FX) = \eta_N^{-1} \circ \text{Hom}_A(G\nu, X) \circ \eta_M$.

Remark 2. (1) An object $M \in \text{Ob}(B)$ is injective if and only if so is $GM \in$
Ob(A).

(2) The canonical monomorphism \(\text{Im} \varepsilon_X \to GFX \) is an essential monomorphism for every \(X \in \text{Ob}(A) \) with \(FX \neq 0 \).

(3) If \(\nu : N \to M \) is an essential monomorphism in \(B \), so is \(G\nu : GN \to GM \).

(4) For \(X \in \text{Ob}(A) \) with \(\varepsilon_X \) monic, a monomorphism \(\mu : Y \to X \) in \(A \) is an essential monomorphism if and only if so is \(F\mu : FY \to FX \).

2. Injective pairs

Throughout the rest of this note, \(A \) stands for a ring with Jacobson radical \(J \). For an \(\varepsilon \)-pair \((eA, Af)\) in \(A \), we denote by \(A_\varepsilon(eA, Af) \) the lattice of submodules \(X \) of \(eAeA \) with \(\ell_{eA}(r_{Af}(X)) = X \) and by \(A_r(eA, Af) \) the lattice of submodules \(M \) of \(Af_fAf \) with \(r_{Af}(\ell_{eA}(M)) = M \).

Remark 3. Let \((eA, Af)\) be an \(\varepsilon \)-pair in \(A \). Let \(X \) be a submodule of \(eAeA \). Then \(Xr_{Af}(X) = 0 \) implies \(X \subseteq \ell_{eA}(r_{Af}(X)) \) and thus \(r_{Af}(\ell_{eA}(r_{Af}(X))) \subseteq r_{Af}(X) \). Also, \(\ell_{eA}(r_{Af}(X))r_{Af}(X) = 0 \) implies \(r_{Af}(X) \subseteq r_{Af}(\ell_{eA}(r_{Af}(X))) \). Thus \(r_{Af}(X) \in A_\varepsilon(eA, Af) \). Similarly, \(\ell_{eA}(M) \in A_\varepsilon(eA, Af) \) for every submodule \(M \) of \(Af_fAf \). It follows that \(A_\varepsilon(eA, Af) \) is anti-isomorphic to \(A_r(eA, Af) \).

The following lemmas have been established in [5], [3], [1], [8], [6] and so on. However, for the benefit of the reader, we provide direct proofs.

Lemma 2.1. Let \(e, f \in A \) be idempotents and assume \(\ell_{eA}(Af) = 0 = r_{Af}(eA) \). Then the following hold.

1. For a two-sided ideal \(I \) of \(A \), \(ei = 0 \) if and only if \(If = 0 \).
2. \(\ell_{eA}(I) = \ell_{eA}(If) \) for every right ideal \(I \) of \(A \).
3. \(r_{Af}(I) = r_{Af}(ei) \) for every left ideal \(I \) of \(A \).

Proof.

1. Assume \(ei = 0 \). Then \(eAf = ei = 0 \) and \(If \subseteq r_{Af}(eA) = 0 \). By symmetry, \(If = 0 \) implies \(ei = 0 \).
2. Since \(If \subseteq I \), \(\ell_{eA}(I) \subseteq \ell_{eA}(If) \). For any \(x \in \ell_{eA}(If) \), since \(xI Af = xI f = 0 \), \(xI \subseteq \ell_{eA}(Af) = 0 \) and \(x \in \ell_{eA}(I) \). Thus \(\ell_{eA}(I) \subseteq \ell_{eA}(I) \).
3. Similar to (2).

Lemma 2.2. Let \((eA, Af)\) be an \(\varepsilon \)-pair in \(A \). Then the following hold.

1. \(\ell_{eA}(Af) = 0 = r_{Af}(eA) \).
2. \(eAf_fAf \) and \(eAeAf \) have simple essential socles and \(\text{soc}(eA_A)f = \text{soc}(eAf_fAf) = \text{soc}(eAeAf) = e(\text{soc}(A Af)) \).

Proof.

1. For any \(0 \neq x \in eA \), since \(\text{soc}(eA_A) \subseteq xA \), \(0 \neq \text{soc}(eA_A)f \subseteq xAf \) and \(x \notin \ell_{eA}(Af) \). Thus \(\ell_{eA}(Af) = 0 \). Similarly \(r_{Af}(eA) = 0 \).
(2) Since by Lemma 1.1 \(\text{soc}(e_A)_{fAf} \) and \(e_A e(\text{soc}(A_{Af})) \) are simple, and since by Lemma 1.2 \(\text{soc}(e_A)_{fAf} \subset eAf_{fAf} \) and \(e_A e(\text{soc}(A_{Af})) \subset e_A eAf \) are essential extensions, the assertion follows.

Lemma 2.3. Let \((eA, Af)\) be an i-pair in \(A\). Then for any \(n \geq 1\) \(eJ^n = 0\) if and only if \(J^n f = 0\), so that \(eA_A\) and \(A_Af\) have the same Loewy length.

Proof. By Lemmas 2.2(1) and 2.1(1).

Lemma 2.4. Let \((eA, Af)\) be an i-pair in \(A\). Let \(N, M\) be submodules of \(Af_{fAf}\) with \(N \subset M\) and \(M/N\) simple. Assume \(N \in A_r(eA, Af)\). Then the following hold.

1. \(e_A eA(N)/e_A eA(M)\) is simple.
2. \(M \in A_r(eA, Af)\).

Proof. (1) Let \(a \in M\) with \(a \notin N\). Then \(M = N + aAf\). Also, since \(M \neq N = r_Af(e_A eA(N)), e_A eA(M) \subset e_A eA(N)\) with \(e_A eA(N)/e_A eA(M) \neq 0\). Since \(0 \neq e_A eA(N)M = e_A eA(N)aAf\) and \(e_A eA(N)aAf = \text{soc}(eA_{fAf})\), thus by Lemma 2.2(2) \(e_A eA(N) = \text{soc}(e_A eA)\) and, since \(e_A eA(M) = 0\), \(e_A eA(N)/e_A eA(M) \cong \text{soc}(e_A eA)\).

(2) Since \(e_A eA(M) \subset e_A eA(N) \subset e_A eA\) with \(e_A eA(M) \in A_r(eA, Af)\) and \(e_A eA(N)/e_A eA(M)\) simple, we can apply the part (1) to conclude that \(r_Af(e_A eA(M))/r_Af(e_A eA(N))\) is simple. Thus \(r_Af(e_A eA(N)) = N \subset M \subset r_Af(e_A eA(M))\) with both \(r_Af(e_A eA(M))/r_Af(e_A eA(N))\) and \(M/N\) simple, so that \(M = r_Af(e_A eA(M))\).

Lemma 2.5. Let \((eA, Af)\) be an i-pair in \(A\). Then \(M \in A_r(eA, Af)\) for every submodule \(M\) of \(Af_{fAf}\) of finite composition length.

Proof. Lemma 2.4(2) together with Lemma 2.2(1) enables us to make use of induction on the composition length.

Lemma 2.6. Let \((eA, Af)\) be an i-pair in \(A\). Then \(e_A eA\) and \(Af_{fAf}\) have the same composition length.

Proof. By symmetry, we may assume \(Af_{fAf}\) has finite composition length. Let \(0 = M_0 \subset M_1 \subset \cdots \subset M_n = Af\) be a composition series of \(Af_{fAf}\). Put \(X_i = e_A eA(M_i)\) for \(0 \leq i \leq n\). Since by Lemma 2.5 \(M_i \in A_r(eA, Af)\) for all \(0 \leq i \leq n\), by Lemmas 2.4(1) and 2.2(1) we have a composition series \(0 = X_0 \subset \cdots \subset X_1 \subset X_n = eA\) of \(e_A eA\).
Lemma 2.7. Let \((eA, Af)\) be an i-pair in \(A\). Then the following are equivalent.

1. \(eA_A\) is \(A\)-simple-injective.
2. \(\ell_{eA}(M) = \ell_{eA}(N)\) implies \(N = M\) for submodules \(N, M\) of \(Af_{Af}\) with \(N \subseteq M\).
3. \(M \in A_r(eA, Af)\) for every submodule \(M\) of \(Af_{Af}\).

Proof. (1) \(\Rightarrow\) (2). Let \(N, M\) be submodules of \(Af_{Af}\) with \(N \subseteq M\) and \(M/N \neq 0\). Since \((MA/NA)f \cong M/N \neq 0\), there exist submodules \(K, I\) of \(MA_A\) such that \(NA \subseteq K \subseteq I\) and \(I/K \cong fAf/fJ\). Let \(\mu : I_A \to A_A\) denote the inclusion. Since we have \(\theta : I_A \to eA_A\) with \(\text{Im} \theta = \text{soc}(eA_A)\) and \(\text{Ker} \theta = K\), there exists \(\phi : A_A \to eA_A\) with \(\phi \circ \mu = \theta\). Then \(\phi(1)I = \phi(I) = \theta(I) \neq 0\) and \(\phi(1)K = \phi(K) = \theta(K) = 0\). Thus \(\phi(1) \in \ell_{eA}(K)\) and \(\phi(1) \not\in \ell_{eA}(I)\). Since \(\ell_{eA}(M) = \ell_{eA}(MA) \subseteq \ell_{eA}(I) \subseteq \ell_{eA}(K) \subseteq \ell_{eA}(NA) = \ell_{eA}(N)\), \(\ell_{eA}(I) \neq \ell_{eA}(K)\) implies \(\ell_{eA}(M) \neq \ell_{eA}(N)\).

(2) \(\Rightarrow\) (3). Let \(M\) be a submodule of \(Af_{Af}\) and put \(L = r_{Af}(\ell_{eA}(M))\). Then \(M \subseteq L\) and \(\ell_{eA}(L) = \ell_{eA}(r_{Af}(\ell_{eA}(M))) = \ell_{eA}(M)\). Thus \(M = L\).

(3) \(\Rightarrow\) (1). Let \(I\) be a nonzero right ideal and \(\mu : I_A \to A_A\) the inclusion. Let \(\theta : I_A \to eA_A\) with \(\text{Im} \theta = \text{soc}(eA_A)\) and put \(K = \text{Ker} \theta\). Then by Lemma 1.1 \(If/Kf_{Af} \cong (I/K)f_{Af}\) is simple, so is \(eA \ell_{eA}(Kf)/\ell_{eA}(If)\) by Lemma 2.4(1). Let \(a \in I f\) with \(a \not\in K f\). Then, since \(\ell_{eA}(Kf)a \neq 0\) and \(\ell_{eA}(If)a = 0\), \(eA \ell_{eA}(Kf)a\) is simple. Thus by Lemma 2.2(2) \(\ell_{eA}(Kf)a = \text{soc}(eA_A)f\), so that \(\theta(a) = \theta(af) = \theta(a)f = ba\) with \(b \in \ell_{eA}(Kf)\). Define \(\phi : A_A \to eA_A\) by \(1 \mapsto b\). Then, since by Lemmas 2.2(1) and 2.1(2) \(b \in \ell_{eA}(K)\), and since \(I = K + aA\), we have \(\phi \circ \mu = \theta\).

Lemma 2.8. Let \((eA, Af)\) be an i-pair in \(A\). Assume \(eA_A\) is injective. Then the canonical homomorphism \(eAeA_A \to eAe\text{Hom}_{Af}(Af, eAf)_A\), \(a \mapsto (b \mapsto ab)\), is an isomorphism and \(eAf_{Af}\) is injective.

Proof. By Lemmas 2.2(1) and 1.3.

3. Injective pairs in perfect rings

In this section, we extend results of Baba and Oshiro [1] to left perfect rings. We refer to [2] for perfect rings. We abbreviate the ascending (resp. descending) chain condition as the ACC (resp. DCC).

Remark 4. (1) Let \((eA, Af)\) be an i-pair in \(A\). Then, since \(A_r(eA, Af)\) is anti-isomorphic to \(A_r(eA, Af)\), \(A_r(eA, Af)\) satisfies the ACC (resp. DCC) if and only if \(A_r(eA, Af)\) satisfies the DCC (resp. ACC).

(2) Let \(e \in A\) be an idempotent. Then, since \(eAe\) appears as a direct sum-
mand in $e Ae e A$, $e Ae e A$ is artinian if and only if it has finite composition length.

(3) Every module L_A with $\soc(L_A) = 0$ is A-simple-injective.

Lemma 3.1 (cf. [1, Proposition 5]). Let $(e A, A f)$ be an i-pair in A. Assume $A_r(e A, A f)$ satisfies the ACC and $f A f$ is a left perfect ring. Then $A f A_f$ is artinian and $M \in A_r(e A, A f)$ for every submodule M of $A f A_f$.

Proof. It follows by Lemma 2.5 that there exists a maximal element M in the set of submodules of $A f A_f$ of finite composition length. We claim $M = A f A_f$. Otherwise, there exists a submodule L of $A f A_f$ with $M \subseteq L$ and L/M simple, a contradiction. Thus $A f A_f$ has finite composition length and again by Lemma 2.5 the last assertion follows.

Proposition 3.2. Let $(e A, A f)$ be an i-pair in a left perfect ring A. Then the following are equivalent.

1. $e Ae e A$ is artinian.
2. $A_r(e A, A f)$ satisfies both the ACC and the DCC.
3. $A_r(e A, A f)$ satisfies the ACC.

Proof. The implications (1) \Rightarrow (2) \Rightarrow (3) are obvious.

(3) \Rightarrow (1). Since the ascending chain $\ell_{e A}(A f) \subseteq \ell_{e A}(J f) \subseteq \ell_{e A}(J^2 f) \subseteq \cdots$ in $A_r(e A, A f)$ terminates, $\ell_{e A}(J^n f) = \ell_{e A}(J^{n+1} f)$ for some $n \geq 0$. We claim $\ell_{e A}(J^n f) = e A$. Suppose otherwise. Then there exists a submodule M of $e A A$ with $\ell_{e A}(J^n f) \subseteq M$ and $M/\ell_{e A}(J^n f)$ simple. Since $M J \subseteq \ell_{e A}(J^n f)$, $M J^{n+1} f \subseteq \ell_{e A}(J^n f) J^n f = 0$ and $M \subseteq \ell_{e A}(J^{n+1} f) = \ell_{e A}(J^n f)$, a contradiction. Thus $\ell_{e A}(J^n f) = e A$ and by Lemma 2.2(1) $J^n f \subseteq r_{A f}(\ell_{e A}(J^n f)) = 0$. Then by Lemma 2.3 $e J^n f = 0$ and $e Ae$ is a semiprimary ring. Thus by Lemma 3.1 $e Ae e A$ is artinian.

Lemma 3.3. Let $e \in A$ be a local idempotent. Assume $e A A$ is A-simple-injective and has nonzero socle. Then $\soc(e A A)$ is simple.

Proof. Let S be a simple submodule of $\soc(e A A)_A$. We claim $S = \soc(e A A)$. Suppose otherwise. Let $\pi : \soc(e A A) \to S_A$ be a projection and $\mu : \soc(e A A) \to e A A$, $\nu : S_A \to e A A$ inclusions. There exists $\phi : e A A \to e A A$ with $\phi \circ \mu = \nu \circ \pi$. Since π is not monic, ϕ is not an isomorphism. Thus $\phi(e) \in e A e$ and $(e - \phi(e))$ is a unit in $e A e$. For any $x \in S$, since $\phi(e) x = \phi(x) = \pi(x) = x$, $(e - \phi(e)) x = 0$ and thus $x = 0$, a contradiction.

Lemma 3.4 (cf. [1, Proposition 2]). Let A be a semiperfect ring and $e \in A$ a local idempotent. Assume $e A A$ is A-simple-injective and has finite Loewy length. Then
eA_A is injective.

Proof. Let I be a nonzero right ideal and $μ : I_A → A_A$ the inclusion. Let $θ : I_A → eA_A$. We make use of induction on the Loewy length of $θ(I)$ to show the existence of $φ : A_A → eA_A$ with $θ = φ o μ$. Let $n = \min\{k ≥ 0 | θ(I)J^k = 0\}$. We may assume $n > 0$. Since eA_A has nonzero socle, by Lemma 3.3 $soc(eA_A)$ is simple and $soc(eA_A) = θ(I)J^{n-1} = θ(IJ^{n-1})$. Let $μ_1$ and $θ_1$ denote the restrictions of $μ$ and $θ$ to IJ^{n-1}, respectively. Then $Im θ_1 = soc(eA_A)$ and there exists $φ_1 : A_A → eA_A$ with $φ_1 o μ_1 = θ_1$. Since $(θ - φ_1 o μ)(IJ^{n-1}) = 0$, by induction hypothesis there exists $φ_2 : A_A → eA_A$ with $φ_2 o μ = θ - φ_1 o μ$. Then $θ = (φ_1 + φ_2) o μ$.

Lemma 3.5 (cf. [1, Proposition 4]). Let A be a semiperfect ring and $e ∈ A$ a local idempotent. Assume eA_A is A-simple-injective and has essential socle. Then there exists a local idempotent $f ∈ A$ such that (eA, Af) is an i-pair in A.

Proof. By Lemma 3.3 $S_A = soc(eA_A)$ is simple. Let $f ∈ A$ be a local idempotent with $S_f ≠ 0$. We claim that (eA, Af) is an i-pair in A. Let $0 ≠ a ∈ S_f$. It suffices to show $a ∈ Ab$ for all $0 ≠ b ∈ Af$. Let $0 ≠ b ∈ Af$. Define $α : fA_A → aA_A$ by $x ↦ ax$ and $β : fA_A → bA_A$ by $x ↦ bx$. Since $Ker β = r_A(b) ⊂ fJ = r_A(a) = Ker α$, we have $θ : bA_A → aA_A = S_A$ with $α = θ o β$. Let $μ : S_A → eA_A$, $ν : bA_A → A_A$ be inclusions. Then there exists $φ : A_A → eA_A$ with $φ o ν = μ o θ$ and $a = α(f) = θ(β(f)) = θ(b) = φ(b) = φ(1)b ∈ Ab$.

Theorem 3.6 (cf. [1, Theorem 1]). Let A be a left perfect ring and $e ∈ A$ a local idempotent. Then the following are equivalent.

1. eA_A is A-simple-injective.
2. There exists a local idempotent $f ∈ A$ such that (eA, Af) is an i-pair in A and $M ∈ M_{A_e}(eA_A)$ for every submodule M of $AfAf$.

Proof. By Lemmas 3.5 and 2.7.

Theorem 3.7 (cf. [1, Theorem 2]). Let (eA, Af) be an i-pair in a left perfect ring A. Then the following are equivalent.

1. eA_eeA is artinian.
2. $AfAf$ is artinian.
3. Both eA_A and $AfAf$ are injective.

Proof. (1) $↔$ (2). By Lemma 2.6.

(2) $⇒$ (3). By Lemmas 2.6, 2.5 and 2.7 both eA_A and $AfAf$ are A-simple-injective. Also, by Lemma 2.3 both eA_A and $AfAf$ have finite Loewy length. Thus by Lemma 3.4 both eA_A and $AfAf$ are injective.
(3) \Rightarrow (1). By Lemma 2.8 the canonical homomorphism
\[e_AeA \to e_Ae \text{Hom}_{eAf}(Af, eAf) \]
is an isomorphism and eAf_{eAf} is injective. Similarly, the canonical homomorphism $eAf_{eAf} \to e \text{Hom}_{eAf}(eA, eAf)_{eAf}$ is an isomorphism and $eAeAf$ is injective. It follows that $eAeAf_{eAf}$ defines a Morita duality. Thus by [7, Theorem 3] eAe is left artinian and $eAeA$ has finite Loewy length. Since the canonical homomorphism $eAeA \to eAe \text{Hom}_{eAf}(eA, eAf, eAf)$ is an isomorphism, it follows by [7, Lemma 13] that $eAeA$ has finite composition length.

REMARK 5. In Theorem 3.7 the assumption that A is left perfect cannot be replaced by a weaker condition that A is semiperfect (see [7, Example 1]).

References