1. Introduction

Let G and H be finite groups of order n. A mapping f from G into H is called a planar function of degree n if, for each element $u \in H$ and $v \in G^* = G - \{1\}$, there exists exactly one $x \in G$ such that $f(vx)f(x)^{-1} = u$. In [2] Hiramine has shown that if both G and H are abelian groups of order $3p$ with $p(\geq 5)$ a prime, then there exists no planar function from G into H. To prove this he has established two results on character values. Their proofs are slightly complicated. In this note we shall give short proofs.

In section 2 we shall present Proposition 2 which is useful for the proof of Result 2. In section 3 we shall state Hiramine' results and give short proofs.

We follow the notation and terminology of [2].

2. Planar Functions and Equations in Group Algebras

Let G and H be finite groups of order n. Throughout this article elements of G will be denoted by small Roman letters and elements of H by small Greek letters. Let f be a mapping from G into H and $S_\alpha = \{x \in G|f(x) = \alpha\}$, $\alpha \in H$. If $S_\alpha \neq \emptyset$, we set $\hat{S}_\alpha = \sum_{x \in S_\alpha} x \in C[G]$ and $\hat{S}_\alpha^{-1} = \sum_{x \in S_\alpha} x^{-1} \in C[G]$, otherwise $\hat{S}_\alpha = \hat{S}_\alpha^{-1} = 0$, where $C[G]$ is the group algebra of G over the complex number field C. Let $G_0 = G \times H$ be the direct product of groups G, H.

To prove the results we need two propositions. The following is Proposition 2.1 [2].

Proposition 1. The following are equivalent.

(i) The function f is planar.

(ii) In the group algebra $C[G]$ of G,

$$\sum_{\alpha \in H} \hat{S}_\tau \hat{S}_\alpha^{-1} = \sum_{\alpha \in H} \hat{S}_\alpha^{-1} \hat{S}_\alpha = \begin{cases} \hat{G} + n - 1 & \text{if } \tau = 1, \\ \hat{G} - 1 & \text{otherwise.} \end{cases}$$
REMARK 1. If $\tau \neq 1$, then it follows from the equation in (ii) of the proposition above that in the group algebra $C[G_0]$ of G_0,

$$\sum_{\alpha \in H} \hat{S}_\tau \alpha \hat{S}_\alpha^{-1} \alpha^{-1} = (\hat{G} - 1) \tau.$$

We prove the following

Proposition 2. We have in $C[G_0]$,

$$(\sum_{\alpha \in H} \hat{S}_\alpha \alpha)(\sum_{\beta \in H} \hat{S}_\beta^{-1} \beta^{-1}) = \hat{G} + n - 1 + \sum_{\tau \in H, \tau \neq 1} (\hat{G} - 1) \tau.$$

Proof of Proposition 2.

$$(\sum_{\alpha \in H} \hat{S}_\alpha \alpha)(\sum_{\beta \in H} \hat{S}_\beta^{-1} \beta^{-1}) = \sum_{\tau \in H} (\sum_{\beta \in H} \hat{S}_\tau \beta \hat{S}_\beta^{-1} \beta^{-1})$$

$$= \hat{G} + n - 1 + \sum_{\tau \in H, \tau \neq 1} (\hat{G} - 1) \tau, \text{ by Remark 1.}$$

We complete the proof of Proposition 2. \qed

3. **Proofs of Hiramine' Results**

We start with the following well-known facts about character theory. These facts play important parts in the proofs of his results.

FACT 1. Let G be an abelian group and χ an arbitrary (linear) character of G. Then χ is a homomorphism from G into $C^* = C - \{0\}$. So we can extend this homomorphism χ to an algebra homomorphism $\overline{\chi}$ from $C[G]$ into C.

FACT 2. Let H_1, H_2 be finite groups and G_1 the direct product of H_1, H_2. Then all irreducible characters of G_1 are obtained as follows. Let $\chi_0, ..., \chi_{s-1}$ be the irreducible characters of H_1, $\rho_0, ..., \rho_{t-1}$ the irreducible characters of H_2. Then G_1 has exactly st irreducible characters $\Psi_{ij}(0 \leq i \leq s - 1, 0 \leq j \leq t - 1)$, satisfying $\Psi_{ij}(h_1 h_2) = \chi_i(h_1) \rho_j(h_2)$, where $h_1 \in H_1, h_2 \in H_2$.

Proof. See[1, p.54]. \qed

REMARK 2. In Fact 2 if both χ_i and ρ_j are linear characters, then Ψ_{ij} is a homomorphism from G_1 to C^*. As in Fact 1, we have an algebra homomorphism $\overline{\Psi}_{ij}$ from $C[G_1]$ into C which is an extension of Ψ_{ij}.
Now we shall start to state Hiramine' results and prove them. In the remainder of this section we assume that \(f \) is a planar function and that \(G \) is an abelian group of order \(n \).

Let \(\chi_0(= 1_G), \ldots, \chi_{n-1} \) be the irreducible (linear) characters of \(G \), where \(1_G \) denote the principal character of \(G \). We set

\[
d_i^{(\alpha)} = \begin{cases} \sum_{x \in S_\alpha} \chi_i(x) & \text{if } S_\alpha \neq \emptyset, \\ 0 & \text{if } S_\alpha = \emptyset \end{cases}
\]

for each \(0 \leq i \leq n - 1 \) and for each \(\alpha \in H \). Now we state one of Hiramine' results [2].

RESULT 1. The following hold

(i) \(d_0^{(\alpha)} = |S_\alpha| \) and

\[
\sum_{\alpha \in H} d_0^{(\tau \alpha)} d_0^{(\alpha)} = \sum_{\alpha \in H} d_0^{(\alpha \tau)} d_0^{(\alpha)} = \begin{cases} 2n - 1 & \text{if } \tau = 1, \\ n - 1 & \text{otherwise.} \end{cases}
\]

(ii) For \(i \neq 0 \),

\[
\sum_{\alpha \in H} d_i^{(\tau \alpha)} \overline{d_i^{(\alpha)}} = \sum_{\alpha \in H} d_i^{(\alpha \tau)} d_i^{(\alpha)} = \begin{cases} n - 1 & \text{if } \tau = 1, \\ -1 & \text{otherwise.} \end{cases}
\]

(Here \(\overline{d} \) denotes the complex conjugate of \(d \in \mathbb{C} \).)

Proof. Since \(G \) is abelian, from Fact 1 we note that for each \(0 \leq i \leq n - 1 \), \(\chi_i \) is an algebra homomorphism from \(C[G] \) into \(C \). We shall prove (i). It is immediate that \(d_0^{(\alpha)} = |S_\alpha| \). If \(\tau = 1 \), then the equation in (ii) of Proposition 1 becomes

\[
\sum_{\alpha \in H} \hat{S}_\alpha \hat{S}_\alpha^{-1} = \sum_{\alpha \in H} \hat{S}_\alpha^{-1} \hat{S}_\alpha = \hat{G} + n - 1.
\]

We apply \(\chi_0 \) to this equation. Then

\[
\sum_{\alpha \in H} \overline{\chi_0(\hat{S}_\alpha)} \overline{\chi_0(\hat{S}_\alpha^{-1})} = \sum_{\alpha \in H} \overline{\chi_0(\hat{S}_\alpha^{-1})} \overline{\chi_0(\hat{S}_\alpha)} = \overline{\chi_0(\hat{G} + n - 1)} ,
\]

which implies the equation for \(\tau = 1 \) in (i). Similarly we can prove the equation for \(\tau \neq 1 \) in (i). We have proved (i). Next we shall prove (ii). By applying the algebra homomorphism \(\chi_i \) \((i \neq 0) \) to the equation in (ii) of Proposition 1 we can prove (ii). This completes the proof of Result 1.

We state another result on character values in [2].
RESULT 2. With the same notation and assumption as in Result 1, suppose that H is abelian and let $\rho_0(= 1_H), \ldots, \rho_{n-1}$ be the irreducible characters of H. Set $z_{ij} = \sum_{\alpha \in H} d_i^{(\alpha)} \rho_j(\alpha)$. Then,

(i) $z_{0,0} = n$, and $z_{i,0} = 0 (i \neq 0)$

(ii) For $j \neq 0$, $z_{ij} \overline{z}_{ij} = n$.

Proof. Since χ_i and ρ_j are linear, from Remark 2 we see that $\overline{\Psi}_{ij}$ is an algebra homomorphism from $C[G_0]$ into C. First we shall prove (ii). We apply $\overline{\Psi}_{ij}$ ($j \neq 0$) to the equation in Proposition 2. Then we get (ii). We have proved (ii). Next we shall prove (i). Similarly by using $\overline{\Psi}_{i0}$ we can prove (i). This completes the proof of Result 2.

References