ON EMBEDDABLE 1-CONVEX SPACES

VIOREL VĂJĂITU

(Received May 31, 1999)

1. Introduction

Throughout this paper all complex spaces are assumed to be reduced and with countable topology.

Let X be a complex space. X is said to be embeddable if it can be realized as a complex analytic subset of $\mathbb{C}^m \times \mathbb{P}^n$ for some positive integers m and n. For instance, one checks that a complex curve of bounded Zariski dimension is embeddable.

We say that X is 1-convex if X is a modification at finitely many points of a Stein space Y, i.e., there exist a compact analytic set $S \subset X$ without isolated points and a proper holomorphic map $\pi : X \rightarrow Y$ such that $\pi_*(\mathcal{O}_X) = \mathcal{O}_Y$ and π induces an isomorphism between $X \setminus S$ and $Y \setminus \pi(S)$. S is called the exceptional set of X and Y the Remmert’s reduction of X. See [16] for further properties of 1-convex spaces.

A criterion of Schneider [18] says that a 1-convex space X of bounded Zariski dimension is embeddable if, and only if, there is a holomorphic line bundle L over X such that $L|_S$ is ample.

Using this, Bâncă [3] proved that a 1-convex complex surface X of bounded Zariski dimension is embeddable provided that X does not admit compact two dimensional irreducible components. By extending this Coltouï ([4], [5]) showed that every connected 1-convex manifold X with 1-dimensional exceptional set is embeddable if $\dim(X) > 3$. This is true also for threefolds X with some exceptions when the exceptional set contains a \mathbb{P}^1 ([5]).

In this short note we reconsider Coltouï’s example from another point of view. This is based on the following proposition which may be of independent interest.

Proposition 1. Let $Y \subset \mathbb{P}^n$ be a hypersurface of degree d with isolated singularities, $\pi : M \rightarrow Y$ a resolution of singularities, and $H \subset \mathbb{P}^n$ a hyperplane which avoids the singular locus of Y and such that $\Gamma := H \cap Y$ is smooth. Set $X := M \setminus \pi^{-1}(\Gamma)$. Then for $n \geq 4$ the following statements are equivalent:

(a) X is embeddable.

(b) X is Kähler.

(c) M is projective.

By this and an example due to Moishezon [12] (see also [6]) we obtain:
Theorem 1. There exists a 1-convex threefold X with exceptional set \mathbb{P}^1 such that X is not Kähler; a fortiori X is not embeddable.

For the proof of Proposition 1 we use several short exact sequences, Bott’s formula, Thom’s isomorphism, and some facts on pluriharmonic functions.

Also employing recent results due to Fujiki [9] we prove (see the next section for definitions):

Theorem 2. Let $\pi : X \longrightarrow Y$ be a finite holomorphic map of complex spaces with X of bounded Zariski dimension. If X is maximal and Y is Hodge, then it holds:

(a) Y compact implies X projective.
(b) Y is 1-convex implies X is 1-convex and embeddable.

Remark 1. Note that by [23], 1-convexity is invariant under finite holomorphic surjections. However, this does not hold for embeddability.

As a consequence of Theorem 2 we improve a well-known projectivity criterion due to Grauert [10] to:

Proposition 2. Let X be a compact complex space. If X is Hodge and maximal, then X is projective.

and the embeddability result due to Th. Peternell ([17], Theorem 2.6) to:

Proposition 3. Let X be a 1-convex space of bounded Zariski dimension such that X is Hodge and maximal. Then X is embeddable.

2. Continuous weakly pluriharmonic functions

Let X be a complex space. As usual, \mathcal{P}_X denotes the sheaf of germs of pluriharmonic functions on X. Then the canonical map $\mathcal{O}_X \longrightarrow \mathcal{P}_X$ given by $f \mapsto \text{Re } f$ induces a short exact sequence

\begin{equation}
0 \longrightarrow \mathbb{R} \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{P}_X \longrightarrow 0.
\end{equation}

Consider $\hat{\mathcal{P}}_X :=$ the sheaf of continuous weakly pluriharmonic functions, i.e., for every open subset U of X, $\hat{\mathcal{P}}_X(U)$ consists of those $h \in C^0(U, \mathbb{R})$ which are pluriharmonic on $\text{Reg}(U)$.

Clearly $\mathcal{P}_X \subseteq \hat{\mathcal{P}}_X$, and if $\hat{\mathcal{O}}_X$ denotes the sheaf of continuous weakly holomorphic functions, we have a natural map $\hat{\mathcal{O}}_X \longrightarrow \hat{\mathcal{P}}_X$ given by $f \mapsto \text{Re } f$.

Here we prove:
Proposition 4. The canonical short sequence

\[0 \longrightarrow \mathbb{R} \longrightarrow \hat{O}_X \longrightarrow \hat{P}_X \longrightarrow 0, \]

is exact.

Proof. We check only the surjectivity of \(\hat{O}_X \longrightarrow \hat{P}_X \). We do this in two steps.

1. Suppose \(X \) is normal. Let \(\pi : M \longrightarrow X \) be a resolution of singularities. Then \(\pi_* \mathcal{P}_M = \mathcal{P}_X \) by Proposition 2.1 in [9]. Now, since on a complex manifold a continuous real-valued function \(\varphi \) is pluriharmonic if and only if \(\varphi \) and \(-\varphi \) are plurisubharmonic we obtain that \(\hat{P}_X = \mathcal{P}_X \), whence the desired surjectivity in view of (\(*\)).

2. The general case. Let \(\nu : Y \longrightarrow X \) be the normalization of \(X \). Let \(x_0 \in X \), \(U \) an open neighborhood of \(x_0 \), and \(h \in \hat{P}_X(U) \). Then, by Step 1., \(h \circ \nu \in \mathcal{P}_Y(\nu^{-1}(U)) \). By Proposition 2.3 in [9] after shrinking \(U \supseteq x_0 \), there is \(f \in \hat{O}_X(U) \) such that \(\text{Re } f = h \). Note that in loc. cit. this is done under the additional hypothesis \(h \in C^\infty(U, \mathbb{R}) \). But our case follows mutatis mutandis, whence the proposition. \(\square \)

Recall ([7], pp. 122–126) that a complex space \(Z \) is said to be maximal if \(\mathcal{O}_Z = \hat{O}_Z \) and that every complex space \(X \) admits a maximalization \(\hat{X} \), i.e., \(\hat{X} \) is maximal and there is a holomorphic homeomorphism \(\pi : \hat{X} \longrightarrow X \) which induces a biholomorphic map between \(\hat{X} \setminus \pi^{-1}(M(X)) \) and \(X \setminus M(X) \), where \(M(X) \) is the non-maximal locus of \(X \), i.e., \(M(X) = \{ x \in X : \mathcal{O}_{X,x} \neq \hat{O}_{X,x} \} \). Clearly every normal complex space is maximal. For this reason, maximal complex spaces are also called “weakly normal”.

Corollary 1. If \(X \) is maximal, then \(\mathcal{P}_X = \hat{P}_X \).

Corollary 2. If \(X \) is normal, then every pluriharmonic function \(h \) on \(\text{Reg}(X) \) extends uniquely to a pluriharmonic function on \(X \).

Proof. Since \(h \) and \(-h \) extend uniquely to plurisubharmonic functions \(\varphi \) and \(\psi \) on \(X \), we get \(\varphi = -\psi \). Hence \(\varphi \) is continuous, whence \(\varphi \) is pluriharmonic by Corollary 1. \(\square \)

By a d-closed, real (1,1)-form (in the sense of Grauert [10]) on a complex space \(X \) we mean, a d-closed, real (1,1)-form \(\omega \) on \(\text{Reg}(X) \) such that every point \(x \in X \) admits an open neighborhood \(U \) on which there is \(\varphi \in C^2(U, \mathbb{R}) \) with \(\omega = i\partial \bar{\partial} \varphi \) on \(\text{Reg}(U) \). This \(\varphi \) is called a local potential function for \(\omega \). We say that \(\omega \) is Kähler if the local potentials may be chosen strongly pluriharmonic.

Alternatively, by Moishezon [14] we define a d-closed, real (1,1)-form on \(X \) as a collection \(\{(U_j, \varphi_j)\}_{j \in J} \) where \(\{U_j\}_{j} \) is an open covering of \(X \) and \(\varphi_j \in C^2(U_j, \mathbb{R}) \) are such that \(\varphi_j - \varphi_k \) is pluriharmonic. Two such collections \(\{(U_j, \varphi_j)\}_{j \in J} \) and \(\{(V_k, \psi_k)\}_{k \in K} \) define the same form if \(\varphi_j - \psi_k \) is pluriharmonic on \(U_j \cap V_k \) for all
indices j and k.

Corollary 3. For a maximal complex space X the above two notions of d-closed, real $(1, 1)$-forms coincide in an obvious sense.

Proof. This is immediate by Corollary 1.

To every d-closed, real $(1, 1)$-form ω on X we associate canonically an element of $H^1(X, \widehat{\mathcal{P}}_X)$, which in turn goes into its de Rham class $[\omega] \in H^2(X, \mathbb{R})$ via the cohomology sequence from Proposition 4.

We say that ω is integral if its de Rham class belongs to $\text{Im}(H^2(X, \mathbb{Z}) \rightarrow H^2(X, \mathbb{R}))$.

One has the following (see [10], proof of Satz 3)

Lemma 1. If ω is an integral form on a maximal space X, then there is a holomorphic line bundle $L \rightarrow X$ together with a class C^2-hermitean metric on L whose Chern form is ω. In particular, if ω is Kähler, then L is positive.

Let X be a complex space. X is said to be Kähler if X has a Kähler form (in the sense of Grauert). We say that X is Hodge if it admits a Kähler form which is integral.

Proposition 5. Let $\pi : Y \rightarrow X$ be a finite holomorphic map of complex spaces such that X is Hodge. Then Y is Hodge. In particular, the maximalization \widehat{X} and the normalization X^* of X are Hodge, too.

Proof. Let $\{(U_j, \psi_j)\}_j$, $U_j \subseteq X$, defines a Kähler form ω on X. Let $V_j \subseteq U_j$ such that $\{V_j\}_j$ is also a covering of X. Then by [22] for every $\delta \in C^0(X, \mathbb{R})$, $\delta > 0$, there exists $\psi \in C^\infty(Y, \mathbb{R})$, $0 < \psi < \delta$, such that $\sigma_j := \psi_j \circ \pi + \psi$ are strongly plurisubharmonic on $W_j := \pi^{-1}(V_j)$ for all j; hence $\{(W_j, \sigma_j)\}_j$ defines a Kähler form $\pi^*\omega$ on Y. Of course $\pi^*\omega$ depends on δ and ψ, but this is irrelevant for our discussion. Moreover, in view of a canonical commutative diagram and Proposition 4, if ω is integral, then $\pi^*\omega$ is integral too.

Now Lemma 1 and the criteria of Grauert [10] and Schneider [18] give Theorem 2.

Remark 2. There is a compact, normal, two dimensional complex space X with only one singularity such that $\text{Reg}(X)$ is Kähler, and X is not Kähler. (This follows from [14] and [10].)
3. Proof of proposition 1

The only nontrivial implication is (b) ⇒ (c) which we now consider. First we state:

CLAIM. The restriction map $H^1(M, \mathcal{P}_M) \to H^1(X, \mathcal{P}_M)$ is surjective.

The proof of this will be done in several steps.

STEP 1. For every abelian group G we have $H^1(\Gamma, G) = 0$.

Indeed, by a theorem of Siu [19], as $Y \setminus \Gamma$ is a Stein subspace of $\mathbb{P}^n \setminus \Gamma$, it admits a Stein open neighborhood D; thus $\mathbb{P}^n \setminus \Gamma = D \cup (\mathbb{P}^n \setminus Y)$ is a union of two Stein open subsets. On the other hand, if an n-dimensional complex manifold Ω is a union of q Stein open subsets, then $H^i_c(\Omega, G) = 0$ for $i \leq n - q$. The assertion follows easily.

STEP 2. $H^2(Y, \mathcal{O}_Y) = 0$.

For this, we let \mathcal{I}_Y be the coherent ideal sheaf of Y in \mathbb{P}^n. Then $\mathcal{I}_Y \simeq \mathcal{O}(\mathcal{Y})$, where \mathcal{Y} denotes the canonical line bundle associated to the divisor defined by Y.

Now Bott’s formula gives the vanishing of $H^i(\mathbb{P}^n, \mathcal{O}(k))$ for integers i, k with $1 \leq i < n$, and by the long exact cohomology sequence associated to the short exact sequence $0 \to \mathcal{I}_Y \to \mathcal{O}_{\mathbb{P}^n} \to \mathcal{O}_Y \to 0$, the assertion of Step 2 results immediately.

STEP 3. The maps $H^1(M, \mathcal{O}) \to H^1(X, \mathcal{O})$ and $H^2(M, \mathcal{O}) \to H^2(X, \mathcal{O})$ are surjective and injective respectively.

Let V be an arbitrary open neighborhood of Γ in Y. Since $Y \setminus \Gamma$ is Stein, the Mayer-Vietoris sequence for $Y = (Y \setminus \Gamma) \cup V$ and Step 2 give that the maps $H^1(V, \mathcal{O}) \to H^1(V \setminus \Gamma, \mathcal{O})$ and $H^2(V, \mathcal{O}) \to H^2(V \setminus \Gamma, \mathcal{O})$ are surjective and injective respectively.

Assume now $V \subset \text{Reg}(Y)$; hence $\pi^{-1}(V)$ is biholomorphic to V via π. This and the above discussion plus the Mayer-Vietoris sequence for $M = X \cup \pi^{-1}(V)$ completes the proof of Step 3.

STEP 4. $H^2(M, G) \to H^2(X, G)$ is surjective for every abelian group G.

We view Γ as a smooth complex hypersurface in M. The inclusion $X \subset M$ gives rise to an exact cohomology sequence (coefficients in any abelian group G)

$$\cdots \to H^i(M, X : G) \to H^i(M ; G) \to H^i(X ; G) \to H^{i+1}(M, X : G) \to \cdots$$

On the other hand since Γ is a non-singular complex hypersurface, a tubular neighborhood of Γ is diffeomorphic to a neighborhood of the 0-section of the normal bundle of Γ in M. This bundle being holomorphic is naturally oriented. We thus have, see [2], a Thom isomorphism:

$$H^i(M, X ; G) \cong H^{i-2}(\Gamma ; G),$$

whence the assertion of Step 4 using Step 1.

(●) The proof of the claim follows by diagram chasing using Steps 3 and 4 and
the next commutative diagram with exact rows:

\[
\begin{array}{cccccc}
H^1(M, \mathcal{O}) & \longrightarrow & H^1(M, \mathcal{P}) & \longrightarrow & H^2(M, \mathbb{R}) & \longrightarrow & H^2(M, \mathcal{O}) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
H^1(X, \mathcal{O}) & \longrightarrow & H^1(X, \mathcal{P}) & \longrightarrow & H^2(X, \mathbb{R}) & \longrightarrow & H^2(X, \mathcal{O}),
\end{array}
\]

(•) For the proof of the proposition we let \(K^{1,1}_M \) be the sheaf of germs of real smooth \((1,1)\)-forms on \(M \) which are \(d \)-closed. As usual, \(\mathcal{E}_M \) represents the sheaf of germs of smooth real functions on \(M \). The short exact sequence on \(M \),

\[
0 \longrightarrow \mathcal{P}_M \longrightarrow \mathcal{E}_M \longrightarrow K^{1,1}_M \longrightarrow 0,
\]

where the last non trivial map is given by \(\varphi \mapsto \sqrt{-1} \partial \bar{\partial} \varphi \), induces a commutative diagram with exact rows:

\[
\begin{array}{cccccc}
H^0(M, \mathcal{E}_M) & \longrightarrow & H^0(M, K^{1,1}_M) & \longrightarrow & H^1(M, \mathcal{P}_M) & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
H^0(X, \mathcal{E}_M) & \longrightarrow & H^0(X, K^{1,1}_M) & \longrightarrow & H^1(X, \mathcal{P}_M) & \longrightarrow & 0,
\end{array}
\]

By diagram chasing and the above claim if \(\omega \) is the Kähler form of \(X \), then there are: a smooth, \(d \)-closed, real \((1,1)\)-form \(\alpha \) on \(M \) and a smooth real-valued function \(\varphi \) on \(X \) such that

\[
\alpha|_X - \omega = \sqrt{-1} \partial \bar{\partial} \varphi.
\]

Now, select \(\chi \in C^\infty(X, \mathbb{R}) \) which vanishes on a neighborhood \(\Omega \) of \(\pi^{-1}(\text{Sing}(Y)) \) and equals 1 outside a compact subset of \(X \). By (•), the smooth \((1,1)\)-form \(\omega + \sqrt{-1} \partial \bar{\partial} \chi \varphi \) on \(X \) extends trivially to a smooth, real, and \(d \)-closed \((1,1)\)-form \(\tilde{\omega} \) on \(M \).

Let \(\beta \) be the canonical Kähler form on \(\mathbb{P}^n \). For every \(c > 0 \) define a \(d \)-closed \((1,1)\)-form \(\tilde{\omega}_c \) on \(M \) by setting:

\[
\tilde{\omega}_c := \tilde{\omega} + c \pi^*(\beta).
\]

Clearly \(\tilde{\omega}_c \) restricted to \(\Omega \) is positive definite for every \(c > 0 \). On the other hand, there is \(c > 0 \) sufficiently large such that \(\tilde{\omega}_c \) is positive definite near the compact set \(M \setminus \Omega \). Thus \(M \) is Kähler. Since \(M \) is Moishezon, by [13] \(M \) is projective.

Remark 3. In [20] a similar version to our Proposition 1, without any smoothness assumption on \(H \cap Y \) and with the additional assumption that \(H^2(X, \mathcal{O}_X) = 0 \), is stated.
Unfortunately, the “given proof” is wrong. See Colțoiu’s pertinent comments [5] for this and many, many other fatal errors, which, to our unpleasant surprise, are used again in [21].

4. Proof of theorem 1

Let \(Y \subset \mathbb{P}^4 \) be a hypersurface of degree \(d > 2 \) having a nondegenerate quadratic point \(y_o \) as its only singularity [12]. Let \(\sigma : V \rightarrow \mathbb{P}^4 \) be the quadratic transform with center \(y_o \). Set \(\Sigma := \sigma^{-1}(y_o) \), \(W := \) the proper transform of \(Y \) (\(W \) is a nonsingular hypersurface in \(V \)), and \(T := \Sigma \cap W \cong \mathbb{P}^1 \times \mathbb{P}^1 \). Let \(S \) be one of the two factors and \(\rho : T \rightarrow S \) the corresponding projection.

If \(N \) denotes the normal bundle of \(T \) in \(W \), the restriction of \(N \) to each of the fibres of \(\rho \) is the negative of the hyperplane bundle, so the criterion of Nakano and Fujiki applies ([8], [15]).

In other words \(W \) is obtained by blowing-up a non singular \(M \) along a rational non singular curve \(S \). One obtains easily a holomorphic map \(\pi : M \rightarrow Y \) which resolve the singularity \(y_o \) of \(Y \) and \(S = \pi^{-1}(y_o) \cong \mathbb{P}^1 \).

On the other hand, by [6], \(M \) is not Kähler if \(d > 2 \). Therefore, if we choose a linear hyperplane \(H \) in \(\mathbb{P}^1 \), \(H \not\subset y_o \), such that \(H \cap Y \) is smooth, then by Proposition 1, \(X := M \setminus \pi^{-1}(Y \cap H) \) is the desired example.

\(\square \)

Remark 4. As a counterexample for embeddability this example is due to Colțoiu [5] where by a different method he obtained that \(H^1(X, \mathcal{O}_X) = 0 \) under the additional hypothesis that \(H \) intersects \(Y \) transversally.

Here we emphasize the non-Kähler property of the example.

References