Title	Varieties for modules over a block of a finite group
Author	Kawai, Hiroaki
Citation	Osaka Journal of Mathematics. 40(2); 327-344
Issue Date	$2003-06$
ISSN	$0030-6126$
Textversion	Publisher
Rights	CDepartments of Mathematics of Osaka University and Osaka City University.
Relation	The OJM has been digitized through Project Euclid platform http://projecteuclid.org/ojm starting from Vol. 1, No. 1.

Placed on: Osaka City University Repository

VARIETIES FOR MODULES OVER A BLOCK OF A FINITE GROUP

Dedicated to Professor Yukio Tsushima on his Sixtieth Birthday

Hiroaki KAWAI

(Received September 27, 2001)

1. Introduction

Let p be a prime number and let k be an algebraically closed field of characteristic p. Let G be a finite group and b a block of $k G$. In [10], M. Linckelmann introduces two notions: the transfer maps in Hochschild cohomology of symmetric algebras, and the cohomology ring of the block b. Using the transfer map, he shows that the cohomology ring $H^{*}\left(G, b, D_{\gamma}\right)$ of the block b is embedded into the Hochschild cohomology ring $H H^{*}(k G b)$ of the block algebra $k G b$, which gives a block version of the well-known embedding from the usual cohomology ring $H^{*}(G, k)$ into the Hochschild cohomology ring $H H^{*}(k G)$ (see [10, Proposition 4.5]). Around the same time, M. Linckelmann [11] introduces a cohomological variety which is a block version of Carlson's module variety [4]. As is well known, for a finitely generated $k G$-module U, Carlson's variety $V_{G}(U)$ is defined to be the maximal ideal spectrum of $H^{*}(G, k) / I_{G}^{*}(U)$, where $I_{G}^{*}(U)$ is the annihilator of the action of $H^{*}(G, k)$ on $\operatorname{Ext}_{k G}^{*}(U, U)$ induced by the cup product. On the other hand, for a bounded complex U of $k G b$-modules, Linckelmann's variety $V_{G, b}(U)$ is defined to be the maximal ideal spectrum of $H^{*}\left(G, b, D_{\gamma}\right) / I_{G, b, D_{\gamma}}^{*}(U)$, where $I_{G, b, D_{\gamma}}^{*}(U)$ is the kernel of the algebra homomorphism $H^{*}\left(G, b, D_{\gamma}\right) \rightarrow \operatorname{Ext}_{k G b}^{*}(U, U)$ induced from the above embedding $H^{*}\left(G, b, D_{\gamma}\right) \rightarrow H H^{*}(k G b)$ (see Section 2 for details).

In this paper we study the variety $V_{G, b}(U)$. The following is the main result, which gives a characterization of the ideal $I_{G, b, D_{\gamma}}^{*}(U)$ in terms of the cohomology ring of a defect group D of b.

Theorem 1.1. Let b be a block of $k G, D_{\gamma}$ a defect pointed group of b and let $i \in \gamma$ be a source idempotent of b. Let U be a bounded complex of $k G b$-modules. Then we have that

$$
I_{G, b, D_{\gamma}}^{*}(U)=H^{*}\left(G, b, D_{\gamma}\right) \cap I_{D}^{*}(i U) .
$$

In particular if b is a nilpotent block of $k G$, then we have that $V_{G, b}(U)=V_{D}(i U)$.

In [11], M. Linckelmann shows that for any bounded complex U of $k G b$-modules, there exists a finite surjective map $V_{G, b}(U) \rightarrow V_{G}(U)$ (see Theorem 2.4 below). From Theorem 1.1, we can show the following reverse version of this result.

Corollary 1.2. For any bounded complex U of $k G b$-modules, there exists a finite surjective map $\iota_{D, b}: V_{D}(i U) \rightarrow V_{G, b}(U)$. Further, the dimensions of $V_{D}(i U)$ and $V_{G, b}(U)$ coincide.

In [11], Linckelmann also shows that the varieties $V_{G, b}(U)$ are invariant under splendid stable and derived equivalences in the sense of Linckelmann (for the definition of these notions, see [12]). Applying Theorem 1.1 we consider the question whether the varieties $V_{G, b}(U)$ are invariant under the Brauer correspondence betweeen blocks b in $k G$ with defect group D and blocks b_{0} in $k N_{G}(D)$ with defect group D. As a partial answer, we have the following.

Theorem 1.3. Suppose that D is abelian. Let U be an indecomposable $k G b$-module with vertex D and let W be the Green correspondent of U with respect to $\left(G, D, N_{G}(D)\right)$. Then we have that $V_{G, b}(U)=V_{N_{G}(D), b_{0}}(W)$.

Let Z be a central p-subgroup of G and set $G / Z=\bar{G}$. Then the natural k-algebra homomorphism $k G \rightarrow k \bar{G}$ gives a one to one correspondence from all blocks b of $k G$ onto all blocks \bar{b} of $k \bar{G}$. Applying Theorem 1.1 again, we have the following.

Theorem 1.4. Let U be a bounded complex of $k \bar{G} \bar{b}$-modules. Regarding U as a complex of $k G b$-modules through $k G b \rightarrow k \bar{G} \bar{b}$, we can define an affine map $\inf _{\bar{b}, b}^{*}: V_{G, b}(U) \rightarrow V_{\bar{G}, \bar{b}}(U)$ induced from the inflation $\inf _{\bar{b}, b}$.

Finally, we consider the inverse images of the affine maps above also. See Propositions 5.2 and 5.3 below.

All modules considered in this paper are assumed to be finitely generated left modules, unless otherwise stated. We end the introduction with fixing notations. Let H be a subgroup of a finite group G. For a group algebra $R G$ over a commutative ring $R,(R G)_{H}$ denotes the regular $R G-R H$-bimodule and, similarly, ${ }_{H}(R G)$ denotes the regular $R H-R G$-bimodule. For the conjugation given by an element x of G, we use the left notation: ${ }^{x} H=x H x^{-1}$ and ${ }^{x} a=x a x^{-1}$ for $a \in R G$. Further, $c_{x}: H^{*}(H, k) \rightarrow H^{*}\left({ }^{x} H, k\right)$ denotes the conjugation map given by x. For complexes X and $Y, X \mid Y$ means that X is isomorphic to a direct summand of Y.

2. Preliminaries

Let A and B be algebras over a commutative ring R. By an $A-B$-bimodule, we mean a bimodule on which the left and right actions of R coincide, in other words,
an $A \otimes_{R} B^{o}$-module (B^{o} is the R-algebra opposite to B). For an R-module M and a complex C of R-modules, we set $M^{*}=\operatorname{Hom}_{R}(M, R)$ and $C^{*}=\operatorname{Hom}_{R}(C, R)$, their R-uals. Let U be a right bounded complex of A-modules. We denote by $\mathscr{P}(U)$ a projective resolusion of U, that is, $\mathscr{P}(U)$ is a right bounded complex of projective A-modules with a map of chain complexes $\mathscr{P}(U) \rightarrow U$ which is an isomorphism on homology. Consider A as an $A \otimes_{R} A^{o}$-module (i.e., $A-A$-bimodule). Further we also consider A as a complex with the degree 0 component A and all other components being zero. Then we denote by \mathscr{P}_{A} a projective resolution of the complex A. Let U and V be right bounded complexes of A-modules. Notice that $\operatorname{Ext}_{A}^{n}(U, V)=$ $H^{n}\left(\operatorname{Hom}_{A}(\mathscr{P}(U), V)\right)$ by definition. Further, we have the following isomorphisms (see, e.g., [3, I, Section 2.7] or [8, Chapter 6]):

$$
\begin{aligned}
\operatorname{Ext}_{A}^{n}(U, V) & =H^{n}\left(\operatorname{Hom}_{A}(\mathscr{P}(U), V)\right) \cong H^{n}\left(\operatorname{Hom}_{A}(\mathscr{P}(U), \mathscr{P}(V))\right. \\
& \cong \operatorname{Hom}_{K(A)}(\mathscr{P}(U), \mathscr{P}(V)[n]),
\end{aligned}
$$

where $K(A)$ is the homotopy category of complexes of A-modules and $\mathscr{P}(V)[n]$ is the complex obtained by moving $\mathscr{P}(V)$ to the left by n places. Suppose that the R-algebra A is projective as an R-module. Then we can define Hochschild cohomology $H H^{n}(A)$ to be the cohomology $H^{n}\left(\operatorname{Hom}_{A \otimes A^{o}}\left(\mathscr{P}_{A}, A\right)\right)=\operatorname{Ext}_{A \otimes A^{o}}^{n}(A, A)$. So we have an isomorphism

$$
H H^{n}(A) \cong \operatorname{Hom}_{K\left(A \otimes A^{o}\right)}\left(\mathscr{P}_{A}, \mathscr{P}_{A}[n]\right)
$$

Note that if homogeneous components of U are projective as R-modules and if A also is projective as an R-module, then we see from the Künneth theorem that $\mathscr{P}_{A} \otimes_{A} U$ becomes a projective resolution of U. So we have an algebra homomorphism

$$
\alpha_{U}: H H^{*}(A) \rightarrow \operatorname{Exx}_{A}^{*}(U, U)
$$

induced by the functor $-\otimes_{A} U$. Here, the homomorphism α_{U} maps the homotopy class of a chain map $\zeta: \mathscr{P}_{A} \rightarrow \mathscr{P}_{A}[n]$ to that of $\zeta \otimes \operatorname{Id}_{U}$ (n is a nonnegative integer).

Suppose that A and B are symmetric R-algebras from now and let X be a bounded complex of $A-B$-bimodules which are projective as left A-modules and as right B-modules. M. Linckelmann gives a graded R-linear map $t_{X}: H H^{*}(B) \rightarrow$ $H H^{*}(A)$ which is called the transfer map associated with X (see [10, Definition 2.9]). He then shows the following connection between transfer maps in Hochschild cohomology and ordinary cohomology of finite groups: it is known that there exists an embedding of $H^{*}(G, R)$ into $H H^{*}(R G)$, that is, an injective graded R-algebra homomorphism

$$
\delta_{G}: H^{*}(G, R) \rightarrow H H^{*}(R G)
$$

induced by the diagonal induction functor $\operatorname{Ind}_{\triangle G}^{G \times G}$ (see [10, Proposition 4.5]). Through
these embeddings, the following diagrams are commutative

where $\operatorname{res}_{G, H}$ and $\operatorname{tr}_{H, G}$ denote the restriction map and the transfer map on ordinary cohomology of finite groups, respectively. He also gives a notion of X-stable elements as follows.

Definition 2.1 (Linckelmann [10, Definition 3.1]). An element [ζ] $\in H^{*}(A)$ is said to be X-stable if there is $[\tau] \in H H^{*}(B)$ such that the following diagram is homotopy commutative for any nonnegative integer n

where ζ_{n} and τ_{n} are the components in degree n of ζ and τ, respectively, and where the horizontal arrows are given by the natural homotopy equivalences $\mathscr{P}_{A} \otimes_{A} X \simeq$ $X \otimes_{B} \mathscr{P}_{B}$ lifting the natural isomorphism $A \otimes_{A} X \cong X \otimes_{B} B$. We denote by $H H_{X}^{*}(A)$ the set of X-stable elements in $H H^{*}(A)$.

Then, using the notion of X-stable elements, the transfer map t_{X} is characterized as follows [10, Lemma 3.4 and Theorem 3.6]. Let $t_{X}^{0}: Z(B) \rightarrow Z(A)$ be the linear map obtained by the degree zero component of t_{X}, composing with the natural isomorphisms $Z(B) \cong H H^{0}(B)$ and $Z(A) \cong H H^{0}(A)$. Set $t_{X}^{0}\left(1_{B}\right)=\pi_{X}$. Similarly, set $t_{X^{*}}^{0}\left(1_{A}\right)=\pi_{X^{*}}$ for the transfer map $t_{X^{*}}: H H^{*}(A) \rightarrow H H^{*}(B)$. If $[\zeta] \in H H^{n}(A)$ is X-stable and $[\tau] \in H H^{n}(B)$ is the element corresponding to [ζ] in Definition 2.1, then it holds that (i) $t_{X}([\tau])=\pi_{X}[\zeta]$, (ii) $[\tau]$ is the X^{*}-stable element and $t_{X^{*}}([\zeta])=\pi_{X^{*}}[\tau]$.

From the above, if π_{X} is invertible, then we see that

$$
T_{X}=\left(\pi_{X}\right)^{-1} t_{X}: H H_{X^{*}}^{*}(B) \rightarrow H H_{X}^{*}(A)
$$

is a surjective graded R-algebra homomorphism. Further, if both π_{X} and $\pi_{X^{*}}$ are invertible, then it holds that $T_{X^{*}} \circ T_{X}([\tau])=[\tau]$ for $[\tau] \in H H^{*}(B)$ and that $T_{X} \circ T_{X^{*}}([\zeta])=$ $[\zeta]$ for $[\zeta] \in H H^{*}(A)$.

For example, let $X={ }_{H}(R G)$. Then we have from [10, Proposition 4.8] that $\operatorname{Im}\left(\delta_{G}\right) \subseteq H H_{(R G)_{H}}^{*}(R G)$. Further, we see from [10, Example 2.6 and Definition 3.1]
that $\pi_{H(R G)}=1_{R H}$. Thus we see that $t_{H(R G)}: H H_{(R G)_{H}}^{*}(R G) \rightarrow H H_{H(R G)}^{*}(R G)$ is a surjective graded R-algebra homomorphism in the above commutative diagram for $\operatorname{res}_{G, H}$ and $t_{H}(R G)$.

Using Puig's pointed group theory, M. Linckelmann defined cohomology rings of blocks. We recall here some definitions and results on Puig's pointed group theory [15]. Let k be an algebraically closed field of prime characteristic p. For a p-subgroup P of G, let $\mathrm{Br}_{P}^{G}:(k G)^{P} \rightarrow k C_{G}(P)$ be the Brauer homomorphism of P, which is a surjective algera homomorphism. A point of P on $k G$ is a $\left((k G)^{P}\right)^{\times}$-conjugacy class γ of primitive idempotents in $(k G)^{P}$ and if $\operatorname{Br}_{P}^{G}(\gamma) \neq 0$, γ is called a local point of P on $k G$. A block of $k G$ is a primitive idempotent b in the center $Z(k G)$. A defect group D of the block b is a maximal p-subgroup of G such that $\operatorname{Br}_{D}^{G}(b) \neq 0$. For a defect group D of b, there is a primitive idempotent $i \in(k G b)^{D}$ such that $\operatorname{Br}_{D}^{G}(i) \neq 0$. So the point γ that contains i is a local point of D on $k G$ contained in the block b. The idempotent i is called a source idempotent of the block b and the pair (D, γ), which we denote by D_{γ}, is called a defect pointed group of the block b. Since $\operatorname{Br}_{D}^{G}(i)$ is a primitive idempotent in $k C_{G}(D)$, there is a unique block e_{D} of $k C_{G}(D)$ such that $\operatorname{Br}_{D}^{G}(i) e_{D}=\operatorname{Br}_{D}^{G}(i)$. The pair (D, e_{D}) is the maximal b-Brauer pair which corresponds to D_{γ}. In general, a Brauer pair of G is a pair (Q, f) where Q is a p-subgroup of G and f is a block of $k C_{G}(Q)$. For a Brauer pair (Q, f) and a maximal b-Brauer pair $\left(D, e_{D}\right)$ corresponding to D_{γ}, if Q is a subgroup of D and f satisfies $\operatorname{Br}_{Q}^{G}(\gamma) f=\operatorname{Br}_{Q}^{G}(\gamma)$, then $(Q, f) \leq\left(D, e_{D}\right)$. It is known that for any subgroup Q of D, there is a unique block e_{Q} such that $\left(Q, e_{Q}\right) \leq\left(D, e_{D}\right)$. For more details, see [16, Section 40].

Definition 2.2 (Linckelmann [10, Definition 5.1]). Let G be a finite group, b a block of $k G$ and D_{γ} a defect pointed group of b. The cohomology ring of the block b of $k G$ associated with D_{γ} is the subring $H^{*}\left(G, b, D_{\gamma}\right)$ of $H^{*}(D, k)$ which consists of all $[\zeta] \in H^{*}(D, k)$ satisfying $\operatorname{res}_{x^{-1} D, Q}{ }^{\circ} c_{x^{-1}}([\zeta])=\operatorname{res}_{D, Q}([\zeta])$ for any subgroup Q in D and for any $x \in G$ with ${ }^{x}\left(Q, e_{Q}\right)=\left({ }^{x} Q,{ }^{x} e_{Q}\right) \leq\left(D, e_{D}\right)$.

If $D_{\gamma}{ }^{\prime}$ is another defect pointed group of b, then there exists $g \in G$ such that $D_{\gamma}{ }^{\prime}={ }^{g} D_{\gamma}$ (see [16, Proposition 40.13]), and we see that the conjugation map c_{g} induces an isomorphism $H^{*}\left(G, b, D_{\gamma}\right) \cong H^{*}\left(G, b, D_{\gamma}{ }^{\prime}\right)$.

With the notation of Definition 2.2, let $i \in \gamma$. Consider $k G i$ as a $k G b-$ $k D$-bimodule and $i k G$ as a $k D-k G b$-bimodule. By [10, Theorem 5.6], $\pi_{k G i}$ and $\pi_{i k G}$ are invertible in $Z(k G b)$ and $Z(k D)$, respectively. Thus $T_{k G i}=\left(\pi_{k G i}\right)^{-1} t_{k G i}$: $H H_{i k G}^{*}(k D) \rightarrow H H_{k G i}^{*}(k G b)$ is a graded k-algebra isomorphism (notice that $(k G i)^{*} \cong$ $i k G$ as $k D-k G b$-bimodules). Furthermore from [10, Corollary 3.8 and Proposition 5.4], we have an injective graded k-algebra homomorphism $\delta_{D}: H^{*}\left(G, b, D_{\gamma}\right) \rightarrow$ $H H_{i k G}^{*}(k D)$, where δ_{D} is the restriction of the diagonal embedding $H^{*}(D, k) \rightarrow$ $H H^{*}(k D)$ stated before. Therefore, we obtain an injective graded k-algebra homomor-
phism

$$
T_{k G i} \circ \delta_{D}: H^{*}\left(G, b, D_{\gamma}\right) \rightarrow H H_{k G i}^{*}(k G b) .
$$

Let U be a finitely generated $k G$-module. In [4], J.F. Carlson introduces a notion of the variety of U as follows. There is a k-algebra homomorphism $\gamma_{U}: H^{*}(G, k) \rightarrow$ $\operatorname{Ext}_{k G}^{*}(U, U)$ mapping $[\zeta] \in H^{*}(G, k)$ to $[\zeta] \cup I \in \operatorname{Ext}_{k G}^{*}(U, U)$, where \cup is a cup product and I is the identity element of $\operatorname{Ext}_{k G}^{*}(U, U)$. Let $I_{G}^{*}(U)$ be the kernel of γ_{U}. Then $V_{G}(U)$, the variety of U, is the maximal ideal spectrum of the quotient $H^{*}(G, k) / I_{G}^{*}(U)$. On the other hand, $\mathscr{P}(k) \otimes_{k} U$ is a projective resolution of U, where $\mathscr{P}(k)$ is a projective resolution of the trivial $k G$-module k (see e.g. [11, 2.9]). So we see that γ_{U} is induced by the functor $-\otimes_{k} U$ through the isomorphisms $H^{n}(G, k) \cong$ $\operatorname{Hom}_{K(k G)}(\mathscr{P}(k), \mathscr{P}(k)[n])$ and $\operatorname{Ext}_{k G}^{n}(U, U) \cong \operatorname{Hom}_{K(k G)}\left(\mathscr{P}(k) \otimes_{k} U, \mathscr{P}(k) \otimes_{k} U[n]\right)$. Similarly, for any bounded complex U of $k G$-modules, the functor $-\otimes_{k} U$ induces a k-algebra homomorphism

$$
\gamma_{U}: H^{*}(G, k) \rightarrow \operatorname{Ext}_{k G}^{*}(U, U)
$$

We also write $I_{G}^{*}(U)$ for the kernel of γ_{U}, and $V_{G}(U)$ for the variety of U. As a remarkable fact in this direction, we have from [11, 2.9] that the above k-algebra homomorphism γ_{U} is equal to the composite of k-algebra homomorphisms

$$
H^{*}(G, k) \xrightarrow{\delta_{G}} H H^{*}(k G) \xrightarrow{\alpha_{U}} \operatorname{Ext}_{k G}^{*}(U, U) .
$$

For a bounded complex U of $k G b$-modules, M. Linckelmann [11] gives a notion of the variety of U associated with the block b.

Definition 2.3 (Linckelmann [11, Definition 4.1]). Let G be a finite group, b a block of $k G, D_{\gamma}$ a defect pointed group of b, and i a source idempotent in γ. For any bounded complex U of $k G b$-modules, denote by $I_{G, b, D_{\gamma}}^{*}(U)$ the kernel in $H^{*}\left(G, b, D_{\gamma}\right)$ of the composite of k-algebra homomorphisms

$$
H^{*}\left(G, b, D_{\gamma}\right) \xrightarrow{T_{k G i} \delta_{D}} H H^{*}(k G b) \xrightarrow{\alpha_{U}} \operatorname{Ext}_{k G b}^{*}(U, U)
$$

and let $V_{G, b}(U)$ be the maximal ideal spectrum of $H^{*}\left(G, b, D_{\gamma}\right) / I_{G, b, D_{\gamma}}^{*}(U)$. We also let $V_{G, b}$ be the maximal ideal spectrum of $H^{*}\left(G, b, D_{\gamma}\right)$.

For another defect pointed group $D_{\gamma}{ }^{\prime}$ of b, there exists $g \in G$ such that $c_{g}: H^{*}\left(G, b, D_{\gamma}\right) \cong H^{*}\left(G, b, D_{\gamma}\right)$, as stated above. So the isomorphism class of the variety $V_{G, b}(U)$ does not depend on the choice of D_{γ}.
M. Linckelmann shows the following connection between varieties associated with blocks and Carlson's module varieties. By the definition, it is clear that the restriction map $\operatorname{res}_{G, D}$ induces an algebra homomorphism $\rho_{b}: H^{*}(G, k) \rightarrow H^{*}\left(G, b, D_{\gamma}\right)$.

Let $\rho_{b}^{*}: V_{G, b} \rightarrow V_{G}(k)$ be the affine map defined by ρ_{b}, where $V_{G}(k)$ is the maximal ideal spectrum of $H^{*}(G, k)$.

Theorem 2.4 (Linckelmann [11, Corollary 4.4]). For any bounded complex U of $k G b$-modules, it holds that $I_{G}^{*}(U)=\rho_{b}^{-1}\left(I_{G, b, D_{\gamma}}^{*}(U)\right)$. Thus, $\rho_{b}^{*}: V_{G, b}(U) \rightarrow V_{G}(U)$ is a finite surjective map and the dimensions of $V_{G, b}(U)$ and $V_{G}(U)$ coincide. In particular, if b is the principal block of $k G$, then the above map is an isomorphism.

3. Proof of Theorem 1.1 and its applications

In this section we give a proof of Theorem 1.1. Further, applying this theorem we consider the question whether the varieties $V_{G, b}(U)$ are invariant under the block correspondence in Brauer's first main theorem (with the assumption that defect groups are abelian). Theorem 1.1 is based on the following theorem which is the reverse version of Linckelmann's theorem [11, Theorem 5.1].

Theorem 3.1. Let A, B be symmetric algebras over a commutative ring R, and let X be a bounded complex of $A-B$ bimodules whose components are projective as left and right modules. If $\pi_{X^{*}}$ is invertible in $Z(B)$, then for any bounded complex U of A-modules there is a commutative diagram of graded R-algebra homomorphisms

where the horizontal maps are induced by the functors $-\otimes_{A} U$ and $-\otimes_{B}\left(X^{*} \otimes_{A} U\right)$, respectively, and where the right vertical map is induced by the functor $X^{*} \otimes_{A}-$.

Theorem 3.1 implies the next proposition. With the notation in Section 2, let $X=k G i$ regarded as a $k G b-k D$-bimodule, and so $X^{*}=(k G i)^{*} \cong i k G$ as $k D-k G b$-bimodules. Further, for a bounded complex U of $k G b$-modules, let $\gamma_{i U}: H^{*}(D, k) \rightarrow \operatorname{Ext}_{k D}^{*}(i U, i U)$ be the k-algebra homomorphism induced by the functor $-\otimes_{k} i U$, where $i U=i k G \otimes_{k G b} U$ is considered as a complex of $k D$-modules.

Proposition 3.2. Let U be a bounded complex of $k G b$-modules. The following diagram of graded k-algebra homomorphisms is commutative.

where the right vertical map is the composite of the restriction homomorphism and the projection from $\operatorname{Ext}_{k D}^{*}(U, U)$ onto $\operatorname{Ext}_{k D}^{*}(i U, i U)$, and the left vertical map is the inclusion map.

Proof. From [10, Theorem 5.6], $\pi_{i k G}$ is invertible in $Z(k D)$. So by Theorem 3.1, we have that $\alpha_{i U} \circ T_{i k G}=\beta_{i k G, U} \circ \alpha_{U}$. Now, since $\pi_{k G i}$ is also invertible, $T_{k G i}$ and $T_{i k G}$ are mutually inverse k-algebra isomorphisms from [10, Theorem 3.6]. Thus it follows that $\alpha_{i U}=\beta_{i k G, U} \circ \alpha_{U} \circ T_{k G i}$. That is, we have the following commutative diagram of graded k-algebra homomorphisms:

From this diagram, we can form the commutative diagram

Now, it is clear that the functor $i k G \otimes_{k G b}-$ gives the algebra homomorphism $i \circ \operatorname{res}_{G, D}$ and so $\beta_{i k G, U}=i \circ \operatorname{res}_{G, D}$. Moreover, from [11, 2.9], the composite $\alpha_{i U} \circ \delta_{D}$ is equal to the algebra homomorphism $\gamma_{i U}$ given by the functor $-\otimes_{k} i U$. So the proposition follows.

The following lemma is a block variety version of [3, II, Proposition 5.7.5] on Carlson's varieties $V_{G}(U)$.

Lemma 3.3. Let U_{1} and U_{2} be bounded complexes of $k G b$-modules. Then we have that $I_{G, b, D_{\gamma}}^{*}\left(U_{1} \oplus U_{2}\right)=I_{G, b, D_{\gamma}}^{*}\left(U_{1}\right) \cap I_{G, b, D_{\gamma}}^{*}\left(U_{2}\right)$, and hence we have that $V_{G, b}\left(U_{1} \oplus U_{2}\right)=V_{G, b}\left(U_{1}\right) \cup V_{G, b}\left(U_{2}\right)$.

Proof. Notice that $\mathscr{P}_{k G b} \otimes_{k G b}\left(U_{1} \oplus U_{2}\right) \cong\left(\mathscr{P}_{k G b} \otimes_{k G b} U_{1}\right) \oplus\left(\mathscr{P}_{k G b} \otimes_{k G b} U_{2}\right)$. Under this isomorphism, we have the decomposition $\zeta \otimes \operatorname{Id}_{U_{1} \oplus U_{2}}=\left(\zeta \otimes \operatorname{Id}_{U_{1}}\right) \oplus\left(\zeta \otimes \operatorname{Id}_{U_{2}}\right)$ for a chain map $\zeta: \mathscr{P}_{k G b} \rightarrow \mathscr{P}_{k G b}[n]$. Thus for the projection

$$
\mu_{i}: \operatorname{Ext}_{k G b}^{*}\left(U_{1} \oplus U_{2}, U_{1} \oplus U_{2}\right) \longrightarrow \operatorname{Ext}_{k G b}^{*}\left(U_{i}, U_{i}\right)(i=1,2),
$$

it follows that $\mu_{i} \circ \alpha_{U_{1} \oplus U_{2}}=\alpha_{U_{i}}(i=1,2)$, respectively. Then these commutations show that $I_{G, b, D_{\gamma}}^{*}\left(U_{1} \oplus U_{2}\right) \subseteq I_{G, b, D_{\gamma}}^{*}\left(U_{1}\right) \cap I_{G, b, D_{\gamma}}^{*}\left(U_{2}\right)$. Moreover, if $\zeta \otimes \operatorname{Id}_{U_{i}}(i=1,2)$ is homotopic to 0 , respectively, then $\zeta \otimes \operatorname{Id}_{U_{1} \oplus U_{2}}$ is also homotopic to 0 . So the lemma follows.

The following lemma is well-known. We include here a proof for completeness.
Lemma 3.4. Let U be a bounded complex of $k G b$-modules, D_{γ} a defect pointed group of b and let $i \in \gamma$. Then U is isomorphic to a direct summand of $k G i \otimes_{k D} i U$.

Proof. Since $\operatorname{Tr}_{D}^{G}(i)=\Sigma_{x \in[G / D]} x i x^{-1}$ is invertible in $Z(k G b)$ (see [10, Theorem 5.6]), we have $\beta=\left(\operatorname{Tr}_{D}^{G}(i)\right)^{-1} \in Z(k G b)$. Now, consider the chain map $t: U \rightarrow$ $k G i \otimes_{k D} i U$ consisting of $k G$-homomorphisms $t_{n}: U_{n} \rightarrow k G i \otimes_{k D} i U_{n}$ defined by

$$
u \longmapsto \sum_{x \in[G / D]} x i \otimes i \beta x^{-1} u \quad \text { for } u \in U_{n}
$$

where U_{n} is the degree n component of U. On the other hand, there exists a chain map $s: k G i \otimes_{k D} i U \rightarrow U$ consisting of natural homomorphisms $s_{n}: k G i \otimes_{k D} i U_{n} \rightarrow U_{n}$ induced by the action of $k G$ on U_{n}. Then, since $\operatorname{Tr}_{D}^{G}(i \beta)=\operatorname{Tr}_{D}^{G}(i) \beta=b$, we have $s_{n} \circ t_{n}(u)=u$ for $u \in U_{n}$. So the lemma follows.

Proof of Theorem 1.1. From [11, Theorem 5.1], there exists a commutative diagram

Now, from Lemma 3.4, we have the canonical projection $\mu: \operatorname{Ext}_{k G b}^{*}\left(k G i \otimes_{k D} i U\right.$, $\left.k G i \otimes_{k D} i U\right) \longrightarrow \operatorname{Ext}_{k G b}^{*}(U, U)$. Then from Lemma 3.3 it follows that $\mu \circ \alpha_{k G i \otimes_{k D} i U}=$
α_{U}. Thus the above diagram induces the following commutative diagram:

We note that $\alpha_{i U} \circ \delta_{D}=\gamma_{i U}$. Hence, we have that $H^{*}\left(G, b, D_{\gamma}\right) \cap I_{D}^{*}(i U) \subseteq I_{G, b, D_{\gamma}}^{*}(U)$. Conversely, by Proposition 3.2 we have that $I_{G, b, D_{\gamma}}^{*}(U) \subseteq H^{*}\left(G, b, D_{\gamma}\right) \cap I_{D}^{*}(i U)$. Hence we have $I_{G, b, D_{\gamma}}^{*}(U)=H^{*}\left(G, b, D_{\gamma}\right) \cap I_{D}^{*}(i U)$. In particular, if b is a nilpotent block of $k G$, then $H^{*}\left(G, b, D_{\gamma}\right)=H^{*}(D, k)$ (see [11, 3.6]) and so we have that $I_{G, b, D_{\gamma}}^{*}(U)=I_{D}^{*}(i U)$ and $V_{G, b}(U)=V_{D}(i U)$. This completes the proof.

We came to know during the circulation of this paper without the last section that essentially the same fact as Theorem 1.1 was shown in M. Linckelmann [13] and Corollary 3.5 below also was obtained in it.

As is well known, the nilradical $\sqrt{0}$ of $H^{*}(G, k)$ is the intersection of all maximal ideals of $H^{*}(G, k)$ (see [14]). Recall that $H^{*}(G, k) / \sqrt{0}$ is a finitely generated commutative k-algebra and $H^{*}(D, k)$ is finitely generated as a module over $H^{*}(G, k)$ (via the restriction map) (see [3, II] and [5]). Thus $H^{*}(D, k)$ is also finitely generated (that is, Noetherian) as a module over $H^{*}\left(G, b, D_{\gamma}\right)$ and so, by [3, II, Section 5.4] and [14, Section 9, Lemma 2], we have a finite surjective affine map $\iota_{D, b}: V_{D} \rightarrow V_{G, b}$ induced by the inclusion map $\iota: H^{*}\left(G, b, D_{\gamma}\right) \rightarrow H^{*}(D, k)$, where V_{D} is the maximal ideal spectrum of $H^{*}(D, k)$ and $V_{G, b}$ is the maximal ideal spectrum of $H^{*}\left(G, b, D_{\gamma}\right)$. Then, Proposition 3.2 shows that for any bounded complex U of $k G b$-modules, we can define the finite affine map

$$
\iota_{D, b}: V_{D}(i U) \longrightarrow V_{G, b}(U) .
$$

Proof of Corollary 1.2. By Theorem 1.1, it is clear that $\iota_{D, b}$ is a surjective map. Further, Theorem 1.1 shows also that the Krull dimensions of $H^{*}(D, k) / I_{D}^{*}(i U)$ and $H^{*}\left(G, b, D_{\gamma}\right) / I_{G, b, D_{\gamma}}^{*}(U)$ coincide. So the dimensions of $V_{G}(i U)$ and $V_{G, b}(U)$ coincide.

With the notation of Theorem 1.1, let U_{0} be a bounded complex of $k D$-modules such that $U_{0} \mid i U$ and $U \mid k G i \otimes_{k D} U_{0}$. Then, from the proof of Theorem 1.1 we have also

$$
I_{G, b, D_{\gamma}}^{*}(U)=H^{*}\left(G, b, D_{\gamma}\right) \cap I_{D}^{*}\left(U_{0}\right) .
$$

Hence $\iota_{D, b}: V_{D}\left(U_{0}\right) \rightarrow V_{G, b}(U)$ is also a finite surjective map.

Corollary 3.5. Let U be an indecomposable $k G b$-module with vertex D. Suppose that the dimension of a source of U is not a multiple of p. Then we have that $V_{G, b}(U)=V_{G, b}$.

Proof. We see from Lemma 3.4 that $U \mid k G i \otimes_{k D} i U$. Thus there exists an indecomposable $k D$-module U_{0} such that $U_{0} \mid i U$ and $U \mid k G i \otimes_{k D} U_{0}$, so that U_{0} is a source of U. By the assumption, we see that $\sqrt{I_{D}^{*}\left(U_{0}\right)}=\sqrt{0}$ in $H^{*}(D, k)$ from [3, II, Corollary 5.8.5]. Further, by the above it follows that $\sqrt{I_{G, b, D_{\gamma}}^{*}(U)}=$ $H^{*}\left(G, b, D_{\gamma}\right) \cap \sqrt{I_{D}^{*}\left(U_{0}\right)}$. Thus we have that $\sqrt{I_{G, b, D_{\gamma}}^{*}(U)}=\sqrt{0}$ in $H^{*}\left(G, b, D_{\gamma}\right)$, that is, $V_{G, b}(U)=V_{G, b}$.

As is well known, $b_{0}=\operatorname{Br}_{D}^{G}(b)$ is a block of $k N_{G}(D)$ with the defect group D and is called the Brauer correspondent of b. Let $D_{\gamma_{0}}$ be a defect pointed group of b_{0}, and let $i_{0} \in \gamma_{0}$. Since $\operatorname{Br}_{D}^{N_{G}(D)}\left(i_{0}\right)$ is primitive in $k C_{G}(D)$, there is a primitive idempotent $i \in(k G)^{D}$ such that $i=i_{0} i=i i_{0}$ and $\operatorname{Br}_{D}^{G}(i)=\operatorname{Br}_{D}^{N_{G}(D)}\left(i_{0}\right)$. Then i belongs to the block b. Indeed, $\operatorname{Br}_{D}^{G}(i b)=\operatorname{Br}_{D}^{G}(i) \operatorname{Br}_{D}^{G}(b)=\operatorname{Br}_{D}^{N_{G}(D)}\left(i_{0}\right) \operatorname{Br}_{D}^{N_{G}(D)}\left(b_{0}\right)=\operatorname{Br}_{D}^{N_{G}(D)}\left(i_{0}\right) \neq 0$. Let γ be the $\left((k G)^{D}\right)^{\times}$-conjugacy class of i. Then we obtain a defect pointed group D_{γ} of b. Let $\left(D, e_{D}\right)$ be the maximal b-Brauer pair corresponding to D_{γ}. Note that (D, e_{D}) is also the maximal b_{0}-Brauer pair corresponding to $D_{\gamma_{0}}$.

Corollary 3.6. With the above notation, let b_{0} be the Brauer correspondent of b and let U be a bounded complex of $k G b$-modules. Suppose that D is abelian. Then we have $I_{N_{G}(D), b_{0}, D_{\gamma_{0}}}^{*}\left(b_{0} U\right) \subseteq I_{G, b, D_{\gamma}}^{*}(U)$, and hence we have that $V_{G, b}(U) \subseteq$ $V_{N_{G}(D), b_{0}}\left(b_{0} U\right)$.

Proof. Theorem 1.1 shows that $I_{G, b, D_{\gamma}}^{*}(U)=H^{*}\left(G, b, D_{\gamma}\right) \cap I_{D}^{*}(i U)$ and $I_{N_{G}(D), b_{0}, D_{\gamma_{0}}}^{*}\left(b_{0} U\right)=H^{*}\left(N_{G}(D), b_{0}, D_{\gamma_{0}}\right) \cap I_{D}^{*}\left(i_{0} U\right)$. As in [10, 5.2.3], if D is abelian, then we have that $H^{*}\left(G, b, D_{\gamma}\right)=H^{*}(D, k)^{N_{G}\left(D, e_{D}\right) / C_{G}(D)}$ and similarly $H^{*}\left(N_{G}(D), b_{0}, D_{\gamma_{0}}\right)=H^{*}(D, k)^{N_{G}\left(D, e_{D}\right) / C_{G}(D)}$. So $H^{*}\left(G, b, D_{\gamma}\right)=H^{*}\left(N_{G}(D), b_{0}, D_{\gamma_{0}}\right)$. Moreover, from [3, II, Proposition 5.7.5] it follows that $I_{D}^{*}\left(i_{0} U\right) \subseteq I_{D}^{*}(i U)$ since $i_{0} U=i U \oplus\left(i_{0}-i\right) U$. Thus we have that $I_{N_{G}(D), b_{0}, D_{\gamma_{0}}}^{*}\left(b_{0} U\right) \subseteq I_{G, b, D_{\gamma}}^{*}(U)$ and so $V_{G, b}(U) \subseteq V_{N_{G}(D), b_{0}}\left(b_{0} U\right)$.

For Carlson's module varieties, the following is known. Let P be an abelian Sylow p-subgroup of G, so that $N_{G}(P)$ controls the p-fusion in G. Let U be an indecomposable $k G$-module with vertex P and let W be the Green correspondent of U with respect to $\left(G, P, N_{G}(P)\right)$. Then it follows that $V_{G}(U) \cong V_{N_{G}(P)}(W)$ (see [2, Theorem 2.26.9] and [3, I, Proposition 3.8.4]). Therefore, in this case, we see from Theorem 2.4 that if b is the principal block of $k G$, then $V_{G, b}(U) \cong V_{N_{G}(P), b_{0}}(W)$ for any indecomposable $k G b$-module U with vertex P and the Green correspondent W of U.

Extending this fact to any block b of $k G$, we obtain Theorem 1.3 as follows from Lemma 3.7 below. Note that D is not necessarily abelian in Lemma 3.7.

With the above notation, let $T=T\left(e_{D}\right)$ be the inertial group of e_{D} in $N_{G}(D)$, that is, $T=\left\{x \in N_{G}(D) ;{ }^{x} e_{D}=e_{D}\right\}$. Notice that $T=N_{G}\left(D, e_{D}\right)=N_{G}\left(D_{\gamma}\right)$ (see [16, Proposition 40.13]), and e_{D} is also a block of $k T$. Using the Clifford theory of blocks, we have the following.

Lemma 3.7. Let U be an indecomposable $k G b$-module with vertex D. Let W be the Green correspondent of U with respect to $\left(G, D, N_{G}(D)\right)$. Let $i \in \gamma$ and $i_{0} \in \gamma_{0}$.
(i) We can choose a source U_{0} of U such that $U_{0} \mid i U$ and $U \mid k G i \otimes_{k D} U_{0}$, and a source W_{0} of W such that $W_{0} \mid i_{0} W$ and $W \mid k N_{G}(D) i_{0} \otimes_{k D} W_{0}$.
(ii) Let U_{0} and W_{0} be the sources satisfying the conditions of (i). Then there exists an element $t \in T$ such that $t U_{0} \cong W_{0}$ as $k D$-modules.

Proof. First of all, we note that if i and i^{\prime} lie in γ, then $i U \cong i^{\prime} U$ and $k G i \cong$ $k G i^{\prime}$ as $k D$-modules, and likewise for $i_{0} \in \gamma_{0}$. Indeed, let $i^{\prime}=z_{i}$ for an element z in $\left((k G)^{D}\right)^{\times}$. Then, mapping $a \in i U$ to $z a \in i^{\prime} U$, we have the isomorphism $i U \cong i^{\prime} U$ as $k D$-modules. By applying this argument, we obtain all other isomorphisms. Thus, the choices of U_{0} and W_{0} in (i) depend only on the points γ and γ_{0}. As we have shown in Corollary 3.5, (i) now follows from Lemma 3.4.

Next we prove (ii). Suppose that $i \in \gamma$ satisfies $i=i_{0} i=i i_{0}$. Now, since W is the Green correspondent of U, we have that $b_{0} U \cong W \oplus W^{\prime}$ and so $i_{0} U \cong i_{0} W \oplus i_{0} W^{\prime}$ where any indecomposable direct summand of W^{\prime} (and so $i_{0} W^{\prime}$) does not have vertex D. Here, from $i U \mid i_{0} U$, we see $U_{0} \mid i_{0} U$. Then since U_{0} has vertex D, we see $U_{0} \mid i_{0} W$. Further, we can choose $i_{0} \in \gamma_{0}$ such that $e_{D} i_{0}=i_{0} e_{D}=i_{0}$. Indeed, let i_{0}^{\prime} be a primitive idempotent in $\left(k N_{G}(D)\right)^{D}$ such that $e_{D} i_{0}^{\prime}=i_{0}^{\prime} e_{D}=i_{0}^{\prime}$ and $\operatorname{Br}_{D}^{N_{G}(D)}\left(i_{0}^{\prime}\right) \neq 0$. Let γ_{0}^{\prime} be a point of D on $k N_{G}(D)$ containing i_{0}^{\prime}. Then from $\operatorname{Br}_{D}^{N_{G}(D)}\left(i_{0}^{\prime}\right) e_{D}=\operatorname{Br}_{D}^{N_{G}(D)}\left(i_{0}^{\prime}\right)$, $D_{\gamma_{0}^{\prime}}$ is the defect pointed group of b_{0} corresponding to (D, e_{D}), because the relation $\operatorname{Br}_{D}^{N_{G}(D)}\left(i_{0}^{\prime}\right) e_{D}=\operatorname{Br}_{D}^{N_{G}(D)}\left(i_{0}^{\prime}\right)$ defines a bijection between maximal b_{0}-Brauer pairs and defect pointed groups of b_{0} (see [16, Proposition 40.13]). Thus we see that $\gamma_{0}^{\prime}=\gamma_{0}$. By this choice of $i_{0} \in \gamma_{0}$, we have that $i_{0} W \mid e_{D} W$. So it holds that $U_{0} \mid e_{D} W$ and also $W_{0} \mid e_{D} W$. Let $e_{D}=e_{T}$ and $N_{G}(D)=N$. Using the Clifford theory, we show that the $k T$-module $e_{T} W$ is indecomposable and has vertex D. Since $b_{0}=\sum_{x \in N / T}{ }^{x} e_{T}$ and ${ }^{x} e_{T}{ }^{y} e_{T}=0$ for $x \not \equiv y(\bmod T)$, we have that $W=b_{0} W=k N \otimes_{k T} e_{T} W$ and so $e_{T} W$ is indecomposable and vertices of $e_{T} W$ contain D. On the other hand, since $W \mid k N i_{0} \otimes_{k D} W_{0}$ and $e_{T} i_{0}=i_{0}$, we see that $W \mid k N e_{T} \otimes_{k D} W_{0}$ so that $W=b_{0} W \mid b_{0} k N e_{T} \otimes_{k D} W_{0}$. Here since $b_{0} k N=\bigoplus_{(x, y) \in[N \times N / T \times T]} x\left(k T e_{T}\right) y^{-1}$, we see that $e_{T}\left(b_{0} k N\right) e_{T}=k T e_{T}$. Thus $e_{T} W \mid e_{T}\left(b_{0} k N\right) e_{T} \otimes_{k D} W_{0}=k T e_{T} \otimes_{k D} W_{0}$ and so $e_{T} W \mid k T \otimes_{k D} W_{0}$. Therefore we see that $e_{T} W$ has vertex D. Further, from $W_{0} \mid e_{T} W$, we see that W_{0} is a source of $e_{T} W$. Now, we also have $U_{0} \mid e_{T} W$ and so we see that there is an element $t \in T$ such that $t U_{0} \cong W_{0}$ as $k D$-modules.

Proof of Theorem 1.3. Let U_{0} and W_{0} be the sources chosen in Lemma 3.7. Then, as noted preceding to Corollary 3.5 , we see that $I_{G, b, D_{\gamma}}^{*}(U)=H^{*}\left(G, b, D_{\gamma}\right) \cap$ $I_{D}^{*}\left(U_{0}\right)$ and $I_{N_{G}(D), b_{0}, D_{\gamma_{0}}}(W)^{*}=H^{*}\left(N_{G}(D), b_{0}, D_{\gamma_{0}}\right) \cap I_{D}^{*}\left(W_{0}\right)$. Now, let $t \in T$ be the element obtained in Lemma 3.7 and let $c_{t}: H^{*}(D, k) \rightarrow H^{*}(D, k)$ be the conjugation map given by t. Then, since $T=N_{G}\left(D, e_{D}\right)$, we see from Definition 2.2 that c_{t} is the identity map on $H^{*}\left(G, b, D_{\gamma}\right)$. Further it is easy to see that $c_{t} \circ \gamma_{U_{0}}=\gamma_{t U_{0}} \circ c_{t}$ (for $\gamma_{U_{0}}$ and $\gamma_{t U_{0}}$ see Section 2) and so we have that $c_{t}\left(I_{D}^{*}\left(U_{0}\right)\right)=I_{D}^{*}\left(t U_{0}\right)=I_{D}^{*}\left(W_{0}\right)$. Here, since D is abelian, we have that $H^{*}\left(G, b, D_{\gamma}\right)=H^{*}\left(N_{G}(D), b_{0}, D_{\gamma_{0}}\right)$ (see the proof of Corollary 3.6). Therefore it follows that $I_{G, b, D_{\gamma}}^{*}(U)=c_{t}\left(I_{G, b, D_{\gamma}}^{*}(U)\right)=$ $c_{t}\left(H^{*}\left(G, b, D_{\gamma}\right) \cap I_{D}^{*}\left(U_{0}\right)\right)=H^{*}\left(G, b, D_{\gamma}\right) \cap I_{D}^{*}\left(W_{0}\right)=H^{*}\left(N_{G}(D), b_{0}, D_{\gamma_{0}}\right) \cap I_{D}^{*}\left(W_{0}\right)=$ $I_{N_{G}(D), b_{0}, D_{\gamma_{0}}}(W)$, that is, we have that $V_{G, b}(U)=V_{N_{G}(D), b_{0}}(W)$.

4. Module varieties and quotient groups

Let G be a finite group and let Z be a central p-subgroup of G. We denote G / Z by \bar{G} and let $f: k G \rightarrow k \bar{G}$ be the natural k-algebra homomorphism. As is well known, f gives a one to one correspondence from all blocks of $k G$ onto all blocks of $k \bar{G}$. In this section we consider relations of the varieties under this correspondence. For a subgroup H of G, its image in \bar{G} is denoted by \bar{H}. In general, the mark ${ }^{-}$will be attached to the quantities associated with \bar{G} and $k \bar{G}$. Let P be a p-subgroup of G. Consider k-algebra homomorphisms $f^{P}:(k G)^{P} \rightarrow(k \bar{G})^{\bar{P}}$ and composite $f_{C_{G}(P)}: k C_{G}(P) \rightarrow k \overline{C_{G}(P)} \rightarrow k C_{\bar{G}}(\bar{P})$ induced by f, where $(k G)^{P}$ is the subalgebra of $k G$ consisting of all P-fixed elements and $(k \bar{G})^{\bar{P}}$ likewise. Then $\operatorname{Br}_{\bar{P}}^{\bar{G}} \circ f^{P}=f_{C_{G}(P)} \circ \operatorname{Br}_{P}^{G}$ as is well known. Now, since Z is a central p-subgroup we see that $\overline{C_{G}(P)}$ is a normal subgroup of $C_{\bar{G}}(\bar{P})$ and $C_{\bar{G}}(\bar{P}) / \overline{C_{G}(P)}$ is a p-group. Indeed, for $x \in G$, let $x=x_{p} x_{p^{\prime}}$ (where x_{p} is the p-component and $x_{p^{\prime}}$ is the p-regular component of x) and if $\bar{x} \in C_{\bar{G}}(\bar{P})$, then we see $x_{p^{\prime}} \in C_{G}(P)$ so that $C_{\bar{G}}(\bar{P}) / \overline{C_{G}(P)}$ is a p-group.

Lemma 4.1. With the notation above, if i is a primitive idempotent in $(k G)^{P}$, then $f^{P}(i)$ remains a primitive idempotent in $(k \bar{G})^{\bar{P}}$.

Proof. We follow the terminology and arguments in Külshammer-Puig [9]. Let $\tilde{f^{P}}$ and $\widetilde{f_{C_{G}(P)}}$ be the exomorphisms determined by f^{P} and $f_{C_{G}(P)}$, respectively. From [9, Theorem 3.16], it follows that $\tilde{f^{P}}$ is a strict semicovering for any p-subgroup P of G if and only if $\widetilde{f_{C_{G}(P)}}$ is a strict semicovering for any p-subgroup P of G. Now, from [9, Example 3.9] we see that $\widetilde{f_{C_{G}(P)}}$ is a strict semicovering for any P, since $C_{\bar{G}}(\bar{P}) / \overline{C_{G}(P)}$ is a p-group. From the fact that $\tilde{f}{ }^{P}$ is a strict semicovering, we see that $f^{P}(i) \neq 0$ and that if n and m are the number of primitive idempotents decomposing unity elements of $(k G)^{P}$ and $(k \bar{G})^{\bar{P}}$, respectively, then $n=m$. So $f^{P}(i)$ is primitive.

Let b be a block of $k G, D_{\gamma}$ a defect pointed group of b, and let $i \in \gamma$. We set $f(b)=\bar{b}, D / Z=\bar{D}$ and $f^{D}(i)=\bar{i}$. Then since Z is a central p-subgroup of G, we see that \bar{b} is a block of $k \bar{G}$ and \bar{D} is a defect group of \bar{b}. Further, \bar{i} is primitive by Lemma 4.1. Also, since $k \overline{C_{G}(D)}=k\left(C_{G}(D) / Z\right) \cong k C_{G}(D) / J(k Z) k C_{G}(D)$ (where $J(k Z)$ is the radical of $k Z$), we see that $\operatorname{Br}_{\bar{D}}^{\bar{G}} \circ f^{D}(i)=f_{C_{G}(D)} \circ \operatorname{Br}_{D}^{G}(i) \neq 0$ and so \bar{i} is local. Therefore, let $\bar{\gamma}$ be the $\left((k \bar{G})^{\bar{D}}\right)^{\times}$-conjugacy class of \bar{i}, then $\bar{D}_{\bar{\gamma}}$ is a defect pointed group of \bar{b}. Recall that $H^{*}\left(G, b, D_{\gamma}\right)$ consists of all $[\zeta] \in H^{*}(D, k)$ satisfying $\operatorname{res}_{x^{-1} D, Q} \circ c_{x^{-1}}([\zeta])=\operatorname{res}_{D, Q}([\zeta])$ for any subgroup Q of D and for any $x \in G$ with ${ }^{x}\left(Q, e_{Q}\right) \leq\left(D, e_{D}\right)$.

Lemma 4.2. Let Z be a central p-subgroup of G. In the definition of $H^{*}\left(G, b, D_{\gamma}\right)$, we can assume that Q contains Z.

Proof. Let $\left(Q, e_{Q}\right)$ be a b-Brauer pair such that $\left(Q, e_{Q}\right) \leq\left(D, e_{D}\right)$. Since Z is a central p-subgroup, we have that $\mathrm{Br}_{Q Z}^{G}=\mathrm{Br}_{Q}^{G}$. Thus, $\mathrm{Br}_{Q Z}^{G}(i) e_{Q}=\mathrm{Br}_{Q}^{G}(i) e_{Q}=$ $\operatorname{Br}_{Q}^{G}(i)=\operatorname{Br}_{Q Z}^{G}(i)$, and so $e_{Q Z}=e_{Q}$ and $\left(Q Z, e_{Q}\right) \leq\left(D, e_{D}\right)$. Also, for an element $x \in G$, it is clear that ${ }^{x}\left(Q, e_{Q}\right) \leq\left(D, e_{D}\right)$ if and only if ${ }^{x}\left(Q Z, e_{Q}\right) \leq\left(D, e_{D}\right)$. Further, if $\operatorname{res}_{x^{-1} D, Q Z} \circ c_{x^{-1}}([\zeta])=\operatorname{res}_{D, Q Z}([\zeta])$, then we have that $\operatorname{res}_{x^{-1} D, Q} \circ c_{x^{-1}}([\zeta])=$ $\operatorname{res}_{D, Q}([\zeta])$. So we can replace Q by $Q Z$ in the definition.

Proposition 4.3. With the notation above, let $[\bar{\zeta}]$ be an element of $H^{*}\left(\bar{G}, \bar{b}, \bar{D}_{\bar{\gamma}}\right)$. Then $\inf _{\bar{D}, D}([\bar{\zeta}])$ belongs to $H^{*}\left(G, b, D_{\gamma}\right)$.

Proof. Let $\left(Q, e_{Q}\right)$ be a b-Brauer pair such that $\left(Q, e_{Q}\right) \leq\left(D, e_{D}\right)$ and that Q contains Z. For the block e_{Q}, since Z is a central p-subgroup of $C_{G}(Q), \overline{e_{Q}}$ is the block of $k \overline{C_{G}(Q)}$. Further, since $C_{\bar{G}}(\bar{Q}) / \overline{C_{G}(Q)}$ is a p-group, we have a unique block $e_{\bar{Q}}$ of $k C_{\bar{G}}(\bar{Q})$ which covers $\overline{e_{Q}}$. Then, since $\left(Q, e_{Q}\right) \leq\left(D, e_{D}\right)$, we have $\left(\bar{Q}, e_{\bar{Q}}\right) \leq$ ($\bar{D}, e_{\bar{D}}$). Note that ($\bar{D}, e_{\bar{D}}$) is the maximal \bar{b}-Brauer pair corresponding to $\bar{D}_{\bar{\gamma}}$. Indeed, $e_{\bar{Q}} \overline{e_{Q}}=\overline{e_{Q}}$ and so it holds that $\operatorname{Br}_{\bar{Q}}^{\bar{G}}(\bar{i}) e_{\bar{Q}}=\overline{\operatorname{Br}_{Q}^{G}(i)} \overline{e_{Q}}=\overline{\operatorname{Br}_{Q}^{G}(i)}=\operatorname{Br}_{\bar{Q}}^{\bar{G}}(\bar{i})$. Also, we see that if ${ }^{x}\left(Q, e_{Q}\right) \leq\left(D, e_{D}\right)$ for $x \in G$, then ${ }^{\bar{x}}\left(\bar{Q}, e_{\bar{Q}}\right) \leq\left(\bar{D}, e_{\bar{D}}\right)$. Thus, for an element $[\bar{\zeta}] \in H^{*}\left(\bar{G}, \bar{b}, \bar{D}_{\bar{\gamma}}\right)$, it follows that

$$
\begin{aligned}
& \operatorname{res}_{x^{-1} D, Q} \circ c_{x^{-1}}\left(\inf _{\bar{D}, D}([\bar{\zeta}])\right)=\operatorname{res}_{x^{-1} D, Q} \circ \inf _{x^{-1}} \bar{D}^{x^{-1} D}{ }^{\circ c_{\bar{x}^{-1}}}([\bar{\zeta}]) \\
&=\inf _{\bar{Q}, Q}\left(\operatorname{res}_{\bar{x}^{-1}} \bar{D}, \bar{Q}\right. \\
&\left.\circ c_{\bar{x}^{-1}}([\bar{\zeta}])\right) \\
&=\inf _{\bar{Q}, Q}\left(\operatorname{res}_{\bar{D}, \bar{Q}}([\bar{\zeta}])\right) \\
&=\operatorname{res}_{D, Q}\left(\inf _{\bar{D}, D}([\bar{\zeta}])\right) .
\end{aligned}
$$

So we conclude that $\inf _{\bar{D}, D}([\bar{\zeta}]) \in H^{*}\left(G, b, D_{\gamma}\right)$.
From the above proposition, we can define an inflation map $\inf _{\bar{b}, b}$: $H^{*}\left(\bar{G}, \bar{b}, \bar{D}_{\bar{\gamma}}\right) \rightarrow H^{*}\left(G, b, D_{\gamma}\right)$. Then, since $H^{*}\left(G, b, D_{\gamma}\right) / \sqrt{0}$ is a finitely gen-
erated commutative k-algebra (see [11, Theorem 4.2]), the inflation $\inf _{\bar{b}, b}$ induces an affine map $\inf _{\bar{b}, b}^{*}: V_{G, b} \rightarrow V_{\bar{G}, \bar{b}}$. Further, for any bounded complex U of $k \bar{G} \bar{b}$-modules, which may also be considered as a complex of $k G b$-modules through $k G b \rightarrow k \bar{G} \bar{b}$, we have Theorem 1.4.

Proof of Theorem 1.4. For the convenience of the proof, when we consider U as a complex of $k \bar{G} \bar{b}$-modules, we denote it by \bar{U}. Then Theorem 1.1 shows that $I_{\bar{G}, \bar{b}, \bar{D}_{\bar{\gamma}}}^{*}(\bar{U})=H^{*}\left(\bar{G}, \bar{b}, \bar{D}_{\bar{\gamma}}\right) \cap I_{\bar{D}}^{*}(\bar{i} \bar{U})$ and that $I_{G, b, D_{\gamma}}^{*}(U)=H^{*}\left(G, b, D_{\gamma}\right) \cap I_{D}^{*}(i U)$. Note that for the chain maps ζ and τ representing [ζ] $\in \operatorname{Ext}_{k \bar{D}}^{n}(\bar{i} \bar{U}, \bar{i} \bar{U})$ and $[\tau] \in$ $\operatorname{Ext}_{k D}^{n}(i U, i U), \inf _{\bar{D}, D}([\zeta])=[\tau]$ if and only if the following diagram is homotopy commutative:

where the left vertical map is a chain map lifting the identity map $i U \rightarrow \bar{i} \bar{U}$ and the right vertical map is its shift. It is easy to see that $\inf _{\bar{D}, D} \circ \gamma_{\bar{i} \bar{U}}=\gamma_{i U} \circ \inf _{\bar{D}, D}$, so that we have $\inf _{\bar{D}, D}\left(I_{\bar{D}}^{*}(\bar{i} \bar{U})\right) \subseteq I_{D}^{*}(i U)$ and so $\inf _{\bar{b}, b}\left(I_{\bar{G}, \bar{b}, \bar{D}_{\bar{\gamma}}}^{*}(\bar{U})\right) \subseteq I_{G, b, D_{\gamma}}^{*}(U)$. Therefore we can define an affine map $\inf _{\bar{b}, b}^{*}: V_{G, b}(U) \rightarrow V_{\bar{G}, \bar{b}}(\bar{U})$.

5. Inverse images

Under the assumption that the defect groups are abelian, we consider the inverse images of the affine maps given in Corollary 1.2 and Theorem 1.4. Our consideration is based on Linckelmann's following stratification theorem for block varieties of modules [13]. Let b be a block of $k G$ and D_{γ} a defect pointed group of b. For any subgroup Q of D, the composite graded algebra homomorphism r_{Q} : $H^{*}\left(G, b, D_{\gamma}\right) \xrightarrow{\iota} H^{*}(D, k) \xrightarrow{\text { res }_{D, Q}} H^{*}(Q, k)$ induces a finite affine map of varieties

$$
r_{Q}^{*}: V_{Q} \rightarrow V_{G, b},
$$

where ι is the inclusion and $\operatorname{res}_{D, Q}$ is the restriction map. In particular, $r_{D}^{*}: V_{D} \rightarrow$ $V_{G, b}$ is finite surjective (this map is denoted by $\iota_{D, b}$ in the previous sections). Let U be a finitely generated $k G b$-module and let $i \in \gamma$. Following [13], we now define the following subvarieties of V_{Q} and $V_{G, b}$:

$$
\begin{array}{ll}
V_{Q}^{+}=V_{Q}-\cup_{R<Q}\left(\operatorname{res}_{Q, R}\right)^{*} V_{R}, & V_{Q}^{+}(i U)=V_{Q}(i U) \cap V_{Q}^{+} \\
V_{G, Q}=r_{Q}^{*} V_{Q}, & V_{G, Q}^{+}=r_{Q}^{*} V_{Q}^{+} \\
V_{G, Q}(U)=r_{Q}^{*} V_{Q}(i U), & V_{G, Q}^{+}(U)=r_{Q}^{*} V_{Q}^{+}(i U)
\end{array}
$$

Theorem 5.1 (Linckelmann [13, Theorem 4.2 and Proposition 4.3]). Let U be a finitely generated $k G b$-module.
(i) The variety $V_{G, b}(U)$ is the disjoint union of locally closed subvarieties $V_{G, E}^{+}(U)$, where E runs over the set of subgroups of D such that $\left(E, e_{E}\right)$ runs over the set of representatives of the G-conjugacy classes of those b-Brauer pairs contained in $\left(D, e_{D}\right)$ for which E is elementary abelian and $C_{D}(E)$ is a defect group of the block e_{E}.
(ii) Let E be an elementary abelian subgroup of D such that $C_{D}(E)$ is a defect group of e_{E}. The group $W(E)=N_{G}\left(E, e_{E}\right) / C_{G}(E)$ acts on the variety $V_{E}^{+}(i U)$, and r_{E}^{*} induces an inseparable isogeny $V_{E}^{+}(i U) / W(E) \rightarrow V_{G, E}^{+}(U)$.
(iii) Suppose that U is indecomposable with D as a vertex and a source of dimension prime to p. Then, for any subgroup Q of D we have $V_{Q}(i U)=V_{Q}$ and $V_{Q}^{+}(i U)=V_{Q}^{+}$. Further, for any subgroup Q of D we have $V_{G, Q}(U)=V_{G, Q}$ and $V_{G, Q}^{+}(U)=V_{G, Q}^{+}$.

It is known that a simple $k G$-module U in b of height 0 satisfies the condition in (iii) (see [7, Corollary 4.6]). So (i) and (ii) give a stratification of $V_{G, b}$ also. Using the above theorem, we show the following which is a block variety version of Avrunin and Scott [1, Theorem 3.1].

Proposition 5.2. Suppose that D is abelian. Let Q be a subgroup of D and let U be a finitely generated $k G b$-module. Then we have that

$$
V_{Q}(i U)=\left(r_{Q}^{*}\right)^{-1} V_{G, b}(U) .
$$

Proof. First we show two facts obtained from the assumption that D is abelian. Let $\left(R, e_{R}\right)$ be a b-Brauer pair contained in $\left(D, e_{D}\right)$. Then e_{D} and e_{R} are Brauer correspondents of b, and further e_{D} is also a Brauer correspondent of e_{R}. Thus e_{R} has a defect group D, because e_{D} has the defect group D. So, for any $\left(R, e_{R}\right) \leq\left(D, e_{D}\right), e_{R}$ satisfies the last condition of Theorem 5.1 (i) (that is, $C_{D}(R)=D$ is a defect group of e_{R}). The second assertion is the following. Let ($R^{\prime}, e_{R^{\prime}}$) also be a b-Brauer pair contained in $\left(D, e_{D}\right)$. Suppose that ${ }^{x}\left(R^{\prime}, e_{R^{\prime}}\right)=\left(R, e_{R}\right)$ for some $x \in G$. Then, by the fusion theorem for Brauer pairs (see [16, Proposition 49.5 and Proposition 49.6]), there is $y \in N_{G}\left(D, e_{D}\right)$ such that ${ }^{y} r^{\prime}={ }^{x} r^{\prime}$ for all $r^{\prime} \in R^{\prime}$. Thus, mapping $a \in{ }^{x} i U$ to $y x^{-1} a \in{ }^{y} i U$, we have the isomorphism ${ }^{x} i U \cong{ }^{y} i U$ as $k R$-modules. Further, since $N_{G}\left(D, e_{D}\right)=N_{G}\left(D_{\gamma}\right)$, there exists $z \in\left((k G)^{D}\right)^{\times}$such that ${ }^{y} i=z_{i}$. Thus, mapping $b \in i U$ to $z b \in y_{i} i U$, we have the isomorphism $i U \cong y_{i} U$ as $k D$-modules. So ${ }^{x} i U \cong i U$ as $k R$-modules. Therefore the conjugation map $c_{x}: H^{*}\left(R^{\prime}, k\right) \rightarrow H^{*}(R, k)$ induces an isomorphism of subvarieties $V_{R^{\prime}}(i U) \cong V_{R}\left({ }^{x} i U\right)=V_{R}(i U)$.

Clearly $r_{Q}^{*} V_{Q}(i U) \subseteq V_{G, b}(U)$. Conversely, let $v \in\left(r_{Q}^{*}\right)^{-1} V_{G, b}(U)$. Applying the Quillen stratification theorem (see e.g. [1, Theorem 2.2]) to V_{Q}, we can choose an elementary abelian p-subgroup E of Q and $s \in V_{E}^{+}$with $\left(\operatorname{res}_{Q, E}\right)^{*}(s)=v$. On the other hand, by Theorem 5.1 (i), we can choose an elementary abelian p-subgroup
E^{\prime} of D and $s^{\prime} \in V_{E^{\prime}}^{+}(i U)$ with $r_{E^{\prime}}^{*}\left(s^{\prime}\right)=r_{Q}^{*}(v)$. Then $r_{E^{\prime}}^{*}\left(s^{\prime}\right)=r_{Q}^{*}(v)=r_{E}^{*}(s)$. Thus, by Theorem 5.1 (i) for $V_{G, b}$, we see that b-Brauer pairs $\left(E, e_{E}\right)$ and ($E^{\prime}, e_{E^{\prime}}$) must be G-conjugate. Let $\left(E, e_{E}\right)={ }^{g}\left(E^{\prime}, e_{E^{\prime}}\right)$ for an element g in G. Then since ${ }^{g}\left(E^{\prime}, e_{E^{\prime}}\right)=\left(E, e_{E}\right) \leq\left(D, e_{D}\right)$, we see from the definition of $H^{*}\left(G, b, D_{\gamma}\right)$ that every $[\zeta] \in H^{*}\left(G, b, D_{\gamma}\right)$ satisfies $c_{g^{-1}} \circ \operatorname{res}_{D, E}([\zeta])=\operatorname{res}_{D, E^{\prime}}([\zeta])$ (equivalently,
 Here, note that $c_{g^{-1}}^{*}: V_{E^{\prime}} \rightarrow V_{E}$ is equal to the natural map induced by the conjugation map $c_{g}: H^{*}\left(E^{\prime}, k\right) \rightarrow H^{*}(E, k)$. We write ${ }^{g} S^{\prime}$ for $c_{g_{-1}}^{*}\left(s^{\prime}\right)$. Since ${ }^{g} S^{\prime}$ and s are contained in V_{E}^{+}and $r_{E}^{*}\left({ }^{g} s^{\prime}\right)=r_{E}^{*}(s)$ and further $C_{D}(E)=D$ is a defect group of e_{E}, Theorem 5.1 (ii) for $V_{G, b}$ shows that there exists $h \in N_{G}\left(E, e_{E}\right)$ with ${ }^{h g} s^{\prime}=s$. Now, since D is abelian, we see from the fact stated above that the conjugation map $c_{h g}$ induces an isomorphism $V_{E^{\prime}}(i U) \cong V_{E}(i U)$. Thus s is contained in $V_{E}(i U)$. Therefore $v=\left(\operatorname{res}_{Q, E}\right)^{*}(s)$ is contained in $V_{Q}(i U)$, so the proposition follows.

Using the above proposition, we show the following, which is a block variety version of [6, Theorem 1].

Proposition 5.3. With the notation in Section 4, suppose that D is abelian. Let U be a finitely generated $k \bar{G} \bar{b}$-module. Then we have that

$$
V_{G, b}(U)=\left(\inf _{\bar{b}, b}^{*}\right)^{-1} V_{\bar{G}, \bar{b}}(U) .
$$

Proof. It is clear that there is a commutative diagram as follows:

Then we have

$$
\left(r_{D}^{*}\right)^{-1} \circ\left(\inf _{\bar{b}, b}^{*}\right)^{-1} V_{\bar{G}, \bar{b}}(U)=\left(\inf _{\bar{D}, D}^{*}\right)^{-1} \circ\left(\bar{r}_{\bar{D}}^{*}\right)^{-1} V_{\bar{G}, \bar{b}}(U)=\left(\inf _{\bar{D}, D}^{*}\right)^{-1} V_{\bar{D}}(\bar{i} U)=V_{D}(i U),
$$

where the second equality holds by Proposition 5.2, and the third holds by [6, Theorem 1]. Thus, since $r_{D}^{*}: V_{D} \rightarrow V_{G, b}$ and its restriction $r_{D}^{*}: V_{D}(i U) \rightarrow V_{G, b}(U)$ are both surjective, it follows that $\left(\inf _{\bar{b}, b}^{*}\right)^{-1} V_{\bar{G}, \bar{b}}(U)=r_{D}^{*} V_{D}(i U)=V_{G, b}(U)$. This completes the proof.

Remark 5.4. Suppose that b is the principal block of $k G$. Then we have from Theorem 2.4 that $V_{G, b}(U)=\left(\inf _{\bar{b}, b}^{*}\right)^{-1} V_{\bar{G}, \bar{b}}(U)$, without the assumption that D is abelian. Indeed, from the relation $\rho_{b} \circ \inf _{\bar{G}, G}=\inf _{\bar{b}, b} \circ \rho_{\bar{b}}$, we see that $\left(\rho_{b}^{*}\right)^{-1} \circ$ $\left(\inf _{\bar{G}, G}^{*}\right)^{-1} V_{\bar{G}}(U)=\left(\inf _{\bar{b}, b}^{*}\right)^{-1} \circ\left(\rho_{\bar{b}}^{*}\right)^{-1} V_{\bar{G}}(U)=\left(\inf _{\bar{b}, b}^{*}\right)^{-1} V_{\bar{G}, \bar{b}}(U)$. Further, we see
from [6, Theorem 1] that $\left(\rho_{b}^{*}\right)^{-1} \circ\left(\inf _{\bar{G}, G}^{*}\right)^{-1} V_{\bar{G}}(U)=\left(\rho_{b}^{*}\right)^{-1} V_{G}(U)=V_{G, b}(U)$. So, it follows that $V_{G, b}(U)=\left(\inf _{\bar{b}, b}^{*}\right)^{-1} V_{\bar{G}, \bar{b}}(U)$.

Acknowledgement. The author would like to thank Prof. Atumi Watanabe for her helpful comments, and the referee for a number of valuable comments and refinements.

References

[1] G.S. Avrunin and L.L. Scott: Quillen stratification for modules, Invent. Math. 66 (1982), 277-286.
[2] D. Benson: Modular Representation Theory: New Trends and Methods, Lecture Notes in Mathematics, 1081, Springer, Berlin, 1984.
[3] D. Benson: Representation and Cohomology, I and II, Cambridge Univ. Press, Cambridge, 1991.
[4] J.F. Carlson: Varieties and the cohomology ring of a module, J. Algebra 85 (1983), 104-143.
[5] L. Evens: The cohomology ring of a finite group, Trans. Amer. Math. Soc. 101 (1961), 224-239.
[6] H. Kawai: Module varieties and quotient groups, J. Algebra 121 (1989), 248-251.
[7] R. Knörr: On the vertices of irreducible modules, Ann. of Math. 110 (1979), 487-499.
[8] S. König and A. Zimmermann ed.: Derived Equivalences for Group Rings, Lecture Notes in Math. 1685, Springer, Berlin-Heidelberg-New York, 1998.
[9] B. Külshammer and L. Puig: Extensions of nilpotent blocks, Invent. Math. 102 (1990), 17-71.
[10] M. Linckelmann: Transfer in Hochschild cohomology of blocks of finite groups, Algebras and Representation Theory 2 (1999), 107-135.
[11] M. Linckelmann: Varieties in block theory, J. Algebra 215 (1999), 460-480.
[12] M. Linckelmann: On splendid derived and stable equivalences between blocks of finite groups, J. Algebra 242, (2001), 819-843.
[13] M. Linckelmann: Quillen stratification for block varieties, J. Pure Appl. Algebra 172 (2002), 257-270.
[14] H. Matsumura: Commutative Ring Theory, Cambridge Univ. Press, Cambridge, 1986.
[15] L. Puig: Pointed groups and construction of characters, Math. Z. 176 (1981), 265-292.
[16] J. Thévenaz: G-Algebras and Modular Representation Theory, Oxford Science Publications, Oxford, 1995.

Department of General Education Sojo University Ikeda, Kumamoto 860-0082 Japan e-mail: kawai@ed.sojo-u.ac.jp

