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HERMITE CONSTANT AND VORONOÏ THEORY

OVER A QUATERNION SKEW FIELD

RENAUD COULANGEON and TAKAO WATANABE

(Received July 15, 2005)

Abstract
The Hermite constantn(D) of a quaternion skew fieldD over a global field

is defined and studied. We obtain an upper bound ofn(D). In the case that the
base field is a number field, we introduce the notion of quaternionic Humbert forms
over D. Thenn(D) is characterized as a critical value of the Hermite invariants for
n-ary quaternionic Humbert forms. We extend Voronoı̈’s theorem on extreme forms
to quaternionic Humbert forms.

Introduction

An analogue of Hermite’s constant for a division algebra over a number field was
first studied in [10] as a typical case of generalized Hermiteconstants of linear al-
gebraic groups. But the definition of this constant given in [10] was not canonical in
the sense that it depends on the choice of a splitting field of the division algebra in
question. After this work, the second author introduced thenotion of the fundamental
Hermite constant associated to a pair of a connected reductive algebraic group and its
maximal parabolic subgroup both defined over a global field (cf. [11]). This notion es-
pecially yields a canonical definition of Hermite constant for a division algebra over a
global field.

To be more precise, letD denote a central division algebra over a global field
k, V = e1D + � � � + enD a right D-vector space,G(k) = AutD(V) the group of D-
linear automorphisms ofV , and Q(k) the stabilizer inG(k) of the line e1D. As an
algebraic group,Q is a maximalk-parabolic subgroup of the affine algebraick-group
G. We write G(A) and Q(A) for the adele groups ofG and Q, respectively, and write
G(A)1 for the subgroup consisting of allg 2 G(A) whose reduced norm satisfiesjNrMn(D)=k(g)jA = 1. If we fix a maximal compact subgroupK of G(A) such that
G(A) possesses an Iwasawa decompositionQ(A)K , we can define the height function
HQ : G(A) ! R>0 by HQ(gh) = jb�Q(g)j�1

A for g 2 Q(A) and h 2 K , whereb�Q

denotes some basis of theZ-module of k-rational characters ofQ modulo the center
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of G. Then the Hermite constant ofD is defined as

n(D) = max
g2G(A)1

min
x2Q(k)nG(k)

HQ(xg):
This definition ofn(D) is intrinsic and does not depend on a splitting field ofD. If k
is a number field, one can see a relation betweenn(D) and a generalized Hermite
constant defined in [10] in the Remark following Lemma 3.4 in§3.

In the case thatD is a quaternion skew field, we can expressn(D) in terms
of the twisted heights on the vector spaceV , i.e., we will show in§2 the following
equality:

(0) n(D) = max
g2G(A)1

min
x2V�f0g Hg(x)2n:

Here Hg denotes the twisted height onV for g 2 G(A)1, whose precise definition will
be given in§2. As explained by Liebend̈orfer [3], it is not easy to define appropriately
the twisted heights onV . Liebend̈orfer has studied recently heights onD-vector spaces
in details, but only in the case whereD is a definite quaternion skew field over the
rational number fieldQ. At least, our definition ofHg is more general, and coincides
with hers in that case. The aim of this paper is to studyn(D) more closely, based
on the equation (0). In the first half, we shall yield an upper bound of n(D) for any
quaternion skew fieldD over any global field, and in the second half, a Voronoı̈ type
theory of quaternionic Humbert formswill be developed in connection withn(D),
provided thatk is a number field.

Because of the difficulty of definition of the twisted heights, we restrict ourselves
to the case of a quaternion skew field in this paper. However, in a subsequent paper,
we will remove this restriction, i.e., we will give a definition of the twisted heights on
a vector space over any division algebraD, and then we will study a generalization
of successive minima and Minkowski’s theorem with respect tothe twisted heights.
In this work, the Hermite constantn(D) will play a crucial role, and an estimate
of n(D) will have an application to Siegel’s lemma overD.

In the rest of this introduction, we briefly explain the results of this paper. An
upper bound of some generalized Hermite constant was already given in [10, Theo-
rem 3] in the number field case. However, this theorem (or evenits proof) can not be
applied to the present case. Thus we have to make a different approach to get an up-
per bound ofn(D). We first realizeD as a cyclic algebra (L=k;u) = 1 � L + i � L,
where L=k is a separable quadratic extension contained inD, u is an element ink�
and i is an element inD such thati2 = u. RegardingV as anL-vector space, one can
define the twisted heightLbF� : V ^ V ! R�0 for � 2 G(AL ), where AL = A 
k L,
(see §3 for details) and the twisted heightLH� : V ! R�0: LH� is just defined by
LH� (x) = LbF� (x ^ x i)1=4 for x 2 V . Thenn(D) has a description of the form

n(D) =
1

LH�(e1)2n
max

g2G(A)1
min

x2V�f0g LH�g(x)2n;
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where � is an element inG(AL ) determined from the maximal compact subgroups
of G(A) and G(AL ). (In general,� is not contained inG(A). This is a reason why
[10, Theorem 3] does not work well forn(D).) By making use of Hadamard’s in-
equality and some arguments of geometry of numbers, one can estimate the minimum
of LH�g(x) (Lemmas 3.3 and 3.6). In this estimate, the function (� ) =!V (S\�S)=!V (S)
in � 2 G(AL ) occurs, where!V is a Haar measure of the adele spaceV 
L AL and S
is “a unit ball” in V
LAL . The point is an explicit computation of (� ) at � = �Ju��1

(Lemma 3.7, see§3 for notations). This leads us to an explicit upper bound of the
minimum of LH�g(x), and hence ofn(D) (Theorem 3.8).

If k is a number field, the expression (0) ofn(D) leads us to the notion ofn-
ary quaternionic Humbert forms overD. Let k1 = k 
Q R =

Qv kv, where v runs
over all infinite places ofk. For gv 2 G(kv), the matrixSv = gvg0v is a positive definite
symmetric, Hermitian or quaternionic Hermitian matrix according asD
k kv �= M2(R),
M2(C) or the Hamilton quaternionH. This Sv defines a form onV 
k kv. We call a
systemS = (Sv) = (gvg0v) of forms for (gv) 2 G(k1) an n-ary quaternionic Humbert
form over D. The setPn;D of all n-ary quaternionic Humbert forms overD becomes
a Riemannian symmetric space. If we fix a maximal orderO of D and representatives31; : : : ; 3h of equivalent classes of fullO-lattices in V , then the Hermite invariant�i (S) for S2 Pn;D is defined to be

�i (S) =
1

NrD=Q(Ai )

mi (S)n

DetS
; where mi (S) = min

u23i�f0g S[u]

NrD=Q(Au)
;

for each i = 1;2; : : : h. Here S[u] denotes the value ofS at u, NrD=Q(Au) the norm
of some integralO-ideal defined fromu 2 3i and DetS “the determinant” ofS, see
§4 for their precise definitions. Then the equation (0) implies

n(D) = max
1�i�h

max
S2Pn;D �i (S)

(§4, Proposition 4.5). Thusn(D) is characterized as a critical value of the Hermite
invariants�i . An investigation of the critical values of such “Hermite invariants” is
known as a Voronöı type theory. The second subject of this paper is to develop a
Voronöı type theory for the Hermite invariants�i . As usual, a quaternionic Humbert
form S is said to be�i -extremeif S achieves a local maximum of�i . To define the
notion of �i -perfectionand �i -eutaxy for quaternionic Humbert forms, we make use
of Bavard’s fundamental work [1] on a Voronoı̈ type theory. Some equivalent condi-
tions for �i -perfection and�i -eutaxy will be given in§6, Proposition 6.1. Then we
will prove the following Voronöı type theorem:A quaternionic Humbert form S is�i -
extreme if and only if it is�i -perfect and�i -eutactic (§6, Theorem 6.3).

The interest of this Voronoı̈ type characterization is twofold: first it allows to prove
that n(D) is algebraic, having noticed that�i -perfect forms are algebraic (§6, Proposi-
tion 6.4). Secondly, a classification of�i -perfect (resp.�i -eutactic) forms, if possible,
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allows the computation ofn(D). In the case of the classical Hermite invariant, such
a classification is obtained as a by-product of the so-calledVoronöı’s algorithm. Un-
fortunately, this algorithm does not generalize easily to our situation. Nevertheless, we
can prove that there are finitely many perfect quaternionic Humbert forms in a given
dimension (§6, Theorem 6.7), which is the first required property if one looks for a
classification.

In the last part of§4, we treat, as an example, the case of binary quaternionic
Humbert forms over Euclidean quaternion fields, and computethe corresponding
Hermite constants. This is in fact an easy case, and does not actually require the use
of the Voronöı type characterization of extremality.

Notations

Let k be a global field, i.e., an algebraic number field of finite degree overQ or
an algebraic function field of one variable over a finite field.We denote byV;V1
and V f the sets of all places ofk, all infinite places ofk and all finite places ofk,
respectively. Forv 2 V, let kv be the completion ofk at v and j � jkv be the absolute
value of kv normalized so thatjajkv = �v(aC)=�v(C), where�v is a Haar measure
of kv and C is an arbitrary compact subset ofkv with nonzero measure. Ifv is finite,
okv denotes the ring of integers inkv. The adele ring ofk is denoted byA and its
idele norm is denoted byj � jA, i.e., j � jA =

Qv2V j � jkv . We will write k1 and A f for
the infinite part and the finite part ofA, respectively. The restrictions ofj � jA to k�1
and A�

f are denoted byj � jk1 and j � jA f , respectively. Ifk is an algebraic number field,
then ok denotes the ring of integers ink.

For a unitalk-algebraR and positive integersm and n, Mm;n(R) stands for the set
of m by n matrices with components inR. The transpose of a matrixA 2 Mm;n(R)
is denoted byA0. The unit group of the total matrix algebraMn(R) = Mn;n(R) is de-
noted by GLn(R). In general, for a given algebraick-group G, G(R) stands for the
group of R-rational points ofG. If R is a finite dimensional central divisionk-algebra,
NrMn(R)=k stands for the reduced norm of the central simplek-algebra Mn(R) and
TrMn(R)=k for the reduced trace.

1. Fundamental Hermite constants ofGLn(D)

We fix integersd � 1 and n � 2. Throughout this section,D denotes a central
division k-algebra of degreed and G the affine algebraick-group defined byG(R) =
GLn(D 
k R) for any k-algebraR. Let P be the minimalk-parabolic subgroup ofG
which consists of upper triangular matrices inG. Then the standard maximalk-
parabolic subgroupsQm, 1� m� n� 1, of G are given as follows:

Qm(k) =

��
a b
0 d

�
: a 2 GLm(D); b 2 Mm;n�m(D); d 2 GLn�m(D)

� :
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In this section, we recall the fundamental Hermite constants  (G; Qm; k) ande (G; Qm; k) introduced in [11].
In the following, we fix m and write Q for Qm. Let UQ be the unipotent radical

of Q and MQ the Levi subgroup ofQ given by

MQ(k) =

�
diag(a;b) =

�
a 0
0 b

�
: a 2 GLm(D); b 2 GLn�m(D)

� :
Denote byZG and ZQ the central maximalk-split tori of G and MQ, respectively, i.e.,

ZG(k) = f�In : � 2 k�g and ZQ(k) = fdiag(�Im; �In�m) : �;� 2 k�g:
We define thek-rational characters�Q : ZQ ! GL1 andb�Q : MQ ! GL1 as follows:

�Q(diag(�Im; �In�m)) = ���1

for diag(�Im; �In�m) 2 ZQ(k) and

b�Q(diag(a;b)) = NrMm(D)=k(a)(n�m)= gcd(m;n�m) NrMn�m(D)=k(b)�m= gcd(m;n�m)

for diag(a;b) 2 MQ(k). Then �Q (resp.b�Q) is trivial on ZG and forms aZ-basis
of the moduleX�

k(ZGnZQ) (resp. X�
k(ZGnMQ)) of k-rational characters ofZGnZQ

(resp. ZGnMQ). The index [X�
k(ZGnZQ) : X�

k(ZGnMQ)] is equal todm(n�m)=gcd(m;
n�m).

Define the unimodular subgroupsG(A)1;MQ(A)1 and Q(A)1 as follows:

G(A)1 = fg 2 G(A) : jNrMn(D)=k(g)jA = 1g;
MQ(A)1 = fdiag(a;b) 2 MQ(A) : jNrMm(D)=k(a)jA = jNrMn�m(D)=k(b)jA = 1g;

Q(A)1 = UQ(A)MQ(A)1:
Let K be a maximal compact subgroup ofG(A) such thatG(A) possesses an Iwasawa
decompositionG(A) = UQ(A)MQ(A)K . Then the height functionHQ : G(A)! R>0 is
well defined by

HQ(u � diag(a;b) � h) = jb�Q(diag(a;b))j�1
A

= jNrMm(D)=k(a)j�(m�n)= gcd(m;n�m)
A jNrMn�m(D)=k(b)jm= gcd(m;n�m)

A

for u 2 UQ(A);diag(a;b) 2 MQ(A) and h 2 K . By definition, HQ is left ZG(A)Q(A)1

and right K invariant.
We setXQ = Q(k)nG(k) and YQ = Q(A)1nG(A)1. Then XQ is a subset ofYQ and

the natural mapYQ ! (ZG(A)Q(A)1)nG(A) is injective. Thus the height functionHQ

is restricted toYQ. Then the Hermite constants (G; Q; k) ande (G; Q; k) are defined
to be

 (G; Q; k) = max
g2G(A)1

min
x2XQ

HQ(xg); e (G; Q; k) = max
g2G(A)

min
x2XQ

HQ(xg):
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If k is an algebraic number field, then (G; Q; k) equalse (G; Q; k) as ZG(A)G(A)1 =
G(A). In the case ofm = 1, we writen(D) anden(D) for  (G; Q1; k) ande (G; Q1; k),
respectively.

2. n(D) for a quaternion skew field D

Hereafter, throughout this paper, letD be a quaternion divisionk-algebra. In this
section, we describen(D) anden(D) in terms of a height on a projective space. These
descriptions will be used in the latter sections.

We write DA and DA f for D 
k A and D 
k A f , respectively. For eachv 2 V,
Dv = D 
k kv is a quaternion algebra overkv. Let "v 2 2�1Z=Z be the Brauer-Hasse
invariant of Dv, namely"v is equal to 0 or 1=2 moduloZ according asDv �= M2(kv)
or not. Then the setV is divided into two subsetsV0 = fv 2 V : "v = 1=2 modZg
and V00 = fv 2 V : "v = 0 modZg. The setV0 is a finite set and its cardinality is
even. We writeV01, V001, V0

f and V00
f for V1\V0, V1\V00, V f \V0 and V f \V00,

respectively.
Let O be a maximal order ofD. For v 2 V f , the completionOv of O in Dv is a

maximal order ofDv. For eachv 2 V00, we fix an isomorphism�v : Dv ! M2(kv) such
that �v(Ov) = M2(okv ) if v is finite. Then we define elementsev;e0v and Jv of Dv by

ev = ��1v
��

1 0
0 0

�� ; e0v = ��1v
��

0 0
0 1

�� ; Jv = ��1v
��

0 1
1 0

�� :
Let V = e1D + � � �+enD be a rightD-vector space with the standard basise1; : : : ;

en. We define the local heightH v on Vv = V 
k kv for eachv 2 V as follows.
(i) The case ofv 2 V0. In this case,Dv is division andVv is a right Dv-vector space.
The local heightFv = H v is defined to be

Fv
 X

1�i�n

ei xi

!
= H v  X

1�i�n

ei xi

!
=

8>>><
>>>:

 X
1�i�n

jNrD=k(xi )jkv
!1=2

(v 2 V01):
sup

1�i�n

�jNrD=k(xi )j1=2kv � (v 2 V0
f ):

(ii) The case ofv 2 V00. In this case,Vv is a free right Dv-module of rankn and
decomposes into a direct sum ofkv-vector subspacesVvev and Vve0v. We write Wv
for Vvev. As a kv-vector space,Wv is of dimension 2n. From Jve0v Jv = ev, it follows
Vve0v Jv = Wv. Put f v2i�1 = ei ev and f v2i = ei e0v Jv for 1 � i � n. Then f f v1 ; f v2 ; : : : ; f v2ng
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forms akv-basis ofWv. We define the normsFv on Wv and bFv on the wedge product
Wv ^Wv as follows:

Fv
 X

1�i�2n

f vi �i

!
=

8>>>>>>>><
>>>>>>>>:

 X
1�i�2n

j�i j2kv
!1=2

(v 2 V001; kv = R);
X

1�i�2n

j�i jkv (v 2 V001; kv = C);
sup

1�i�2n
(j�i jkv ) (v 2 V00

f ):

bFv
0
� X

1�i< j�2n

�
f vi ^ f vj ��i j

1
A =

8>>>>>>>>><
>>>>>>>>>:

0
� X

1�i< j�2n

j�i j j2kv
1
A

1=2
(v 2 V001; kv = R);

X
1�i< j�2n

j�i j jkv (v 2 V001; kv = C);
sup

1�i< j�2n
(j�i j jkv ) (v 2 V00

f ):
Then the local heightH v on Vv is defined to be

H v(x) = bFv�(xev) ^ �xe0v Jv��1=2
for x 2 Vv.

Lemma 2.1. Let v 2 V. Then

H v(xa) = jNrD=k(a)j1=2kv H v(x)

holds for all x2 Vv and a2 D�v .

Proof. This is obvious by definition ifv 2 V0. Thus we assumev 2 V00. Let�v(a) =
� � �0� �0 �. Then

xa =
�
xev + xe0v�a =

�
xev + xe0v�aev +

�
xev + xe0v�ae0v

=
�
x(evaev) + x

�
e0vaev�	 +

�
x
�
evae0v� + x

�
e0vae0v�	

=
�
xev� + xe0v Jv�	 +

�
xev Jv�0 + xe0v�0	:

Therefore,

xaev ^ xae0v Jv =
�
xev� + xe0v Jv�	 ^ �xev�0 + xe0v Jv�0	

= xev ^ xe0v Jv���0 � �0��;
and hence,H v(xa) = bFv(xaev ^ xae0v Jv)1=2 = jNrD=k(a)j1=2kv H v(x).
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In any case, the subgroup

Kv = fg 2 G(kv) : Fv(gx) = Fv(x) (x 2 Vv)g
is a maximal compact subgroup ofG(kv) = GLn(Dv). If v 2 V f , then Kv is the sta-
bilizer of the freeOv-lattice e1Ov + � � � + enOv. We fix, once and for all, a maximal
compact subgroupK of G(A) as

K =
Y
v2V

Kv;
and then defineHQ for Q = Q1 as in §1.

For g = (gv) 2 G(A), the global twisted heightHg : V ! R�0 is defined to be

Hg(x) =
Y
v2V

H v(gvx):
It is easy to see that

(1) H�In�h�g = j�jAHg

for all �In 2 ZG(A), h 2 K and g 2 G(A). We define the function8 : G(A) !
R>0 by

8(g) =
Hg(e1)

jNrMn(D)=k(g)j1=(2n)
A

:
The stabilizer of the rightD-subspace spanned bye1 in G is the maximal parabolic
subgroupQ = Q1. By (1), 8 is left K and right ZG(A)Q(A)1 invariant.

Lemma 2.2. The equality8(g)2n = HQ(g�1) holds for all g2 G(A).

Proof. Since both8(g) and HQ(g�1) are left K and right ZG(A)Q(A)1 invariant,
it is sufficient to prove8(diag(a;b))2n = HQ(diag(a;b)�1) for all diag(a;b) 2 MQ(A),
wherea 2 GL1(DA) and b 2 GLn�1(DA). On the one hand, it follows from§1 that

HQ(diag(a;b))�1 = jNrD=k(a)jn�1
A jNrMn�1(D)=k(b)j�1

A :
On the other hand,

8(diag(a;b))2n =

Qv2V H v(e1av)2n

jNrD=k(a)jAjNrMn�1(D)=k(b)jA :
By Lemma 2.1,H v(e1av)2n = jNrD=k(av)jnkv . Then we obtain

8(diag(a;b))2n = jNrD=k(a)jn�1
A jNrMn�1(D)=k(b)j�1

A :
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By this lemma andG(k)e1 = V �f0g, we have the following expressions ofn(D)
anden(D):

n(D) = max
g2G(A)1

min
x2V�f0g Hg(x)2n;

en(D) = max
g2G(A)

min
x2V�f0g Hg(x)2n

jNrMn(D)=k(g)jA :
Note thatn(D) =en(D) if k is a number field.

3. An upper bound of en(D)

In this section, we give an upper bound ofen(D). For that purpose, we need to fix
a realization ofD as a cyclic algebra. Namely we fix a separable quadratic extension
L = k(�) of k and u 2 k� such thatu 62 NL=k(L�) and

D = (L=k;u) = 1 � L + i � L ; i2 = u; i� = �i (� 2 L);
where � 7! � denotes the Galois automorphism ofL=k. The reduced norm ofa =� + i�, �;� 2 L, is equal to

NrD=k(a) = NrD=k(� + i�) = ��� u��:
We sometime writej for � . The map� : D 
k L ! M2(L) defined by

�(i ) =

�
0 u
1 0

� ; �(j ) =

�� 0
0 �

�

gives an algebra isomorphism. By using this realization ofD, we first give another
expression ofen(D), and then we will make use of this expression to obtain an upper
bound ofen(D).

Let W, W1 and W f be the sets of all places ofL, all infinite places ofL and
all finite places ofL, respectively. Forw 2 W, Lw stands for the completion ofL atw. The normalized valuation ofLw is denoted byj � jLw . If w 2 W f , oLw stands for
the valuation ring ofLw. The adele ring ofL and its idele norm are denoted byAL

and j � jAL , respectively. As in§2, we let V = e1D+� � �+enD be a rightD-vector space.
We fix an L-basis ofV as follows:

f2i�1 = ei ; f2i = ei i (1� i � n):
For x = f1�1 + � � � + f2n�2n 2 V , �1; : : : ; �2n 2 L, the conjugatex of x with respect to
L=k is defined by

x = f1�1 + � � � + f2n�2n:
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As an L-vector space, the wedge productbVL := V ^ V has a basisf i ^ f j , 1 � i <
j � 2n. For eachw 2 W, the Lw-vector spaceV 
L Lw is denoted byVLw to avoid
confusion with Vv defined in §2. We write bVL ;w for bVL 
L Lw = VLw ^ VLw . By a
similar fashion to§2, the local heightsLFw : VLw ! R�0 and LbFw : bVL ;w ! R�0 are
defined by

LFw
 X

1�i�2n

f i�i

!
=

8>>>>>>>><
>>>>>>>>:

 X
1�i�2n

j�i j2Lw
!1=2

(w 2W1; Lw = R);
X

1�i�2n

j�i jLw (w 2W1; Lw = C);
sup

1�i�2n
(j�i jLw ) (w 2W f )

and

LbFw
0
� X

1�i< j�2n

(f i ^ f j )�i j

1
A =

8>>>>>>>>><
>>>>>>>>>:

0
� X

1�i< j�2n

j�i j j2Lw
1
A

1=2
(w 2W1; Lw = R);

X
1�i< j�2n

j�i j jLw (w 2W1; Lw = C);
sup

1�i< j�2n
(j�i j jLw ) (w 2W f ):

Then the global heightsLF : V ! R�0 and LbF : bVL ! R�0 are defined to be

LF(x) =
Y
w2W

LFw(x); LbF(X) =
Y
w2W

LbFw(X)

for x 2 V and X 2 bVL . More generally, we can define the global twisted heightLF�
and LbF� for � = (�w) 2 GL2n(AL ) by

LF� (x) = LF(�x) :=
Y
w2W

LFw(�wx); LbF� (X) = LbF(�X) :=
Y
w2W

LbFw(�wX):

Lemma 3.1. For x 2 V and � 2 GL2n(AL ), we haveLF
��x

�
= LF(�x).

Proof. This is easy by the definition ofLF .

We take a maximal compact subgroupLK of GL2n(AL ) as

LK =
Y
w2W

LKw; LKw = fg 2 GL2n(Lw) : LFw(gx) = LFw(x) (x 2 VLw )g:
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Then bothLF and LbF are left LK invariant.
Let PbVL be the projective space ofbVL and PDV be the set of 1-dimensional right

D-subspaces ofV . By definition, LbF gives rise to the heightPbVL ! R>0. For x 2
V � f0g, the subspacex D 2 PDV spanned byx is the same as the 2-dimensionalL-
subspace spanned byx; x i. The correspondencex D 7! (x ^ x i )L yields an injection
PDV ,! PbVL . Thus we can define the heightLH on V , more generally the twisted
height LH� for � 2 GL2n(AL ), by

LH (x) = LbF(x ^ x i )1=4; LH� (x) = LbF� (x ^ x i )1=4
for x 2 V . Since LH� factors throughPDV , the equalityLH� (xa) = LH� (x) holds for
all a 2 D� and x 2 V .

Lemma 3.2. For a = (av) 2 D�
A and x2 V , one has

LH� (xa) = jNrD=k(a)j1=2A � LH� (x):
Proof. Let a = � + i�, �;� 2 AL . Then

(xa) ^ (xai ) = (x� + x i�) ^ �x i� + xu�� = (x ^ x i )
���� u���

= (x ^ x i ) NrD=k(a):
Therefore,

LH� (xa) = LbF� ((x^x i ) NrD=k(a))1=4 = jNrD=k(a)j1=4AL
� LH� (x) = jNrD=k(a)j1=2A � LH� (x):

Lemma 3.3. For � = (�w) 2 GL2n(AL ) and x2 V , one has

LbF� (x ^ (x i )) � LF� (x)LF� Ju
(x);

where

Ju =

0
BBBBBBBBBB�

0 u 0
1 0

0 u
1 0

. ..

0 u
0 1 0

1
CCCCCCCCCCA
2 GL2n(k):
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Proof. By Hadamard’s inequality,

LbF� (x ^ (x i )) � LF� (x) LF� (x i ):
Let

x =
nX

i =1

f2i�1�2i�1 +
nX

i =1

f2i�2i ; (�1; : : : ; �2n 2 L):
From the relationsf2i�1i = f2i ; f2i i = f2i�1u, it follows

x i =
nX

i =1

f2i�2i�1 +
nX

i =1

f2i�1�2i u = Jux:
Therefore, by Lemma 3.1,LF� (x i ) = LF� (Jux ) = LF� Ju

(x).

Viewing V as an L-vector space,G(k) = GLn(D) is realized as a subgroup in
GL2n(L). More precisely, we have

G(k) =
�� 2 GL2n(L) : Ju� J�1

u = �	:
Note that the conditionJu� J�1

u = � is the same asJ�1
u � Ju = � because ofJ�1

u =
u�1Ju. We fixed the good maximal compact subgroupK of G(A) in §2. Since maxi-
mal compact subgroups ofGL2n(AL ) are conjugate to each other, there exists an� 2
GL2n(AL ) such thatK = ��1 LK� \ G(A).

Lemma 3.4. Being the notation as before, then one has

HQ(g�1) =
1

LH�(e1)2n
� LH�g(e1)2n

jNrMn(D)=k(g)jA
for g 2 G(A).

Proof. This follows from Lemma 3.2 and the same argument as inthe proof of
Lemma 2.2.

Therefore,en(D) and n(D) are represented as

en(D) =
1

LH�(e1)2n
max

g2G(A)
min

x2V�f0g
LH�g(x)2n

jNrMn(D)=k(g)jA ;
n(D) =

1
LH�(e1)2n

max
g2G(A)1

min
x2V�f0g LH�g(x)2n:
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REMARK . If k is a number field, we have

en(D) = n(D) =
1

LH�(e1)2n
n;1(Du; H�)n[k:Q]=2;

where the right-hand side is a generalized Hermite constantdefined in [10,§2]. (This
relation holds for any division algebraD of degreed if we take L as a cyclic splitting
field of D and LH as a height induced from the standard height on thed-th wedge
product of theL-vector spaceDn = Ldn.) In general,� is not contained inG(A)1 and
we can not immediately apply [10, Theorem 3] to get an upper bound ofen(D).

In order to obtain an upper bound ofen(D), we need some arguments of geometry
of numbers. In the following, we setm = 2n for simplicity. Let VAL = V 
L AL be the
adele space ofV and !V the Haar measure onVAL normalized so that!V (VAL =V) =
1. We define the subsetS of VAL by

S =
Y
w2W

Sw; Sw =
�
x 2 VLw : LFw(x) � 1

	:
Then S is a compact subset ofVAL . We define the function : GLm(AL )! R>0 by

 (� ) =
!V (S\ �S)!V (S)

:
Lemma 3.5. Let �1; �2 2 GLm(AL ). If one has

!V (�1S\ �2S) >
(

2m[L:Q] (ch(L) = 0);
1 (ch(L) > 0);

then �1S\ �2S\ V % f0g.
Proof. This follows from a standard argument of geometry of numbers (cf. [8]).

For the sake of completeness, we mention a proof. Let� be a fundamental domain in
VAL modulo V . We set

S0 =
Y

w2W1 2�1Sw � Y
w2W f

Sw:
Then!V (�1S0 \ �2S0) > 1. Since�1S0 \ �2S0 is compact, the set

fx 2 V : (x +�) \ (�1S0 \ �2S0) 6= ;g
is finite. We denote the elements of this finite set byx1; : : : ; xr . Let

�i = ((�1S0 \ �2S0)� xi ) \�
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for 1� i � r . Then�1 + x1; : : : ; �r + xr cover (�1S0 \ �2S0), so that

rX
i =1

!V (�i ) � !V (�1S0 \ �2S0) > 1 = !V (VAL =V) = !V (�):
Thus r > 1 and there are�i 6= � j such that�i \ � j 6= ;. Let x 2 �i \ � j . Then
x + xi ; x + x j 2 (�1S0 \ �2S0), and hence

0 6= xi � x j 2 f(�1S0 \ �2S0) + (�1S0 \ �2S0)g \ V � (�1S\ �2S) \ V:
Here we note that the finite part of (�1S0 \ �2S0) is a module.

By the definition of , one has

!V (�1S\ �2S) = jdet�1jAL ���1
1 �2

�!V (S) = jdet�2jAL ���1
2 �1

�!V (S):
We put

�m(L) =
1!V (S)
�
(

2m[L:Q] (ch(L) = 0):
qm (ch(L) > 0):

Lemma 3.6. Let �1; �2 2 GLm(AL ). Then

min
06= x2V

LF�1(x) LF�2(x) � jdet�1j2=mAL
�
 �m(L)

 ��1��1
2

�
!2=m :

Proof. Let

�m(L)0 =
1!V (S)
�
(

2m[L:Q] (ch(L) = 0):
1 (ch(L) > 0):

We take a� 2 A�
L such that

j�jmAL

��det��1
1

��
AL
 ��1��1

2

� > �m(L)0:
Then, by Lemma 3.5, there is 06= x 2 ���1

1 S\ ���1
2 S\ V . Let x = ���1

1 y1 = ���1
2 y2,

(y1; y2 2 S). Then

1� LF(y1) LF(y2) = j�j�2
AL
� LF�1(x) LF�2(x):

Therefore,

min
06= x2V

q
LF�1(x) LF�2(x) � inf

�j�jAL : j�jmAL

��det��1
1

��
AL
 ��1��1

2

� > �m(L)0	

� jdet�1j1=mAL
�
 �m(L)

 ��1��1
2

�
!1=m :
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Next we determine� = (�w) 2 GL2n(AL ) such thatK = ��1LK� \ G(A) for the
maximal compact subgroupsK � G(A) and LK � GL2n(AL ). Let v 2 V and Wv
be the set of places ofL which lie abovev. What we need is the form of the coset
(�w)w2WvG(kv) in

Qw2Wv GL2n(Lw).
(i) The case thatv 2 V00 and v splits in L. Let Wv = fw;w0g. Then GL2n(Lw) =

GL2n(Lw0 ) = GL2n(kv) and the Galois automorphism becomes(g; g0) = (g0; g) for
(g; g0) 2 GL2n(Lw)�GL2n(Lw0), and hence

G(kv) =
��

g; JugJ�1
u

� 2 G(Lw)� G(Lw0) : g 2 GL2n(kv)	:
Since Kv = (�w; �w0 )�1(LKw � LKw0)(�w; �w0) \ G(kv) and LKw = LKw0 by Lemma 3.1,
we must haveJu��1w LKw�w J�1

u = ��1w0 LKw0�w0 , so that we can take�w0 as �w J�1
u .

Therefore, (�w; �w0)G(kv) =
�
1; J�1

u

�
G(kv).

(ii) The case thatv 2 V00 and v remains prime inL. Let Wv = fwg. Then

G(kv) =
�
g 2 GL2n(Lw) : JugJ�1

u = g
	:

Let

G0(kv) = fg 2 GL2n(Lw) : g = gg = GL2n(kv):
Since Lw = kv(�) is a quadratic extension ofkw and Dv �= M2(kv), there existsÆw 2
L�w such thatu = ÆwÆw. Then we define the 2n by 2n matrix Tw 2 GL2n(Lw) by

Tw =

0
BBBBBB�

Æw Æw� 0
1 �

... Æw Æw�
0 1 �

1
CCCCCCA
:

The inner automorphism int(Tw) : g 7! TwgT�1w gives an isomorphism fromG0(kv)
onto G(kv). Therefore,TwLKwT�1w \ G(kv) is a maximal compact subgroup ofG(kv)
and there existshv 2 G(kv) such thath�1v �TwLKwT�1w \ G(kv)�h�1v = Kv. Hence we
have�wG(kv) = T�1w G(kv). This implies that�w satisfies

�w Ju��1w = Æw I2n:
(iii) The case ofv 2 V0

f . In this case,v remains prime inL. Let Wv = fwg.
The maximal compact subgroupLKw is the stabilizer of theoLw -lattice

3w := f1oLw + f2oLw + � � � + f2n�1oLw + f2noLw :
Since bothoLw + ioLw and Ov are oLw -lattices of rank 2 inD 
L Lw, there exits
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T 0w 2 GL2(Lw) such thatT 0w(oLw + ioLw ) = Ov. We define the 2n by 2n matrix Tw 2
GL2n(Lw) by

Tw =

0
B�

T 0w 0
...

0 T 0w

1
CA :

Then Tw3w = 31;v := e1Ov + � � � + enOv. Therefore,TwLKwT�1w \G(kv) coincides with
the stabilizer of31;v in G(kv), and hence we have�wG(kv) = T�1w G(kv).

(iv) The case ofv 2 V01. Then v remains prime inL and G(kv) �= GLn(H),
whereH denotes the Hamilton quaternion algebra, andGL2n(Lw) = GL2n(C) for Wv =fwg. We recall thatKv preserves the norm

Fv(e1x1 + � � � + enxn) =

 
nX

i =1

jNrD=k(xi )jkv
!1=2 ; (x1; : : : ; xn 2 Dv):

For xi = �i + i�i , �i ; �i 2 Lw, one has a relation

Fv
 

nX
i =1

ei (�i + i�i )

!
=

 
nX

i =1

�i�i � u�i�i

!1=2

= LFIu

 
nX

i =1

(f2i�1�i + f2i�i )

!1=2 ;
where

Iu =

0
BBBBBB�

1 0p�u
. ..

1
0

p�u

1
CCCCCCA
2 GL2n(C):

Note that�u > 0 in kv = R becauseDv = H. Therefore, we have�wG(kv) = IuG(kv).
Lemma 3.7. Let � 2 GL2n(AL ) be an element such that K= ��1 LK� \ G(A)

and h2 G(A) be an arbitrary element. Then, for �1 = �h and �2 = � h Ju, one has

1

 ��1��1
2

� =
1

 ��2��1
1

� =
1 ��Ju��1

� =
Y
v2V

max
�
1; juj�2n

kv �
=
Y
v2V

max
�jujnkv ; juj�n

kv �:
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Proof. By the definition of and jdet�1jAL = jdet�2jAL = jdet�hjAL , we have ��1��1
2

�
=  ��2��1

1

�
. From Juh J�1

u = h for h 2 G(Ak), it follows

 ��2��1
1

�
=  �� h Juh�1��1� =  ��Ju��1�:

Especially, ��2��1
1

�
is independent ofh. This allows us to consider only� modulo

G(A). For w 2W, let !w be a Haar measure onVLw and �w the w-component of�.
We evaluate!w(Sw)=!w�Sw \ �w Ju��1w Sw�.

(i) The case thatWv = fw;w0g and v 2 V00. In this case, (�w; �w0) =
�
1; J�1

u

�
modulo G(kv). From �w = �w0 and �w0 = �w, it follows �w Ju��1w = J�1

u Ju = 1 and�w0 Ju��1w0 = J2
u = uI2n. Therefore,

!w(Sw)!w(Sw \ �w Ju��1w Sw)
� !w0(Sw0)!w0�Sw0 \ �w0 Ju��1w0 Sw0�

=
!w0(Sw0)!w0(Sw0 \ Sw0u)

= max
�
1; juj�2n

Lw0 � = max
�
1; juj�2n

kv �:
(ii) The case thatWv = fwg and v 2 V00. In this case, we have a relation�w Ju��1w = Æw I2n, whereÆw 2 L�w and NLw=kv (Æw) = u. Therefore,

!w(Sw)!w(Sw \ SwÆw)
= max

�
1; jÆwj�2n

Lw � = max
�
1; juj�2n

kv �:
(iii) The case thatw 2 Wv and v 2 V0

f . In this case,Sw = 3w, �w = T�1w
modulo G(kv) and Tw3w = 31;v. Note that

Tw3w = Tw3w = 31;v:
Since Jux = x i for x 2 VLw , we obtain

J�1
u Tw3w = u�1Ju31;v = 31;v � iu�1 = 31;v � i�1:

Therefore,

!w(Sw)

!w �Sw \ T
�1w JuTwSw� =

!w�J�1
u TwSw�!w�J�1

u TwSw \ TwSw� =
!w�31;v i�1

�
!w�31;v i�1 \31;v�

=
!w(31;v)!w(31;v \31;v i ) =

(
1 (Ov � Ov i )

[Ov : Ov i ]n (Ov i � Ov)
= max

�
1; jNrD=k(i )j�2n

kv �
= max

�
1; juj�2n

kv �:
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(iv) The case thatw 2 Wv and v 2 V01. In this case,�u > 0 in kv, �w = Iu

modulo G(kv) and I u = Iu, so that

I u Ju I �1
u =
p�u J1; where J1 =

0
BBBBBBBBBB�

0 1 0
1 0

0 1
1 0

...

0 1
0 1 0

1
CCCCCCCCCCA
2 GL2n(k):

Therefore,

!w(Sw)

!w�Sw \ I u Ju I �1
u Sw� =

!w(Sw)!w(Sw \ Swp�u)
= max

�
1; ��p�u

���2n
Lw � = max

�
1; juj�2n

kv �:
Summing up, we obtain the assertion.

Theorem 3.8. Let k be a global field, L=k a separable quadratic extension and
D = (L=k;u) a quaternion skew field over k. Then we have

n(D) � en(D) �
 Y
v2V

max
�jujkv ; juj�1

kv �
!n=2 � �2n(L)1=2:

Proof. The inequalityn(D) � en(D) is trivial by definition in §1. There is an
h 2 G(k) = GLn(D) such thath is a permutation offe1; : : : ;eng and

LH�h(en) � LH�h(en�1) � � � � � LH�h(e1):
From Hadamard’s inequality, it follows

jdet�j1=4AL
= jdet�hj1=4AL

� LH�h(e1) � � � LH�h(en) � LH�h(e1)n;
and hence

jdet�j1=2AL

LH�h(e1)2n
� 1:

Since h is a permutation matrix and henceh 2 K , we can replace� with �h and g
with h�1g in the formula following Lemma 3.4. Then we have

en(D) =
1

LH�h(e1)2n
� max

g2G(A)
min

06= x2V

LH�g(x)2n

jNrMn(D)=k(g)jA
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� 1

jdet�j1=2AL

� max
g2G(A)

min
06= x2V

LH�g(x)2n

jNrMn(D)=k(g)jA :
By Lemma 3.3,

LH�g(x)2n � �LF�g(x) LF�gJu(x)
�n=2:

Applying Lemma 3.6 to�1 = �g and �2 = �gJu = �Jug, one has

min
06= x2V

LF�g(x) LF�gJu(x) � jdet�gj1=nAL

�2n(L)1=n
 (�Ju��1)1=n :

Therefore, by Lemma 3.7,

1

jdet�j1=2AL

� min
06= x2V

LH�g(x)2n

jNrMn(D)=k(g)jA
�
 Y
v2V

max
�jujkv ; juj�1

kv �
!n=2 � �2n(L)1=2

holds for all g 2 G(A).

The explicit value of�2n(L) is given as follows:

�2n(L) =

8><
>:

jDL jn4n[L:Q]

(�n=(0(1 + n)))r1((2�)2n=(0(1 + 2n)))r2
(L is a number field);

q2ngL
L (L is a function field):

Here if L is a number field,DL denotes the absolute discriminant ofL, r1 (resp.r2)
the number of real (resp. imaginary) places ofL, and if L is a function field,gL de-
notes the genus ofL and qL the cardinality of the constant field ofL.

REMARK . Fundamental Hermite constants satisfy a Rankin type inequality ([11,
Theorem 4]). This especially deduces the following Mordell’s inequality forn(D):

n(D)1=n � en�1(D)1=(n�2):
If k is a number field, this is written as

�n(D)1=n�1=(n�1) � �n�1(D)1=(n�1)�1=(n�2):
See [4, Theorem 2.3.1] for the original form of Mordell’s inequality.

REMARK . Lower bounds of fundamental Hermite constants were also given in
[11]. A lower bound ofn(D) was explicitly computed in [6].
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4. The case of a number field

In the rest of this paper, we assume thatk is a number field,D a quaternion skew
field over k. The aim of this section is to translate the adelic definitionof the constantn(D) given in §2 into a global setting. We will describen(D) by using the notion
of quaternionic Humbert forms overD. This description will be used to develop the
Voronöı theory for the quaternionic Hermite invariant in§6.

In §2, we fixed a maximal orderO of D and the maximal compact subgroupK
of G(A) whose finite componentKv, v 2 V f , is the stabilizer of the freeOv-lattice
e1Ov+� � �+enOv in Vv. Let LO(V) be the set ofO-lattices3 in V such that3
ok k =
V , and letLO(V)=�= be the set ofG(k)-equivalent classes of elements inLO(V).

We define the reduced norm ofD over Q as NrD=Q = Nk=Q Æ NrD=k (it applies to
elements ofD and O-ideals as well).

First, we recall some facts of the ideal theory of simple algebras. LetR be a max-
imal order of Mn(D) andRv be the completion ofR at v 2 V f . For g = (gv) 2 G(A),

gR =
\
v2V f

(Mn(D) \ gvRv)
yields a rightR-ideal in Mn(D). We define the subgroupG(A)R by

G(A)R = fg 2 G(A) : gR = Rg:
Then the double cosetG(A)Rg�1G(k) of g 2 G(A) corresponds to the rightR-ideal
class ofgR, and G(A)RnG(A)=G(k) is identified with the set of rightR-ideal classes
of Mn(D). It is known that the cardinal number℄(G(A)RnG(A)=G(k)) is finite
and is independent of the choice of a maximal order ofMn(D). Thus we denote℄(G(A)RnG(A)=G(k)) by h(n)

D . The class number of leftR-ideal classes is also equal
to h(n)

D . We let R = Mn(O). For 3 2 LO(V), the set

A3 = fA 2 Mn(D) : A(e1O + � � � + enO) � 3g:
is a right Mn(O)-ideal of Mn(D). The correspondence3 7! A3 gives a bijection from
LO(V)=�= to the set of rightMn(O)-ideal classes (cf. [2, Th́eor̀eme 7]). As a conse-
quence,℄(LO(V)=�=) is equal toh(n)

D , and hence℄(LO(V)=�=) is independent of the
choice of a maximal order ofD.

We denote byIO the set of all rightO-ideals in D, by IO=�= the set of all right
O-ideal classes and byhD the class number℄(IO=�=). For A 2 IO, the ideal class
of A is denoted by [A]. We put

3(A) = e1O + � � � + en�1O + enA;
which is anO-lattice in V . By [2, Théor̀eme 3], it is known that the correspondance
A 7! 3(A) give a surjection fromIO=�= to LO(V)=�=, and henceh(n)

D � hD. We fix,



HERMITE CONSTANT AND VORONÖI THEORY 537

once and for all, a complete systemfA1; : : : ;AhD g of representatives ofID=�= such
that A1 = O and

�3(Ai ) : 1 � i � h(n)
D

	
forms a complete system of representa-

tives of LO(V)=�=. We write3i for 3(Ai ). The adele groupG(A) acts transitively on
LO(V) by

g3 =
\
v2V f

(V \ gv3v)
for g = (gv) 2 G(A) and3 2 LO(V), where3v denotes the completion of3 in Vv
for v 2 V f . Let G(A)31 be the stabilizer of31 = e1O + � � � + enO in G(A), namely

G(A)31 = G(k1)K f ; where G(k1) =
Y
v2V1 G(kv); K f =

Y
v2V f

Kv:
The mapg 7! g�131 on G(A) gives rise to bijections fromG(A)31nG(A) to LO(V)
and G(A)31nG(A)=G(k) to LO(V)=�=. For each i , we fix gi 2 G(A f ) such that
g�1

i 31 = 3i . Then G(A) is decomposed into a disjoint union of double cosets
G(A)31gi G(k), i.e.,

G(A) =
G

1�i�h(n)
D

G(A)31gi G(k):
With the notation of§2, we define the constantn(D)i by

n(D)i = max
g2G(A)31 gi G(k)

min
x2V�f0g Hg(x)2n

jNrMn(D)=k(g)jA
= max

g2G(k1)
min

x2V�f0g H1
g (x)2n

jNrMn(D)=k(g)jk1 �
H f

gi (x)2n

jNrMn(D)=k(gi )jA f

;
where

H1
g (x) =

Y
v2V1 H v(gvx); H f

gi
(x) =

Y
v2V f

H v(gi ;vx):
Note that H1

g (x)H f
gi (x) is invariant by multiplesx 7! xa (a 2 D�) by Lemma 2.1

and the product formula. SinceV = fxa: x 2 3i ; a 2 Dg by [2, Th́eor̀eme in Appen-
dice I], the minimum of the defining equation ofn(D)i is attained at a point in3i .
Therefore,

n(D)i = max
g2G(k1)

min
x23i�f0g

H1
g (x)2n

jNrMn(D)=k(g)jk1 �
H f

gi (x)2n

jNrMn(D)=k(gi )jA f

and

n(D) =en(D) = max
1�i�h(n)

D

n(D)i :
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REMARK . If hD = 1, then we have

n(D) = n(D)1 = max
g2G(k1)

min
x231�f0g

H1
g (x)2n

jNrMn(D)=k(g)jk1
= max

g2G(k1)
minÆ2GLn(O)

H1
g (Æe1)2n

jNrMn(D)=k(g)jk1 :
Indeed, for x = e1x1 + � � � + enxn 2 31 � f0g, there existsy 2 O such thatOx1 +� � � + Oxn = Oy because ofhD = 1. Eachxi is written aszi y, zi 2 O. Then z =
e1z1 + � � �+enzn is primitive in the sense thatOz1 + � � �+Ozn = O. From the primitivity
and [2, Th́eor̀eme 1], it follows that the setfa 2 D : za 2 31g is equal toO and zO
is a direct summand of31. This implies that there exitsÆ 2 GLn(O) such thatÆe1 = z.
Then, by Lemma 2.1 and the product formula,

H1
g (x)H f

g1
(x) = jNrD=k(y)j1=2A H1

g (Æe1)H f
g1

(Æe1) = H1
g (Æe1)H f

g1
(Æe1):

From GLn(O) � K f , it follows that H f
g1(Æe1) = H f

1n
(e1) = 1.

In the following, we show that eachn(D)i , 1 � i � h(n)
D , is independent of the

choice of a maximal order ofD and a family of isomorphisms�v : Dv ! M2(kv) (v 2
V00) which was fixed in§2 to define local heightsH v. For a given subsetU of D and
h = (hv) 2 D�

A , define the subsetUh of D by

Uh =
\
v2V f

�
D \ h�1v Uvhv�;

where Uv denotes the closure ofU in Dv. We take another maximal orderO0 of D
and a family of isomorphisms�0v : Dv ! M2(kv) (v 2 V00) such that�0v(O0v) = M2(okv ) ifv 2 V00

f . By Skolem-Noether’s theorem, there existsh0v 2 D�v such that�0v = �v Æ int(h0v)
for eachv 2 V00. Then (h0v)�1Ovh0v is equal toO0v for v 2 V00

f . Therefore we can take
h = (hv) 2 D�

A such thatOh = O0 and hv = h0v for all v 2 V00. If A � O is a right
integral O-ideal, thenAh gives a right integralO0-ideal. Definebh 2 G(A) by

bh = hIn =

0
B�

h 0
...

0 h

1
CA :

Then the family

30
i :=

\
v2V f

�
V \bh�1v 3i ;vhv�; 1� i � h(n)

D ;
of O0-lattices forms a complete system of representatives ofLO0(V)=�=. We put3 =31 (resp.30 = 30

1) and denote byG(A)3 (resp.G(A)30) the stabilizer of3 (resp.30)
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in G(A). It is obvious thatG(A)30 = bh�1G(A)3bh. If we take g0i = bh�1gibh 2 G(A f ),
then (g0i )�130 = 30

i . Furthermore, we define the local heighth H v on Vv for v 2 V and
the global heighth H on V as follows:

hH v(x) := H v�bhvxh�1v �; hH (x) :=
Y
v2V

hH v(x):
We show thathH is the height corresponding toO0. For v 2 V00, put

�v :=
��0v��1

��
1 0
0 0

�� ; �0v :=
��0v��1

��
0 0
0 1

�� ; J 0v :=
��0v��1

��
0 1
1 0

�� ;
f v02i�1 := ei �v; f v02i := ei �0v J 0v:

Then we have the following relations:

�v = h�1v evhv; �0v = h�1v e0vhv; J 0v = h�1v Jvhv; f v0i =bh�1v f vi hv; (1� i � 2n):
We define the normbF 0v on (Vv�v) ^ (Vv�v) for v 2 V00 as in §2 with respect to the
kv-basis f v01 ; : : : ; f v02n of Vv�v.

Lemma 4.1. One has

hH v(x) =

(
H v(x) (v 2 V0)bF 0v�x�v ^ x�0v J 0v�1=2 (v 2 V00)

for x 2 Vv.
Proof. If v 2 V0, this follows from

hH v(e1x1 + � � � + enxn) = H v�e1hvx1h�1v + � � � + enhvxnh�1v �; (x1; : : : ; xn 2 Dv)
and

��NrD=k�hvxi h�1v ���kv = jNrD=k(xi )jkv . Thus we letv 2 V00
f . Note that

bFv
0
�bhv

0
� X

1�i< j�2n

( f v0i ^ f v0j )�i j

1
A h�1v

1
A= bFv

0
� X

1�i< j�2n

��bhv f v0i h�1v � ^ �bhv f v0j h�1v ���i j

1
A

= bFv
0
� X

1�i< j�2n

( f vi ^ f vj )�i j

1
A= sup

1�i< j�2n
(j�i j jkv ):

This means that

bF 0v(x ^ y) = bFv�bhv(x ^ y)h�1v �
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for any x ^ y 2 (Vv�v) ^ (Vv�v). Then

hH v(x) = H v�bhvxh�1v � = bFv��bhvxh�1v ev� ^ �bhvxh�1v e0v Jv��1=2
= bFv��bhvx�vh�1v � ^ �bhvx�0v J 0vh�1v ��1=2 = bFv�bhv�x�v ^ x�0v J 0v�h�1v �1=2
= bF 0v�x�v ^ x�0v J 0v�1=2:

This lemma shows thathH is the height with respect toO0. For g = (gv) 2 G(A),
define the twisted heighthHg on V by

hHg(x) =
Y
v2V

hH v(gvxv):
We set

n(D)0 = max
g2G(A)

min
x2V�f0g

hHg(x)2n

jNrMn(D)=k(g)jA ;
n(D)0i = max

g2G(A)30 g0i G(k)
min

x2V�f0g
hHg(x)2n

jNrMn(D)=k(g)jA
= max

g2G(k1)
min

x230i�f0g
hH1

g (x)2n

jNrMn(D)=k(g)jk1 �
hH f

g0i (x)2n

jNrMn(D)=k(g0i )jA f

for 1 � i � h(n)
D . Let h1 (resp.bh1) be the infinite component ofh (resp.bh) and

h f (resp.bh f ) be the finite component ofh (resp.bh). Since g0i = bh�1gibh = bh�1
f gibh f ,

we have

n(D)0i = max
g2G(k1)

min
x230i�f0g

Qv2V1 H v�bhvgvxh�1v �2n

jNrMn(D)=k(g)jk1 �
Qv2V f

H v�bhvbh�1v gi ;vbhvxh�1v �2n

jNrMn(D)=k(gi )jA f

= max
g2G(k1)

min
x230i�f0g

jNrD=k(h1)j�n
k1 Qv2V1 H v(gvx)2n��NrMn(D)=k�bh�11 g

���
k1 �

Qv2V f
H v�gi ;vbhvxh�1v �2n

jNrMn(D)=k(gi )jA f

= max
g2G(k1)

min
x230i�f0g

H1
g (x)2n

jNrMn(D)=k(g)jk1 �
H f

gi

�bh f xh�1
f

�2n

jNrMn(D)=k(gi )jA f

;
where we writeH f

gi

�bh f xh�1
f

�
for

Qv2V f
H v�gi ;vbhvxh�1v �.

Proposition 4.2. n(D)0i = n(D)i for i = 1; : : : ; h(n)
D .

Proof. We proven(D)i � n(D)0i . Fix a g 2 G(k1) and take anx0 2 30
i � f0g

such that

H1
g (x0)H f

gi

�bh f x0h�1
f

�
= min

x230i�f0g H1
g (x)H f

gi

�bh f xh�1
f

�:



HERMITE CONSTANT AND VORONÖI THEORY 541

From bhv30
i ;vh�1v = 3i ;v for all v 2 V f , it follows bh f x0h�1

f 2 Qv2V f
3i ;v. We put

cv = H v�gi ;vbhvx0h�1v � for v 2 V f . Clearly, cv > 0 and, for almost allv, cv = 1. We
define the open subsetUv in 3i ;v by

Uv = fyv 2 3i ;v : H v(gi ;vyv) � cvg:
SinceUv = 3i ;v for almost allv, the productU =

Qv2V f
Uv gives an open subset ofQv2V f

3i ;v. From the density of3i in
Qv2V f

3i ;v, it follows 3i \ (U � f0g) 6= ;, so
that we can take a nonzeroy0 2 3i \U . By the definition ofU , y0 satisfies

H f
gi

(y0) � H f
gi

�bh f x0h�1
f

�:
Since the groupSLn(D) = fg 2 GLn(D) : NrMn(D)=k(g) = 1g acts onV �f0g transitively,
there exists� 2 SLn(D) such that� y0 = x0. Let �1 be the projection of� to G(k1).
Then

H1
g�1(y0)H f

gi
(y0) � H1

g (x0)H f
gi

�bh f x0h�1
f

�
= min

x230i�f0g H1
g (x)H f

gi

�bh f xh�1
f

�:
Therefore

min
y23i�f0g H1

g�1(y)H f
gi

(y) � min
x230i�f0g H1

g (x)H f
gi

�bh f xh�1
f

�:
From jNrMn(D)=k(g�1)jk1 = jNrMn(D)=k(g)jk1 , it follows that

min
y23i�f0g

H1
g�1(y)2n

jNrMn(D)=k(g�1)jk1 �
H f

gi (y)2n

jNrMn(D)=k(gi )jA f

� min
x230i�f0g

H1
g (x)2n

jNrMn(D)=k(g)jk1 �
H f

gi

�bh f xh�1
f

�2n

jNrMn(D)=k(gi )jA f

:
Taking the maximums of both sides overg 2 G(k1), we obtainn(D)i � n(D)0i .
If we change the roles ofO and O0 each other, then we getn(D)i = n(D)0i .

Now we define the notion of quaternionic Humbert forms over a quaternion skew
field. To that end, we introduce some notation. We denote byV1;1 (resp.V1;2), the
set of real (resp. complex) places ofk, and by r1; r2 the corresponding cardinalities,
so that r1 + 2r2 = [k : Q]. The ramification index atv 2 V1 over Q is denoted by
dv, and is 1 or 2 according tokv ' R or C. The set of real places ofk which ramify
in D (resp. which split), is denoted byV01;1 (resp.V001;1), with cardinality r 01 and r 001
respectively. Finally, the index ofDv is denoted bymv (mv = 2 if v 2 V01;1, 1 if v 2
V001;1[V1;2). We fix, at anyv 2 V1, an isomorphism�v from Dv onto H or M2(kv),
depending on whetherv is ramified or not.
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DEFINITION 4.3. An n-ary quaternionic Humbert form overD is a (r1+r2)-tuple
S = (Sv)v2V1 , where:
– if v 2 V01;1, Sv is an n-ary positive definite Hermitian form onDnv ' Hn.
– if v 2 V001;1 (resp. v 2 V1;2), Sv is a 2n-ary positive definite symmetric
(resp. Hermitian) form onR2n (resp.C2n).

We denote byPn;D the set ofn-ary quaternionic Humbert forms overD. One can
view Pn;D as a cone in the spaceH =

Qv2V1 Hn;v, whereHn;v stands for the space
Hn(H) of n-ary Hermitian forms overH if v 2 V01;1, the spaceS2n(R) of 2n-ary
symmetric forms overR if v 2 V001;1 and the spaceH2n(C) of 2n-ary Hermitian forms
over C if v 2 V1;2. The groupG(k1) acts on Pn;D by S � g = S[g] = gSg0. In
particular, we get a natural diagonal action ofk�1 on Pn;D:

� � S =
��v�vSv�; for � = (�v)v2V1 2 k�1 and S = (Sv)v2V1 2 Pn;D:

We want to endowPn;D with a structure of Riemannian symmetric space. To that end,
we associate to anyS2 Pn;D a scalar producth ; iS on H, defined by:

hX;YiS =
X
v2V1

dv
mv Trv�S�1v XvS�1v Yv�;

in which Trv stands for the reduced trace ofMn(Dv)=kv (more precisely, ifv is split,
one identifiesMn(M2(kv)) with M2n(kv) and Trv is just the ordinary trace, while forv
ramified, Mn(Dv) = Mn(H) and Trv = TrH=R ÆTr, i.e. Trv A = Tr A + Tr A).

This scalar product isG(k1) invariant, in the sense that

(2) hX � g;Y � giS�g = hX;YiS; S2 Pn;D; g 2 G(k1); (X;Y) 2 H2:
We define the determinant of a formS2 Pn;D as follows:

(i) if v 2 V01, then Sv = gvgv 0 for a suitablegv 2 GLn(H), and we set detSv =
NrMm(H)=R(gv). Alternatively, one can also writeSv asSv = hv diag(a1; : : : ;an)hv 0, where
hv is an upper triangular unipotent matrix andai > 0, and set detSv =

Qn
i =1 ai .

(ii) if v 2 V001, then detSv is the usual determinant ofSv. The determinant ofS
is then

DetS =
Y
v2V1(detSv)mvdv=2:

For any vectoru in Dn, we denote, for simplicity, byuv its image in�v(Dn). If v
is ramified, thenSv[uv] = uvSvuv 0 just stands for the value of the positive definite
Hermitian form Sv at uv. If v is split, we identify �v(Dn) = M2(kv)n with M2n;2(kv).
We choose this identification, rather thanM2;2n(kv), since then the right action ofM2(kv)
on M2(kv)n coincides with the natural right action ofM2(kv) on M2n;2(kv), whereas there
is no natural right action of M2(kv) on M2;2n(kv). Then the imageuv of a vectoru in
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Dn may be identified with a matrixUv in M2n;2(kv), and the value ofSv at uv is then
defined as

Sv[uv] = detSv[Uv] = detU 0vSvU v
(note that the transpose is on the left-hand side, because ofthe identificationM2(kv)n '
M2n;2(kv)). Finally, for S2 Pn;D and u 2 Dn, we define the value ofS at u as:

S[u] =
Y
v2V1 Sv[uv]mvdv=2:

The verification of the following lemma is straightforward.

Lemma 4.4. For any � 2 k�1, S2 Pn;D and u2 Dn, one has:
(i) Det(� � S) = j�j2n

A DetS.
(ii) (� � S)[u] = j�j2AS[u].
For any � 2 D, S2 Pn;D and u2 Dn, one has:
(iii) S[�u] = NrD=Q(�)2S[u].

We want to express the constantsn(D) and n(D)i in terms of quaternionic
Humbert forms. In the following, we often identify the vector spaceV with Dn. To
u = e1u1 + � � � + en�1un�1 + enun 2 3i , one associates a leftO-ideal Au defined as

Au = Ou1 + � � � + Oun�1 + A�1
i un:

This is an integral left ideal, sinceu j 2 O for 1 � j � n � 1, and un 2 Ai . A
vector u 2 3i is said to beprimitive if its associated leftO-ideal Au satisfies the
minimality condition, i.e., NrD=Q(A) � NrD=Q(Au) for any integral leftO-ideal A in
the same class asAu.

The minimum of a formS2 Pn;D with respect to3i is defined as:

mi (S) = min
06= u23i

S[u]

NrD=Q(Au)
;

and its Hermite invariant with respect to3i as

�i (S) =
1

NrD=Q(Ai )

mi (S)n

DetS
:

From the previous lemma, we see that the�i are invariant under the natural action
of k�1 on Pn;D. This allows us to restrict�i to the setP1

n;D of quaternionic Humbert
forms S = (Sv) satisfying detSv = 1 for any v 2 V1. The �i are related to the con-
stantsn(D)i through the following proposition:

Proposition 4.5. For i = 1; : : : ; h(n)
D , maxS2Pn;D �i (S) = maxS2P1

n;D �i (S) = n(D)i .



544 R. COULANGEON AND T. WATANABE

Proof. First we note that the groupG(k1) acts transitively onPn;D. Then, if S =
I [g] = gg0, an elementary calculation shows that, foru 2 3i

H1
g (u)2 = S[u]

H f
gi

(u)2 = NrD=Q(Au)�1

jNrMn(D)=k(g)jk1 = DetS

jNrMn(D)=k(gi )jA f = NrD=Q(Ai );
whence the conclusion.

REMARK . If the class number ofD is 1, which will be the case in the examples
below, then we denotem1; �1 and n(D)1 by m; � and n(D) respectively.

EXAMPLE . Here we assumek = Q and D1 ' H. Let O be a maximal order
of D. We define

ÆO = max
x2D

min
y2O

NrD=Q(x � y);
and we say thatO is (right)-euclidean ifÆO < 1. If this is the case, then the class
number ofO is one, and the type number ofD as well. Consequently, the value ofÆO
is independent ofO, and we denote it byÆD. For such a quaternion skew fieldD, the
methods of Newman [7], Chapter 11, carries over and give the exact value of2(D)
as well as an upper bound forn(D). According to [9], p.156, there are exactly 3
such euclidean quaternion fields overQ, namely, with the standard notation,D2 =
(�1;�1)Q, D3 = (�1;�3)Q and D5 = (�2;�5)Q, (recall that (a;b)k stands for the
quaternion algebra overk generated byi and j with i 2 = a, j 2 = b and i j = � j i ). A
maximal order ofDm, m = 2;3;5, is described as follows:
• m = 2: O = Z[1; i; j; (1 + i + j + i j )=2].
• m = 3: O = Z[1; i; (i + j )=2; (1 + i j )=2].
• m = 5: O = Z[1; (1 + i + j )=2; j; (2 + i + i j )=4].
Their norm constantsÆDm are given by

ÆDm =
m� 1

m
; m = 2;3;5:

From this we deduce

Proposition 4.6. For m = 2;3;5, one has
(i) n(Dm) � mn(n�1)=2,
(ii) 2(Dm) = m.

Proof. (i) The proof follows the same lines as that of Hermiteinequality, as given
for instance in [4, Theorem 2.2.1. p.39].
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(ii) From the first part of the proposition, we know that2(Dm) � m for m =
2;3;5, so we just have to find, in each case, a binary quaternionic Humbert form, i.e.,
a binary Hermitian formS over H, achieving this bound.

• m = 2: We claim that the formS2 =
�

1 (1+i )=2
(1�i )=2 1

�
satisfies�(S2) = 2. Its deter-

minant is 1=2, so it remains to check that its minimumm(S) is 1. For anyu = (x; y) 2
O2, one hasS[u] = xx + yy + Tr(((1 + i )=2)x y), and S[u] 2 Z, since (1 +i )=2 belongs
to the codifferent ofO. Consequently, one hasS[u] � 1 for any 0 6= u = (x; y) 2 O2,
with equality for instance foru = (1;0).

• m = 3: One shows similarly that the formS3 =
�

1 (1+i )= j
(�1+i )= j 1

�
satisfies�(S3) = 3.

• m = 5: Finally, the form S5 =
�

1 (2=5) j�(2=5) j 1

�
satisfies�(S5) = 5.

5. Minimal vectors

To any quaternionic Humbert formS, we want to attach a set ofminimal vec-
tors with respect to�i (or mi ). Namely, we want to consider the set of nonzero vec-
tors u 2 3i such thatS[u]=NrD=Q(Au) is minimal. First we take a complete systemfB1; : : : ;BhD g of representatives of leftO-ideal classes ofD as follows:
(B1): Bi � O and [Bi ] =

�
A�1

i

�
, where fA1; : : : ;AhD g is the set of representatives

of right ideal classesID=�= we fixed in §4.
(B2): If B � O is a left O-ideal and [B] = [Bi ], then NrD=Q(B) � NrD=Q(Bi ).
Then one can writemi (S) as

mi (S) = min
1� j�hD

mi ; j (S);
where

mi ; j (S) = min
06= u23i ;[Au]=[B j ]

S[u]

NrD=Q(Au)
;

so that we can split the minimal vectors according to the class of their associated
ideal. So doing, we get infinitely many minimal vectors, since for any u 2 3i and
any � 2 k�, one has

(3)
S[u]

NrD=Q(Au)
=

S[�u]

NrD=Q(A�u)
:

This is overcome by the following lemma.

Lemma 5.1. For 1� i � h(n)
D and 1� j � hD, one has:

(i) mi ; j (S)=(1=NrD=Q(Bj ))min06= u23i ;Au=Bj S[u]=(1=NrD=Q(Bj ))min06= u23i ;[Au]=[Bj ]S[u].
(ii) There are finitely many nonzero vectors u in3i , up to multiplication by units,
such thatAu = B j and S[u]=NrD=Q(Au) = mi ; j (S).
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Proof. The first assertion is clear, because of (3) and the minimality conditions
on B j . As for the second one it will follow from classical properties of height func-
tions. For 1� j � hD, let 30

i ; j stand for the set of primitive vectorsu 2 3i with

Au = B j . With the notation of§3, we have injections30
i ; j =O� ,! PDV ,! PbVL . If

LH denotes the height function onPbVL defined in§3, we know, by standard properties
of height functions on projective spaces that, for anyT > 0, the set

�
x 2 PbVL : LH (x) � T

	
is finite. Let g 2 G(k1) be such thatS = gg0. Because of the relation betweenLH and
Hggi (Lemma 2.2 and Lemma 3.4), we can conclude that the set�

u 2 30
i ; j =O� : Hggi (u) � T

	
is finite. But for u 2 30

i ; j , the finite partH f
gi (u) of Hggi (u) is constant, so that the set

�
u 2 30

i ; j =O� : S[u]1=2 = H1
g (u) � T

	
is itself finite, which gives the desired result.

In other words, one can restrict minimal vectors toprimitive minimal vectors, and
the set of primitive minimal vectors up to multiplication byunits is finite. From now
on, we fix a finite setMi (S) of representatives, modulo units, of primitive minimal
vectors.

6. Voronöı theory

We prove in this section, using a general method developed byC. Bavard [1],
that Voronöı theory holds for the quaternionic Hermite invariants�i just defined. Ac-
cording to the classical terminology, we call�i -extremea form S that achieves a lo-
cal maximum of�i , viewed as a function onPn;D, or P1

n;D. We want to characterize�i -extreme forms via suitable notions ofperfectionand eutaxy. To that end we need
to rephrase the definitions of the�i in terms of length functions on a certain vari-
ety, check that the so-called ‘condition (C)’ (see [1], 2.2)is satisfied, and then apply
Lemma 2.2 of [1] to conclude. As mentioned before, we can restrict �i to the sub-
variety P1

n;D.
The tangent spaceTSP1

n;D of P1
n;D at S is identified with

8<
:M = (Mv)v2V1 2 Y

v2V1 Hn;v : Trv�S�1v Mv� = 0 for all v 2 V1
9=
; ;

and therefore has dimensionr 01n(2n� 1) +r 001n(2n + 1) + 4r2n2� (r1 + r2). It is endowed
with the scalar producth ; iS defined above.



HERMITE CONSTANT AND VORONÖI THEORY 547

To u 2 Dn, we associate a length functionlu on P1
n;D defined by

lu(S) =
S[u]2

NrD=Q(Au)2
;

so that

�i (S) = min
06= u23i

lu(S)1=2:
An easy computation gives the gradientXS(u) at S of lu, with respect toh ; iS,

namely

XS(u) = lu(S)

�
SvxS(u)vSv � 1

n
Sv
�
v2V1 ;

where

xS(u)v = �v�u0vSv[uv]�1uv� =

8><
>:

u0vuv
Sv[uv] (v 2 V01;1);
U
0v�UvSvU 0v��1

Uv (v 2 V001;1 [V1;2):
We setxS(u) = (xS(u)v)v2V1 . Note thatxS(u), and XS(u) as well, depends onu only
modulo units, i.e.,xS(�u) = xS(u) for � 2 O�.

From this, we can deduce a definition for�i -perfectionand�i -eutaxy. According
to the general theory developed in [1], it is natural indeed,to say that a formS is�i -perfect if the gradientsXS(u), u 2 Mi (S), generate the tangent spaceTSP1

n;D, and�i -eutactic if 0 belongs to the open convex hull of these gradients. From the above re-
mark, this does not depend on the choice of a setMi (S) of representatives of minimal
vectors modulo units. The following proposition gives a simpler formulation of these
properties.

Proposition 6.1. (i) A quaternionic Humbert form S is�i -perfect if and only if

ConvfxS(u)v;u 2 Mi (S)g = fM = (Mv)v2V1 2 H : Trv(SvMv) = 2 (8v 2 V1)g;
whereConv stands for the convex hull. In other words, S is�i -perfect if and only if

dim SpanfxS(u);u 2 Mi (S)g = r 01n(2n� 1) + r 001n(2n + 1) + 4r2n2 � (r1 + r2) + 1:
(ii) A quaternionic Humbert form S is�i -eutactic if and only if the form S�1 =
(S�1v )v2V1 belongs to the open convex hull of the vectors(xS(u)v)v2V1 , u 2 Mi (S).

Proof. (i) Let pS? stand for the orthogonal projection on the orthogonal com-
plement ofS (orthogonality is with respect toh ; iS). One haspS?(SxS(u)S) = (1=lu(S))�
XS(u), whence (i). Assertion (ii) is straightforward.
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Lemma 6.2. The length functions lu satisfy condition(C).

Applying Lemma 2.2 of [1] we obtain the foreseen characterization of extreme
forms:

Theorem 6.3. A quaternionic Humbert form S= (Sv) is �i -extreme if and only
if it is �i -perfect and�i -eutactic.

Proof of the Lemma. The proof is absolutely similar to the proof of Proposi-
tion 2.8 in [1]. In our context, condition (C) means that: forany S 2 P1

n;D, and any
finite set M of vectors in3i n f0g, if there exists a nonzero vectorX in TSP1

n;D which
is orthogonal to theXS(u), u 2 M, then there exists aC1 curve c: [0; �[ ! P1

n;D
such that
(C1): c(0) = S, c0(0) = X.
(C2): 8u 2 M, 8t 2 [0; �[, lu(c(t)) > lu(S).

From theSLn(D
k k1)-invariance ofh ; iS, it is enough to check condition (C) at
S = I . In that case, we denote the scalar producth ; iI simply by h ; i. The condition
that X = (Xv)v2V1 belongs toTI P1

n;D reads

8v 2 V1; Trv Xv = 0;
and the orthogonality condition is equivalent to

8u 2 M; hxI (u); Xi = 0:
We want to findY 2 TI P1

n;D such that the curvec(t) = exp(t X + (t2=2)Y) satisfies
conditions (C1) and (C2) above (the exponential is to be understood componentwise,
namelyc(t) = (exp(t Xv + (t2=2)Yv))v2V1). Setting fu(t) = lu(c(t)) one has

f 0u(0) = hxI (u); Xi = 0

and

f 00u (0) = hxI (u);Yi + hxI (u); X2i � hxI (u)X; xI (u)Xi:
As in the proof of Proposition 2.8 in [1], it’s easy to see thathxI (u); X2i � hxI (u)X;

xI (u)Xi is positive, unless

xI (u)X = XxI (u)(4)

i.e. 8v 2 V1; xI (u)vXv = XvxI (u)v:(5)
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If this commutation relation is not satisfied, then, for small enoughY 2 TI P1
n;D, we

can conclude that the second derivativef 00u (0) is positive, whencefu(t) > fu(0), for
small enought . For thoseu satisfying (4) to the contrary, one has

f (3)
u (0) = 0

and

f (4)
u (0) = 3

�hxI (u);Yi2 + hxI (u);Y2i � hxI (u)Y; xI (u)Yi�:
Arguing as in the proof of Proposition 2.8 of [1], one shows that there existsY 2

TI P1
n;D such thathxI (u);Y2i � hxI (u)Y; xI (u)Yi > 0, whence f (4)

u (0) > 0. Moreover,
this Y can be chosen arbitrarily small so that, again, for small enough t , fu(t) > fu(0).

Proposition 6.4. Any �i -perfect form S2 P1
n;D is algebraic, i.e. the entries of

each Sv, v 2 V1, belong toQ.

Proof. Let S be a perfect form. Let us consider the algebraic varietyV(S) = fT 2
H : 8u 2 Mi (S); T [u] = 1g. This is an algebraic subvariety ofH, defined overQ. The�i -perfect forms belonging toV(S) are isolated real points ot this variety, thus they
are finitely many, and they are defined overQ.

Corollary 6.5. For i = 1; : : : ; h(n)
D , n(D)i is algebraic.

Proof. There exists one�i -extreme, hence�i -perfect, formS such thatn(D)i =�i (S). The conclusion follows since�i (S) is a rational expression inS, and S is
algebraic.

We end this section by showing that there are only finitely many �i (S)-perfect
forms in a given dimension. To that end, we introduce the notion of �i (S)-perfect sets
of vectors in3i .

DEFINITION 6.6. A setfu1; : : : ;ut g of vectors in3i is �i (S)-perfect if it is the
set of minimal vectors of a�i (S)-perfect quaternionic Humbert form.

Two setsfu1; : : : ;ut g and fu01; : : : ;u0t g of vectors in3i are equivalent if there ex-
ists g 2 GL(3i ), and units�1; : : : ; �t in O� such thatu0j = � j gu j , 1 � j � t . The
main result of this subsection is the following:

Theorem 6.7. Modulo the actions of GL(3i ) and O�, the set of�i (S)-perfect
sets in3i is finite.
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From this we easily derive the following corollary

Corollary 6.8. Modulo the actions of GL(3i ) and O�, the set of�i (S)-perfect
forms is finite.

Proof. Let M be a �i (S)-perfect set. We see as before, that the set of�i (S)-
perfect forms havingM as their set of minimal vectors is contained in the set of iso-
lated real points of an algebraic variety, so they are finitely many.

The proof of Theorem 6.7 relies on the following sequel of lemmas.

Lemma 6.9. There exists a positive constant C= C(k) such that for any S2
Pn;D and any u2 Dn,

inff�2o�k g supfv2V1g
Sv[�vuv]

S[�u]2=(mvdv (r +s))
� C:

Proof. Let k11 :=
�� = (�v)v2V1 :

Q j�vj = 1
	
. For fixed S 2 Pn;D and u 2 Dn,

we define an element ofk11 by setting

�v :=
Sv[uv]mv=2

S[u]1=(dv (r +s))
:

From Dirichlet unit theorem, the quotientk11=o�k 2
is compact, so there exists a con-

stantC = C(k), depending only onk, such that any element ink11 admits a represen-

tative �0 = (�0v)v2V1 modulo multiplication by elements ofo�k 2
, satisfying j�0vj � C.

Applying this to the above defined element�, we can find a unit� such that

Sv[�vuv]mv=2
S[�u]1=(dv (r +s))

= �2v Sv[uv]mv=2
S[u]1=(dv (r +s))

� C for any infinite place v;
which gives the desired conclusion.

Lemma 6.10. There exists a positive constant C0 = C0(D) such that for any S2
Pn;D and any u2 Dn,

inff�2O�g supfv2V001;1[V1;2g
Tr Sv[�vUv]
detSv[Uv]1=2 � C0:

Proof. First, by homogeneity, we can restrict toS 2 P1
n;D and u 2 Sn�1(D) :=�

u 2 Dn :
Pn

i =1 NrD=k(ui ) = 1
	
. If D does not satisfy the Eichler condition,

i.e. both V001;1 and V1;2 are empty, then the assertion is obvious. Otherwise, one
knows from [5], Theorem 8.12, that the image ofO1 := f� 2 O� : NrD=k(�) = 1g in
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Qv2V001;1[V1;2 SL2(kv) is co-compact, from which the assertion of the lemma is easily

derived.

We can now proceed to the proof of Theorem 6.7 itself. In what follows, a vector
u 2 Dn satisfying the conditions of Lemma 6.9 and 6.10, i.e.

(6)
Sv[uv]

S[u]2=(mvdv(r +s))
� C for any v 2 V1

and

(7)
Tr Sv[Uv]

detSv[Uv]1=2 � C0 for any v 2 V001;1 [V1;2;
will be said to benormalized with respect to S, or simply normalizedfor short.

Let M = fu1; : : : ;ut g be a �i (S)-perfect set in3i . Using Lemma 6.9, we can
assume that theu j , 1 � j � t , are normalized with respect toS (this amounts to
multiply them by suitable units, if necessary). TheD-subspace spanned byM is Dn,
otherwise the dimension of the subspace spanned by thexS(u) would be strictly less
than r 01n(2n� 1) + r 001 n(2n + 1) + 4r2n2� (r1 + r2) + 1, contradicting the�i (S)-perfection
of M.

So one can extract fromM a D-basisu1; : : : ;un of Dn. The O sublattice of3i

spanned by this basis is denoted by3. Let u be any non zero vector in3i . Due to
the arithmetic-geometric mean inequality, one has

(S[u])1=r +s � 1

r + s

0
�X
v2V1 Sv[uv]mvdv=2

1
A

� 1

r + s

0
� X
v2V01;1 Sv[uv] +

X
v2V001;1 detSv[Uv]1=2 +

X
v2V1;2 detSv[Uv]

1
A

� 1

r + s

0
� X
v2V01;1 Sv[uv] +

X
v2V001;1

1

2
Tr Sv[Uv] +

X
v2V1;2

1

4
(Tr Sv[Uv])2

1
A :

One can writeu as
Pn

j =1� j u j , � j 2 D. Set nu = NrD=Q(Au) (resp.nui = NrD=Q(Auui
),

1 � i � n). Because of Lemma 5.1, we can assume thatAu is one of theBi , so
that nu � 1 (Bi � O). Applying repeatedly the triangle inequality and inequalities (6)
and (7) one gets:

Sv[uv] �
 X

i

j�i jvSv[ui ;v]1=2!2

� C

 X
i

j�i jvS[ui ]
1=(2(r +s))

!2
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� C

 X
i

j�i jvn1=(2(r +s))
i

!2

mi (S)1=r +s for v 2 V01;1;
TrSv[Uv] � 2

 X
i

j�i j1=dvv (TrSv[Ui ;v])1=2!2

� 2CC0 X
i

j�i j1=dvv S[ui ]
1=(2mvdv(r +s))

!2

� 2CC0 X
i

j�i j1=dvv n
1=(2mvdv (r +s))
i

!2

mi (S)1=(mvdv(r +s)) for v 2 V001;1 [V1;2:

Combined with the previous inequality, this yields

(numi (S))1=r +s � (S[u])1=r +s

� 1

r + s

0
� X
v2V01;1C

 X
i

j�i jvn1=(2(r +s))
i

!2

+
X

v2V001;1CC0 X
i

j�i jvn1=(2(r +s))
i

!2

+
X

v2V1;2(CC0)2

 X
i

j�i j1=2v n
1=(4(r +s))
i

!4
1
Ami (S)1=(r +s);

whence

1� n1=r +s
u � 1

r + s

0
� X
v2V01;1 C

 X
i

j�i jvn1=(2(r +s))
i

!2

+
X

v2V001;1 CC0  X
i

j�i jvn1=(2(r +s))
i

!2

+
X

v2V1;2(CC0)2

 X
i

j�i j1=2v n
1=(4(r +s))
i

!4
1
A :

In particular, the convex body

1

r + s

0
� X
v2V01;1 C

 X
i

j�i jvn1=(2(r +s))
i

!2

+
X

v2V001;1 CC0  X
i

j�i jvn1=(2(r +s))
i

!2

+
X

v2V1;2(CC0)2

 X
i

j�i j1=2v n
1=(4(r +s))
i

!4
1
A < 1

(8)

in R
Q Dn, contains no nonzero point in3i .
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According to Minkowski convex body theorem, this implies that its volume is
bounded from above by 24[k:Q]1i , where1i stands for the discriminant of3i , viewed
as a lattice inR
Q Dn ' R4[k:Q] . On the other hand, an easy computation shows that
this volume can be expressed as

(9) [3i : 3]V;
whereV is a constant depending only onk and n. Consequently, we see that [3i : 3]
is bounded from above by a constant, so that there are finitelymany possible3’s,
whence finitely many basesfu1; : : : ;ung of Dn up to GL(3i ) satisfying (6) and (7)
and consisting on minimal vectors of a Humbert form.

It remains to prove that each of these bases is contained in finitely many weakly
perfect sets. Without loss of generality, we can assume thatdetSv = 1 for anyv 2 V1
(this amounts to scale the components ofS by suitable positive factors, which does
not affect the set of minimal vectors). Letfu1; : : : ;ung be a n-tuple of linearly inde-
pendent normalized minimal vectors of an-ary Humbert formS. If u is any minimal
vector of S, we can assume, from Lemma 5.1, thatAu is one of theBi , so that, in
particular,nu is bounded by a constant depending only onO. Once this is achieved we
can assume moreover, thatu is normalized with respect toS (this amounts to scaleu
by a suitable unit, which does not affectAu). If we write u as

u =
nX

j =1

u j� j ; � j 2 D;
we will show that there are finitely many possibilities for the � j , which will complete
the proof. To that end, we only need to bound the images� j ;v of � j in D 
k kv, v
in V1.

(i) If v 2 V01;1, we consider, for eachj = 1; : : : ;n, the matrix Pj 2 Mn(D)
the columns of which are theu0k, but for the j -th which is defined to beu0. Then, the
determinant of the hermitian formSv[ Pj ;v] is given by

detSv[ Pj ;v] = NrH=R(� j ;v) detSv = NrH=R(� j ;v):
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On the other hand, bounding the determinant ofSv[ Pj ;v] by the product of its diagonal
entries (Hadamard inequality), we get

NrH=R(� j ;v) = detSv[ Pj ;v] � Sv[uv] nY
k 6= j

Sv[uk;v]

� Cn

0
�S[u]

Y
k 6= j

S[uk]

1
A

1=(r +s)

because of (6)

= Cn

0
�nu

Y
k 6= j

nuk

1
A

1=(r +s)

mi (S)n=(r +s)

� Cn

0
�
0
�nu

Y
k 6= j

nuk

1
ANrD=Q(Ai )n(D)i

1
A

1=(r +s)

:

(10)

From our assumption onu, we know thatnu is bounded, so (10) gives a bound on
NrH=R(� j ;v).

(ii) If v 2 V001;1 [ V1;2, each� j ;v identifies with a 2 by 2 matrix
� � j � j� j � j

� 2
M2(kv), and what we want to show is thatj� j jv, j� j jv, j� j jv and j� j jv are bounded.
We show it for j� j jv (the other cases are similar). We denote byU (resp. U j ) the
image of u (resp. u j ) in M2n;2(kv), so that the equalityu =

Pn
j =1 u j� j readsU =Pn

j =1 U j
� � j � j� j � j

�
or, transposing,

(11) U 0 =
nX

j =1

�� j � j� j � j

�
U 0

j :

Let X;Y (resp. X j ;Yj ) in Dn be the first and second rows ofU 0 (resp.U 0
j ). Multiply-

ing (11) on the left by
�

1 0
0 0

�
, we get

(12) X =
nX

j =1

� j X j +� j Yj :

We now consider the matrixPj ;v 2 M2n(kv), the rows of which are defined as follows:
for 1 � k � n, the 2k-th row is Yk, the (2k � 1)-th row is Xk if k 6= j and the
(2 j � 1)-th row is X. As before, we see that the determinant of the positive definite
Hermitian form Sv[ Pj ;v] is

detSv[ Pj ;v] = j� j j2=dvv detSv = j� j j2=dvv :
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On the other hand, applying the Hadamard inequality, we get

detSv[ Pj ;v] � Sv[X]Sv[Yj ]
Y
k 6= j

(Sv[Xk]Sv[Yk])

� C0n detSv[U j ]
Y
k 6= j

detSv[Uk] because of (7)

� C0nCn

0
�S[u]

nY
k 6= j

S[uk]

1
A

2=(mvdv(r +s))

because of (6)

= C0nCn

0
�nu

Y
k 6= j

nuk

1
A

2=(mvdv(r +s))

mi (S)2n=(mvdv(r +s))

� C0nCn

0
�
0
�nu

Y
k 6= j

nuk

1
ANrD=Q(Ai )n(D)i

1
A

2=(mvdv (r +s))

:

(13)

Again, the assumption onu ensures thatnu is bounded, so (13) gives a bound onj� j jv.
In conclusion, (10) and (13), together with the assumption that u is in 3i , leaves

finitely many possibilities for the� j , whence we conclude that there are finitely many
weakly perfect sets.
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