ON KLEIN-MASKIT COMBINATION THEOREM IN SPACE I

Liulan LI, Ken’ichi OHSHIKA and Xiantao WANG*

(Received August 21, 2007, revised August 18, 2008)

Abstract

In this paper, we generalise the first Klein-Maskit combination theorem to discrete groups of Möbius transformations in higher dimensions. The application of the main theorem is discussed in the last section.

1. Introduction

In the theory of classical Kleinian groups, there are theorems called the combination theorems which give methods to generate new Kleinian groups as amalgamated free products or HNN extensions of Kleinian groups. The prototype of such theorems is Klein's combination theorem which can be rephrased as follows in the modern terms:

Theorem 1.1 (Klein [16]). Let G_{1} and $G_{2} \subset P S L_{2} \mathbb{C}$ be two finitely generated Kleinian groups with non-empty regions of discontinuity, and let D_{1} and D_{2} be fundamental domains for G_{1} and G_{2} of their regions of discontinuity respectively. Suppose that the interior of D_{2} contains the frontier and the exterior of D_{1} and that the interior of D_{1} contains the frontier and the exterior of D_{2}. Then the group $\left\langle G_{1}, G_{2}\right\rangle$ generated by G_{1} and G_{2} in $P S L_{2} \mathbb{C}$ is a Kleinian group isomorphic to $G_{1} * G_{2}$ with non-empty region of discontinuity and $D=D_{1} \cap D_{2}$ is a fundamental domain for the region of discontinuity of $\left\langle G_{1}, G_{2}\right\rangle$.

Fenchel-Nielsen, in [12], gave a generalisation of Klein's theorem to amalgamated free products and HNN extensions for Fuchsian groups. In a series of papers, Maskit considered to generalise Klein's theorem to amalgamated free products and HNN extensions for Kleinian groups ([18]-[23]). Thurston gave an interpretation of the combination theorem using three-dimensional hyperbolic geometry and harmonic maps, cf. [27]. For applications of the combination theorems, we refer the reader to $[1,4,7,12,17$, 24, 34].

Among these, the first Maskit combination theorem says that under some conditions two Kleinian groups G_{1}, G_{2} whose intersection J is geometrically finite generate

[^0]a Kleinian group isomorphic to the free product of G_{1} and G_{2} amalgamated over J and also under the same conditions the resulting group is geometrically finite if and only if both G_{1} and G_{2} are geometrically finite.

The purpose of the present paper is to generalise this first Maskit combination theorem to discrete groups of Möbius transformations of dimension greater than 2. A first pioneering attempt to generalise Maskit's combination theorems to higher dimensions was made by Apanasov [5, 6]. Ivascu [15] also considered this generalisation. In particular, they showed that under the same assumptions as Maskit combined with some extra conditions, one can get a discrete group which is an amalgamated free product of two discrete groups of n-dimensional Möbius transformations. In fact, they proved the following.

Theorem 1.2. Let G_{1}, G_{2} be two discontinuous n-dimensional Möbius subgroups with a common subgroup H, and let the n-sphere S^{n} split along a hypersurface $S \subset S^{n}$ into two domains D_{1} and D_{2} whose closures \bar{D}_{1} and \bar{D}_{2} are precisely invariant with respect to H, in G_{1} and G_{2}, respectively. Let also the following two conditions hold: (1) For fundamental domains Δ, F_{1} and F_{2} of the groups H, G_{1} and G_{2}, there exists a neighbourhood V of the surface S such that $\Delta \cap V \subset F_{i}, i=1,2$.
(2) For each $i=1,2$, the set $\Delta \cap \bar{D}_{i}=\bar{D}_{i} \cap F_{i}$ is a proper subdomain in F_{i}. Then the following hold.
(1) The group $G=\left\langle G_{1}, G_{2}\right\rangle$ is discontinuous and isomorphic to the amalgamated free product $G_{1} *_{H} G_{2}$.
(2) $F=F_{1} \cap F_{2}$ is a fundamental domain for the group G.
(3) $m_{n}(\Lambda(G))=0$ if and only if $m_{n}\left(\Lambda\left(G_{i}\right)\right)=0, i=1,2$.
(4) Each elliptic or parabolic element of G is conjugate in G to an element from $G_{1} \cup G_{2}$.

In this paper, we shall show that a generalisation of the first Maskit's theorem holds in higher dimensions without any such additional assumptions, imposing only natural ones. Our theorem also includes the equivalence of geometric finiteness of the given two groups and that of the group obtained by the combination. It should be noted that in this paper, we say that a Kleinian group is geometrically finite when the ε-neighbourhood of its convex core has finite volume for some $\varepsilon>0$, and there is an upper bound for the orders of torsions in the group. We do not assume that it has a finite-sided fundamental polyhedron. For more details about these Kleinian groups of higher dimensions, we refer the reader to $[11,26,28,29,30]$ and the references therein.

Our main result (Theorem 4.2) and its proof will appear in §4.
This is the first of a series in which we shall discuss generalisations and applications of Klein-Maskit combination theorem in higher dimensions. A generalisation of the second Klein-Maskit combination theorem, which corresponds to HNN extensions,
to the case of discrete groups of Möbius transformations in higher dimensions and applications of these two combination theorems will be given in forthcoming papers.

2. Preliminaries

2.1. Basics on Möbius transformations. For $n \geq 2$, we denote by $\overline{\mathbb{R}}^{n}$ the onepoint compactification of \mathbb{R}^{n} obtained by adding ∞. The group of orientation-preserving Möbius transformations of $\overline{\mathbb{R}}^{n}$ is denoted by $M\left(\overline{\mathbb{R}}^{n}\right)$, with which we endow the compactopen topology. We regard $\overline{\mathbb{R}}^{n}$ as the boundary at infinity of the hyperbolic $(n+1)$-space \mathbb{H}^{n+1} which is identified with the open unit ball bounded by $\overline{\mathbb{R}}^{n}$. We denote the union of \mathbb{H}^{n+1} and $\overline{\mathbb{R}}^{n}$ endowed with the natural topology by \mathbb{B}^{n+1}. Any Möbius transformation of $\overline{\mathbb{R}}^{n}$ is extended to a Möbius transformation of \mathbb{B}^{n+1}, which induces an isometry of \mathbb{H}^{n+1}. When it is more convenient, we regard \mathbb{H}^{n+1} as the upper half-space of the $(n+1)$ dimensional Euclidean space and \mathbb{R}^{n} as $\left\{\left(x_{1}, \ldots, x_{n}, 0\right)\right\}$ in \mathbb{R}^{n+1}. A non-trivial element $g \in M\left(\overline{\mathbb{R}}^{n}\right)$ is called
(1) loxodromic if it has two fixed points in $\overline{\mathbb{R}}^{n}$ and none in \mathbb{H}^{n+1};
(2) parabolic if it has only one fixed point in $\overline{\mathbb{R}}^{n}$ and none in \mathbb{H}^{n+1};
(3) elliptic if it has a fixed point in \mathbb{H}^{n+1}.

For a discrete group G of $M\left(\overline{\mathbb{R}}^{n}\right)$ and a point $z \in \mathbb{H}^{n+1}$ or $x \in \overline{\mathbb{R}}^{n}$, the sets $G(z)=$ $\{g(z): g \in G\} \subset \mathbb{H}^{n+1}$ and $G(x)=\{g(x): g \in G\} \subset \overline{\mathbb{R}}^{n}$ are called G-orbits of z and x respectively. If z^{\prime} lies in the G-orbit of z, then we say that z^{\prime} and z are G-equivalent.
2.2. Limit sets, regions of discontinuity and fundamental sets. The limit set $\Lambda(G)$ of a discrete group $G \subset M\left(\overline{\mathbb{R}}^{n}\right)$ is defined as follows:

$$
\Lambda(G)=\overline{G(z)} \cap \overline{\mathbb{R}}^{n}
$$

for some $z \in \mathbb{H}^{n+1}$, where the overline denotes the closure in $\mathbb{B}^{n+1}=\mathbb{H}^{n+1} \cup \overline{\mathbb{R}}^{n}$ and $G(z)$ the G-orbit of z. We call points of $\Lambda(G)$ limit points. The complement $\Omega(G)=$ $\overline{\mathbb{R}}^{n} \backslash \Lambda(G)$ is called the region of discontinuity of G. The following is a well-known fact.

Lemma 2.1. Let G be a discrete subgroup of $M\left(\overline{\mathbb{R}}^{n}\right)$. If $B \subset \overline{\mathbb{R}}^{n}$ is a closed and G-invariant subset containing at least two points, then $\Lambda(G)$ is contained in B.

A discrete group $G \subset M\left(\overline{\mathbb{R}}^{n}\right)$ is said to act discontinuously at a point $x \in \overline{\mathbb{R}}^{n}$ if there is a neighbourhood U of x such that $\{g \in G: g(U) \cap U \neq \emptyset\}$ is a finite set. The group G acts discontinuously at every point of $\Omega(G)$, and at no point of $\Lambda(G)$.

The complement of the fixed points of elliptic elements in $\Omega(G)$ is called the free regular set, and is denoted by ${ }^{\circ} \Omega(G)$. When ${ }^{\circ} \Omega(G) \neq \emptyset$, a fundamental set of G is a set which contains one representative of each orbit $G(y)$ of $y \in{ }^{\circ} \Omega(G)$. It is obvious that ${ }^{\circ} \Omega(G) \neq \emptyset$ if and only if $\Omega(G) \neq \emptyset$.

We have the following lemmata for the limit points. These lemmata in the classical case when $n=2$ can be found in Theorems II.D. 2 and II.D. 5 in Maskit [22]. Although the argument is quite parallel, we give their proofs for completeness.

Lemma 2.2. Let x be a limit point of a discrete subgroup G in $M\left(\overline{\mathbb{R}}^{n}\right)$. Then there are a limit point y of G and a sequence $\left\{g_{m}\right\}$ of distinct elements of G such that g_{m} converges to the constant map x uniformly on any compact subset of $\overline{\mathbb{R}}^{n+1} \backslash\{y\}$.

Proof. Since x is a limit point, there are a point $z \in \mathbb{H}^{n+1}$ and a sequence $\left\{g_{m}\right\}$ of distinct elements of G such that $g_{m}(z) \rightarrow x$. Regard \mathbb{H}^{n+1} as the upper half-space. Let $\left(z_{1}, \ldots, z_{n}, z_{n+1}\right)$ be the coordinate of z, with $z_{n+1}>0$. Consider the point $z^{\prime}=$ $\left(z_{1}, \ldots, z_{n},-z_{n+1}\right)$ in the lower half-space. The actions of Möbius transformations can be extended to the lower half-space conformally. Then obviously, we have $g_{m}\left(z^{\prime}\right) \rightarrow x$.

By conjugation, we can assume that G acts on \mathbb{B}^{n+1} with Int $\mathbb{B}^{n+1}=\mathbb{H}^{n+1}$, that $z=\mathbf{0}$, and that $\operatorname{Stab}_{G}(\mathbf{0})=\operatorname{Stab}_{G}(\infty)=\{i d\}$. Then $z^{\prime}=\infty$; hence we have $g_{m}(\infty) \rightarrow x$. By taking a subsequence we can make $g_{m}^{-1}(\infty)$ converge to some limit point y. Since g_{m} maps the outside of its isometric sphere onto the interior of that of g_{m}^{-1}, the radii of the isometric spheres of g_{m} and g_{m}^{-1}, which are equal, converge to 0 as $m \rightarrow \infty$, and the centre $g_{m}(\infty)$ of the isometric sphere of g_{m}^{-1} converges to x. On the other hand, the centre of the isometric sphere of g_{m}, which is $g_{m}^{-1}(\infty)$ converges to y. This completes the proof.

Lemma 2.3. Let $\left\{g_{m}\right\}$ be a sequence of distinct elements of a discrete group $G \subset$ $M\left(\overline{\mathbb{R}}^{n}\right)$. Then there are a subsequence of $\left\{g_{m}\right\}$ and limit points x, y of G, which may coincide, such that g_{m} converges to the constant map x uniformly on any compact subset of $\overline{\mathbb{R}}^{n+1} \backslash\{y\}$.

Proof. We may assume that G acts on \mathbb{B}^{n+1} with Int \mathbb{B}^{n+1} identified with \mathbb{H}^{n+1}, and that $\operatorname{Stab}_{G}(\infty)=\{i d\}$. By taking a subsequence if necessary, we have two limit points x and y such that $g_{m}(\infty) \rightarrow x$ and $g_{m}^{-1}(\infty) \rightarrow y$. The conclusion now follows from the proof of Lemma 2.2.

We shall use the following term frequently.
Definition 2.1. Let H be a subgroup of a discrete subgroup G of $M\left(\overline{\mathbb{R}}^{n}\right)$. An subset V of $\overline{\mathbb{R}}^{n}$ is said to be precisely invariant under H in G if $h(V)=V$ for all $h \in H$ and $g(V) \cap V=\emptyset$ for all $g \in G-H$.

For $\Omega(G)$, we have the following proposition: refer to Proposition II.E. 4 in Maskit [22] or Theorem 5.3.12 in Beardon [7].

Proposition 2.4. Suppose that $\Omega(G)$ is not empty. Then a point $x \in \overline{\mathbb{R}}^{n}$ is contained in $\Omega(G)$ if and only if
(1) the stabiliser $\operatorname{Stab}_{G}(x)=\{g \in G: g(x)=x\}$ of x in G is finite, and
(2) there is a neighbourhood U of x in $\overline{\mathbb{R}}^{n}$ which is precisely invariant under $\operatorname{Stab}_{G}(x)$ in G.

Definition 2.2. A fundamental domain for a discrete group G of $M\left(\overline{\mathbb{R}}^{n}\right)$ with non-empty region of discontinuity is an open subset D of $\Omega(G)$ satisfying the following.
(1) D is precisely invariant under the trivial subgroup in G.
(2) For every $z \in \Omega(G)$, there is an element $g \in G$ such that $g(z)$ is contained in \bar{D}, where \bar{D} denotes the closure of D in $\overline{\mathbb{R}}^{n}$.
(3) $\operatorname{Fr} D$, the frontier of D in $\overline{\mathbb{R}}^{n}$, consists of limit points of G, and a finite or countable collection of codimension-1 compact smooth submanifolds with boundary, whose boundary is contained in $\Omega(G)$ except for a subset with $(n-1)$-dimensional Lebesgue measure 0 . The intersection of each submanifold with $\Omega(G)$ is called a side of D.
(4) For any side σ of D, there are another side σ^{\prime} of D, which may coincide with σ, and a nontrivial element $g \in G$ such that $g(S)=S^{\prime}$. Such an element g is called the side-pairing transformation from σ to σ^{\prime}.
(5) If $\left\{\sigma_{m}\right\}$ is a sequence of distinct sides of D, then the diameter of σ_{m} with respect to the ordinary spherical metric on $\overline{\mathbb{R}}^{n}$ goes to 0 .
(6) For any compact subset K of $\Omega(G)$, there are only finitely many translates of D that intersect K.

A fundamental set F for a discrete subgroup G of $M\left(\overline{\mathbb{R}}^{n}\right)$ whose interior is a fundamental domain is called a constrained fundamental set.
2.3. Normal forms. Let G_{1} and G_{2} be two subgroups of $M\left(\overline{\mathbb{R}}^{n}\right)$, and J a subgroup of $G_{1} \cap G_{2}$.

A normal form is a word consisting of alternate products of elements of $G_{1}-J$ and those of $G_{2}-J$. Two normal forms $g_{n} \cdots g_{k} g_{k-1} \cdots g_{1}$ and $g_{n} \cdots\left(g_{k} j\right)\left(j^{-1} g_{k-1}\right) \cdots g_{1}$ are said to be equivalent for any $j \in J$. The word length of the normal form is simply called the length. The length is invariant under the equivalence relation.

A normal form is called a 1 -form if the last letter is contained in $G_{1}-J$, and a 2-form otherwise. More specifically a normal form is called an (m, k)-form if the last letter is contained in $G_{m}-J$ and the first letter is contained in $G_{k}-J$.

The multiplication of two normal forms is defined to be the concatenation of two words which is contracted to the minimum length by the equivalence defined above. The product of two normal forms is equivalent to either a normal form or to an element of J.

It is obvious that any element of the free product of G_{1} and G_{2} amalgamated over J, which is denoted by $G_{1} *_{J} G_{2}$, either is an element of J or can be expressed in a normal form, and that there is a one-to-one correspondence between $G_{1} *_{J} G_{2}$ and the union of J and the set of the equivalence classes of normal forms. Also it is easy to see that this correspondence is an isomorphism with respect to the multiplication defined above.

Let $\left\langle G_{1}, G_{2}\right\rangle$ denote the subgroup of $M\left(\overline{\mathbb{R}}^{n}\right)$ generated by G_{1} and G_{2}. There is a natural homomorphism $\Phi: G_{1} *_{J} G_{2} \rightarrow\left\langle G_{1}, G_{2}\right\rangle$ which is defined by $\Phi\left(g_{n} \cdots g_{1}\right)=$
$g_{n} \circ \cdots \circ g_{1}$ for a normal form $g_{n} \cdots g_{1}$ representing an element of $G_{1} *_{J} G_{2}$, and $\Phi(j)=$ j for $j \in J$. It is easy to see that this is well defined and independent of a choice of a representative of the equivalence class. The map is obviously an epimorphism.

If Φ is an isomorphism, then we write $\left\langle G_{1}, G_{2}\right\rangle=G_{1} *_{J} G_{2}$ identifying elements of $G_{1} *_{J} G_{2}$ and their images by Φ.

Since J is embedded in $\left\langle G_{1}, G_{2}\right\rangle$, each nontrivial element in the kernel of Φ can be written in a normal form.

Lemma 2.5. $\left\langle G_{1}, G_{2}\right\rangle=G_{1} *_{J} G_{2}$ if and only if Φ maps no non-trivial normal forms to the identity.
2.4. Interactive pairs. Following Maskit, we shall define interactive pairs as follows.

Let G_{1} and G_{2} be two discrete subgroups of $M\left(\overline{\mathbb{R}}^{n}\right)$ and J a subgroup of $G_{1} \cap G_{2}$ as in the previous subsection. Let X_{1}, X_{2} be disjoint non-empty subsets of $\overline{\mathbb{R}}^{n}$. The pair $\left(X_{1}, X_{2}\right)$ is said to be an interactive pair (for $\left.G_{1}, G_{2}, J\right)$ when
(1) each of X_{1}, X_{2} is invariant under J,
(2) every element of $G_{1}-J$ sends X_{1} into X_{2},
(3) and every element of $G_{2}-J$ sends X_{2} into X_{1}.

An interactive pair is said to be proper if there is a point in X_{1} which is not contained in a G_{2}-orbit of any point of X_{2}, or there is a point in X_{2} which is not contained in a G_{1}-orbit of any point of X_{1}.

Lemma 2.6 (Lemma VII.A. 9 in [22]). Suppose that (X_{1}, X_{2}) is an interactive pair for G_{1}, G_{2}, J. Let $g=g_{n} \cdots g_{1}$ be an (m, k)-form. Then we have $\Phi(g)\left(X_{k}\right) \subset$ X_{3-m}. Furthermore if $\left(X_{1}, X_{2}\right)$ is proper and g has length greater than 1 , then the inclusion is proper.

The existence of a proper interactive pair forces Φ to be isomorphic. (Theorem VII.A. 10 in Maskit [22] in the case when $n=2$.)

Theorem 2.7. Let G_{1}, G_{2}, J be as above and suppose that there is a proper interactive pair for G_{1}, G_{2}, J. Then $\left\langle G_{1}, G_{2}\right\rangle=G_{1} *_{J} G_{2}$.

This easily follows from Lemmata 2.5 and 2.6.
The following is a straightforward generalisation of Theorem VII.A. 12 in Maskit [22].

Lemma 2.8. Suppose that $\left(X_{1}, X_{2}\right)$ is an interactive pair for G_{1}, G_{2}, J. Suppose moreover that there is a fundamental set D_{m} for G_{m} for $m=1,2$ such that $G_{m}\left(D_{m} \cap\right.$ $\left.X_{3-m}\right) \subset X_{3-m}$. Then $D=\left(D_{1} \cap X_{2}\right) \cup\left(D_{2} \cap X_{1}\right)$ is precisely invariant under $\{i d\}$ in $G=\left\langle G_{1}, G_{2}\right\rangle$. Furthermore, if D is non-empty, then Φ is isomorphic.

Proof. What we shall show is that for any $x \in D$ and any non-trivial element $g \in G_{1} *_{J} G_{2}$, we have $\Phi(g)(x) \notin D$. Since this holds trivially for the case when D is empty, we assume that D is non-empty. We assume that x is contained in $D_{1} \cap X_{2}$. The case when x lies in $D_{2} \cap X_{1}$ can be dealt with in the same way.

If g is a non-trivial element in J, then $g(x)$ lies in X_{2} since X_{2} is J-invariant. On the other hand, since D_{1} is a fundamental set, we have $g(x) \notin D_{1}$. These imply that $g(x) \notin D$.

Now we shall consider the case when g is represented in a normal form.
Claim 1. If $g=g_{n} g_{n-1} \cdots g_{1}$ is an m-form $(m=1$ or 2$)$, then $\Phi(g)(x) \in X_{3-m} \backslash D_{m}$.

Proof. We shall prove this claim by induction.
We first consider the case when $n=1$. Suppose first that g is an element in $G_{1}-J$. Then $\Phi(g)(x) \in X_{2}$ by assumption, whereas $\Phi(g)(x) \notin D_{1}$ since D_{1} is a fundamental set of G_{1}. Therefore $\Phi(g)(x)$ is not contained in D in this case. Suppose next that g is in $G_{2}-J$. Then $\Phi(g)(x)$ lies in X_{1} since the assumption that $\left(X_{1}, X_{2}\right)$ is an interactive pair implies $\Phi(g)\left(X_{2}\right) \subset X_{1}$. We shall show that $\Phi(g)(x)$ does not lie in D_{2}. Suppose, seeking a contradiction, that $\Phi(g)(x)$ lies in D_{2}. Then since $\Phi\left(g^{-1}\right)$ is contained in $G_{2}-J$ and $\Phi(g)(x) \in X_{1} \cap D_{2}$, by assumption, we have $x=\Phi\left(g^{-1}\right) \Phi(g)(x)$ lies in X_{1}. This contradicts the assumption that x lies in X_{2}.

Now, we assume that our claim holds in the case when g has length $n-1$, and suppose that g has length n. We consider the case when g is a (3-m)-form. The case when g is an m-form can also be dealt with in the same way. Since $\Phi\left(g_{n-1} \cdots g_{1}\right)(x) \in$ $X_{3-m} \backslash D_{m}$ by the assumption of induction, we have $\Phi(g)(x) \in g_{n}\left(X_{3-m} \backslash D_{m}\right) \subset X_{m}$.

Suppose that $\Phi(g)(x)$ lies in D_{3-m}. Then we have $\Phi(g)(x) \in X_{m} \cap D_{3-m}$. This implies that $\Phi\left(g_{n-1} \cdots g_{1}\right)(x) \in g_{n}^{-1}\left(X_{m} \cap D_{3-m}\right) \subset X_{m}$. This is a contradiction. Thus we have shown that $\Phi(g)(x)$ is contained in $X_{m} \backslash D_{3-m}$.

By what we have proved above, if $D \neq \emptyset$, then for any $g \in G_{1} *_{J} G_{2}-\{i d\}$, we have $\Phi(g)(D) \cap D=\emptyset$. This in particular shows that $\Phi(g) \neq i d$. Then Lemma 2.5 shows that $G=G_{1} *_{J} G_{2}$.

REMARK 2.1. Maskit called a fundamental set D_{m} for G_{m} maximal with respective to X_{m} (which is precisely invariant under J in G_{m}) if $D_{m} \cap X_{m}$ is a fundamental set for the action of J on X_{m}, and in Theorem VII.A. 12 in [22], the fundamental sets D_{1}, D_{2} were assumed to be maximal. The proof of the theorem above shows that the assumption of maximality is in fact redundant.

In Maskit [22], the following sufficient condition for two open balls to be an interactive pair is given.

Proposition 2.9 (Proposition VII.A. 6 in [22]). Let $G_{m} \subset M\left(\overline{\mathbb{R}}^{n}\right)(m=1,2)$ be two discrete groups with a common subgroup J and $S \subset \overline{\mathbb{R}}^{n}$ be an ($n-1$)-sphere bounding two open balls X_{1} and X_{2}. If each X_{m} is precisely invariant under J in G_{m}, then $\left(X_{1}, X_{2}\right)$ is an interactive pair.

2.5. Convex cores and geometric finiteness.

Definition 2.3. Let G be a discrete subgroup of $M\left(\overline{\mathbb{R}}^{n}\right)$ and $\Lambda(G)$ its limit set. We denote by $\operatorname{Hull}(\Lambda(G))$, the minimal convex set of \mathbb{H}^{n+1} containing all geodesics whose endpoints lie on $\Lambda(G)$. This set is evidently G-invariant, and its quotient $\operatorname{Hull}(G) / G$ is called the convex core of G, and is denoted by Core (G). The group G is said to be geometrically finite if the following two conditions are satisfied:
(1) there exists $\varepsilon>0$ such that the ε-neighbourhood of $\operatorname{Core}(G)$ in \mathbb{H}^{n+1} / G has finite volume, and
(2) there is an upper bound for the orders of torsions in G.

We do not assume that G is finitely generated above. The latter condition, the existence of the bound on the orders is automatically satisfied if G is finitely generated. For infinitely generated groups, Hamilton showed in [13] that the second condition is not redundant.

As we shall see below, Bowditch proved in [9] that this condition is equivalent to other reasonable definitions of geometric finiteness, except for the one that \mathbb{H}^{n+1} / G has a finite-sided fundamental polyhedron, whose equivalence to the above condition has not been known until now.
2.6. Euclidean isometries. The classification of discrete groups of Euclidean isometries is known as Bieberbach's theorem (see [33] or [25], for example).

Theorem 2.10 (Bieberbach). Let G be a discrete group of Euclidean isometries of \mathbb{R}^{n}. Then the following hold.
(1) If \mathbb{R}^{n} / G is compact, then there is a normal subgroup $G^{*} \subset G$ of finite index consisting only of Euclidean translations, which is isomorphic to a free abelian group of rank n.
(2) If \mathbb{R}^{n} / G is not compact, then there exists a normal subgroup $G^{*} \subset G$ of finite index in G which is a free abelian group of rank k with $0 \leq k \leq n-1$.

By taking conjugates of G and G^{*} with respect to an isometry of \mathbb{R}^{n}, the groups can be made to have the following properties.

Decompose \mathbb{R}^{n} into $\mathbb{R}^{k} \times \mathbb{R}^{n-k}$, where \mathbb{R}^{k} is identified with $\mathbb{R}^{k} \times\{0\} \subset \mathbb{R}^{n}$ and \mathbb{R}^{n-k} with $\{0\} \times \mathbb{R}^{n-k} \subset \mathbb{R}^{n}$. Let $g(x)=U(x)+a$ be an arbitrary element of G, where U is a rotation and a is an element of \mathbb{R}^{n}. Then the rotation U leaves \mathbb{R}^{k} and \mathbb{R}^{n-k} invariant and the vector a lies in the subspace \mathbb{R}^{k}. Furthermore, if g lies in G^{*}, then U acts on \mathbb{R}^{k} trivially.

In the following we always identify the factors of the decomposition $\mathbb{R}^{n}=\mathbb{R}^{k} \times$ \mathbb{R}^{n-k} with $\mathbb{R}^{k} \times\{0\}$ and $\{0\} \times \mathbb{R}^{n-k}$.

Definition 2.4. For a discrete subgroup G of Euclidean isometries, we define G^{*} to be a free abelian normal subgroup of G which is maximal among those having the property in Theorem 2.10.
2.7. Extended horoballs, peak domains and standard parabolic regions. A point x of $\Lambda(G)$ of a discrete group G of Möbius transformations is called a parabolic fixed point if $\operatorname{Stab}_{G}(x)$ contains parabolic elements. An easy argument shows that $\operatorname{Stab}_{G}(x)$ cannot contain a loxodromic element then. For a parabolic fixed point z, a horoball in \mathbb{B}^{n+1} touching $\overline{\mathbb{R}}^{n}$ at z is invariant under $\operatorname{Stab}_{G}(z)$. In the case when $\operatorname{Stab}_{G}(z)$ has rank less than n, it is useful to consider a domain larger than a horoball as follows.

Definition 2.5. Let G be a discrete subgroup of $M\left(\overline{\mathbb{R}}^{n}\right)$. Let z be a point of $\overline{\mathbb{R}}^{n}$ which is not a loxodromic fixed point. Let $\operatorname{Stab}_{G}^{*}(z)$ be the maximal free abelian subgroup as in Definition 2.4 of the stabiliser $\operatorname{Stab}_{G}(z)$ of z in G. Suppose that the rank of $\operatorname{Stab}_{G}^{*}(z)$ is k with $k \leq n-1$. Then there is a closed subset $B_{z} \subset \mathbb{B}^{n+1}$ invariant under $\operatorname{Stab}_{G}(z)$ which is in the form

$$
B_{z}=h^{-1}\left\{x \in \mathbb{B}^{n+1}: \sum_{i=k+1}^{n+1} x_{i}^{2} \geq t\right\}
$$

where $t(>0)$ is a constant and $h \in M\left(\overline{\mathbb{R}}^{n}\right)$ is a Möbius transformation such that $h(z)=$ ∞. We call B_{z} an extended horoball of G around z.

DEFINITION 2.6. Let T_{1}, \ldots, T_{m} be subsets of $\overline{\mathbb{R}}^{n}$ and J_{1}, \ldots, J_{m} subgroups of the group $G \subset M\left(\overline{\mathbb{R}}^{n}\right)$. We say that $\left(T_{1}, \ldots, T_{m}\right)$ is precisely invariant under $\left(J_{1}, \ldots, J_{m}\right)$ in G, if each T_{k} is precisely invariant under J_{k} in G, and if for $i \neq j$ and all $g \in G$, we have $g\left(T_{i}\right) \cap T_{j}=\emptyset$.

Definition 2.7. A peak domain of a discrete group G of $M\left(\overline{\mathbb{R}}^{n}\right)$ with nonempty region of discontinuity at the parabolic fixed point $z \in \overline{\mathbb{R}}^{n}$ is an open subset $U_{z} \subset \overline{\mathbb{R}}^{n}$ such that
(1) U_{z} is precisely invariant under $\operatorname{Stab}_{G}(z)$ in G,
(2) there exist a $t>0$, and a transformation $h \in M\left(\overline{\mathbb{R}}^{n}\right)$ with $h(z)=\infty$ such that

$$
\left\{x \in \mathbb{R}^{n}: \sum_{i=k+1}^{n} x_{i}^{2}>t\right\}=h\left(U_{z}\right),
$$

where $k=\operatorname{rank} \operatorname{Stab}_{G}^{*}(z), 1 \leq k \leq n-1$.

Definition 2.8. If G has a precisely invariant extended horoball B around z, then the interior of its intersection with $\overline{\mathbb{R}}^{n}$ is a peak domain. Following Bowditch [9], we use the term standard parabolic region at z to mean an extended horoball when the rank of $\operatorname{Stab}_{G}(z)$ is less than n, and a horoball when the rank of $\operatorname{Stab}_{G}(z)$ is n.

Definition 2.9. A point $z \in \overline{\mathbb{R}}^{n}$ fixed by a parabolic element of a discrete group $G \subset M\left(\overline{\mathbb{R}}^{n}\right)$ is said to be a parabolic vertex of G if one of the following conditions is satisfied.
(1) The subgroup $\operatorname{Stab}_{G}^{*}(z)$ has rank n.
(2) There exists a peak domain U_{z} at the point z.

REMARK 2.2. It is easy to see that the two conditions in Definition 2.9 are mutually exclusive: a peak domain exists only if $\operatorname{rank} \operatorname{Stab}_{G}^{*}(z)<n$. Also we can easily see that, in the case when $n=2$, the definition coincides with that of cusped parabolic fixed points as in Beardon-Maskit [8].

Definition 2.10. A parabolic fixed point z for the group G is called bounded if $(\Lambda(G) \backslash\{z\}) / \operatorname{Stab}_{G}(z)$ is compact (see Bowditch $\left.[9,10]\right)$.

There is a relationship between a bounded parabolic fixed point and a parabolic vertex, which was proved by Bowditch [9].

Lemma 2.11. z is a bounded parabolic fixed point for a discrete group G if and only if z is a parabolic vertex.

Definition 2.11. Let G be a discrete subgroup of $M\left(\overline{\mathbb{R}}^{n}\right)$. A point $x \in \overline{\mathbb{R}}^{n}$ is said to be a conical limit point (or a point of approximation in some literature) if there are $z \in \mathbb{H}^{n+1}$ and a geodesic ray l in \mathbb{H}^{n+1} tending to x in \mathbb{B}^{n+1} whose r-neighbourhood with some $r \in \mathbb{R}$ contains infinitely many translates of z.

Conical limit points can be characterised as follows. See Theorem 12.2.5 in Ratcliffe [25].

Proposition 2.12. Let G be a discrete group of $M\left(\overline{\mathbb{R}}^{n}\right)$ regarded as acting on \mathbb{B}^{n+1} by hyperbolic isometries. Then a point $z \in \partial \mathbb{B}^{n+1}$ is a conical limit point of G if and only if there exist $\delta>0$, distinct elements g_{m} of G, and $x \in \partial \mathbb{B}^{n+1} \backslash\{z\}$ such that $g_{m}^{-1}(\mathbf{0})$ converges to z while $\left|g_{m}(x)-g_{m}(z)\right|>\delta$ for all m. Furthermore, if this condition holds, then for every $x \in \partial \mathbb{B}^{n+1} \backslash\{z\}$, there is $\delta>0$ such that $\mid g_{m}(x)-$ $g_{m}(z) \mid>\delta$ for all m.

The following result due to Bowditch [9] or [10] will be essentially used in the proof of our main theorem.

Proposition 2.13. Let $G \subset M\left(\overline{\mathbb{R}}^{n}\right)(n \geq 2)$ be a discrete group. Then G is geometrically finite if and only if every point of $\Lambda(G)$ is either a parabolic vertex or a conical limit point.
2.8. Dirichlet domains and standard parabolic regions. Dirichlet domains are fundamental polyhedra of hyperbolic manifolds, which will turn out to be very useful for us.

DEFINITION 2.12. Let G be a discrete subgroup of $M\left(\overline{\mathbb{R}}^{n}\right)$, and x a point in \mathbb{H}^{n+1}, which is not fixed by any nontrivial element of G. The set $\left\{y \in \mathbb{H}^{n+1}: d_{h}(y, x) \leq\right.$ $\left.d_{h}(y, g(x)), \forall g \in G\right\}$ is called the Dirichlet domain for G centred at x, where d_{h} denotes the hyperbolic distance.

It is easy to see that any Dirichlet domain is convex and the interior of the intersection of the closure of a Dirichlet domain with $\overline{\mathbb{R}}^{n}$ is a fundamental domain as defined before.

The following follows immediately from the definition of conical limit points.
Lemma 2.14. Let D be a Dirichlet domain of a discrete group $G \subset M\left(\overline{\mathbb{R}}^{n}\right)$. Then $\bar{D} \cap \overline{\mathbb{R}}^{n}$ contains no conical limit points, where \bar{D} denotes the closure of D in $\mathbb{B}^{n+1}=$ $\mathbb{H}^{n+1} \cup \overline{\mathbb{R}}^{n}$.

Now, we consider how a Dirichlet domain of a geometrically finite group intersects standard parabolic regions. We shall make use of the following result of Bowditch [9]. For a G-invariant set S on $\overline{\mathbb{R}}^{n}$, we say a collection of subsets $\left\{A_{s}\right\}_{s \in S}$ is strongly invariant if $g A_{s}=A_{g s}$ for any $s \in S$ and $g \in G$, and $A_{s} \cap A_{t}=\emptyset$ for any $s \neq t \in S$. We should note that each A_{s} is in particular precisely invariant under $\operatorname{Stab}_{G}(s)$ in G in the sense as defined before.

Lemma 2.15. Let Π be the set of all bounded parabolic fixed points contained in the limit set $\Lambda(G)$ of a discrete group $G \subset M\left(\overline{\mathbb{R}}^{n}\right)$. Then we can choose a standard parabolic region B_{p} at p for each $p \in \Pi$ in such a way that $\left\{B_{p}: p \in \Pi\right\}$ is strongly invariant.

Using this lemma, we can show the following, which is essentially contained in the argument of $\S 4$ in Bowditch [9].

Proposition 2.16. Let D be a Dirichlet domain of a geometrically finite group $G \subset M\left(\overline{\mathbb{R}}^{n}\right)$. Let $\left\{B_{p}\right\}$ be the collection of standard parabolic regions obtained as in the preceding lemma. Then there is a finite number of points $p_{1}, \ldots, p_{k} \in \bar{D} \cap \Pi$ such that $\bar{D} \backslash \bigcup_{i=1}^{k}\left(\operatorname{Int} B_{p_{i}} \cup\left\{p_{i}\right\}\right)$ is compact and contains no limit point of G.

Proof. Choose a family of standard parabolic regions $\left\{B_{p}\right\}$ as in Lemma 2.15. Since G is geometrically finite, every limit point of G is either a conical limit point or a parabolic vertex. By Lemma 2.14, no limit point on \bar{D} is a conical limit point. Therefore $\left\{B_{p}\right\}$ covers all limit points contained in \bar{D}.

Suppose that there are infinitely many distinct $B_{p_{i}}$ among $\left\{B_{p}\right\}$ with $p_{i} \in \bar{D}$. By taking a subsequence, we can assume that $\left\{p_{i}\right\}$ converges to a point $q \in \bar{D}$, which is also contained in $\Lambda(G)$, hence in Π. By taking a subsequence again, we can further assume that all the p_{i} belong to either the same $\operatorname{Stab}_{G}(q)$-orbit or distinct $\operatorname{Stab}_{G}(q)$ orbits. We first consider the former case. Let α_{i} be the geodesic line connecting p_{i} to q, which must be contained in D. Since all p_{i} belong to the same orbit, there are $h_{i} \in \operatorname{Stab}_{G}(q)$ such that $h_{i}\left(p_{i}\right)=p_{1}$. By taking a subsequence again, we can assume that all h_{i} are distinct. Then, the geodesic α_{1} is shared by infinitely many translates of $h_{i} D$. This contradicts the local finiteness of the translates of the Dirichlet domain D.

Since q is a parabolic vertex, by Lemma 2.11, we see that $(\Lambda(G) \backslash\{q\}) / \operatorname{Stab}_{G}(q)$ is compact. Therefore, by taking a subsequence again, we can assume that there are $g_{i} \in \operatorname{Stab}_{G}(q)$ such that $\left\{g_{i} p_{i}\right\}$ converges to a point $r \in \overline{\mathbb{R}}^{n} \backslash\{q\}$. We can assume that all the g_{i} are distinct by taking a subsequence. Let α_{i} be the geodesic line connecting p_{i} and q as before. Then $g_{i} \alpha_{i}$ converges to the geodesic line connecting r to q. Since $g_{i} \alpha_{i}$ is contained in $g_{i} D$, this again contradicts the local finiteness of the translates of D.

Another easy consequence of Lemma 2.15 is the following.
Corollary 2.17. Let G be a discrete subgroup of $M\left(\overline{\mathbb{R}}^{n}\right)$. In the upper half-space model of \mathbb{H}^{n+1}, suppose that ∞ is a parabolic vertex of G. Then the Euclidean radii of the isometric spheres $I(g)$ of $g \in G-\operatorname{Stab}_{G}(\infty)$ are bounded from above.

Proof. Consider the set of standard parabolic regions $\left\{B_{p}\right\}_{p \in \Pi}$ obtained by Lemma 2.15. Since ∞ is a bounded parabolic fixed point, a standard parabolic region B_{∞} and its translates $g B_{\infty}$ by elements $g \in G-\operatorname{Stab}_{G}(\infty)$ are among $\left\{B_{p}\right\}$. Let B_{∞}^{\prime} be the maximal horoball contained in B_{∞}. Then there is a number h such that $B_{\infty}^{\prime}=$ $\left\{\left(z_{1}, \ldots, z_{n+1}\right): z_{n+1} \geq h\right\} \cup\{\infty\}$, which is equal to the height of $\operatorname{Fr} B_{\infty}^{\prime}$.

Fix an element $g \in G-\operatorname{Stab}_{G}(\infty)$. By enlarging B_{∞}^{\prime}, we get a horoball $B^{\prime \prime}$ which touches $g^{-1} B^{\prime \prime}$ at one point. Let $h^{\prime}<h$ be the height of $\operatorname{Fr} B^{\prime \prime}$. Then the point $B^{\prime \prime} \cap$ $g^{-1} B^{\prime \prime}$ has height h^{\prime}. The isometric sphere $I(g)$ of g must contain the point $B^{\prime \prime} \cap g^{-1} B^{\prime \prime}$ since the reflection in $I(g)$ sends $g^{-1} B^{\prime \prime}$ to $B^{\prime \prime}$. Therefore the Euclidean radius of $I(g)$ is equal to h^{\prime}, which is bounded above by the constant h independent of g.

This implies the following fact in the conformal ball model, which is Corollary G. 8 in Maskit [18].

Corollary 2.18. We regard G as above as acting on the ball \mathbb{B}^{n+1} or $L=\overline{\mathbb{R}}^{n+1} \backslash$ \mathbb{B}^{n+1}, and let $p \in \partial \mathbb{B}^{n+1}=\partial L$ be a parabolic vertex of G. Suppose that $g_{n} \in G$ are distinct elements. Then the radius with respect to the ordinary Euclidean metric on \mathbb{B}^{n+1} or L of the isometric sphere $I\left(g_{k}\right)$ goes to 0 as $k \rightarrow \infty$.

3. Blocks

Throughout this section, we assume that G is a discrete subgroup of $M\left(\overline{\mathbb{R}}^{n}\right)$ and J is a subgroup of G.

Definition 3.1. A closed J-invariant set B, containing at lease two points, is called a block, or more specifically (J, G)-block if it satisfies the following conditions. (1) $B \cap \Omega(G)=B \cap \Omega(J)$, and $B \cap \Omega(G)$ is precisely invariant under J in G.
(2) If U is a peak domain for a parabolic fixed point z of J with the rank of $\operatorname{Stab}_{J}(z)$ being $k<n$, then there is a smaller peak domain $U^{\prime} \subset U$ such that $U^{\prime} \cap \operatorname{Fr} B=\emptyset$.

Let S be a (J, G)-block, and let S be a topological ($n-1$)-dimensional sphere in $\overline{\mathbb{R}}^{n}$. Then S separates $\overline{\mathbb{R}}^{n}$ into two open sets. We say that S is precisely embedded in G if $g(S)$ is disjoint from one of the two open sets for any $g \in G$.

A (J, G)-block is said to be strong if every parabolic fixed point of J is a parabolic vertex of G.

Then we have the following.
Theorem 3.1. Suppose that G is a discrete subgroup of $M\left(\overline{\mathbb{R}}^{n}\right)$. Let J be a geometrically finite subgroup of G and $B \subset \overline{\mathbb{R}}^{n} a(J, G)$-block such that for every parabolic fixed point z of J with the rank of $\operatorname{Stab}_{J}(z)$ being less than n, there is a peak domain U_{z} for J with $U_{z} \cap B=\emptyset$. Let $G=\bigcup g_{k} J$ be a coset decomposition. Then we have $\operatorname{diam}\left(g_{k}(B)\right) \rightarrow 0$, where $\operatorname{diam}(M)$ denotes the diameter of the set M with respect to the ordinary spherical metric on $\overline{\mathbb{R}}^{n}$.

Proof. By conjugating G by an element of $M\left(\overline{\mathbb{R}}^{n}\right)$, we can assume that $\operatorname{Stab}_{G}(\mathbf{0})=$ $\operatorname{Stab}_{G}(\infty)=\{i d\}$ when we regard G as acting on $\overline{\mathbb{R}}^{n+1}$ by considering the Poincaré extension. Let L denote the exterior of \mathbb{B}^{n+1} with the point ∞, which we regard also as a model of hyperbolic $(n+1)$-space. Then J is also geometrically finite as a discrete group acting on L. Let P be a Dirichlet domain for J in L.

Let g be some element of $G-J$. For a fixed g, the set $\left\{(g \circ j)^{-1}(\infty)=j^{-1} \circ\right.$ $\left.g^{-1}(\infty): j \in J\right\}$ is J-invariant. Then for each coset $g_{k} J$, we can choose a representative g_{k} in such a way that $a_{k}=g_{k}^{-1}(\infty)$, which is the centre of the isometric sphere of g_{k}, lies in P.

Now, by Proposition 2.16, there are finitely many standard parabolic regions $B_{p_{1}}, \ldots$, $B_{p_{s}}$ in L around parabolic vertices p_{1}, \ldots, p_{s} on \bar{P} such that $\bar{P} \backslash \bigcup_{i}\left(\operatorname{Int} B_{p_{i}} \cup\left\{p_{i}\right\}\right)$ is compact and contains no limit point of J. We number them in such a way that $\operatorname{Stab}_{J}^{*}\left(p_{1}\right), \ldots$, $\operatorname{Stab}_{J}^{*}\left(p_{r}\right)$ have rank n whereas $\operatorname{Stab}_{J}^{*}\left(p_{r+1}\right), \ldots, \operatorname{Stab}_{J}^{*}\left(p_{s}\right)$ have rank less than n. We can
assume that for $j \geq r+1$, we have $B_{p_{j}} \cap \overline{\mathbb{R}}^{n} \cap B=\left\{p_{j}\right\}$ because of the following: By our assumption in the theorem, we can make $B_{p_{j}}$ smaller so that it satisfies this condition. Also it is clear that for the old $B_{p_{j}}$, there is no limit point of J in $\overline{\mathbb{R}}^{n} \cap B_{p_{j}}$ other than p_{j}, which is also contained in the new $B_{p_{j}}$. On the other hand no point in \bar{P} can converge to p_{j} from outside this smaller $B_{p_{j}}$ since p_{j} is not a conical limit point, which implies that the compactness is preserved.

For horoballs $B_{p_{1}}, \ldots, B_{p_{r}}$, we have the following.
Claim 2. We can choose the horoballs $B_{p_{1}}, \ldots, B_{p_{r}}$ sufficiently small so that $B_{p_{i}} \cap$ $G(\infty)=\emptyset$ for each $i(1 \leq i \leq r)$.

Proof. We identify L with the standard upper half-space model of hyperbolic $(n+1)$-space, which we denote by \mathbb{H}^{n+1}. By conjugation, we can assume that $e=$ $(0, \ldots, 0,1)$ corresponds to $\infty \in L$ under the identification of \mathbb{H}^{n+1} with L. Regarding G as acting on this \mathbb{H}^{n+1} and $B_{p_{1}}, \ldots, B_{p_{r}}$ lying in \mathbb{B}^{n+1}, what we have to show is that $B_{p_{i}} \cap G(e)=\emptyset$ for each i.

We shall show that how we can make $B_{p_{1}}$ satisfy this condition. Conjugating G by an isometry of \mathbb{H}^{n+1}, we may assume that $p_{1}=\infty$. Then Corollary 2.17 implies that the radii of the isometric spheres $I(g)$ of $g \in G-\operatorname{Stab}_{G}(\infty)$ are bounded from above by some constant r_{0}. We set $B_{p_{1}}=\left\{x \in \mathbb{H}^{n+1}: x_{n+1} \geq 2 \max \left\{1, r_{0}^{2}\right\}\right\} \cup\{\infty\}$.

Any $h \in \operatorname{Stab}_{G}(\infty)$ can be represented as a transformation of \mathbb{R}^{n} in the form $h(x)=$ $A x+b$ for $A \in O(n)$ and $b \in \mathbb{R}^{n}$. Let \tilde{h} denote h regarded as an isometry of \mathbb{H}^{n+1}. Then we have $\tilde{h}(e)=(b, 1)$, hence $\tilde{h}(e) \notin B_{p_{1}}$.

For any $g \in G-\operatorname{Stab}_{G}(\infty)$, let r_{g} denote the radius of the isometric sphere $I(g)$. Then $g(x)$ is represented as a transformation of $\overline{\mathbb{R}}^{n}$ in the form $a+r_{g}^{2} A(x-b) /|x-b|^{2}$ for some $A \in O(n)$ and $a, b \in \mathbb{R}^{n}$ (see [2] or [7]). As before we denote by \tilde{g} the transformation g regarded as an isometry of \mathbb{H}^{n+1}. Then we have

$$
\tilde{g}(e)=\left(a-\frac{r_{g}^{2} A b}{|b|^{2}+1}, \frac{r_{g}^{2}}{|b|^{2}+1}\right)
$$

and

$$
\frac{r_{g}^{2}}{|b|^{2}+1} \leq r_{0}^{2}
$$

which implies that $\tilde{g}(e) \notin B_{p_{1}}$. We make each $B_{p_{i}}$ smaller in the same way. It is clear that even after changing the horoballs, $\bar{P} \backslash \bigcup_{i}\left(\right.$ Int $\left.B_{p_{i}} \cup\left\{p_{i}\right\}\right)$ is compact and contains no limit point of J since $B_{p_{j}}$ intersects $\bar{P} \cap \overline{\mathbb{R}}^{n}$ only at $p_{j}(1 \leq j \leq r)$ and p_{i} is not a conical limit point.

Recall that $a_{k}=g_{k}^{-1}(\infty)$ is in P. By taking a subsequence, we have only to consider the cases when every a_{k} lies outside all the standard parabolic regions $B_{p_{j}}$ and when all the a_{k} lie in some $B_{p_{j}}$.

First consider the case when every a_{k} lies outside the $B_{p_{j}}$. Since $a_{k} \in \bar{P}$ and $\bar{P} \backslash \bigcup\left(\operatorname{Int}\left(B_{p_{j}}\right) \cup\left\{p_{j}\right\}\right)$ is compact, the sequence $\left\{a_{k}\right\}$ converges to a point $x \in \bar{P} \backslash$ $\bigcup\left(\operatorname{Int}\left(B_{p_{j}}\right) \cup\left\{p_{j}\right\}\right)$. Suppose that x is contained in B. Then x must lie in $B \cap \Lambda(G)=$ $B \cap \Lambda(J)$, which contradicts the fact that $\bar{P} \backslash \bigcup\left(\operatorname{Int}\left(B_{p_{j}}\right) \cup\left\{p_{j}\right\}\right)$ contains no limit point of J. Therefore, it follows that the a_{k} are uniformly bounded away from B. Since the g_{k} are distinct elements, the radius with respect to the Euclidean metric of the conformal ball model of the isometric sphere $I\left(g_{k}\right)$ converges to 0 by Corollary 2.18. Therefore, we see that B lies outside the isometric sphere $I\left(g_{k}\right)$ for sufficiently large k. This means $g_{k}(B)$ lies inside the isometric sphere $I\left(g_{k}^{-1}\right)$. This implies that $\operatorname{diam}\left(g_{k}(B)\right) \rightarrow 0$.

Next we consider the case when the a_{k} lie in some standard parabolic region $B_{p_{j}}$. By Claim 2, we see that $B_{p_{j}}$ is not a horoball; hence $B_{p_{j}}$ is an extended horoball, i.e., $j \geq r+1$. Furthermore, if $\left\{a_{k}\right\}$ does not converge to p_{j}, then we can take $B_{p_{j}}$ smaller. Therefore, we can assume that $\left\{a_{k}\right\}$ converges to p_{j}.

By composing a rotation of the sphere $\overline{\mathbb{R}}^{n}$, we may assume that p_{j} is at the north pole $(0, \ldots, 0,1)$. Let S be the n-sphere of radius 1 centred at p_{j}, and let ϕ be the reflection in S. Let $B^{\prime} \subset B_{p_{j}}$ be the largest horoball contained in $B_{p_{j}}$ touching $\overline{\mathbb{R}}^{n}$ at p_{j}.

We denote points in \mathbb{R}^{n+1} as (\mathbf{z}, t) with $\mathbf{z} \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$. Then we have $p_{j}=(\mathbf{0}, 1)$. Take $B_{p_{j}}$ to be small enough so that $B^{\prime}=\left\{(\mathbf{z}, t):|\mathbf{z}|^{2}+\left(t-s^{\prime}-1\right)^{2} \leq s^{\prime 2}\right\}$ for some s^{\prime} satisfying $0<s^{\prime}<1 / 2$, and

$$
\phi(z, t)=\left(\frac{\mathbf{z}}{|\mathbf{z}|^{2}+(t-1)^{2}}, \frac{|\mathbf{z}|^{2}+t^{2}-t}{|\mathbf{z}|^{2}+(t-1)^{2}}\right) .
$$

We deduce that

$$
\phi\left(\mathbb{B}^{n+1}\right)=\left\{(\mathbf{z}, t): t \leq \frac{1}{2}\right\} \cup\{\infty\}
$$

and

$$
\phi\left(B^{\prime}\right)=\left\{(\mathbf{z}, t): t \geq 1+\frac{1}{2 s^{\prime}}\right\} \cup\{\infty\} .
$$

For any $j \in \operatorname{Stab}_{J}\left(p_{j}\right)$, we have $\phi j \phi(\infty)=\infty$ since $\phi(\infty)=p_{j}$. Consider the decomposition $\mathbb{R}^{n+1}=\mathbb{R}^{m} \times \mathbb{R}^{n-m} \times \mathbb{R}$, where $m(<n)$ is the rank of $\operatorname{Stab}_{J}\left(p_{j}\right)$. Let $\phi j \phi(z)=U(z)+\mathbf{a}$ be an arbitrary element of $\phi \operatorname{Stab}_{J}\left(p_{j}\right) \phi$, where U denotes a rotation. By Theorem 2.10, we may assume that the rotation U leaves \mathbb{R}^{m} and \mathbb{R}^{n-m} invariant and the vector a lies in the subspace \mathbb{R}^{m}. Also, if $\phi j \phi \in \phi \operatorname{Stab}_{J}^{*}\left(p_{j}\right) \phi$, then its restriction to the subspace \mathbb{R}^{m} is a translation. Hence, we have

$$
\phi\left(B_{p_{j}}\right)=\left\{(\mathbf{z}, t): \sum_{i=m+1}^{n} z_{i}^{2}+t^{2} \geq\left(1+\frac{1}{2 s^{\prime}}\right)^{2}, t \geq \frac{1}{2}\right\} \cup\{\infty\}
$$

where z_{i} denotes the i-th component of \mathbf{z}.
Since $B_{p_{j}} \cap B=\left\{p_{j}\right\}$, we have

$$
\begin{equation*}
\phi(B) \subset\left\{(\mathbf{z}, t): \sum_{i=m+1}^{n} z_{i}^{2}+\frac{1}{4}<\left(1+\frac{1}{2 s^{\prime}}\right)^{2}, t=\frac{1}{2}\right\} \cup\{\infty\} \tag{3.1}
\end{equation*}
$$

We should recall that $\phi \operatorname{Stab}_{J}^{*}\left(p_{j}\right) \phi$ acts on \mathbb{R}^{m} cocompactly. Therefore, we can take representatives g_{k} so that the projections of $\phi\left(a_{k}\right)=\phi\left(g_{k}^{-1}(\infty)\right)$ to \mathbb{R}^{m} stay within a compact subset of \mathbb{R}^{m} by multiplying elements of $\operatorname{Stab}_{J}^{*}\left(p_{j}\right)$ to the original g_{k}. Note that by changing representatives, we do not have the condition that $a_{k} \in P$ any more, but still the a_{k} are contained in $B_{p_{j}}$. This means that there is a constant L such that $\phi\left(a_{k}\right) \in\left\{(z, t): \sum_{i=1}^{m} z_{i}^{2}<L, t>1 / 2\right\} \cap \phi\left(B_{p_{j}}\right)$.

Claim 3. There is a constant $K>0$ such that for every $a_{k} \in B_{p_{j}}$ and every $y \in$ B, we have $\left|a_{k}-y\right| \geq K\left|a_{k}-p_{j}\right|$.

Proof. Suppose, seeking a contradiction, that such a K does not exist. Then there exist a sequence $\left\{y_{s}\right\} \subset B$ and a subsequence $\left\{a_{k_{s}}\right\}$ of $\left\{a_{k}\right\}$ such that

$$
\begin{equation*}
\frac{\left|a_{k_{s}}-y_{s}\right|}{\left|a_{k_{s}}-p_{j}\right|} \rightarrow 0 \quad \text { as } \quad s \rightarrow \infty \tag{3.2}
\end{equation*}
$$

We shall denote $a_{k_{s}}$ by a_{s} for simplicity.
We can assume that $y_{s} \neq p_{j}$ for all s. Then, since

$$
\left|\phi\left(a_{s}\right)-\phi\left(y_{s}\right)\right|=\frac{\left|a_{s}-y_{s}\right|}{\left|y_{s}-p_{j}\right|\left|a_{s}-p_{j}\right|}
$$

and

$$
\left|\phi\left(y_{s}\right)-p_{j}\right|\left|y_{s}-p_{j}\right|=1,
$$

we have

$$
\begin{align*}
\frac{\left|a_{s}-y_{s}\right|^{2}}{\left|a_{s}-p_{j}\right|^{2}} & =\frac{\left|\phi\left(a_{s}\right)-\phi\left(y_{s}\right)\right|^{2}}{\left|\phi\left(y_{s}\right)-p_{j}\right|^{2}} \\
& =\frac{\sum_{i=1}^{m}\left(\phi\left(a_{s}\right)-\phi\left(y_{s}\right)\right)_{i}^{2}+\sum_{i=m+1}^{n+1}\left(\phi\left(a_{s}\right)-\phi\left(y_{s}\right)\right)_{i}^{2}}{\sum_{i=1}^{m}\left(\phi\left(y_{s}\right)\right)_{i}^{2}+\sum_{i=m+1}^{n+1}\left(\phi\left(y_{s}\right)-p_{j}\right)_{i}^{2}} . \tag{3.3}
\end{align*}
$$

We shall show that there exists $M>0$ such that
(1) $\sum_{i=1}^{m}\left(\phi\left(a_{s}\right)\right)_{i}^{2} \leq M$ for all s;
(2) $\sum_{i=m+1}^{n+1}\left(\phi\left(y_{s}\right)-p_{j}\right)_{i}^{2} \leq M$ for all s; and
(3) $\sum_{i=m+1}^{n+1}\left(\phi\left(a_{s}\right)-\phi\left(y_{s}\right)\right)_{i}^{2} \rightarrow \infty$ as $s \rightarrow \infty$.

The inequality (1) follows from the fact that we choose a_{k} so that the projections of $\phi\left(a_{k}\right)$ to \mathbb{R}^{m} stay in a compact subset. The second one is a consequence of (3.1). We now turn to the third inequality. Since $\left\{a_{s}\right\}$ was assumed to converge to p_{j}, we see that $\phi\left(a_{s}\right)$ tends to ∞, which means that $\sum_{i=1}^{n+1}\left(\phi\left(a_{s}\right)\right)_{i}^{2} \rightarrow \infty$. On the other hand, we know that $\sum_{i=1}^{m}\left(\phi\left(a_{s}\right)\right)_{i}^{2} \leq M$ by (1), and that $\sum_{i=m+1}^{n+1}\left(\phi\left(y_{s}\right)\right)_{i}^{2}$ is bounded above independently of s by (2). These imply (3).

Then (3.2), (3.3), (2) and (3) imply that

$$
\sum_{i=1}^{m}\left(\phi\left(y_{s}\right)\right)_{i}^{2} \rightarrow \infty \quad \text { as } \quad s \rightarrow \infty
$$

It follows from (1) that for all sufficiently large s,

$$
\frac{\left|a_{s}-y_{s}\right|}{\left|a_{s}-p_{j}\right|} \geq \frac{1}{2} .
$$

This is a contradiction and we have completed the proof of Claim 3.
Let ρ_{k} be the Euclidean radius of the isometric sphere of g_{k} in L. Then we have the following.

Claim 4. If all a_{k} lie inside the extended horoball $B_{p_{j}}$, then we have $\rho_{k}^{2} / \mid a_{k}-$ $p_{j} \mid \rightarrow 0$.

Proof. Suppose that there is $\delta>0$ such that $\rho_{k}^{2} /\left|a_{k}-p_{j}\right| \geq \delta$. Then $\mid g_{k}\left(p_{j}\right)-$ $g_{k}(\infty)\left|=\rho_{k}^{2} /\left|a_{k}-p_{j}\right| \geq \delta\right.$.

We can apply Proposition 2.12 by identifying L with \mathbb{B}^{n+1} by the reflection in $\partial \mathbb{B}^{n+1}$ and taking into account the fact that the Euclidean metric does not distort much by the reflection near $\partial \mathbb{B}^{n+1}$ and see that p_{j} is a conical limit point of G. This contradicts Lemma 2.14 since p_{j} lies in \bar{P}.

We shall conclude the proof of Theorem 3.1. Let δ_{k} be the distance from a_{k} to B. Since δ_{k} is the infimum of $\left|a_{k}-y\right|$ for $y \in B$, by Claim 3, we have $\delta_{k} \geq K\left|a_{k}-p_{j}\right|$. Since Proposition I.C. 7 in [22] holds for $g \in M\left(\overline{\mathbb{R}}^{n}\right)$, we have

$$
\operatorname{diam}\left(g_{k}(B)\right) \leq \frac{2 \rho_{k}^{2}}{\delta_{k}} \leq \frac{2 K^{-1} \rho_{k}^{2}}{\left|a_{k}-p_{j}\right|} .
$$

This implies that $\operatorname{diam}\left(g_{k}(B)\right) \rightarrow 0$ by Claim 4.

4. The combination theorem

In this section, we shall state and prove our main theorem, which is a combination theorem for discrete groups in $M\left(\overline{\mathbb{R}}^{n}\right)$. Before that we shall prove the following lemma which constitutes the key step for the proof of our main theorem.

Lemma 4.1. Let G_{1} and G_{2} be discrete subgroups of $M\left(\overline{\mathbb{R}}^{n}\right)$. Suppose that J is a subgroup of $G_{1} \cap G_{2}$, which coincides with neither G_{1} nor G_{2}. Suppose that there is a topological $(n-1)$-sphere S dividing $\overline{\mathbb{R}}^{n}$ into two closed balls B_{1} and B_{2} such that each B_{m} is a $\left(J, G_{m}\right)$-block. Suppose that there are fundamental sets D_{1}, D_{2} for G_{1}, G_{2} respectively such that $J\left(D_{m} \cap B_{m}\right)=B_{m} \cap{ }^{\circ} \Omega(J)$ for $m=1,2$, and $D_{1} \cap S=D_{2} \cap S$. Set $D=\left(D_{1} \cap B_{2}\right) \cup\left(D_{2} \cap B_{1}\right)$ and $G=\left\langle G_{1}, G_{2}\right\rangle$. Then the following hold.
(1) S is also a $\left(J, G_{m}\right)$-block for $m=1,2$.
(2) $S \cap \Lambda\left(G_{1}\right)=S \cap \Lambda\left(G_{2}\right)=S \cap \Lambda(J)=\Lambda(J)$.
(3) Both G_{1} and G_{2} have non-empty regions of discontinuity, and B_{m}° is contained in $\Omega\left(G_{m}\right)$ for $m=1,2$, where B_{m}° is the interior of B_{m} in $\overline{\mathbb{R}}^{n}$.
(4) B_{m}° is precisely invariant under J in G_{m}.
(5) For any $g \in G_{m}-J(m=1,2), g\left(B_{m}\right) \cap B_{m}=g(S) \cap S \subset \Lambda\left(G_{m}\right)$.
(6) For any $g \in G_{m}$, we have $g\left(D_{m} \cap B_{3-m}\right) \subset B_{3-m}$ and $g\left(D_{m} \cap B_{3-m}^{\circ}\right) \subset B_{3-m}^{\circ}$.
(7) Let $G_{m}=\bigcup g_{k m} J$ be a coset decomposition for $m=1$, 2. If J is geometrically finite, then $\operatorname{diam}\left(g_{k m}\left(B_{m}\right)\right) \rightarrow 0$ as $k \rightarrow \infty$ where diam denotes the diameter with respect to the ordinary spherical metric on $\overline{\mathbb{R}}^{n}$.
(8) $\left(B_{1}^{\circ}, B_{2}^{\circ}\right)$ is an interactive pair.
(9) If $\Lambda(J) \neq \Lambda\left(G_{1}\right)$ or $\Lambda(J) \neq \Lambda\left(G_{2}\right)$, then $\left(B_{1}^{\circ}, B_{2}^{\circ}\right)$ is a proper interactive pair.
(10) If $D \neq \emptyset$ and J is geometrically finite, then $\left(B_{1}^{\circ}, B_{2}^{\circ}\right)$ is a proper interactive pair.

Proof. (1). This is obvious since S is contained in B_{m}.
(2). By Lemma 2.1, we see that $\Lambda(J)$ is contained in S; hence $S \cap \Lambda(J)=\Lambda(J)$. Since S is a $\left(J, G_{m}\right)$-block for $m=1,2$ by (1), we have $S \cap \Lambda\left(G_{m}\right)=S \cap \Lambda(J)$. This implies (2).
(3). Since $\Lambda(J)$ is contained in S, we see that $B_{m}^{\circ} \cap \Omega(J)=B_{m}^{\circ}$. On the other hand, since B_{m} is a $\left(J, G_{m}\right)$-block, we have $B_{m}^{\circ} \cap \Omega\left(G_{m}\right)=B_{m}^{\circ} \cap \Omega(J)=B_{m}^{\circ} \neq \emptyset$. Thus both G_{1} and G_{2} have non-empty regions of discontinuity and $\Omega\left(G_{m}\right)$ contains B_{m}°.
(4). Since $B_{m}^{\circ} \subset \Omega\left(G_{m}\right)$, by the definition of blocks, $B_{m} \cap \Omega\left(G_{m}\right)$ is precisely invariant under J in G_{m}, and $J(S)=S$, we see that B_{m}° is precisely invariant under J in G_{m}.
(5). Since $B_{m} \cap \Omega\left(G_{m}\right)$ is precisely invariant under J in G_{m}, for every $g \in G_{m}-J$, $g\left(B_{m} \cap \Omega\left(G_{m}\right)\right) \cap\left(B_{m} \cap \Omega\left(G_{m}\right)\right)=\emptyset$. It follows $\left(g\left(B_{m}\right) \cap B_{m}\right) \cap \Omega\left(G_{m}\right)=\emptyset$. Then we see that (4) implies (5).
(6). For any $j \in J \subset G_{m}, j\left(D_{m} \cap B_{3-m}\right) \subset j\left(B_{3-m}\right)=B_{3-m}$ and $j\left(D_{m} \cap B_{3-m}^{\circ}\right) \subset$ $j\left(B_{3-m}^{\circ}\right)=B_{3-m}^{\circ}$. Hence we have only to consider the case when g lies in $G_{m}-J$. Suppose that there exists an element $g \in G_{m}-J$ such that $g\left(D_{m} \cap B_{3-m}\right) \cap B_{m} \neq \emptyset$.

Take points $x \in g\left(D_{m} \cap B_{3-m}\right) \cap B_{m}$ and $y \in D_{m} \cap B_{3-m}$ such that $x=g(y)$. Since x lies in $B_{m} \cap g\left(D_{m} \cap B_{3-m}\right) \subset B_{m} \cap{ }^{\circ} \Omega\left(G_{m}\right) \subset B_{m} \cap{ }^{\circ} \Omega(J)=J\left(D_{m} \cap B_{m}\right)$, there are an element $j \in J$ and a point $z \in D_{m} \cap B_{m}$ such that $j(z)=x$. Then $j(z)=g(y)$. Since z and y are G_{m}-equivalent points of D_{m}, we have $z=y$ and $j=g$, which is a contradiction. Therefore, for any $g \in G_{m}-J$, we have $g\left(D_{m} \cap B_{3-m}\right) \cap B_{m}=\emptyset$ and $g\left(D_{m} \cap B_{3-m}\right) \subset B_{3-m}^{\circ}$. Thus we have proved (6).
(7). By (1), we know that S is a (J, G_{m})-block. Also we should note that since Fr $S=S$, by the definition of blocks, for any parabolic vertex z of J on S with the rank of $\operatorname{Stab}_{J}(z)$ being less than n, there is a peak domain centred at z which is disjoint from S, and that every parabolic fixed point is a parabolic vertex if J is geometrically finite. Therefore by Theorem 3.1, $\operatorname{diam}\left(g_{k m}(S)\right) \rightarrow 0$ as $k \rightarrow \infty$. On the other hand since B_{m} is a $\left(J, G_{m}\right)$-block, $\operatorname{diam}\left(g_{k m}(S)\right) \rightarrow 0$ implies $\operatorname{diam}\left(g_{k m}\left(B_{m}\right)\right) \rightarrow 0$, and we have completed the proof of (7).
(8). This follows from (4) and Proposition 2.9.
(9). If ($B_{1}^{\circ}, B_{2}^{\circ}$) is not proper, then $B_{1}^{\circ} \cup B_{2}^{\circ}=G_{1}\left(B_{1}^{\circ}\right) \subset \Omega\left(G_{1}\right)$ and $B_{1}^{\circ} \cup B_{2}^{\circ}=$ $G_{2}\left(B_{2}^{\circ}\right) \subset \Omega\left(G_{2}\right)$. It follows that for each m, we have $\Lambda\left(G_{m}\right) \subset S$. On the other hand, by (2), we have $\Lambda\left(G_{m}\right)=S \cap \Lambda\left(G_{m}\right)=S \cap \Lambda(J)=\Lambda(J)$. Therefore if one of $\Lambda\left(G_{1}\right), \Lambda\left(G_{2}\right)$ is not equal to $\Lambda(J)$, then $\left(B_{1}^{\circ}, B_{2}^{\circ}\right)$ is a proper interactive pair.
(10). Suppose that D is non-empty and J is geometrically finite. Then we can assume that $D_{1} \cap B_{2} \neq \emptyset$, for the case $D_{2} \cap B_{1}$ can be proved just by interchanging the indices. We divide the argument into two cases: the case when $D_{1} \cap S \neq \emptyset$ and the one when $D_{1} \cap B_{2}^{\circ} \neq \emptyset$.

Suppose first that there is a point $x \in D_{1} \cap S=D_{2} \cap S$. Recall that D_{1} is contained in $\Omega\left(G_{1}\right)$, and that for $g \in G_{1}-J$, we have $g\left(B_{1}\right) \cap B_{1} \subset \Lambda\left(G_{1}\right)$ by (5). These imply that no ($G_{1}-J$)-translates of B_{1} pass through $x \in D_{1} \cap S \subset D_{1} \cap B_{1}$. By the same argument, we see that no $\left(G_{2}-J\right)$-translates of B_{2} pass through x.

Next we shall show that $\left(G_{m}-J\right)\left(B_{m}\right)$ cannot accumulate at x. First we should note that the translate of B_{m} by an element of G_{m} depends only on the cosets of G_{m} over J since J stabilises B_{m}. Suppose that $\left(G_{m}-J\right)\left(B_{m}\right)$ accumulates at x. Then there are elements g_{k} in $G_{m}-J$, which we can assume to belong to distinct cosets, and points $y_{k} \in B_{m}$ such that $\left\{g_{k}\left(y_{k}\right)\right\}$ converges to x. Since we assumed that J is geometrically finite, by (7) we see that $\operatorname{diam}\left(g_{k}\left(B_{m}\right)\right) \rightarrow 0$. Therefore if we choose one point y in B_{m}, then $\left\{g_{k}(y)\right\}$ also converges to x. This means that x is a limit point of G_{m}, which contradicts the assumption that x lies in D_{m}.

By these two facts which we have just proved, we see that there is a neighborhood of x which is disjoint from $\left(G_{m}-J\right)\left(B_{m}\right)$ for each m. This implies in particular that there is a point in B_{3-m}° which is not contained in the G_{m}-translates of B_{m}. Hence, in this case, $\left(B_{1}^{\circ}, B_{2}^{\circ}\right)$ is proper.

Now we assume that there is a point $x \in D_{1} \cap B_{2}^{\circ}$. If $x \in\left(G_{1}-J\right)\left(B_{1}^{\circ}\right)$, then there are an element $g \in G_{1}-J$ and a point $y \in B_{1}^{\circ}$ with $x=g(y)$. Since y lies in $B_{1}^{\circ} \cap{ }^{\circ} \Omega\left(G_{1}\right) \subset B_{1}^{\circ} \cap{ }^{\circ} \Omega(J)=J\left(D_{1} \cap B_{1}^{\circ}\right)$, there are an element $j \in J$ and a point $z \in D_{1} \cap B_{1}^{\circ}$ with $y=j(z)$, which implies $x=g j(z)$. Since D_{1} is a fundamental set
of G_{1}, it follows that $x=z$ and $g=j^{-1}$, which is a contradiction. Therefore x is not contained in $\left(G_{1}-J\right)\left(B_{1}^{\circ}\right)$ and ($B_{1}^{\circ}, B_{2}^{\circ}$) is proper. Thus we have proved (10).

Definition 4.1. Let $\left\{S_{j}\right\}$ be a collection of topological $(n-1)$-spheres. We say that the sequence $\left\{S_{j}\right\}$ nests about the point x if the following are satisfied.
(1) The spheres S_{j} are pairwise disjoint.
(2) For each j, the sphere S_{j} separates x from the precedent S_{j-1};
(3) For any point $z_{j} \in S_{j}$, the sequence $\left\{z_{j}\right\}$ converges to x.

Now we can state and prove our main theorem.

Theorem 4.2. Let J be a geometrically finite proper subgroup of two discrete groups G_{1} and G_{2} in $M\left(\overline{\mathbb{R}}^{n}\right)$. Assume that there is a topological $(n-1)$-sphere S dividing $\overline{\mathbb{R}}^{n}$ into two closed topological balls B_{1} and B_{2} such that each B_{m} is a $\left(J, G_{m}\right)$ block and $\left(B_{1}^{\circ}, B_{2}^{\circ}\right)$ is a proper interactive pair. Assume that for $m=1,2$, there is a fundamental set D_{m} for G_{m} such that $J\left(D_{m} \cap B_{m}\right)=B_{m} \cap{ }^{\circ} \Omega(J), D_{m} \cap B_{3-m}$ is either empty or has nonempty interior, and $D_{1} \cap S=D_{2} \cap S$. Set $D=\left(D_{1} \cap B_{2}\right) \cup\left(D_{2} \cap B_{1}\right)$ and $G=\left\langle G_{1}, G_{2}\right\rangle$. Then the following hold.
(1) $G=G_{1} *_{J} G_{2}$.
(2) G is discrete.
(3) If an element g of G is not loxodromic, then one of the following must hold.
(a) g is conjugate to an element of either G_{1} or G_{2}.
(b) g is parabolic and is conjugate to an element fixing a parabolic fixed point of J.
(4) S is a precisely embedded (J, G)-block.
(5) If $\left\{S_{k}\right\}$ is a sequence of distinct G-translates of S, then $\operatorname{diam}\left(S_{k}\right) \rightarrow 0$, where diam denotes the diameter with respect to the ordinary spherical metric on $\overline{\mathbb{R}}^{n}$.
(6) There is a sequence of distinct G-translates of S nesting about the point x if and only if x is a limit point of G which is not G-equivalent to a limit point of either G_{1} or G_{2}.
(7) D is a fundamental set for G. If both D_{1} and D_{2} are constrained, and $S \cap \operatorname{Fr} D$ consists of finitely many connected components the sum of whose $(n-1)$-dimensional measures on S vanishes, then D is also constrained.
(8) Let Q_{m} be the union of the G_{m}-translates of B_{m}°, and let R_{m} be the complement of Q_{m} in $\overline{\mathbb{R}}^{n}$. Then $\Omega(G) / G=\left(R_{1} \cap \Omega\left(G_{1}\right)\right) / G_{1} \cup\left(R_{2} \cap \Omega\left(G_{2}\right)\right) / G_{2}$, where the latter two possibly disconnected orbifolds are identified along their common possibly disconnected or empty boundary ($S \cap \Omega(J)$)/J.

Furthermore, under the assumption that S is a strong (J, G)-block if and only if for $m=1,2$, each B_{m} is a strong $\left(J, G_{m}\right)$-block, two more statements hold.
(9) If both B_{1} and B_{2} are strong, then, except for G-translates of limit points of G_{1} or G_{2}, every limit point of G is a conical limit point.
(10) G is geometrically finite if and only if both G_{1} and G_{2} are geometrically finite.

Proof of (1). Since ($B_{1}^{\circ}, B_{2}^{\circ}$) is proper, (1) follows from Theorem 2.7.

Proof of (2). Suppose that G is not discrete. Then there is a sequence $\left\{g_{k}\right\}$ of distinct elements of G which converges to the identity uniformly on compact subsets. Express g_{k} in a normal form $g_{k}=\gamma_{n_{k}} \circ \gamma_{n_{k}-1} \circ \cdots \circ \gamma_{n_{1}}$. We may assume that each g_{k} has even length, for if g_{k} has odd length, then by Lemma 2.6, either $g_{k}\left(B_{1}^{\circ}\right) \subset B_{2}^{\circ}$, or $g_{k}\left(B_{2}^{\circ}\right) \subset B_{1}^{\circ}$, and such elements cannot converge to the identity. By interchanging B_{1} and B_{2} if necessary, we may assume that $\left(G_{1}-J\right)\left(B_{1}^{\circ}\right)$ is a proper subset of B_{2}° since ($B_{1}^{\circ}, B_{2}^{\circ}$) is proper. By choosing a subsequence, we may assume that all the g_{k} are (1,2)-forms or all of them are (2,1)-forms. It suffices to prove the case that every g_{k} is a $(1,2)$-form since if g_{k} is a $(2,1)$-form, then g_{k}^{-1} is a (1,2)-form.

Since we assumed that each g_{k} is a $(1,2)$-form, we have $g_{k}\left(B_{2}^{\circ}\right) \subset \gamma_{n_{k}} \circ \gamma_{n_{k-1}}\left(B_{2}^{\circ}\right)$. If $\gamma_{n_{k-1}}\left(B_{2}^{\circ}\right)=B_{1}^{\circ}$, then $g_{k}\left(B_{2}^{\circ}\right) \subset \gamma_{n_{k}}\left(B_{1}^{\circ}\right) \subset B_{2}^{\circ}$, with the last inclusion being proper, and if $\gamma_{n_{k-1}}\left(B_{2}^{\circ}\right)$ is a proper subset of B_{1}°, then $g_{k}\left(B_{2}^{\circ}\right) \subset \gamma_{n_{k}} \circ \gamma_{n_{k-1}}\left(B_{2}^{\circ}\right) \subset \gamma_{n_{k}}\left(B_{1}^{\circ}\right) \subset B_{2}^{\circ}$, with the last two inclusions being proper. Therefore, in either case, we have $g_{k}\left(B_{2}^{\circ}\right) \subset$ $\gamma_{n_{k}}\left(B_{1}^{\circ}\right) \subset B_{2}^{\circ}$, with the last inclusion being proper. Thus $B_{2}^{\circ}-g_{k}\left(B_{2}^{\circ}\right) \supset B_{2}^{\circ}-\gamma_{n_{k}}\left(B_{1}^{\circ}\right) \supset$ $B_{2}^{\circ}-\left(G_{1}-J\right)\left(B_{1}^{\circ}\right)$. Since $g_{k} \rightarrow i d$ on B_{2} and $B_{2}^{\circ} \backslash\left(G_{1}-J\right)\left(B_{1}^{\circ}\right) \neq \emptyset$, this is a contradiction.

Now for a normal form $g=g_{n} \cdots g_{1} \in G$, we call g positive if $g_{1} \in G_{1}-J$ and we express it as $g>0$; we call g negative if $g_{1} \in G_{2}-J$ and we express it as $g<0$.

Using this distinction, we consider a coset decomposition of G :

$$
G=J \cup\left(\bigcup_{n, k} a_{n k} J\right) \cup\left(\bigcup_{n, k} b_{n k} J\right),
$$

where $\left|a_{n k}\right|=\left|b_{n k}\right|=n, a_{n k}>0$, and $b_{n k}<0$. Following Apanasov [6], we set $T_{n}=$ $\left(\bigcup_{k} a_{n k}\left(B_{1}\right)\right) \cup\left(\bigcup_{k} b_{n k}\left(B_{2}\right)\right), C_{n}=\overline{\mathbb{R}}^{n} \backslash T_{n}, C=\bigcup C_{n}$, and $T=\overline{\mathbb{R}}^{n} \backslash C=\bigcap T_{n}$.

Then we have the following.
Lemma 4.3. $\left\{T_{n}\right\}$ is a decreasing sequence with respect to the inclusion, that is, $T_{1} \supset T_{2} \supset \cdots$.

Proof. Take a point $x \in T_{n}(n>1)$. Then either there are an element $a_{n k}>0$ with length n and a point $y \in B_{1}$ satisfying that $x=a_{n k}(y)$, or there are an element $b_{n k}<0$ with length n and a point $y \in B_{2}$ satisfying that $x=b_{n k}(y)$. In the former case, if we express $a_{n k}$ in a normal form as $g_{n} \circ \cdots \circ g_{1}$, then $g_{1} \in G_{1}-J$. Since $g_{1}(y)$ lies in $g_{1}\left(B_{1}\right) \subset B_{2}$, there is a point $z \in B_{2}$ with $g_{1}(y)=z$. Therefore, $x=a_{n k}(y)=$ $g_{n} \circ \cdots \circ g_{2}(z) \in b_{(n-1) s}\left(B_{2}\right) \subset T_{n-1}$. In the latter case, by the same argument we have $x \in T_{n-1}$.

Lemma 4.4. The sphere S is precisely embedded in G. If S is precisely invariant under J in G_{1} and G_{2}, respectively, then S is precisely invariant under J in G.

Proof. We shall first show that S is precisely embedded. For any $g \in G$ with $|g|=0$, we have $g(S)=S$ and is disjoint from both B_{1}° and B_{2}°. If $|g|=1$, then $g \in$ $G_{m}-J(m=1,2)$, and $g(S)=g\left(\operatorname{Fr} B_{m}\right) \subset g\left(B_{m}\right) \subset B_{3-m}$. This means that $g(S)$ is disjoint from B_{m}°.

Now let $g=g_{n} \circ \cdots \circ g_{1}$ be an (m, k)-form with $|g|>1$. Then $g(S)=g\left(\operatorname{Fr} B_{k}\right) \subset$ $g\left(B_{k}\right) \subset B_{3-m}$ since $g\left(B_{k}^{\circ}\right) \subset B_{3-m}^{\circ}$ by Lemma 2.6. This means that $g(S)$ is disjoint from B_{m}° again, and we have thus shown that S is precisely embedded in G.

Now suppose that S is precisely invariant under J both in G_{1} and G_{2}. Since, as was shown above, for $g \in J$, we have $g(S)=S$, we have only to show that $g(S) \cap S=\emptyset$ for $g \in G-J$. Note that $g(S)=g\left(\operatorname{Fr} B_{m}\right) \subset g\left(B_{m}\right) \subset B_{3-m}^{\circ}$ for any $g \in G_{m}-J$. Therefore, it remains to consider the case when $|g|>1$. If $g=g_{n} \circ \cdots \circ g_{1}$ is an (m, k) form with $|g|>1$, then $h=g_{n}^{-1} \circ g$ is a ($3-m, k$)-form. It follows from Lemma 2.6 that $g(S)=g_{n} \circ h(S)=g_{n} \circ h\left(\operatorname{Fr} B_{k}\right) \subset g_{n} \circ h\left(B_{k}\right) \subset g_{n}\left(B_{m}\right) \subset B_{3-m}^{\circ}$. Thus, we have shown that for any $g \in G-J, g(S) \cap S=\emptyset$.

Lemma 4.5. $D \subset C_{1}$.

Proof. We assume that $D \neq \emptyset$. By interchanging B_{1} and B_{2} if necessary, we can assume that $D_{1} \cap B_{2} \neq \emptyset$. If there is a point $x \in D_{1} \cap S=D_{2} \cap S$, then no ($G_{m}-J$)translates of B_{m} pass through x as was shown in the proof of Lemma 4.1-(10). This implies that $x \in C_{1}$.

It remains to consider the case when $x \in D_{1} \cap B_{2}^{\circ}$. If $x \in\left(G_{1}-J\right)\left(B_{1}\right)$, then there are an element $g \in G_{1}-J$ and a point $y \in B_{1}$ with $x=g(y)$. Since $y \in{ }^{\circ} \Omega\left(G_{1}\right) \cap B_{1} \subset$ ${ }^{\circ} \Omega(J) \cap B_{1}$, there are an element $j \in J$ and a point $z \in D_{1} \cap B_{1}$ with $y=j(z)$ by the assumption that $J\left(D_{1} \cap B_{1}\right)={ }^{\circ} \Omega(J) \cap B_{1}$ in Theorem 4.2. Therefore we have $x=g j(z)$, which implies that $x=z$ and $g j=i d$. This contradicts the assumption that g lies in $G_{1}-J$. Thus we have shown that $x \in C_{1}$.

Lemma 4.6. D is contained in ${ }^{\circ} \Omega(G)$, and precisely invariant under $\{i d\}$ in G.

Proof. We shall first prove that D is contained in $\Omega(G)$. Suppose, on the contrary, that there is a point z in $D \cap \Lambda(G)$. Since $D=\left(D_{1} \cap B_{2}\right) \cup\left(D_{2} \cap B_{1}\right)$, we can assume that $z \in D_{1} \cap B_{2}$ by interchanging the indices if necessary.

Claim 5. In this situation, we have $z \in D_{1} \cap S$.

Proof of Claim 5. Suppose not. Then z must be contained in $D_{1} \cap B_{2}^{\circ}$. Since $z \in$ $\Lambda(G)$, it follows from Lemma 2.2 that there is a sequence $\left\{g_{k}\right\}$ of distinct elements in G such that $g_{k}(y) \rightarrow z$ for all y with at most one exception. Since $z \in B_{2}^{\circ} \subset \Omega\left(G_{2}\right)$ (by

Lemma 4.1-(3)) and $z \in D_{1} \subset \Omega\left(G_{1}\right)$, we have $\left|g_{k}\right|>1$, and we can assume that each g_{k} is a 1 -form. Since $g_{k}(B) \subset T_{1}$ for B which is equal to B_{1} or B_{2}, Lemma 4.5 implies that $z \in \operatorname{Fr} T_{1}$. Since $z \in D_{1} \subset \Omega\left(G_{1}\right)$ and every point of $B_{2}^{\circ} \cap \operatorname{Fr} T_{1}$ is either a $\left(G_{1}-J\right)$ translate of a point of S or a limit point of G_{1}, we deduce that z is a $\left(G_{1}-J\right)$-translate of a point of S. On the other hand, since z is contained in $C_{1}=\overline{\mathbb{R}}^{n} \backslash T_{1}$, we see that z is not a $\left(G_{1}-J\right)$-translate of a point of S. This is a contradiction.

Since $z \in D_{1} \cap S=D_{2} \cap S$, as was shown in the proof of Lemma 4.1-(10), no $\left(G_{m}-J\right)$-translates of B_{m} pass through z nor accumulate at z. Therefore, we have $z \in C_{1}^{\circ}$. Since $\left\{T_{n}\right\}$ is decreasing, the $(G-J)$-translates of S do not accumulate at z, for ($G-J$)-translates of S accumulate at points in \bar{T}_{1}, which is disjoint from C_{1}°. This means that z cannot be a limit point of G; hence $z \in \Omega(G)$. Thus we have shown that D is contained in $\Omega(G)$.

By Lemma 4.1-(6) and Lemma 2.8, we see that ($\left.D_{1} \cap B_{2}^{\circ}\right) \cup\left(D_{2} \cap B_{1}^{\circ}\right)$ is precisely invariant under $\{i d\}$ in G. Setting $A=\left(D_{1} \cap B_{2}^{\circ}\right) \cup\left(D_{2} \cap B_{1}^{\circ}\right)$, we have $D=A \cup\left(D_{1} \cap S\right)$ and $A \subset C_{1}^{\circ}$. Then for any $g \in G-\{i d\}$, we have $g(D) \cap D=\left(g(A) \cap\left(D_{1} \cap S\right)\right) \cup$ $\left(g\left(D_{1} \cap S\right) \cap A\right) \cup\left(g\left(D_{1} \cap S\right) \cap\left(D_{1} \cap S\right)\right)$.

If $g \in J-\{i d\}$, then $g\left(D_{1} \cap S\right) \subset S \backslash D_{1}$ and $g(A) \cup A \subset B_{1}^{\circ} \cup B_{2}^{\circ}$. Therefore, $g\left(D_{1} \cap S\right) \cap\left(D_{1} \cap S\right)=\emptyset, g\left(D_{1} \cap S\right) \cap A=\emptyset$ and $g(A) \cap\left(D_{1} \cap S\right)=\emptyset$. It follows that $g(D) \cap D=\emptyset$ in this case.

If $g \in G_{m}-J$, then $g\left(D_{1} \cap S\right)=g\left(D_{m} \cap S\right) \subset T_{1}$ and Lemma 4.1-(4) and (6) imply that $g(A) \subset B_{3-m}^{\circ}$. Since $A \cup\left(D_{1} \cap S\right)=D$ is contained in C_{1} by Lemma 4.5, and $g\left(D_{1} \cap S\right)$ is contained in T_{1}, we have $g\left(D_{1} \cap S\right) \cap A=\emptyset$. We also have $g\left(D_{1} \cap\right.$ $S) \cap\left(D_{1} \cap S\right)=\emptyset$ since $D_{1} \cap S=D_{2} \cap S$ and D_{1}, D_{2} are fundamental sets of G_{1}, G_{2} respectively, and $g(A) \cap\left(D_{1} \cap S\right)=\emptyset$ since $g(A)$ is contained in B_{3-m}° as was seen above. Therefore also in this case, we have $g(D) \cap D=\emptyset$.

Now, we consider $g=g_{n} \circ \cdots \circ g_{1} \in G-\left(G_{1} \cup G_{2}\right)$, where $g_{1} \in G_{m}-J$. Then $g\left(D_{1} \cap S\right)=g\left(D_{m} \cap S\right) \subset g\left(B_{m}\right) \subset T_{n} \subset T_{1}$ and $g(A)=g\left(D_{m} \cap B_{3-m}^{\circ}\right) \cup g\left(D_{3-m} \cap B_{m}^{\circ}\right) \subset$ $g_{n} \circ \cdots \circ g_{2}\left(B_{3-m}^{\circ}\right) \cup g\left(B_{m}^{\circ}\right)($ Lemma 4.1-(6) $) \subset T_{n-1}^{\circ} \cup T_{n}^{\circ} \subset T_{1}^{\circ} \subset B_{1}^{\circ} \cup B_{2}^{\circ}$. These facts imply that $g\left(D_{1} \cap S\right) \cap\left(D_{1} \cap S\right)=\emptyset$ by Lemma 4.5, $g\left(D_{1} \cap S\right) \cap A=\emptyset$ by the fact that $A \subset C_{1}^{\circ}$, and $g(A) \cap\left(D_{1} \cap S\right)=\emptyset$. Thus we have shown that D is precisely invariant under $\{i d\}$ in G. Since we have already shown that $D \subset \Omega(G)$, this means that $D \subset{ }^{\circ} \Omega(G)$.

Lemma 4.7. $S \cap \Omega(J)=S \cap \Omega(G)$, and $S \cap \Omega(J)$ is precisely invariant under J in G.

Proof. Let z be a point in $S \cap \Omega(J)$. Since $S \cap \Omega\left(G_{m}\right)=S \cap \Omega(J)$ for each m by Lemma 4.1-(2), we have $z \in \Omega\left(G_{m}\right)$. As was shown in the proof of Lemma 4.1-(10), no $\left(G_{m}-J\right)$-translates of B_{m} pass through z nor accumulate at z. Therefore z is contained in C_{1}°.

Suppose, seeking a contradiction, that z lies in $\Lambda(G)$. Then there is a sequence $\left\{g_{k}\right\}$ of distinct elements of G such that $g_{k}(y) \rightarrow z$ for all y with at most one exception. Since z is contained in $\Omega\left(G_{1}\right) \cap \Omega\left(G_{2}\right)$, we can assume $\left|g_{k}\right|>1$ for all k by taking a subsequence. We deduce from the fact that $g_{k}(B) \subset T_{1}$ for $B=B_{1}$ or B_{2} that z must be contained in \bar{T}_{1}, which is a contradiction. Thus we have shown that $S \cap \Omega(J)$ is contained in $S \cap \Omega(G)$. The opposite inclusion is trivial.

Now we turn to prove the latter half of our lemma. It is clear that J keeps $S \cap$ $\Omega(J)$ invariant. Suppose that there are points y and z in $S \cap \Omega(G)=S \cap \Omega(J)$ and that there is an element $g \in G-J$ such that $g(y)=z$. Express g in a normal form $g=g_{n} \circ \cdots \circ g_{1}$. Then $n>1$ since S is a $\left(J, G_{m}\right)$-block $(m=1,2)$. Clearly z lies on $g(S) \cap S$. Moreover since $g(S)=g_{n}\left(g_{n-1} \circ \cdots \circ g_{1}(S)\right)$ and S is contained in both B_{1} and B_{2}, by Lemma 2.6, $g(S)$ is contained in either $g_{n}\left(B_{m}\right)$, where g_{n} is assumed to lie in G_{m}. If $z \in g(S)$ is contained in $g_{n}\left(B_{m}^{\circ}\right)$, then it must lie in B_{3-m}°, which contradicts our assumption. Therefore z must lie in $g_{n}(S)$. We may assume that $g_{n} \in G_{1}-J$ by interchanging the indices if necessary. Since B_{1} is a $\left(J, G_{1}\right)$-block, $B_{1} \cap \Omega\left(G_{1}\right)$ is precisely invariant under J in G_{1}, which means that $g_{n}\left(\Omega\left(G_{1}\right) \cap B_{1}\right)$ is contained in B_{2}°. Because we have shown that z lies in $S \cap g_{n}(S)$, this implies that $z \in \Lambda\left(G_{1}\right) \subset \Lambda(G)$. Since $z=g(y) \in \Omega(G)$, this is a contradiction. Thus we have shown that $g(S \cap \Omega(G)) \cap$ $(S \cap \Omega(G))=\emptyset$ for any $g \in G-J$.

Proof of (3). Let g be an element of G which is not conjugate to any element of either G_{1} or G_{2}, such that $|g|$ is minimal among all conjugates of g in G. Clearly, we have $|g|>1$. Express g in a normal form $g=g_{n} \circ \cdots \circ g_{1}$. If the length of g is odd, say, $g_{n}, g_{1} \in G_{m}-J$, then $g_{n}^{-1} \circ g \circ g_{n}=g_{n-1} \circ \cdots \circ\left(g_{1} \circ g_{n}\right)$. The corresponding normal form of $g_{n}^{-1} \circ g \circ g_{n}$ has length less than n, which contradicts the minimality of $|g|$. Therefore the length of g must be even and g must be a $(3-m, m)$-form. This implies that $g\left(B_{m}\right) \subset g_{n} \circ g_{n-1}\left(B_{m}\right) \subset B_{m}$. Since ($B_{1}^{\circ}, B_{2}^{\circ}$) is a proper interactive pair by assumption, the last inclusion is proper by Lemma 2.6. Hence g has the infinite order and has a fixed point in $g\left(B_{m}\right) \subset B_{m}$. Similarly, $g^{-1}\left(B_{3-m}\right) \subset g_{1}^{-1} \circ g_{2}^{-1}\left(B_{3-m}\right) \subset B_{3-m}$, where the last inclusion is proper. Therefore g also has a fixed point in $g^{-1}\left(B_{3-m}\right) \subset$ B_{3-m}, which may coincide with the above-mentioned fixed point.

Since G is discrete and g has infinite order, g is not elliptic. If g is parabolic, then its fixed point is unique, which we denote by x. Hence the two fixed points mentioned above are equal and x lies on $S \cap g(S)$. By Lemma 4.7, x is a limit point of J. Since J is geometrically finite, x is either a parabolic fixed point of J or a conical limit point for J by Proposition 2.13. Since a conical limit point for J is also that for G and a conical limit point cannot be a parabolic fixed point, we see that x is a parabolic fixed point of J.

Proof of (4). Since B_{1} and B_{2} are both blocks, for every parabolic fixed point z of J with the rank of $\operatorname{Stab}_{J}(z)$ being less than n, the peak domain centered at z for J has trivial intersection with $S=\operatorname{Fr} B_{1}=\operatorname{Fr} B_{2}$. This shows the second condition in
the definition of blocks holds for S. Lemma 4.7 implies that the first condition in the definition holds for S, hence that S is a (J, G)-block. By Lemma 4.4, S is precisely embedded in G.

Proof of (5). By (4) shown above, we know that S is a (J, G)-block. Then (5) follows from Theorem 3.1.

Lemma 4.8. $\quad C_{1} \cap B_{m}^{\circ}$ is precisely invariant under G_{3-m} in G.
Proof. It is obvious that $C_{1} \cap B_{m}^{\circ}=\overline{\mathbb{R}}^{n}-G_{3-m}\left(B_{3-m}\right)$. Since $G_{3-m}\left(B_{3-m}\right)$ is invariant under G_{3-m}, its complement $C_{1} \cap B_{m}^{\circ}$ is also invariant under G_{3-m}.

If $g \in G_{m}-J$, then $g\left(C_{1} \cap B_{m}^{\circ}\right) \subset g\left(B_{m}^{\circ}\right) \subset B_{3-m}^{\circ}$, and we are done. Now we consider a general g which is expressed in a normal form $g=g_{n} \circ \cdots \circ g_{1}$ with $|g|>1$. If g is an (m, m)-form, then $g\left(C_{1} \cap B_{m}^{\circ}\right) \subset g\left(B_{m}^{\circ}\right) \subset B_{3-m}^{\circ}$ by Lemma 2.6. If g is an ($m, 3-m$)-form, then $g\left(C_{1} \cap B_{m}^{\circ}\right)=g_{n} \circ \cdots \circ g_{1}\left(C_{1} \cap B_{m}^{\circ}\right)=g_{n} \circ \cdots \circ g_{2}\left(C_{1} \cap B_{m}^{\circ}\right)$ as was shown in the last paragraph, and this last term is contained in B_{3-m}° since $g_{n} \circ \cdots \circ g_{2}$ is an (m, m)-form. If $g=g_{n} \circ \cdots \circ g_{1}$ is a $(3-m, k)$-form, where either $k=1$ or $k=2$, then, by the discussion above, we see $g_{n-1} \circ \cdots \circ g_{1}\left(C_{1} \cap B_{m}^{\circ}\right) \subset B_{3-m}^{\circ}$; hence $g\left(C_{1} \cap B_{m}^{\circ}\right) \subset g_{n}\left(B_{3-m}^{\circ}\right) \subset T_{1}^{\circ}$. Thus in every case, if $g \notin G_{3-m}$, then $g\left(C_{1} \cap B_{m}^{\circ}\right) \cap$ $\left(C_{1} \cap B_{m}^{\circ}\right)=\emptyset$.

Lemma 4.9. The set C is contained in the union of $\Omega(G) \backslash{ }^{\circ} \Omega(G)$ and the G translates of $D \cup \Lambda\left(G_{1}\right) \cup \Lambda\left(G_{2}\right)$.

Proof. Every point $x \in C$ is contained either in C_{1} or in $C_{n} \backslash C_{n-1}$ for some index $n(n>1)$ since $\left\{C_{n}\right\}$ is increasing. If $x \in C_{n} \backslash C_{n-1}$, then $x \in T_{n-1} \backslash T_{n}$. Hence there are a point $y \in B_{k}$ and an element expressed in an (m, k)-form $g=g_{n-1} \circ \cdots \circ g_{1} \in G$ such that $x=g(y)$. If y lies in T_{1}, then either $y \in\left(G_{k}-J\right)\left(B_{k}\right) \cap B_{k}$ or $y \in\left(G_{3-k}-J\right)\left(B_{3-k}\right)$. In the former case, y is contained in $\Lambda\left(G_{k}\right) \cap S=\Lambda(J) \cap S$ by Lemma 4.1-(5). In the latter case, we have $x \in T_{n}$, which is a contradiction. Therefore, every point $x \in C$ is either contained in $G(\Lambda(J))$ or $G\left(C_{1}\right)$. In the former case, we are done. Therefore, we have only to consider the latter case. Moreover, since the sets in our statement are G-invariant, we can assume that x lies in C_{1}.

It suffices to prove our lemma under the assumption that $x \in C_{1} \cap B_{2}$; the proof for the case $x \in C_{1} \cap B_{1}$ is the same. If x lies in $C_{1} \cap B_{2}$, then either $x \in \Lambda\left(G_{1}\right)$ or $x \in{ }^{\circ} \Omega\left(G_{1}\right)$ or $x \in \Omega\left(G_{1}\right) \backslash^{\circ} \Omega\left(G_{1}\right)$. We only need to discuss the latter two cases.

CASE 1: $x \in{ }^{\circ} \Omega\left(G_{1}\right)$.
In this case, there are an element $g \in G_{1}$ and a point $z \in D_{1}$ with $g(z)=x$. We claim that $z \notin B_{1}^{\circ}$. Suppose, on the contrary, that z is contained in B_{1}°. If g lies in $G_{1}-J$, then $g(z)$ is contained in T_{1} by the definition of T_{1}. Since we assumed that x lies in C_{1}, this is not possible. Therefore, we have $g \in J$. On the other hand, $J\left(B_{1}^{\circ}\right)=$
B_{1}°, which contradicts the assumption that x lies in B_{2}. This shows that $z \in D_{1} \cap B_{2} \subset$ D, and we are done in this case.

CASE 2: $x \in \Omega\left(G_{1}\right) \backslash{ }^{\circ} \Omega\left(G_{1}\right)$.
Since $S \cap \Omega(J)=S \cap \Omega\left(G_{1}\right)=S \cap \Omega\left(G_{2}\right)=S \cap \Omega(G)$ by Lemma 4.7, if $x \in S$, then x lies in $\Omega(G)$. Furthermore, since ${ }^{\circ} \Omega(G)$ is contained in ${ }^{\circ} \Omega\left(G_{1}\right)$, this implies that $x \in \Omega(G) \backslash{ }^{\circ} \Omega(G)$, and we are done in this case. If $x \notin S$, then $x \in C_{1} \cap B_{2}^{\circ}$. Since $x \in \Omega\left(G_{1}\right)$, no $\left(G_{1}-J\right)$-translates of B_{1} accumulate at x as was shown in the proof of Lemma 4.1-(10). Therefore, we have $x \in C_{1}^{\circ}$. Then, by Proposition 2.4, there is a neighbourhood U of x contained in $C_{1} \cap B_{2}^{\circ}$ such that U is precisely invariant under $\operatorname{Stab}_{G_{1}}(x)$ in G_{1} and $\operatorname{Stab}_{G_{1}}(x)$ is a non-trivial finite subgroup. Now Lemma 4.8 implies that $\operatorname{Stab}_{G_{1}}(x)=\operatorname{Stab}_{G}(x)$. Hence U is precisely invariant under $\operatorname{Stab}_{G}(x)$ in G. This shows that x is contained in $\Omega(G) \backslash^{\circ} \Omega(G)$, and we have completed the proof.

Lemma 4.10. $T \subset \Lambda(G)$. Furthermore, every point of T is either a G-translate of a point in $\Lambda(J)$ or the limit of nested translates of S.

Proof. Consider a point $z \in T$. We assume that $z \in\left(G_{1}-J\right)\left(B_{1}\right)$, for the case when $z \in\left(G_{2}-J\right)\left(B_{2}\right)$ can be dealt with in the same way. Then there is an element $h_{1}=g_{1} \in G_{1}-J$ such that $z \in g_{1}\left(B_{1}\right)$. Since $T_{1} \supset T_{2}$, we have $z \in T_{2}$, and there is an element $g_{2} \in G_{2}-J$ such that $z \in g_{1} \circ g_{2}\left(B_{2}\right)=h_{2}\left(B_{2}\right) \subset h_{1}\left(B_{1}\right)$. Similarly, since $z \in T_{3}$, there is an element $g_{3} \in G_{1}-J$ such that $z \in g_{1} \circ g_{2} \circ g_{3}\left(B_{1}\right)=h_{3}\left(B_{1}\right) \subset h_{2}\left(B_{2}\right) \subset$ $h_{1}\left(B_{1}\right)$; etc. Since the element h_{k} has length increasing as $k \rightarrow \infty$ and ($B_{1}^{\circ}, B_{2}^{\circ}$) is a proper interactive pair, the sets $h_{k}(S)$ can be assumed to be all distinct by taking a subsequence if necessary. Thus we have shown that if $z \in T$, then there is a sequence $\left\{h_{k}\right\}$ of elements of G, with $\left|h_{k}\right| \rightarrow \infty$, and $z \in \cdots \subset h_{k}\left(\check{B}_{k}\right) \subset \cdots \subset h_{2}\left(\check{B}_{2}\right) \subset h_{1}\left(\check{B}_{1}\right)$, where \check{B}_{j} is either B_{1} or B_{2}. Passing to a subsequence if necessary, we may assume that $\check{B}_{j}=B_{1}$.

There are two possibilities for this sequence: either z lies in the interiors of infinitely many $h_{k}\left(B_{1}\right)$, or from some k on, z lies on the boundary of every $h_{k}\left(B_{1}\right)$. In either case, since the $h_{k}(S)$ are distinct, we have $\operatorname{diam}\left(h_{k}(S)\right) \rightarrow 0$. Since the ball $h_{k}\left(B_{1}\right)$ bounded by $h_{k}(S)$ decreases as $k \rightarrow \infty$, this is possible only when $\operatorname{diam}\left(h_{k}\left(B_{1}\right)\right) \rightarrow 0$. Since z is a limit of $\left\{h_{k}\left(x_{k}\right)\right\}$ with $x_{k} \in B_{1}$ in either case above, it follows that for every $x \in B_{1}$, we have $h_{k}(x) \rightarrow z$. This means that z lies in $\Lambda(G)$. Moreover, in the former case, we have shown that $\left\{h_{k}(S)\right\}$ nests around z. In the latter case, since $z \in h_{k_{0}}(S) \cap h_{k_{0}+1}(S) \cap$ \ldots, we have $w=h_{k_{0}}^{-1}(z) \in S \cap h_{k_{0}}^{-1} h_{k_{0}+1}(S) \cap \ldots$. Since such w is contained in $\Lambda(G)$, by Lemma 4.7, it also lies in $\Lambda(J)$. This means that z is contained in the G-translate of $\Lambda(J)$.

Lemma 4.11. If $z \in C \cap \Lambda(G)$, then there is no sequence of distinct translates of S nesting about z.

Proof. Lemma 4.9 implies that z is a G-translate of a point in either D or $\Lambda\left(G_{1}\right) \cup$ $\Lambda\left(G_{2}\right)$. Since D is contained in $\Omega(G)$ by Lemma 4.6, the only possibility is $z \in$ $G\left(\Lambda\left(G_{1}\right) \cup \Lambda\left(G_{2}\right)\right)$.

We first consider the special case when z lies in $G(\Lambda(J))$. Under this assumption, suppose, seeking a contradiction, that there is a sequence $\left\{h_{k}(S)\right\}$ of distinct G-translates of S nesting about $z=g(y)$ for an element $g \in G$ and a point $y \in \Lambda(J) \subset S$. Then we have $z \in h_{k}\left(B^{\circ}\right)$ by taking a subsequence for B which is either B_{1} or B_{2}. We can assume that B is B_{1} after taking a subsequence, for we can deal with the other case in the same way. It follows that $y \in g^{-1} \circ h_{k}\left(B_{1}^{\circ}\right)$. Now since $\left\{h_{k}(S)\right\}$ nests around z, we have $\operatorname{diam}\left(h_{k}\left(B_{1}\right)\right) \rightarrow 0$. This is possible only when after taking a subsequence all h_{k} are ($m_{k}, 1$)-forms with $m_{k}=1,2$. (If h_{k} were ($m_{k}, 2$)-form, then $h_{k}\left(B_{1}\right)$ would contain S; hence its diameter would not go to 0 .) Therefore $g^{-1} h_{k}$ is also expressed as an ($m^{\prime}, 1$)-form for large k and $g^{-1} h_{k}\left(B_{1}^{\circ}\right)$ is contained in $B_{3-m^{\prime}}^{\circ}$. In particular, we have $y \notin S$. This contradiction shows that if $z \in G(\Lambda(J))$, then there is no sequence of distinct translates of S nesting about z.

Now we turn to the general case when $z \in G\left(\Lambda\left(G_{1}\right) \cup \Lambda\left(G_{2}\right)\right)$. It suffices to consider the case $z \in G\left(\Lambda\left(G_{1}\right)\right)$ since the proof for the case $z \in G\left(\Lambda\left(G_{2}\right)\right)$ is entirely the same. Then there are an element $g \in G$ and a point $y \in \Lambda\left(G_{1}\right)$ with $g(y)=z$. Since $B_{1}^{\circ} \subset \Omega\left(G_{1}\right)$, we have $\Lambda\left(G_{1}\right) \subset \overline{\mathbb{R}}^{n} \backslash G_{1}\left(B_{1}^{\circ}\right)$. Therefore, y is not contained in $G_{1}\left(B_{1}^{\circ}\right)$; hence unless y lies in $G_{1}(S)$, it must lie in $C_{1} \cap B_{2}^{\circ}$. If $y \in G_{1}(S)$, then $y \in G_{1}\left(S \cap \Lambda\left(G_{1}\right)\right)=G_{1}(S \cap \Lambda(J))$. The discussion in the previous paragraph implies that this case cannot occur.

Now we assume that $y \in C_{1} \cap B_{2}^{\circ}$. If there is a sequence $\left\{h_{k}(S)\right\}$ of distinct G translates of S nesting about $z=g(y)$, then $z \in h_{k}\left(B^{\circ}\right)$ for every k where B is B_{1} or B_{2}, and hence $y \in g^{-1} \circ h_{k}\left(B^{\circ}\right)$. We may assume that $B=B_{1}$ by changing the index and taking a subsequence and h_{k} is an ($m, 1$)-form. Then $g^{-1} \circ h_{k}$ is also an ($m^{\prime}, 1$)form for sufficiently large k. Since $\left\{T_{n}\right\}$ is a decreasing sequence, $y \in T_{1}^{\circ}$, which is a contradiction. Thus we have completed the proof.

Proof of (6). If x lies in $\Lambda(G) \backslash G\left(\Lambda\left(G_{1}\right) \cup \Lambda\left(G_{2}\right)\right)$, then $x \in T$ by Lemma 4.9. Since every point of T is either a translate of a point of $\Lambda(J)$ or is the limit of a nested sequence of translates of S by Lemma 4.10, we have proved the "if" part.

Now we turn to the "only if" part. Suppose that x lies in $\Lambda\left(G_{m}\right)$ for $m=1$ or 2. Since $B_{m}^{\circ} \subset \Omega\left(G_{m}\right)$ by Lemma 4.1-(3), we have $x \in \overline{\mathbb{R}}^{n} \backslash G_{m}\left(B_{m}^{\circ}\right)$. If $x \in G_{m}(S)$, then as was shown in the proof of Lemma 4.11, there is no distinct G-translates of S nesting about x. Therefore x is contained in $\overline{\mathbb{R}}^{n} \backslash G_{m}\left(B_{m}\right)=C_{1} \cap B_{3-m}^{\circ}$, which implies that $x \in C \cap \Lambda(G)$. By Lemma 4.11, there is no distinct translates of S nesting about x.

Proof of (7). By Lemma 4.9, every point of $C \cap^{\circ} \Omega(G)$ is a translate of a point of D. Also by Lemma 4.10, T is contained in $\Lambda(G)$. This shows that every point of ${ }^{\circ} \Omega(G)$ is contained in a G-translate of D. Furthermore, since $D \subset{ }^{\circ} \Omega(G)$ and D
is precisely invariant under the identity in G by Lemma 4.6 , it follows that D is a fundamental set for G.

Now assume that both D_{1} and D_{2} are constrained.
Claim 6. $\Omega(G) \subset G(\bar{D})$.

Proof. Since we have already shown that D is a fundamental set for G, we have only to prove that if $x \in \Omega(G) \backslash{ }^{\circ} \Omega(G)$, then there is an element $g \in G$ with $g(x) \in \bar{D}$. Now let x be a point in $\Omega(G) \backslash{ }^{\circ} \Omega(G)$. By Lemma 4.10, x is not contained in T. As was shown in the proof of Lemma 4.9, we have $x \in G\left(C_{1}\right) \cap\left(\Omega(G) \backslash{ }^{\circ} \Omega(G)\right)$. This means that there are an element $g \in G$ and a point $y \in C_{1} \cap\left(\Omega(G) \backslash^{\circ} \Omega(G)\right)$ such that $x=g(y)$. We may assume that $y \in B_{2}$, for the proof in the case $y \in B_{1}$ is entirely the same.

Suppose first that $y \in S \cap C_{1} \cap\left(\Omega(G) \backslash{ }^{\circ} \Omega(G)\right)$. Then since $S \cap \Omega(J)=S \cap \Omega\left(G_{1}\right)=$ $S \cap \Omega(G)$ by Lemma 4.7 and D_{1} is a constrained fundamental set for G_{1}, there are an element $h \in G_{1}$ and a point $z \in \bar{D}_{1}$ such that $y=h(z)$. Since $G_{1}\left(B_{1}^{\circ}\right) \subset B_{1}^{\circ} \cup T_{1}^{\circ}$, we see that z must be contained in B_{2}, hence $z \in \bar{D}_{1} \cap B_{2} \subset \bar{D}$. Thus we have completed the proof in this case.

Next we assume that $y \notin S$, which means that $y \in C_{1} \cap B_{2}^{\circ} \cap\left(\Omega(G) \backslash^{\circ} \Omega(G)\right)$. Since $y \in \Omega(G) \subset \Omega\left(G_{1}\right)$ and D_{1} is a fundamental set for G_{1}, we see that y is G_{1}-equivalent to a point $w \in \bar{D}_{1}$. By Lemma 4.8, we have $w \in \bar{D}_{1} \cap C_{1} \cap B_{2}^{\circ}$. Since $\bar{D}_{1} \cap B_{2}^{\circ} \subset \bar{D}$, this implies $w \in \bar{D}$, and our claim has been proved.

We now return to the proof of (7). We have

$$
\begin{gather*}
G_{m}\left(\bar{D}_{m}\right)=G_{m}\left(\left(\bar{D}_{m} \cap B_{m}^{\circ}\right) \cup\left(\bar{D}_{m} \cap B_{3-m}\right)\right), \tag{4.1}\\
G_{m}\left(\bar{D}_{m} \cap B_{m}^{\circ}\right) \subset B_{m}^{\circ} \cup\left(T_{1}^{\circ} \cap B_{3-m}^{\circ}\right) \tag{4.2}
\end{gather*}
$$

by the definition of T_{1}, and

$$
\begin{equation*}
\bar{D}_{m} \cap B_{3-m}^{\circ} \subset \overline{D_{m} \cap B_{3-m}} \subset \bar{C}_{1} \cap B_{3-m} \tag{4.3}
\end{equation*}
$$

by Lemma 4.5 .
Since $\bar{C}_{1} \cap B_{3-m}=\overline{\mathbb{R}}^{n} \backslash G_{m}\left(B_{m}^{\circ}\right)$, we see that $\bar{C}_{1} \cap B_{3-m}$ is G_{m}-invariant. Therefore from (4.3), we obtain

$$
\begin{equation*}
G_{m}\left(\bar{D}_{m} \cap B_{3-m}^{\circ}\right) \subset \bar{C}_{1} \cap B_{3-m} . \tag{4.4}
\end{equation*}
$$

Since $\operatorname{Fr} D \cap S$ consists of only finitely many connected components the sum of whose ($n-1$)-dimensional measures on S vanishes by assumption, it follows from (4.1), (4.2), and (4.4) that the sides of D_{m} in B_{3-m} are paired with those in B_{3-m} by elements of G_{m} for each m. Since the sides of D in B_{1} are equal to those of D_{2} in B_{1} and the sides of D in B_{2} those of D_{1} in B_{2}, we see the sides are paired to each other. These
sides can accumulate only at limit points because of the same property for D_{1} and D_{2}. The only thing left to show is that the tessellation of $\Omega(G)$ by translates of \bar{D} is locally finite.

Take any $z \in \bar{D} \cap \Omega(G)$. We see from Lemma 4.5 that either $z \in C_{1}^{\circ}$ or $z \in \operatorname{Fr} C_{1}=$ $\operatorname{Fr} T_{1}$. We may assume that $z \in \overline{D_{1} \cap B_{2}} \subset \bar{D}_{1} \cap B_{2}$, for the proof in the case $z \in \bar{D}_{2} \cap B_{1}$ is entirely the same.

CASE 1: $z \in C_{1}^{\circ}$.
Since z is contained in $\Omega\left(G_{m}\right)$ for each m and D_{m} is a constrained fundamental set for G_{m}, there is a neighborhood U of z with $U \subset C_{1}^{\circ}$ such that for each m there is a finite set $\left\{g_{m 1}\left(D_{m}\right), \ldots, g_{m k_{m}}\left(D_{m}\right)\right\}$ with $U \subset \bigcup_{i} g_{m i}\left(\bar{D}_{m}\right)$ for $g_{m i} \in G_{m}$. We consider $U \cap B_{3-m}$. Since $G_{m}\left(\bar{D}_{m} \cap B_{m}^{\circ}\right) \subset B_{m}^{\circ} \cup T_{1}^{\circ}$ and $U \subset C_{1}$, we have $U \cap B_{3-m} \subset$ $\bigcup_{i} g_{m i}\left(\bar{D}_{m} \cap B_{3-m}\right)$. Therefore $U \subset \bigcup_{m=1}^{2}\left(\bigcup g_{m i}\left(\bar{D}_{m} \cap B_{3-m}\right)\right) \subset \bigcup_{m=1}^{2}\left(\bigcup_{i} g_{m i}(\bar{D})\right)$, and we have obtained the local finiteness of D at such a point.

CASE 2: $z \in \operatorname{Fr} C_{1}=\operatorname{Fr} T_{1}$.
We claim that $z \notin S$ in this case. Suppose, on the contrary, that z is contained in S. Since $z \in \Omega(G) \subset \Omega\left(G_{m}\right)$, as was shown in the proof of Lemma 4.1-(10), no $\left(G_{m}-J\right)$-translates of B_{m} pass through z and no G_{m}-translates of B_{m} accumulate at z. Therefore, we have $z \in C_{1}^{\circ}$, which contradicts our assumption for Case 2.

Hence, we can assume that z lies in B_{2}°. Since a point of $\operatorname{Fr} T_{1}$ in B_{2}° is either a point of $\left(G_{1}-J\right)(S)$, or a point of $\Lambda\left(G_{1}\right)$ and $z \in \Omega(G) \subset \Omega\left(G_{1}\right)$, we see that z must lie in $B_{2}^{\circ} \cap\left(G_{1}-J\right)(S)$. Then there are a point $s \in S$ and an element $g \in G_{1}-J$ with $g(s)=z$. By Lemma 4.7, s lies in $S \cap \Omega(G)=S \cap \Omega(J)=S \cap \Omega\left(G_{1}\right)=S \cap \Omega\left(G_{2}\right)$. Therefore no $\left(G_{m}-J\right)$-translates of B_{m} pass through s and no G_{m}-translates of B_{m} accumulate at s as was shown in the proof of Lemma 4.1-(10). This implies that s is contained in $C_{1}^{\circ} \cap S$. By applying the proof of Case 1 to s, we see that there is a neighbourhood U of s covered by finitely many G-translates of \bar{D}. It follows that $g(U)$ is a neighbourhood of z covered by finitely many G-translates of \bar{D}. This shows that D is locally finite at a point as in Case 2.

Thus we have shown the proof of the local finiteness of D, hence completed the proof.

Proof of (8). We shall prove this by showing the following three claims.
Claim 7. For each m, we have $R_{m} \cap \Omega\left(G_{m}\right) \subset \Omega(G)$.
Proof. Take a point $z \in R_{m} \cap \Omega\left(G_{m}\right)$. Since $R_{m}=\overline{\mathbb{R}}^{n} \backslash G_{m}\left(B_{m}^{\circ}\right)$, we have either $z \in G_{m}(S)$ or $z \in C_{1} \cap B_{3-m}^{\circ}$. If $z \in G_{m}(S)$, then $z \in \Omega(G)$ since $S \cap \Omega(G)=S \cap \Omega(J)=$ $S \cap \Omega\left(G_{m}\right)$ by Lemma 4.7. If $z \in C_{1} \cap B_{3-m}^{\circ}$, since $z \in \Omega\left(G_{m}\right)$, no G_{m}-translates of B_{m} passe through or accumulate at z as was shown in the proof of Lemma 4.1-(10). It follows that $z \in C_{1}^{\circ}$. By Proposition 2.4, there is a neighbourhood U of z lying in $C_{1}^{\circ} \cap B_{3-m}^{\circ}$ which is precisely invariant under $\operatorname{Stab}_{G_{m}}(z)$ in G_{m} such that $\operatorname{Stab}_{G_{m}}(z)$
is finite. By Lemma 4.8, we see that $\operatorname{Stab}_{G_{m}}(z)=\operatorname{Stab}_{G}(z)$ and that U is precisely invariant under $\operatorname{Stab}_{G}(z)$ in G. By Proposition 2.4, this implies that $z \in \Omega(G)$.

Claim 8. Every point of $\Omega(G)$ is G-equivalent to a point of either $R_{1} \cap \Omega\left(G_{1}\right)$ or $R_{2} \cap \Omega\left(G_{2}\right)$.

Proof. Let z be a point in $\Omega(G)$. By Lemma 4.10, we see that $z \notin T$. As was shown in the first half of the proof of Lemma 4.9, we have $z \in G\left(C_{1}\right)$. We have only to consider the case when $z \in C_{1}$ by translating z by elements of G. Since $C_{1} \cap B_{m} \subset$ R_{3-m} by the definitions of R_{3-m} and C_{1} and $\Omega(G) \subset \Omega\left(G_{1}\right) \cap \Omega\left(G_{2}\right)$, we see that $z \in\left(R_{1} \cap \Omega\left(G_{1}\right)\right) \cup\left(R_{2} \cap \Omega\left(G_{2}\right)\right)$.

Claim 9. For each $m=1,2$, the set $R_{m} \cap \Omega\left(G_{m}\right)$ is precisely invariant under G_{m} in G.

Proof. It is obvious that R_{m} is G_{m}-invariant, hence so is $R_{m} \cap \Omega\left(G_{m}\right)$. We shall show that $R_{m} \cap \Omega\left(G_{m}\right)$ is moved to a set disjoint from it by other elements of G.

For any $g \in G_{3-m}-J$, we have $g\left(R_{m} \cap \Omega\left(G_{m}\right)\right) \subset g\left(B_{3-m} \cap \Omega\left(G_{m}\right)\right) \subset B_{m}$. By Lemma 4.1-(5), $g\left(B_{3-m}\right) \cap S \subset \Lambda\left(G_{3-m}\right) \cap S$, which is equal to $S \cap \Lambda\left(G_{m}\right)$ by Lemma 4.1-(2). This implies that no point of $\Omega\left(G_{m}\right) \cap B_{3-m}$ is mapped into S by g, hence $g\left(B_{3-m} \cap \Omega\left(G_{m}\right)\right) \subset B_{m}^{\circ}$. Since R_{m} is contained in B_{3-m}, it follows that $g\left(R_{m} \cap \Omega\left(G_{m}\right)\right) \cap R_{m} \cap \Omega\left(G_{m}\right)=\emptyset$.

Now let $g=g_{n} \circ \cdots \circ g_{1}$ be a normal form with $|g|>1$. If g is a $(3-m, 3-m)$ form, then since $g_{1}\left(R_{m} \cap \Omega\left(G_{m}\right)\right) \subset B_{m}^{\circ}$, we have $g\left(R_{m} \cap \Omega\left(G_{m}\right)\right) \subset g_{n} \circ \cdots \circ g_{2}\left(B_{m}^{\circ}\right) \subset$ B_{m}°. If g is a (3-m,m)-form, then since g_{1} preserves $R_{m} \cap \Omega\left(G_{m}\right)$, we have $g\left(R_{m} \cap\right.$ $\left.\Omega\left(G_{m}\right)\right)=g_{n} \circ \cdots \circ g_{2}\left(R_{m} \cap \Omega\left(G_{m}\right)\right)$, which is contained in B_{m}° by the argument above for $(3-m, 3-m)$-forms. Finally if g is an (m, k)-form, then $g_{n-1} \circ \cdots \circ g_{1}$ is a (3-m,k)-form with $k=3-m$ or $k=m$. Then, as was discussed above, we have $g_{n-1} \circ \cdots \circ g_{1}\left(R_{m} \cap \Omega\left(G_{m}\right)\right) \subset B_{m}^{\circ}$, and $g\left(R_{m} \cap \Omega\left(G_{m}\right)\right) \subset g_{n}\left(B_{m}^{\circ}\right)$, which is contained in the complement of R_{m} by definition. Thus we have shown that $g\left(R_{m} \cap \Omega\left(G_{m}\right)\right) \cap$ $R_{m} \cap \Omega\left(G_{m}\right)=\emptyset$ for any $g \in G-G_{m}$.

By these three claims, we have shown that $\Omega(G) / G=\left(R_{1} \cap \Omega\left(G_{1}\right)\right) / G_{1} \cup\left(R_{2} \cap\right.$ $\left.\Omega\left(G_{2}\right)\right) / G_{2}$. Now we consider the intersection of the two terms in the right hand side. We should first note that $\left(R_{1} \cap \Omega\left(G_{1}\right)\right) \cap\left(R_{2} \cap \Omega\left(G_{2}\right)\right)$ is contained in $B_{2} \cap B_{1}=S$ since R_{1} is contained in B_{2}, and R_{2} is in B_{1}. Since $\Omega\left(G_{m}\right) \cap S=\Omega(J) \cap S \subset R_{m} \cap$ $\Omega\left(G_{m}\right)$, the intersection is equal to $\Omega(J) \cap S$. Furthermore since S is a $\left(J, G_{m}\right)$-block, $\Omega(J) \cap S$ projects to $(\Omega(J) \cap S) / J$ in $\left(R_{m} \cap \Omega\left(G_{m}\right)\right) / G_{m}$. Therefore $\left(R_{1} \cap \Omega\left(G_{1}\right)\right) / G_{1}$ and $\left(R_{2} \cap \Omega\left(G_{2}\right)\right) / G_{2}$ are pasted along $(S \cap \Omega(J)) / J$.

In the following, we assume further that S is a strong (J, G)-block if and only if each B_{m} is a strong (J, G_{m})-block.

Proof of (9). Since we are assuming both B_{1} and B_{2} are strong blocks, by assumption, S is a strong (J, G)-block. Let x be a limit point of G which is not a translate of a limit point of either G_{1} or G_{2}. By Lemma 4.9, we see that x is contained in T. Furthermore, by Lemma 4.10, there is a sequence $\left\{h_{k}\right\}$ of distinct elements of G such that $x \in \cdots \subset h_{k}(B) \subset \cdots \subset h_{1}(B)$ for B which is either B_{1} or B_{2}. We can assume that $B=B_{1}$ and $h_{1}=i d$ by interchanging the indices and replacing $g\left(B_{2}\right)$ with B_{1} for $g \in G_{2}$ if necessary. Then S separates $h_{k}^{-1}(S)$ from $h_{k}^{-1}(x)$.

Since J is geometrically finite, by Proposition 2.16, there are a Dirichlet domain P and standard parabolic regions $B_{p_{1}}, \ldots B_{p_{k}}$ such that $\bar{P} \backslash \bigcup_{j}\left(\operatorname{Int} B_{p_{j}} \cup\left\{p_{j}\right\}\right)$ is compact. Since P is a Dirichlet domain, the interior of $Q=\bar{P} \cap \overline{\mathbb{R}}^{n}$ is a fundamental domain for J. Since $h_{k}^{-1}(x) \in \Omega(J)$ for each k, there is an element $j_{k} \in J$ such that $j_{k} \circ h_{k}^{-1}(x) \in$ Q. We denote $j_{k} \circ h_{k}^{-1}$ by l_{k}.

We claim that $\left\{l_{k}(x)\right\}$ stays away from S. Suppose, on the contrary, that $l_{k}(x) \rightarrow$ $w \in S$. Then, by Lemma 4.7, $w \in \Lambda(J)$. It follows that $w \in P \cap \Lambda(J)$. So w is a parabolic fixed point of J, where the rank of $\operatorname{Stab}_{J}(w)$ is less than n since Q intersects $\Lambda(J)$ only at the p_{j}.

This means that all the $l_{k}(x)$ lie in some $B_{p_{j}}$ if we take a subsequence, where $p_{j}=w$. Let the rank of $\operatorname{Stab}_{J}(w)$ be s and the rank of $\operatorname{Stab}_{G}(w)$ be m.

If $s=m$, then we can assume that the interior of $B_{w} \cap \overline{\mathbb{R}}^{n}$, which is denoted by U_{w}, is also a peak domain for G. Hence we may assume that $\bar{U}_{w} \backslash\{w\}$ is contained in $\Omega(G)$. On the other hand, since x lies in $\Lambda(G)$, we have $l_{k}(x) \in \Lambda(G)$, which is a contradiction.

Therefore, there is $\delta>0$ such that $d\left(l_{k}(x), z\right)>\delta$ for all $z \in S$, where d denotes the ordinary spherical metric on $\overline{\mathbb{R}}^{n}$. Since S separates $h_{k}^{-1}(x)$ from $h_{k}^{-1}(S)$, we see that for all z on S we have $\delta<d\left(l_{k}(x), z\right) \leq d\left(l_{k}(x), l_{k}(z)\right)$. On the other hand, since $h_{k}(S)$ nest around x, we see that for any point y on S, the points $l_{k}^{-1}(y)$ converge to x. We can now apply Proposition 2.12 to conclude that x is a conical limit point.

If $s<m$, by conjugation and Theorem 2.10, we may assume that $w=\infty$,

$$
\operatorname{Stab}_{G}^{*}(w)=\left\langle j_{1}, \ldots, j_{m}\right\rangle
$$

and

$$
\operatorname{Stab}_{J}^{*}(w)=\left\langle h_{1}, \ldots, h_{s}\right\rangle,
$$

where $j_{i}(y)=A_{i}(y)+e_{i-1}(i=1, \ldots, m), h_{j}(y)=U_{j}(y)+e_{j-1}(j=1, \ldots, s), y \in \mathbb{R}^{n}, A_{i}$ and U_{j} are rotations, and A_{i} and U_{j} act on \mathbb{R}^{m} trivially. It follows from $\left\{l_{k}(x)\right\} \subset Q$ that $\sum_{i=1}^{s}\left|l_{k}(x)_{i}\right|^{2}$ are bounded away from ∞ for all k. Since S is strong, there is $t>0$ such that

$$
U=\left\{z \in \mathbb{R}^{n}: \sum_{i=m+1}^{n}\left|z_{i}\right|^{2}>t\right\}
$$

is a peak domain for G and $\bar{U} \backslash\{\infty\} \subset \Omega(G)$. We know that $\left\{l_{k}(x)\right\} \subset \Lambda(G)$. Hence $\sum_{i=m+1}^{n}\left|l_{k}(x)_{i}\right|^{2}<t$. It follows from $l_{k}(x) \rightarrow \infty$ as $k \rightarrow \infty$ that

$$
\sum_{i=s+1}^{m}\left|l_{k}(x)_{i}\right|^{2} \rightarrow \infty
$$

For each $i=s+1, \ldots, m$, if $\left|l_{k}(x)_{i}\right|^{2} \rightarrow \infty(k \rightarrow \infty)$, then we choose a sequence $\left\{i_{k}\right\}$ of integers such that for all $k,\left|j_{i}^{i_{k}} l_{k}(x)_{i}\right|^{2}<M_{1}$, where $M_{1}>0$; if $\left|l_{k}(x)_{i}\right|^{2}<M_{2}$ for some $M_{2}>0$, we let $i_{k}=0$. Let $f_{k}=j_{m}^{m_{k}} \cdots j_{s+1}^{(s+1)_{k}}$. It follows that $\left|f_{k}\left(l_{k}(x)\right)\right|^{2}<M_{3}$ $\left(M_{3}>0\right)$, and for any $y \in S$

$$
\left|f_{k}(y)\right|^{2}=\left|j_{s+1}^{(s+1)_{k}} l_{k}(y)_{s+1}\right|^{2}+\cdots+\left|j_{m}^{m_{k}} l_{k}(y)_{m}\right|^{2} \rightarrow \infty
$$

Therefore, there is $\delta>0$ such that $d\left(f_{k} l_{k}(x), f_{k}(z)\right)>\delta$ for all $z \in S$, where d denotes the ordinary spherical metric on $\overline{\mathbb{R}}^{n}$. Since S separates $h_{k}^{-1}(x)$ from $h_{k}^{-1}(S)$ and hence S separates $l_{k}^{-1}(x)$ from $l_{k}^{-1}(S)$, we see that for all z on S we have $\delta<d\left(f_{k} l_{k}(x)\right.$, $\left.f_{k}(z)\right) \leq d\left(f_{k} l_{k}(x), f_{k} l_{k}(z)\right)$. By Lemma 2.3 and choosing a subsequence, we know that $f_{k} l_{k}(z) \rightarrow z^{\prime}$ for all $z \in \overline{\mathbb{R}}^{n+1} \backslash\{x\}$ and $f_{k} l_{k}(x) \rightarrow x^{\prime}$, where $z^{\prime} \neq x^{\prime}$. We now conclude that x is a conical limit point.

Proof of (10). We first assume that G_{1} and G_{2} are geometrically finite. Then every parabolic fixed point of G_{m} is a parabolic vertex by Proposition 2.13. Therefore B_{1} and B_{2} are both strong blocks. By assumption, this implies that S is a strong (J, G)-block.

Let x be a point on $\Lambda(G)$. What we have to show is that x is either a parabolic vertex or a conical limit point, for this proves that G is geometrically finite by Proposition 2.13. Suppose first that x is a parabolic fixed point, where the rank k of $H=\operatorname{Stab}_{G}(x)$ is less than n. We shall show that x is a parabolic vertex then. Since x is a parabolic fixed point, it cannot be a conical limit point. Hence by (9), x is a translate of a limit point of either G_{1} or G_{2}.

By interchanging the indices and translating x by elements of G, we may assume that x lies in $\Lambda\left(G_{1}\right)$. Since G_{1} is assumed to be geometrically finite, x is a parabolic vertex or a conical limit point for G_{1} by Proposition 2.13. If x is a conical limit point for G_{1}, then so is it for G, which contradicts the assumption that x is a parabolic fixed point. Therefore, x is a parabolic vertex for G_{1}. Suppose first that x lies on $G_{1}(S)$. Then there is an element $\gamma \in G_{1}$ such that $\gamma^{-1}(x)$ lies on S. Since x is not a conical limit point for G_{1}, neither is $\gamma^{-1}(x)$. This also implies that $\gamma^{-1}(x)$ is not a conical limit point for J either. Since J is geometrically finite, again by Proposition 2.13, we see that $\gamma^{-1}(x)$ is a parabolic vertex for J. Since S is a strong (J, G)-block, it follows that $\gamma^{-1}(x)$ is a parabolic vertex also for G, hence so is x. Thus we are done for this case.

Suppose next that x does not lie on any G_{1}-translate of S. We shall show that x is a parabolic vertex for G even in this case. Since $G_{1}\left(B_{1}^{\circ}\right) \subset \Omega\left(G_{1}\right)$ by Lemma 4.1-(3) and x is a parabolic vertex of G_{1}, we have $x \in B_{2}^{\circ} \cap C_{1}$. Since $B_{2}^{\circ} \cap C_{1}$ is precisely invariant under G_{1} in G by Lemma 4.8, $H=\operatorname{Stab}_{G}(x)$ must be contained in G_{1}. This implies that $H=\operatorname{Stab}_{G_{1}}(x)$. Since x is a parabolic vertex for G_{1}, there is a peak domain U at x for G_{1}. Since $U \cap \Lambda\left(G_{1}\right)=\emptyset$ and $x \in B_{2}^{\circ} \cap C_{1}$, by choosing U to be sufficiently small, we can assume that $\bar{U} \backslash\{x\} \subset \Omega\left(G_{1}\right)$ and $\bar{U} \subset B_{2}^{\circ}$. By conjugating G by an element of $M\left(\overline{\mathbb{R}}^{n}\right)$, we may assume that $x=\infty$ and U is in the form $U=\left\{x \in \mathbb{R}^{n}: \sum_{i=k+1}^{n} x_{i}^{2}>t\right\}$, for some $t>0$. By Theorem 2.10, for any $g \in \operatorname{Stab}_{G}(\infty)$, we have an expression $g(x)=A x+\mathbf{a}$, for $\mathbf{a} \in \mathbb{R}^{k}$ and an orthogonal matrix A preserving the subspaces \mathbb{R}^{k} and \mathbb{R}^{n-k}. Now we shall show the following.

Claim 10. The projections of G_{1}-translates of B_{1} to the last $n-k$ coordinates \mathbb{R}^{n-k} are bounded away from ∞.

Proof. Since U is contained in B_{2}°, the last $n-k$ coordinates of its complement B_{1} are bounded away from ∞. Moreover since $\sum_{i=k+1}^{n}\left|g(x)_{i}\right|^{2}=\sum_{i=k+1}^{n}|x|_{i}^{2}$ for any $g \in H$, by taking t sufficiently large, we know that $g\left(B_{1}\right) \cap U=\emptyset$. This means that the projections of H-translates of B_{1} to the last $n-k$ coordinates of \mathbb{R}^{n-k} are bounded away from ∞.

Now we consider general translates by elements of G_{1}. Suppose, seeking a contradiction, that there is a sequence $\left\{g_{k}\left(B_{1}\right)\right\}$ of distinct G_{1}-translates of B_{1} whose projections to \mathbb{R}^{n-k} go to ∞. Since J stabilises B_{1}, we see that $g_{k} \in G_{1}-(H \cup J)$.

On the other hand, since U is a peak domain for G_{1}, it is precisely invariant under H in G_{1}. Take a point y_{0} in U. Since $g_{k}\left(y_{0}\right)$ is disjoint from U, the last $n-k$ coordinates of $g_{k}\left(y_{0}\right)$ are bounded as $k \rightarrow \infty$. Since H acts on the first k-coordinates cocompactly, we can choose $j_{k} \in H$ such that $j_{k} g_{k}\left(y_{0}\right)$ stays in a bounded set.

Since j_{k} lies in H, we have $\sum_{i=k+1}^{n}\left(j_{k}(x)\right)_{i}^{2}=\sum_{i=k+1}^{n}(x)_{i}^{2}$. Therefore the projections of $j_{k} g_{k}\left(B_{1}\right)$ to \mathbb{R}^{n-k} also go to ∞. Now Lemma 4.1-(7) implies that $j_{k} g_{k}(y) \rightarrow \infty$ for all $y \in B_{1}$. By Lemma 2.3, we see that, by choosing a subsequence if necessary, we may assume that $j_{k} g_{k}(y) \rightarrow \infty$ for all y except for at most one point which is contained in the limit set of G_{1}. Since y_{0} is contained in $U \subset \Omega\left(G_{1}\right)$, we have in particular that $j_{k} g_{k}\left(y_{0}\right) \rightarrow \infty$. This is a contradiction.

Our claim shows that U can be taken to be disjoint from T_{1}. Therefore, we have $U \subset C_{1} \cap B_{2}^{\circ}$. Since $C_{1} \cap B_{2}^{\circ}$ is precisely invariant under G_{1} in G, for any $g \in G-G_{1}$, $g(U) \cap U=\emptyset$. Therefore, U is a peak domain at x of G, which means that x is a parabolic vertex for G. Thus we have proved that all parabolic fixed points of G are parabolic vertices.

Next assume that x is a limit point of G which is not a parabolic fixed point. Suppose that x is a translate of a limit point y of G_{m}. Since y is not a parabolic fixed point and G_{m} is geometrically finite, by Proposition 2.13, y is a conical limit point of
G_{m}, hence also for G. If x is not a translate of a limit point of either G_{1} or G_{2}, then by (9), it is a conical limit point for G. Thus we have shown that any non-parabolic limit point of G is a conical limit point, and completed the proof of the "if" part.

We shall now turn to show the "only if" part. Assume that G is geometrically finite. Then S is a strong (J, G)-block. This implies that B_{m} is a strong $\left(J, G_{m}\right)$-block for $m=1,2$ by assumption.

Let x be a parabolic fixed point of G_{1}. We assume that the rank of $\operatorname{Stab}_{G_{1}}(x)$ is $k<n$, and shall prove that there is a peak domain at x for G_{1}. Since B_{1}° is contained in $\Omega\left(G_{1}\right)$ by Lemma 4.1-(3), x cannot lie in $G_{1}\left(B_{1}^{\circ}\right)$. Therefore, x lies in either $G_{1}(S)$ or $B_{2}^{\circ} \cap C_{1}$. If $x \in G_{1}(S)$, then, since B_{1} is a strong (J, G_{1})-block and J is geometrically finite, there is a peak domain at x for G_{1}, and we are done. If $x \in B_{2}^{\circ} \cap C_{1}$, then $\operatorname{Stab}_{G}(x)=\operatorname{Stab}_{G_{1}}(x)$ since $B_{2}^{\circ} \cap C_{1}$ is precisely invariant under G_{1} in G by Lemma 4.8. Therefore $\operatorname{Stab}_{G}(x)$ has rank $k<n$ in particular. Since G is geometrically finite, there is a peak domain U at x for G, which is also a peak domain for G_{1}.

Now let x be a limit point of G_{1} which is not a parabolic fixed point of G_{1}. We shall show that x is a conical limit point of G_{1}. Again we have only to consider the cases when $x \in G_{1}(S)$ and when $x \in B_{2}^{\circ} \cap C_{1}$. If $x \in G_{1}(S)$, then there are a point y lying on S and $g \in G_{1}$ such that $x=g_{1}(y)$. Since y lies on $\Lambda(J)$ by Lemma 4.1-(2), and J is geometrically finite, it is a conical limit point for J by Proposition 2.13. This implies that x is a conical limit point for G_{1}, and we are done in this case.

Suppose now that $x \in B_{2}^{\circ} \cap C_{1}$. Since $B_{2}^{\circ} \cap C_{1}$ is precisely invariant under G_{1}, we have $\operatorname{Stab}_{G}(x)=\operatorname{Stab}_{G_{1}}(x)$. Therefore x is not a parabolic fixed point of G either. Since G was assumed to be geometrically finite, x is a conical limit point for G by Proposition 2.13. It follows from Proposition 2.12 that there is a sequence $\left\{h_{k}\right\}$ of distinct elements of G such that $d\left(h_{k}(z), h_{k}(x)\right)$ is bounded away from zero for all $z \in \overline{\mathbb{R}}^{n} \backslash\{x\}$ and $h_{k}^{-1}\left(z_{0}\right) \rightarrow x$ for some $z_{0} \in \mathbb{H}^{n+1}$. We may assume that h_{k} belong to distinct cosets of J in G. By Theorem 3.1, we have that $\operatorname{diam}\left(h_{k}(S)\right) \rightarrow 0$. So all the $h_{k}(S)$ must be distinct.

Claim 11. By taking a subsequence we can assume $h_{k}>0$ for all k.

Proof. Suppose, on the contrary, that $h_{k}<0$ for all k after passing to a subsequence. We recall that $\operatorname{diam}\left(h_{k}(S)\right) \rightarrow 0$. It follows that the set $h_{k}\left(B_{2}\right)$ cannot contain S inside. Therefore, we have $\operatorname{diam}\left(h_{k}\left(B_{2}\right)\right) \rightarrow 0$. Recall that we are considering the case when $x \in B_{2}^{\circ} \cap C_{1}$. This shows that $d\left(h_{k}(z), h_{k}(x)\right) \rightarrow 0$ for all $z \in B_{2}$. This contradicts the fact that $d\left(h_{k}(z), h_{k}(x)\right)$ is bounded away from 0 for $z \in \overline{\mathbb{R}}^{n} \backslash\{x\}$. Thus we have completed the proof of Claim 11.

Now we return to the proof of (10). Note that we have only to consider the case when h_{k} is not contained in G_{1}, for otherwise x is a conical limit point of G_{1} by

Proposition 2.12. Therefore, we can assume that $\left|h_{k}\right|>1$. Express h_{k} in a normal form $h_{k}=\gamma_{k_{l}} \circ \cdots \circ \gamma_{k_{1}}$. Set $g_{k}=h_{k} \circ \gamma_{k_{1}}^{-1}$. Then g_{k} is negative.

First consider the case when $g_{k}=g \circ j_{k}$ for some $g \in G$ with some $j_{k} \in J$. Then $d\left(h_{k}(z), h_{k}(x)\right)=d\left(g \circ j_{k} \circ \gamma_{k_{1}}(z), g \circ j_{k} \circ \gamma_{k_{1}}(x)\right)$. By Lemma 2.3, we may assume that there are two distinct points x^{\prime}, z^{\prime} such that $g \circ j_{k} \circ \gamma_{k_{1}}(z) \rightarrow z^{\prime}$ for all $z \in \overline{\mathbb{R}}^{n} \backslash\{x\}$ and $g \circ j_{k} \circ \gamma_{k_{1}}(x) \rightarrow x^{\prime}$. It follows that $j_{k} \circ \gamma_{k_{1}}(z) \rightarrow g^{-1}\left(z^{\prime}\right)$ for all $z \in \overline{\mathbb{R}}^{n} \backslash\{x\}$, $j_{k} \circ \gamma_{k_{1}}(x) \rightarrow g^{-1}\left(x^{\prime}\right)$ and $\left(j_{k} \circ \gamma_{k}\right)^{-1}\left(g^{-1}\left(z_{0}\right)\right) \rightarrow x$, where $g^{-1}\left(z_{0}\right) \in \mathbb{H}^{n+1}$. It follows from Proposition 2.12 that x is a conical limit point of G_{1}.

Suppose next that g_{k} is not expressed as $g \circ j_{k}$, that is, g_{k} belong to distinct cosets of J in G. Then by Theorem 3.1, $g_{k}(S)$ are all distinct. Applying the proof of Claim 11 to g_{k}, we see that $\operatorname{diam}\left(g_{k}\left(B_{2}\right)\right) \rightarrow 0$. For any $z \in B_{1}$, we have that $\gamma_{k_{1}}(z) \in \gamma_{k_{1}}\left(B_{1}\right) \subset B_{2}$. On the other hand, $\gamma_{k_{1}}(x) \in B_{2}$ for $\gamma_{k_{1}}\left(C_{1} \cap B_{2}^{\circ}\right)=C_{1} \cap B_{2}^{\circ}$. These imply that $d\left(h_{k}(z), h_{k}(x)\right)=d\left(g_{k} \gamma_{k_{1}}(z), g_{k} \gamma_{k_{1}}(x)\right) \rightarrow 0$ for all $z \in B_{1}$. This contradicts the fact that $d\left(h_{k}(z), h_{k}(x)\right)$ is bounded away from 0 for $z \in \overline{\mathbb{R}}^{n} \backslash\{x\}$. Thus we have completed the proof of (10).

Corollary 4.12. Under the hypotheses of Theorem 4.2, if each B_{m} is precisely invariant under J in G_{m}, especially J is the trivial subgroup $I=\{i d\}$, and if we set $D=\left(D_{1} \cap B_{2}\right) \cup\left(D_{2} \cap B_{1}\right)$ and $G=\left\langle G_{1}, G_{2}\right\rangle$, then the following hold.
(1) $G=G_{1} *_{J} G_{2}$.
(2) G is discrete.
(3) Except perhaps for conjugates of elements of G_{1} and G_{2}, every element of G is loxodromic.
(4) S is a (J, G)-block and S is precisely invariant under J in G.
(5) If $\left\{S_{k}\right\}$ is a sequence of distinct G-translates of S, then $\operatorname{diam}\left(S_{k}\right) \rightarrow 0$, where diam denotes the diameter with respect to the ordinary spherical metric on $\overline{\mathbb{R}}^{n}$.
(6) There is a sequence of distinct G-translates of S nesting about the point x if and only if x is a limit point of G which is not G-equivalent to a limit point of either G_{1} or G_{2}.
(7) D is a fundamental set for G. If both D_{1} and D_{2} are constrained, and $S \cap \operatorname{Fr} D$ consists of finitely many connected components the sum of whose $(n-1)$-dimensional measures on S vanishes, then D is also constrained.
(8) Let Q_{m} be the union of the G_{m}-translates of B_{m}°, and let R_{m} be the complement of Q_{m} in $\overline{\mathbb{R}}^{n}$. Then $\Omega(G) / G=\left(R_{1} \cap \Omega\left(G_{1}\right)\right) / G_{1} \cup\left(R_{2} \cap \Omega\left(G_{2}\right)\right) / G_{2}$, where the latter two possibly disconnected orbifolds are identified along their common possibly disconnected or empty boundary $(S \cap \Omega(J)) / J$.
(9) S is a strong (J, G)-block if and only if each B_{m} is a strong $\left(J, G_{m}\right)$-block.
(10) If both B_{1} and B_{2} are strong, then, except for G-translates of limit points of G_{1} or G_{2}, every limit point of G is a conical limit point.
(11) G is geometrically finite if and only if both G_{1} and G_{2} are geometrically finite.

Proof. By Theorem 4.2, we only need to prove (9).
Let x be a parabolic fixed point of J. Such a point x is contained in S by Lemma 4.1-(2). Since each B_{m} is precisely invariant under J in G_{m} by our assumption, we have $\operatorname{Stab}_{J}(x)=\operatorname{Stab}_{G_{m}}(x)$, which is also equal to $\operatorname{Stab}_{G}(x)$ by Lemma 4.4. Let H denote $\operatorname{Stab}_{J}(x)$.

The proof of the "if" part. Suppose that B_{m} is a strong (J, G_{m})-block for each $m=1,2$. There is nothing to prove if the rank of H is n since the rank of $\operatorname{Stab}_{G}(x)$ is also n. Now assume that the rank of H is $k<n$. By conjugation, we may assume that $x=\infty$. By Theorem 2.10, we can assume that each $g \in H$ is expressed as $g(y)=A y+\mathbf{a}$ for $\mathbf{a} \in \mathbb{R}^{k}$ and an orthogonal matrix A preserving the subspaces \mathbb{R}^{k} and \mathbb{R}^{n-k}.

Since both B_{1} and B_{2} are assumed to be strong and $\operatorname{Stab}_{G_{1}}(\infty)=\operatorname{Stab}_{G_{2}}(\infty)$, there is a common peak domain U at ∞ for G_{1} and G_{2}. Since $U \cap\left(\Lambda\left(G_{1}\right) \cup \Lambda\left(G_{2}\right)\right)=\emptyset$, by choosing U small enough, we may assume that $\bar{U} \backslash\{\infty\} \subset \Omega\left(G_{1}\right) \cap \Omega\left(G_{2}\right)$, where means the closure on $\overline{\mathbb{R}}^{n}$. We can assume that U has a form $U=\left\{y \in \mathbb{R}^{n}: \sum_{i=k+1}^{n} y_{i}^{2}>\right.$ $\left.t^{2}\right\}$, where t is a sufficiently large positive number.

Claim 12. We can choose U small enough to satisfy $U \subset C_{1}$.

Proof of Claim. We divide our discussions into two cases.
Case 1: The case when $k=n-1$.
In this case, U is the union of two components U_{1} and U_{2}, and we may assume that $U_{m} \subset B_{m}^{\circ}$ by our assumption that B_{m} is a strong block. We have only to prove that we can choose U_{1} small enough in such a way that every G_{2}-translate of B_{2} is disjoint from U_{1}. We may assume that $U_{1}=\left\{y \in \mathbb{R}^{n}: y_{n}>t\right\}$. Suppose, seeking a contradiction, that such a U_{1} does not exist. Then, there is a sequence $\left\{g_{k}\left(B_{2}\right)\right\}$ of distinct G_{2}-translates of B_{2} intersecting $\left\{y \in \mathbb{R}^{n}: y_{n}>s\right\}$ for any large s. This means that the projections of $g_{k}\left(B_{2}\right)$ to the n-th coordinate \mathbb{R} accumulate at ∞. We may assume that $g_{k} \in G_{2}-J$ since J fixes B_{2}.

Now Lemma 4.1-(7) implies that $\operatorname{diam}\left(g_{k}\left(B_{2}\right)\right) \rightarrow 0$ with respect to the ordinary spherical metric. It follows that $g_{k}(y) \rightarrow \infty$ for all $y \in B_{2}$ since $\left\{g_{k}\left(B_{2}\right)\right\}$ accumulates at ∞. By Lemma 2.3, by taking a subsequence of $\left\{g_{k}\right\}$, we may assume that $g_{k}(y) \rightarrow$ ∞ for all y with at most one exception, which must be a limit point.

Since $\bar{U}_{2} \backslash\{\infty\}$ is contained in $\Omega\left(G_{2}\right)$, for all $y \in \bar{U}_{2} \backslash\{\infty\}$, we have $g_{k}(y) \rightarrow \infty$. Since $g_{k}\left(U_{2}\right) \cap U=\emptyset$, it follows that the projections of $g_{k}\left(\bar{U}_{2}\right)$ to the n-th coordinate are bounded. Hence the projections of $g_{k}\left(\bar{U}_{2} \backslash \infty\right)$ to the first $n-1$ coordinates \mathbb{R}^{n-1} accumulate at ∞. By Theorem 2.10, for each g_{k}, we can choose an element $j_{k} \in H$ such that $\left\{j_{k} g_{k}\left(y_{0}\right)\right\}$ lies in a bounded set for a fixed $y_{0} \in U_{2}$. For each k, we have $\infty \notin$ $g_{k}\left(B_{2}\right)$ since B_{2} was assumed to be precisely invariant under J in G_{2} and ∞ lies on S. Therefore, we have $\infty \notin j_{k} g_{k}\left(B_{2}\right)$. Since $\left|\left(j_{k} g_{k}(y)\right)_{n}\right|=\left|\left(g_{k}(y)\right)_{n}\right|$ and the projections of the $g_{k}\left(B_{2}\right)$ to the n-th coordinate \mathbb{R} accumulate at ∞, we see that $\left\{j_{k} g_{k}\left(B_{2}\right)\right\}$ also accumulates at ∞. By Lemma 4.1-(7), this implies that $j_{k} g_{k}(y) \rightarrow \infty$ for all $y \in B_{2}$.

This is a contradiction since $\left\{j_{k} g_{k}\left(y_{0}\right)\right\}$ stays in a compact set. This proves our claim for the case when $k=n-1$.

CASE 2: The case when $k<n-1$.
Since U is connected and is disjoint from S, we see that U lies in either B_{1}° or B_{2}°. We may assume that $U \subset B_{1}^{\circ}$. Then, by the same argument as in the proof of Case 1, we see that the projections of G_{2}-translates of B_{2} in the last $n-k$ coordinates cannot accumulate at ∞. Therefore, we have $U \subset C_{1} \cap B_{1}^{\circ}$.

The claim has thus been proved.
Now we return to the proof of the "if" part. Take a small common peak domain U for both G_{1} and G_{2} as in Claim 12. By assumption, U is precisely invariant under H in both G_{1} and G_{2}. We need to show it is precisely invariant under $\operatorname{Stab}_{G}(x)$ in G.

For any $g \in G-\left(G_{1} \cup G_{2}\right)$, we have $g(U)=g\left(U_{1}\right) \cup g\left(U_{2}\right) \subset g\left(C_{1} \cap B_{1}^{\circ}\right) \cup g\left(C_{1} \cap B_{2}^{\circ}\right)$, where U_{1}, U_{2} are the components of U if $k=n-1$, and we regard one of them as the emptyset when $k<n-1$. Suppose that g is expressed as a (1, 1)-form $g_{n} \circ \cdots \circ g_{1}$. As was shown in Lemma 2.6, $g_{n} \circ \cdots \circ g_{1}\left(C_{1} \cap B_{1}^{\circ}\right) \subset B_{2}^{\circ}$. Furthermore, we have $g_{n} \circ \cdots \circ g_{1}\left(C_{1} \cap B_{1}^{\circ}\right) \subset g_{n} \circ \cdots \circ g_{1}\left(B_{1}^{\circ}\right) \subset T_{n}^{\circ} \subset T_{1}^{\circ}$. On the other hand, $g_{n} \circ \cdots \circ$ $g_{1}\left(C_{1} \cap B_{2}^{\circ}\right) \subset g_{n} \circ \cdots \circ g_{2}\left(C_{1} \cap B_{2}^{\circ}\right)$ by Lemma 4.8. Then applying the same argument for $C_{1} \cap B_{1}^{\circ}$, we see that $g_{n} \circ \cdots \circ g_{2}\left(C_{1} \cap B_{2}^{\circ}\right) \subset T_{1}^{\circ}$. Thus we have shown that $g\left(C_{1} \cap\right.$ $\left.B_{1}^{\circ}\right) \cup g\left(C_{1} \cap B_{2}^{\circ}\right) \subset B_{2}^{\circ} \cap T_{1}^{\circ}$ for g expressed as a (1, 1)-form. A similar argument works also for (1,2)-form. Also, we can see by the same argument that if g is expressed as a 2-form, then $g(U)=g\left(U_{1}\right) \cup g\left(U_{2}\right) \subset g\left(C_{1} \cap B_{1}^{\circ}\right) \cup g\left(C_{1} \cap B_{2}^{\circ}\right) \subset B_{1}^{\circ} \cap T_{1}^{\circ}$.

Since U, which is disjoint from S from the beginning, is taken to be lie inside C_{1}, it follows that U is precisely invariant under H in G in the case when $k \leq n-1$.

This completes the proof of the "if" part.
The proof of the "only if" part. Let x be a parabolic fixed point of J such that $\operatorname{Stab}_{J}(x)$ has rank less than n. This point x must lie on S since $\Lambda(J) \subset S$. Since we are assuming that S is a strong (J, G)-block, there is a peak domain U for G, which is also a peak domain for both G_{1} and G_{2}. Since we already know that B_{m} is a $\left(J, G_{m}\right)$-block, this shows that B_{m} is a strong $\left(J, G_{m}\right)$-block.

By Theorem 4.2, we know that the conclusions hold.
REMARK 4.1. The condition that ($B_{1}^{\circ}, B_{2}^{\circ}$) is a proper interactive pair in Theorem 4.2 is necessary, as the following example shows.

Example 4.1. Set

$$
J=\left\langle\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\rangle, \quad g_{1}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad g_{2}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

and

$$
G_{1}=\left\langle J, g_{1}\right\rangle, \quad G_{2}=\left\langle J, g_{2}\right\rangle .
$$

We use the following symbols:

$$
S=\left\{x \in \overline{\mathbb{R}}^{2}: x_{2}=0\right\}, B_{1}=\left\{x \in \overline{\mathbb{R}}^{2}: x_{2} \leq 0\right\} \quad \text { and } \quad B_{2}=\left\{x \in \overline{\mathbb{R}}^{2}: x_{2} \geq 0\right\} .
$$

Then the following hold.
(1) J is geometrically finite.
(2) $S=\Lambda(J)=\Lambda\left(G_{1}\right)=\Lambda\left(G_{2}\right)$.
(3) $G_{1}=J \cup g_{1} J$ and $G_{2}=J \cup g_{2} J$.
(4) Each B_{m} is a (J, G_{m})-block for $m=1,2$.
(5) $\left(B_{1}^{\circ}, B_{2}^{\circ}\right)$ is an interactive pair, but ($B_{1}^{\circ}, B_{2}^{\circ}$) is not proper.
(6) $G \neq G_{1} *_{J} G_{2}$.

The assertion (1) is obvious since J is a finitely generated Fuchsian group. To prove (2), set $w=p / r$, where p and r are integers and $r \neq 0$, and $j=\left(\begin{array}{cc}1-p r & p^{2} \\ -r^{2} & 1+p r\end{array}\right)$. Then $j \in J$ is a parabolic element having w as its fixed point. Therefore, every rational number is a parabolic fixed point of J. Now (2) follows from Lemma 5.3.3 in [7]. The proofs of (3), (4) and (5) are trivial. We can verify (6) by checking that for a (1,2)-form $g_{1} g_{2} g_{1} g_{2}$, we have $\Phi\left(g_{1} g_{2} g_{1} g_{2}\right)=i d$.

5. An application

5.1. The statement of Theorem 5.1. Following [31] or [32], we denote by $\operatorname{PSL}\left(2, \Gamma_{n}\right)$ the n-dimensional Clifford matrix group. Then $\operatorname{PSL}\left(2, \Gamma_{n}\right)$ is isomorphic to $M\left(\overline{\mathbb{R}}^{n}\right)$ (cf. [3]).

Let

$$
\begin{gathered}
j_{1}=\left(\begin{array}{cc}
e_{1} & 0 \\
0 & -e_{1}
\end{array}\right), \quad j_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad j_{3}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad j_{4}=\left(\begin{array}{cc}
e_{1} & 1 \\
0 & -e_{1}
\end{array}\right), \\
g_{1}=\left(\begin{array}{cc}
e_{2} & 0 \\
0 & -e_{2}
\end{array}\right), \quad g_{2}=\left(\begin{array}{cc}
1-8 e_{1}-64 e_{2} & -130 \\
-32 & 1+8 e_{1}+64 e_{2}
\end{array}\right), \\
g_{3}=\left(\begin{array}{cc}
-7-64 e_{1} e_{2} & -126 e_{1}+32 e_{2} \\
32 e_{1} & 9-64 e_{1} e_{2}
\end{array}\right), \quad g_{4}=\left(\begin{array}{cc}
65-8 e_{1} e_{2} & -32 e_{1}-126 e_{2} \\
-32 e_{2} & -63-8 e_{1} e_{2}
\end{array}\right),
\end{gathered}
$$

$J=\left\langle j_{1}, j_{2}, j_{3}, j_{4}\right\rangle, G_{1}=\left\langle J, g_{1}\right\rangle, G_{2}=\left\langle J, g_{2}, g_{3}, g_{4}\right\rangle$ and $G=\left\langle G_{1}, G_{2}\right\rangle$.
Then

Theorem 5.1. G is geometrically finite.

5.2. Several propositions.

Proposition 5.2. As a 2-dimensional Möbius subgroup,

$$
\Lambda(J)=J(\infty) \cup\{\text { the approximation points of } J\} .
$$

Moreover, every parabolic fixed point of J is J-equivalent to ∞.
Proof. In the proof of this proposition, we regard J as a 2 -dimensional Möbius subgroup. J has a fundamental polyhedron

$$
P=\left\{x \in \mathbb{H}^{3}:-\frac{1}{2}<x_{1}<\frac{1}{2}, 0<x_{2}<\frac{1}{2},|x|>1\right\},
$$

which has finitely many sides. This yields that J is geometrically finite as a 2 -dimensional Möbius group. Hence every limit point of J is either an approximation point or a parabolic fixed point of J, cf. [8]. We see that $\bar{P} \cap \Lambda(J)=\{\infty\}$. It follows from Proposition VI.C. 2 in [22] that every limit point of J which is not J-equivalent to ∞ is an approximation point of J. On the other hand, parabolic fixed points of J cannot be approximation points of J. These facts imply that every parabolic fixed point of J is J-equivalent to ∞. The proof is completed.

Proposition 5.3. As a 3-dimensional Möbius subgroup, J is geometrically finite.
Proof. We see that every approximation point of $J \subset P S L(2, \mathbb{C})$ is a conical limit point of $J \subset \operatorname{PSL}\left(2, \Gamma_{3}\right)$. By Proposition 5.2, it suffices to prove that ∞ is a parabolic vertex of $J \subset \operatorname{PSL}\left(2, \Gamma_{3}\right)$.

We see that $J_{\infty}=\left\{\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}e_{1} & b \\ 0 & -e_{1}\end{array}\right): a, b\right.$ are Gaussian integers $\}$, and for any $g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in J \backslash J_{\infty},|\gamma| \geq 1$. It follows that the rank of ∞ is 2 and

$$
U=\left\{x \in \mathbb{R}^{3}: x_{3}^{2}>16\right\}
$$

is a peak domain of J at ∞. Hence ∞ is a parabolic vertex of $J \subset \operatorname{PSL}\left(2, \Gamma_{3}\right)$.

In the following, all subgroups involved are regarded as 3-dimensional Möbius subgroups.

Proposition 5.4. G_{1} is geometrically finite.

Proof. By computation, we know that

$$
g_{1} j_{1}=j_{1} g_{1}, \quad g_{1} j_{2}=j_{2}^{-1} g_{1}, \quad g_{1} j_{3}=-j_{3} g_{1}, \quad g_{1} j_{4}=-j_{4} g_{1} .
$$

It follows that $G_{1}=J \cup g_{1} J$. We choose a point $y \in \mathbb{H}^{4}$. Then

$$
\Lambda\left(G_{1}\right)=\overline{J(y) \cup g_{1} J(y)} \cap \overline{\mathbb{R}}^{3}=\Lambda(J)
$$

For any conical limit point of J, it is also a conical limit point of G_{1}. It suffices to show that ∞ is a parabolic vertex of G_{1}. We see that $G_{1 \infty}=J_{\infty} \cup g_{1} J_{\infty}$ and for any $g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in G_{1} \backslash G_{1 \infty}$, Hersonsky [14] implies that $|\gamma| \geq 1$. It follows that the rank of ∞ is 2 and U is also a peak domain of G_{1} at ∞. The proof is completed.

Proposition 5.5. Let $I=\{i d\}, H=\left\langle g_{2}, g_{3}, g_{4}\right\rangle$ and $R_{3}=\left\{x \in \mathbb{R}^{3}: \mid x-\left(e_{1} / 4+\right.\right.$ $\left.\left.2 e_{2}\right) \mid=1 / 8\right\}$ which divides $\overline{\mathbb{R}}^{3}$ into two closed balls

$$
R_{1}=\left\{x \in \mathbb{R}^{3}:\left|x-\left(\frac{e_{1}}{4}+2 e_{2}\right)\right| \leq \frac{1}{8}\right\}
$$

and

$$
R_{2}=\left\{x \in \mathbb{R}^{3}:\left|x-\left(\frac{e_{1}}{4}+2 e_{2}\right)\right| \geq \frac{1}{8}\right\} \cup\{\infty\} .
$$

Further, let

$$
\begin{aligned}
R=\left\{x \in \mathbb{R}^{3}:\right. & \left|x-\frac{7}{32} e_{1}-2 e_{2}\right|>\frac{1}{32},\left|x-\frac{9}{32} e_{1}-2 e_{2}\right| \geq \frac{1}{32}, \\
& \left|x-\frac{1}{32}-\frac{e_{1}}{4}-2 e_{2}\right|>\frac{1}{32},\left|x+\frac{1}{32}-\frac{e_{1}}{4}-2 e_{2}\right| \geq \frac{1}{32}, \\
& \left.\left|x-\frac{e_{1}}{4}-\frac{65}{32} e_{2}\right|>\frac{1}{32},\left|x-\frac{e_{1}}{4}-\frac{63}{32} e_{2}\right| \geq \frac{1}{32}\right\}
\end{aligned}
$$

and

$$
\Delta=\left\{x \in \mathbb{R}^{3}:-\frac{1}{2}<x_{1} \leq \frac{1}{2}, 0 \leq x_{2} \leq \frac{1}{2},|x| \geq 1\right\} \backslash\left(A_{1} \cup A_{2} \cup A_{3}\right),
$$

where $A_{1}=\left\{x \in \mathbb{R}^{3}: x_{2}=0,-1 / 2 \leq x_{1} \leq 0\right\}, A_{2}=\left\{x \in \mathbb{R}^{3}: x_{2}=1 / 2,-1 / 2 \leq x_{1} \leq 0\right\}$, and $A_{3}=\left\{x \in \mathbb{R}^{3}:|x|=1,-1 / 2 \leq x_{1} \leq 0\right\}$. Then the following hold.
(1) $G_{2}=\langle J, H\rangle=J *_{I} H$.
(2) G_{2} is discrete.
(3) $D_{2}=R \cap \triangle$ is a fundamental set of G_{2}.
(4) Every point of $\Lambda\left(G_{2}\right) \backslash G_{2}(\Lambda(J) \cup \Lambda(H))$ is a conical limit point of G_{2}.
(5) G_{2} is geometrically finite.
(6) $\Lambda\left(G_{2}\right)=G_{2}(\infty) \cup G_{2}\left(e_{1} / 4+2 e_{2}\right) \cup\left\{\right.$ conical limit points of $\left.G_{2}\right\}$.
(7) U is also a peak domain for G_{2} at ∞ (recall that U is defined in the proof of Proposition 5.3).

Proof. It is obvious that Δ is a fundamental set of J. By G. 3 in [22], we see that R is a fundamental set of H.

We see that $R_{1} \subset \Omega(J)$ and $R_{2} \subset \Omega(H)$. Since R_{2} is outside the isometric spheres of $g \in H \backslash I, R_{2}$ is precisely invariant under I in H. It follows that R_{2} is an (I, H)block. Let $f=\left(\begin{array}{cc}1 & -2 e_{2} \\ 4 e_{1} & 1-8 e_{1} e_{2}\end{array}\right)$. By a simple computation, we have that

$$
f g_{2} f^{-1}=\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right), \quad f g_{3} f^{-1}=\left(\begin{array}{cc}
1 & 2 e_{1} \\
0 & 1
\end{array}\right) \quad \text { and } \quad f g_{4} f^{-1}=\left(\begin{array}{cc}
1 & 2 e_{2} \\
0 & 1
\end{array}\right)
$$

This yields that $\Lambda(H)=\left\{e_{1} / 4+2 e_{2}\right\}$ and $e_{1} / 4+2 e_{2}$ is a parabolic fixed point of rank 3 .
So H is geometrically finite and R_{2} is strong.
Since $R_{1} \subset \Delta$, for any $j \in J \backslash I, j\left(R_{1}\right) \cap R_{1}=\emptyset$. It follows that R_{1} is a strong (I, J)-block.

We can see that Δ and R satisfy that $\Delta \cap R_{1}=R_{1}, R \cap R_{2}=R_{2}$ and $\Delta \cap R_{3}=R \cap R_{3}$. Since $\Lambda(H) \neq \emptyset$, we know that $\left(R_{1}^{\circ}, R_{2}^{\circ}\right)$ is a proper interactive pair by Lemma 4.1-(9).

Therefore, groups J, H, I, sets R_{1}, R_{2} and R_{3}, and fundamental sets Δ and R satisfy the conditions in Corollary 4.12, we have that
(1) $G_{2}=\langle J, H\rangle=J *_{I} H$,
(2) G_{2} is discrete,
(3) $D_{2}=R \cap \Delta$ is a fundamental set of G_{2},
(4) every point of $\Lambda\left(G_{2}\right) \backslash G_{2}\left(\Lambda(J) \cup \Lambda(H)\right.$) is a conical limit point of G_{2},
(5) G_{2} is geometrically finite.

Since $\Lambda(H)=\left\{e_{1} / 4+2 e_{2}\right\}, \Lambda(J)=J(\infty) \cup\{$ the conical limit points of $J\}$ and the conical limit points of J are also conical limit points of G_{2}, by the discussions above, we have that

$$
\Lambda\left(G_{2}\right)=G_{2}(\infty) \cup G_{2}\left(\frac{e_{1}}{4}+2 e_{2}\right) \cup\left\{\text { conical limit points of } G_{2}\right\} .
$$

Let $U_{1}=\left\{x \in \mathbb{R}^{3}: x_{3}>4\right\}$ and $U_{2}=\left\{x \in \mathbb{R}^{3}: x_{3}<-4\right\}$. Then $U=U_{1} \cup U_{2}$. Let $T_{1}=(J \backslash I)\left(R_{1}\right) \cup(H \backslash I)\left(R_{2}\right)$ and $C_{1}=\overline{\mathbb{R}}^{3} \backslash T_{1}$. We can see that $U \subset R_{2}^{\circ}$ and $U \cap J\left(R_{1}\right)=\emptyset$, that is, $U \subset R_{2}^{\circ} \cap C_{1}$. Since $R_{2}^{\circ} \cap C_{1}$ is precisely invariant under J in G_{2} by the proof of Lemma 4.8, we have $G_{2 \infty}=J_{\infty}$ and $\left(G_{2} \backslash J\right)(U) \cap U=\emptyset$. Therefore, U is also a peak domain for G_{2} at ∞.

Now we are ready to prove Theorem 5.1.

5.3. The proof of Theorem 5.1. Let

$$
B_{1}=\left\{x \in \mathbb{R}^{3}: x_{3} \geq 0\right\} \cup\{\infty\}, \quad B_{2}=\left\{x \in \mathbb{R}^{3}: x_{3} \leq 0\right\} \cup\{\infty\}
$$

and

$$
S=\left\{x \in \mathbb{R}^{3}: x_{3}=0\right\} \cup\{\infty\} .
$$

It follows from $B_{1}^{\circ}=B_{1} \cap \Omega(J)=B_{1} \cap \Omega\left(G_{1}\right)$ and $g_{1} J\left(B_{1}^{\circ}\right)=B_{2}^{\circ}$ that B_{1} is a $\left(J, G_{1}\right)$-block. Since G_{1} is geometrically finite, B_{1} is strong.

Let

$$
D_{1}=\Delta \cap\left\{x \in \mathbb{R}^{3}: x_{3}>0\right\} .
$$

Then D_{1} is a fundamental set of G_{1} which satisfies that $D_{1} \cap B_{1}=\triangle \cap B_{1}$ and $D_{1} \cap S=$ $D_{2} \cap S=\emptyset$.

It is obvious that $\Delta \cap B_{2}=D_{2} \cap B_{2}$. This yields that

$$
B_{2} \cap \Omega^{\circ}(J)=J\left(\triangle \cap B_{2}\right)=J\left(D_{2} \cap B_{2}\right) \subset B_{2} \cap \Omega^{\circ}\left(G_{2}\right)
$$

and hence $B_{2} \cap \Omega^{\circ}(J)=B_{2} \cap \Omega^{\circ}\left(G_{2}\right) \subset B_{2}^{\circ}$. For any $g \in G_{2} \backslash J$, we have that

$$
g\left(B_{2} \cap \Omega^{\circ}\left(G_{2}\right)\right) \cap\left(B_{2} \cap \Omega^{\circ}\left(G_{2}\right)\right)=g J\left(D_{2} \cap B_{2}\right) \cap J\left(D_{2} \cap B_{2}\right)=\emptyset .
$$

Claim 13. $B_{2} \cap \Omega\left(G_{2}\right)=B_{2} \cap \Omega(J)$ and $B_{2} \cap \Omega\left(G_{2}\right)$ is precisely invariant under J in G_{2}.

Proof. For any $x \in B_{2} \cap\left(\Omega(J) \backslash \Omega^{\circ}(J)\right)$, there exists a neighborhood U_{x} which is covered by finitely many images of $\bar{\Delta} \cap B_{2}$, see [22]. It follows from $\bar{\Delta} \cap B_{2}=\bar{D}_{2} \cap B_{2}$ that $x \in B_{2} \cap \Omega\left(G_{2}\right)$. Thus, $B_{2} \cap \Omega\left(G_{2}\right)=B_{2} \cap \Omega(J)$.

We now come to prove that $B_{2} \cap \Omega\left(G_{2}\right)$ is precisely invariant under J in G_{2}. Suppose, on the contrary, that there exist points $x, y \in B_{2} \cap\left(\Omega\left(G_{2}\right) \backslash \Omega^{\circ}\left(G_{2}\right)\right)$ and an element $g \in G_{2} \backslash J$ with $g(x)=y$. We choose a neighborhood U_{x} of x. Then $g\left(U_{x}\right)$ is a neighborhood of y. In U_{x}, we can choose a point $x_{0} \in \Omega^{\circ}\left(G_{2}\right)$. Then $g\left(x_{0}\right)=y_{0} \in \Omega^{\circ}\left(G_{2}\right)$, which contradicts the fact that $B_{2} \cap \Omega^{\circ}\left(G_{2}\right)$ is precisely invariant under J in G_{2}.

We have shown that B_{2} is a $\left(J, G_{2}\right)$-block. Since G_{2} is geometrically finite, B_{2} is strong.

Since $\Lambda\left(G_{2}\right) \neq \Lambda(J)$, by Lemma 4.1-(9), $\left(B_{1}^{\circ}, B_{2}^{\circ}\right)$ is a proper interactive pair. By Theorem 4.2, we know that $G=G_{1} *_{J} G_{2}, G$ is discrete and $D=\left(D_{1} \cap B_{2}\right) \cup\left(D_{2} \cap B_{1}\right)=$ $D_{2} \cap B_{1}$ is a fundamental set of G.

Claim 14. S is a strong (J, G)-block.

Proof. By Theorem 4.2-(4), we know that S is a (J, G)-block. It suffices to prove that ∞ is a parabolic vertex of G. We consider U again. It follows from

$$
U_{1} \cap \Omega^{\circ}(J)=J_{\infty}\left(U_{1} \cap \Delta\right)=J_{\infty}\left(U_{1} \cap D\right) \subset U_{1} \cap \Omega^{\circ}(G)
$$

that $U_{1} \cap \Omega^{\circ}(J)=U_{1} \cap \Omega^{\circ}(G)$ and that $g\left(U_{1} \cap \Omega^{\circ}(G)\right) \cap\left(U_{1} \cap \Omega^{\circ}(G)\right)=\emptyset$ for any $g \in G \backslash J_{\infty}$. By the similar reasoning as that in the proof of Claim 13, we know that $U_{1} \cap \Omega(J)=U_{1} \cap \Omega(G)$ and $U_{1} \cap \Omega(J)$ is precisely invariant under J_{∞} in G.

Since $g_{1}\left(U_{1}\right)=U_{2}$, for any $g \in G \backslash G_{1}$, we have that

$$
g\left(U_{1}\right) \cap U_{2}=g\left(U_{1}\right) \cap g_{1}\left(U_{1}\right)=\emptyset, \quad g\left(U_{2}\right) \cap U_{1}=g g_{1}\left(U_{1}\right) \cap U_{1}=\emptyset
$$

and

$$
g\left(U_{2}\right) \cap U_{2}=g g_{1}\left(U_{1}\right) \cap g_{1}\left(U_{1}\right)=\emptyset .
$$

This implies that U is a peak domain for G at ∞.

By Theorem 4.2, we know that G is geometrically finite. The proof is completed. From the proof of Theorem 5.1, we can easily get the following corollaries.

Corollary 5.6. $\quad B_{1}$ is not precisely invariant under J in G_{1}.
Corollary 5.7. $\quad D_{1} \cap B_{1}=D_{1}$.
REmark 5.1. In Theorem 5.1 the following conditions are not satisfied:
(1) $B_{m}(m=1,2)$ is precisely invariant under J in G_{m};
(2) $D_{m} \cap B_{m} \neq D_{m}$.

But these conditions are required in Theorem 1.2.

References

[1] W. Abikoff and B. Maskit: Geometric decompositions of Kleinian groups, Amer. J. Math. 99 (1977), 687-697.
[2] S. Agard: A geometric proof of Mostow's rigidity theorem for groups of divergence type, Acta Math. 151 (1983), 231-252.
[3] L.V. Ahlfors: On the fixed points of Möbius transformations in \mathbf{R}^{n}, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 15-27.
[4] J.W. Anderson and R.D. Canary: Cores of hyperbolic 3-manifolds and limits of Kleinian groups, Amer. J. Math. 118 (1996), 745-779.
[5] B.N. Apanasov: Discrete Groups in Space and Uniformization Problems, Kluwer Acad. Publ., Dordrecht, 1991.
[6] B.N. Apanasov: Conformal Geometry of Discrete Groups and Manifolds, de Gruyter Expositions in Mathematics 32, de Gruyter, Berlin, 2000.
[7] A.F. Beardon: The Geometry of Discrete Groups, Springer, New York, 1983.
[8] A.F. Beardon and B. Maskit: Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math. 132 (1974), 1-12.
[9] B.H. Bowditch: Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993), 245-317.
[10] B.H. Bowditch: Geometrical finiteness with variable negative curvature, Duke Math. J. 77 (1995), 229-274.
[11] S.-Y.A. Chang, J. Qing and P.C. Yang: On finiteness of Kleinian groups in general dimension, J. Reine Angew. Math. 571 (2004), 1-17.
[12] W. Fenchel and J. Nielsen: Discontinuous Groups of Isometries in the Hyperbolic Plane, de Gruyter, Berlin, 2003.
[13] E. Hamilton: Geometrical finiteness for hyperbolic orbifolds, Topology 37 (1998), 635-657.
[14] S. Hersonsky: A generalization of the Shimizu-Leutbecher and Jørgensen inequalities to Möbius transformations in \mathbf{R}^{N}, Proc. Amer. Math. Soc. 121 (1994), 209-215.
[15] D. Ivaşcu: On Klein-Maskit combination theorems; in Romanian-Finnish Seminar on Complex Analysis (Proc., Bucharest, 1976), Lecture Notes in Math. 743, Springer, Berlin, 1979, 114-124.
[16] F. Klein: Neue Beiträge zur Riemann'schen Functionentheorie, Math. Ann. 21 (1883), 141-218.
[17] P. Koebe: Über die Uniformisierung der Algebraischen Kurven III, Math. Ann. 72 (1912), 437-516.
[18] B. Maskit: Construction of Kleinian groups; in Proc. Conf. Complex Analysis (Minneapolis, 1964), Springer, Berlin, 1965, 281-296.
[19] B. Maskit: On Klein's combination theorem, Trans. Amer. Math. Soc. 120 (1965), 499-509.
[20] B. Maskit: On Klein's combination theorem II, Trans. Amer. Math. Soc. 131 (1968), 32-39.
[21] B. Maskit: On Klein's combination theorem III; in Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969), Ann. of Math. Studies 66, Princeton Univ. Press, Princeton, N.J., 1971, 297-316.
[22] B. Maskit: Kleinian Groups, Grundlehren der Mathematischen Wissenschaften 287, Springer, Berlin, 1988.
[23] B. Maskit: On Klein's combination theorem IV, Trans. Amer. Math. Soc. 336 (1993), 265-294.
[24] B. Maskit: Decomposition of certain Kleinian groups, Acta Math. 130 (1973), 243-263.
[25] J.G. Ratcliffe: Foundations of Hyperbolic Manifolds, Springer, New York, 1994.
[26] P. Susskind and G.A. Swarup: Limit sets of geometrically finite hyperbolic groups, Amer. J. Math. 114 (1992), 233-250.
[27] W. Thurston: The Geometry and Topology of 3-Manifolds, Lecture notes, Princeton University, 1978-1980.
[28] P. Tukia: The Hausdorff dimension of the limit set of a geometrically finite Kleinian group, Acta Math. 152 (1984), 127-140.
[29] P. Tukia: On isomorphisms of geometrically finite Möbius groups, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 171-214.
[30] P. Tukia: On limit sets of geometrically finite Kleinian groups, Math. Scand. 57 (1985), 29-43.
[31] X. Wang and W. Yang: Discreteness criteria of Möbius groups of high dimensions and convergence theorems of Kleinian groups, Adv. Math. 159 (2001), 68-82.
[32] P.L. Waterman: Möbius transformations in several dimensions, Adv. Math. 101 (1993), 87-113.
[33] J.A. Wolf: Spaces of Constant Curvature, McGraw-Hill, New York, 1967.
[34] H. Yamamoto: Constructibility and geometric finiteness of Kleinian groups, Tôhoku Math. J. (2) 32 (1980), 353-362.

Liulan Li

Department of Mathematics Hengyang Normal University Hengyang, Hunan 421008 People's Republic of China e-mail: lanlimail2008@yahoo.com.cn

Ken'ichi Ohshika
Department of Mathematics Graduate School of Science Osaka University
Toyonaka, Osaka 560-0043
Japan
e-mail: ohshika@math.sci.osaka-u.ac.jp

Xiantao Wang
Department of Mathematics Hunan Normal University Changsha, Hunan 410081
People's Republic of China
e-mail: xtwang@hunnu.edu.cn

[^0]: 2000 Mathematics Subject Classification. Primary 30F40; Secondary 20H10.
 The research was partly supported by Program for NCET (No. 04-1783), NSFs of China (No. 10571048) and Hunan (No. 05JJ10001), and Hengyang Normal University (No. 08B06).
 *The third author is the corresponding author.

