RATIONAL LAURENT SERIES WITH PURELY PERIODIC β -EXPANSIONS

FARAH ABBES and MOHAMED HBAIB

Citation	Osaka Journal of Mathematics. 50(3); 807-816
Issue Date	2013-09
Textversion	Publisher
Right	©Departments of Mathematics of Osaka University and Osaka City University.
DOI	10.18910/26021
Is Identical to	https://doi.org//10.18910/26021
Relation	The OJM has been digitized through Project Euclid platform
	http://projecteuclid.org/ojm starting from Vol. 1, No. 1.

SURE: Osaka City University Repository

https://dlisv03.media.osaka-cu.ac.jp/il/meta_pub/G0000438repository

Abbes, F. and Hbaib, M. Osaka J. Math. **50** (2013), 807–816

RATIONAL LAURENT SERIES WITH PURELY PERIODIC β -EXPANSIONS

FARAH ABBES and MOHAMED HBAIB

(Received August 18, 2011, revised January 30, 2012)

Abstract

The aim of this paper is to give families of Pisot and Salem elements β in $\mathbb{F}_q((x^{-1}))$ with the curious property that the β -expansion of any rational series in the unit disk D(0, 1) is purely periodic. In contrast, the only known family of reals with the last property are quadratic Pisot numbers $\beta > 1$ that satisfy $\beta^2 = n\beta + 1$ for some integer $n \ge 1$.

1. Introduction

 β -expansions of real numbers were introduced by A. Rényi [12]. Since then, their arithmetic, diophantine and ergodic properties have been extensively studied by several authors.

Let $\beta > 1$ be a real number. The β -expansion of a real number $x \in [0,1]$ is defined as the sequence $(x_i)_{i\geq 1}$ with values in $\{0, 1, \dots, [\beta]\}$ produced by the β -transformation $T_{\beta} \colon x \to \beta x \pmod{1}$ as follows:

$$\forall i \ge 1, \quad x_i = [\beta T_{\beta}^{i-1}(x)], \text{ and thus } x = \sum_{i \ge 1} \frac{x_i}{\beta^i}.$$

An expansion is finite if $(x_i)_{i\geq 1}$ is eventually 0. A β -expansion is periodic if there exists $p \geq 1$ and $m \geq 1$ such that $x_k = x_{k+p}$ holds for all $k \geq m$; if $x_k = x_{k+p}$ holds for all $k \geq 1$, then it is purely periodic. We denote by $Per(\beta)$ the numbers in [0, 1) with periodic β -expansions, $Pur(\beta)$ the numbers in [0, 1) with purely periodic β -expansions and $Fin(\beta)$ the numbers in [0, 1) with finite β -expansions.

Let $\mathbb{Q}(\beta)$ be the smallest fields containing \mathbb{Q} and β . An easy argument shows that $Per(\beta) \subseteq \mathbb{Q}(\beta) \cap [0, 1)$ for every real number $\beta > 1$. K. Schmidt [15] showed that if β is a Pisot number (an algebraic integer whose conjugates have modulus < 1), then $Per(\beta) = \mathbb{Q}(\beta) \cap [0, 1)$.

The purely periodic β -expansions are also discussed by S. Ito and H. Rao in [7] when they characterize all reals in [0,1[having purely periodic β -expansions with Pisot unit base. In [5], V. Berthé and A. Siegel completed the characterization in the Pisot non unit base.

²⁰⁰⁰ Mathematics Subject Classification. 11R06, 37B50.

Set

$$\gamma(\beta) = \sup\{c \in [0, 1) \colon \forall r \in \mathbb{Q} \cap [0, c], d_{\beta}(r) \text{ is purely periodic} \}.$$

S. Akiyama has proved in [3] that if β is a Pisot unit number satisfying the finiteness property $(Fin(\beta) = \mathbb{Z}[\beta^{-1}] \cap \mathbb{R}_+)$, then $\gamma(\beta) > 0$.

In the quadratic case, K. Schmidt [15] has proved that if β satisfied $\beta^2 = n\beta + 1$ for some integer $n \ge 1$, then $\gamma(\beta) = 1$. Until now, it is the unique known family of reals for which $\gamma(\beta) = 1$. In [1] the authors has proved that if β is not Pisot unit, then $\gamma(\beta) = 0$, they also showed that if β is a cubic Pisot unit satisfying the finiteness property such that the number field $\mathbb{Q}(\beta)$ is not totally real, then $0 < \gamma(\beta) < 1$.

In this paper, we consider the analogue of this concept in the algebraic function over finite fields. We will show that the condition Pisot unit is not necessary to have $\gamma(\beta) > 0$. Especially, we give a sufficient condition for the conjugates of β to obtain $\gamma(\beta) = 1$.

2. β -expansions in $\mathbb{F}_q((x^{-1}))$

Let \mathbb{F}_q be a finite field of q elements, $\mathbb{F}_q[x]$ the ring of polynomials with coefficient in \mathbb{F}_q , $\mathbb{F}_q(x)$ the field of rational functions, $\mathbb{F}_q(x, \beta)$ the minimal extension of \mathbb{F}_q containing x and β and $\mathbb{F}_q[x,\beta]$ the minimal ring containing x and β . Let $\mathbb{F}_q((x^{-1}))$ be the field of formal power series of the form:

$$f = \sum_{k=-\infty}^{l} f_k x^k, \quad f_k \in \mathbb{F}_q$$

where

$$l = \deg f := \begin{cases} \max\{k \colon f_k \neq 0\} & \text{for } f \neq 0; \\ -\infty & \text{for } f = 0. \end{cases}$$

Define the absolute value

$$|f| = \begin{cases} q^{\deg f} & \text{for } f \neq 0; \\ 0 & \text{for } f = 0. \end{cases}$$

Since |. | is not archimedean, |. | fulfills the strict triangle inequality

$$|f + g| \le \max(|f|, |g|)$$
 and
 $|f + g| = \max(|f|, |g|)$ if $|f| \ne |g|$

Let $f \in \mathbb{F}_q((x^{-1}))$, define the integer (polynomial) part $[f] = \sum_{k=0}^{l} f_k x^k$ where the empty sum, as usual, is defined to be zero. Therefore $[f] \in \mathbb{F}_q[x]$ and (f - [f]) is in the unit disk D(0, 1) for all $f \in \mathbb{F}_q((x^{-1}))$.

Proposition 2.1 ([11]). Let K be complete field with respect to (a non archimedean absolute value |.|) and L/K ($K \subset L$) be an algebraic extension of degree m. Then |.| has a unique extension to L defined by: $|a| = \sqrt[m]{|N_{L/K}(a)|}$ and L is complete with respect to this extension.

We apply Proposition 2.1 to algebraic extensions of $\mathbb{F}_q((x^{-1}))$. Since $\mathbb{F}_q[x] \subset \mathbb{F}_q((x^{-1}))$, every algebraic element over $\mathbb{F}_q[x]$ can be evaluated. However, since $\mathbb{F}_q((x^{-1}))$ is not algebraically closed and uch an element do not necessarily expressed as a power series over x^{-1} . For a full characterization of the algebraic closure of $\mathbb{F}_q[x]$, we refer to Kedlaya [8].

An element $\beta = \beta_1 \in \mathbb{F}_q((x^{-1}))$ is called a Pisot (resp. Salem) element if it is an algebraic integer over $\mathbb{F}_q[x]$, $|\beta| > 1$ and $|\beta_j| < 1$ for all Galois conjugates β_j (resp. $|\beta_j| \le 1$ and there exist at least one conjugate β_k such that $|\beta_k| = 1$).

P. Bateman and A.L. Duquette [4] had characterized the Pisot and Salem element in $\mathbb{F}_q((x^{-1}))$:

Theorem 2.1. Let $\beta \in \mathbb{F}_q((x^{-1}))$ be an algebraic integer over $\mathbb{F}_q[x]$ and

$$P(y) = y^n - A_1 y^{n-1} - \dots - A_n, \quad A_i \in \mathbb{F}_q[x],$$

be its minimal polynomial. Then

- (i) β is a Pisot element if and only if $|A_1| > \max_{2 \le i \le n} |A_i|$,
- (ii) β is a Salem element if and only if $|A_1| = \max_{2 \le i \le n} |A_i|$.

Let β , $f \in \mathbb{F}_q((x^{-1}))$ with $|\beta| > 1$. A representation in base β (or β -representation) of f is an infinite sequence $(d_i)_{i \ge 1}$, $d_i \in \mathbb{F}_q[x]$, such that

$$f = \sum_{i \ge 1} \frac{d_i}{\beta^i}.$$

A particular β -representation of f is called the β -expansion of f in base β , noted $d_{\beta}(f)$, which is obtained by using the β -transformation T_{β} in the unit disk which is given by $T_{\beta}(f) = \beta f - [\beta f]$. Then $d_{\beta}(f) = (a_i)_{i \ge 1}$ where $a_i = [\beta T_{\beta}^{i-1}(f)]$.

An equivalent definition of the β -expansion can be obtained by a greedy algorithm. This algorithm works as follows. Set $r_0 = f$ and let $a_i = [\beta r_{i-1}]$, $r_i = \beta r_{i-1} - a_i$ for all $i \ge 1$. The β -expansion of f will be noted as $d_{\beta}(f) = (a_i)_{i \ge 1}$.

Note that $d_{\beta}(f)$ is finite if and only if there is a $k \ge 0$ such that $T^{k}(f) = 0$, $d_{\beta}(f)$ is ultimately periodic if and only if there is some smallest $p \ge 0$ (the pre-period length) and $s \ge 1$ (the period length) for which $T_{\beta}^{p+s}(f) = T_{\beta}^{p}(f)$.

Now let $f \in \mathbb{F}_q((x^{-1}))$ be an element with $|f| \ge 1$. Then there is a unique $k \in \mathbb{N}$ such that $|\beta|^k \le |f| < |\beta|^{k+1}$. Hence $|f/\beta^{k+1}| < 1$ and we can represent f by shifting

 $d_{\beta}(f/\beta^{k+1})$ by k digits to the left. Therefore, if $d_{\beta}(f) = 0.d_1d_2d_3\cdots$, then $d_{\beta}(\beta f) = d_1.d_2d_3\cdots$.

If we have $d_{\beta}(f) = d_l d_{l-1} \cdots d_0 d_{-1} \cdots d_m$, then we put $\deg_{\beta}(f) = l$ and $\operatorname{ord}_{\beta}(f) = m$. In the sequal, we will use the following notations:

$$Fin(\beta) = \{ f \in \mathbb{F}_q((x^{-1})) \colon d_\beta(f) \text{ is finite} \},\$$

$$Per(\beta) = \{ f \in \mathbb{F}_q((x^{-1})) \colon d_\beta(f) \text{ is eventually periodic} \},\$$

$$Pur(\beta) = \{ f \in \mathbb{F}_q((x^{-1})) \text{ and } |f| < 1 \colon d_\beta(f) \text{ is purely periodic} \}.$$

REMARK 2.2. In contrast to the real case, there is no carry occurring, when we add two digits. Therefore, if $z, w \in \mathbb{F}_q((x^{-1}))$, we have $d_\beta(z + w) = d_\beta(z) + d_\beta(w)$ digitwise.

Theorem 2.2 ([6]). A β -representation $(d_j)_{j\geq 1}$ is the β -expansion of f in the unit disk if and only if $|d_j| < |\beta|$ for $j \ge 1$.

In the fields of formal series case, on the one hand, K. Scheicher, M. Jellali and M. Mkaouar [14] have studied the characterization of purely periodic β -expansions in the Pisot unit base. On the other hand, the following theorems are proved independently by Hbaib–Mkaouar and Scheicher.

Theorem 2.3 ([13]). β is Pisot or Salem element if and only if $Per(\beta) = \mathbb{F}_q(x,\beta)$.

Theorem 2.4 ([6]). β is Pisot or Salem element if and only if $d_{\beta}(1)$ is periodic.

In the papers [9] and [10], metric results are established and the relation to continued fractions is studied.

3. Results

By analogy with the real case, we define for each β such that $|\beta| > 1$ the quantity

$$\gamma(\beta) = \sup\{c \in [0, 1) \colon \forall f \in \mathbb{F}_q(x) \cap D(0, c), d_\beta(f) \text{ is purely periodic}\}.$$

In order to prove that $\gamma(\beta) > 0$ if β is a Pisot or Salem unit series, we need to introduce some basic notions: Let β be a Pisot or Salem unit series of minimal polynomial $\beta^d + A_{d-1}\beta^{n-1} + \cdots + A_0$ where $A_i \in \mathbb{F}_q[x]$ for $i \in \{1, \ldots, d-1\}$ and $A_0 \in \mathbb{F}_q^*$. Let $\beta^{(2)}, \ldots, \beta^{(d)}$ be the conjugates of β and we denote by $\overline{\beta}$ the vector conjugate of β given by $\overline{\beta} = \begin{pmatrix} \beta^{(2)} \\ \vdots \\ \beta^{(d)} \end{pmatrix}$. For $f = r_0 + r_1\beta + r_2\beta^2 + \cdots + r_{d-1}\beta^{d-1}$ with $r_i \in \mathbb{F}_q(x)$, the *j*-th conjugate of *f* in $\mathbb{F}_q(x, \beta)$ is given by $f^{(j)} = r_0 + r_1\beta^{(j)} + r_2(\beta^{(j)})^2 + \cdots + r_{d-1}(\beta^{(j)})^{d-1}$.

We define \overline{f} , the vector conjugate of f by $\overline{f} = \begin{pmatrix} f^{(2)} \\ \vdots \\ f^{(d)} \end{pmatrix}$ and $\|\overline{f}\| = \sup_{2 \le k \le d} |f^{(k)}|$.

We begin with two lemmas which are essential for the development of the proof of Theorem 3.3.

Lemma 3.1 (Lemma 1, 2). Let β be an algebraic unit of degree n, and M be a positive number. Put

$$X(p) = \{ f \in Fin(\beta) \colon |f| \le M, \text{ ord}_{\beta}(f) = -p \}.$$

Then

$$\lim_{p \to \infty} \min_{f \in X(p)} \|\overline{f}\| = \infty.$$

Proof. Assume that there exist a constant B and an infinite sequence f_i (i = 1, 2, ...) so that both

$$|f_i^{(j)}| \le B$$
 for $j = 2, 3, \dots, d$ and $\lim_{i \to \infty} \operatorname{ord}_\beta(f_i) = -\infty$

holds. As β is a unit, all f_i are in $\mathbb{F}_q[x, \beta]$ and $|f_i| \leq M$, then these f_i 's are finite. On the other hand, by the hypothesis $\lim_{i\to\infty} \operatorname{ord}_{\beta}(f_i) = -\infty$, the set $\{f_i, i \geq 1\}$ is infinite. This is absurd, which proves the lemma.

Lemma 3.2. Let β be a Pisot or Salem unit series. Then there exists r > 0 such that for every series h in $\mathbb{F}_q(x, \beta)$ satisfying $\operatorname{ord}_{\beta}(h) \leq -1$, we have $\|\overline{h}\| > r$.

Proof. According to Lemma 3.1, there exists s > 0 such that for every series f in $\mathbb{F}_q(x, \beta)$ satisfying |f| < 1 and $\operatorname{ord}_{\beta}(f) \leq -s$, we have $\|\overline{f}\| > |\beta|$. Put $r = \inf_{j \in \{2, \dots, d\}} |(\beta^{(j)})^{s-1}| |\beta|$, where $\beta^{(2)}, \dots, \beta^{(d)}$ are the conjuguates of β .

Now, let *h* be a series in $\mathbb{F}_q(x, \beta)$ with $\operatorname{ord}_\beta(h) \leq -1$. Then $h = \beta^{s-1}g$ where $\operatorname{ord}_\beta(g) \leq -s$. Moreover *h* can be written such that $h = \beta^{s-1}(g_1 + g_2)$ where $\operatorname{ord}_\beta(g_1) \geq 0$, $\operatorname{ord}_\beta(g_2) = \operatorname{ord}_\beta(g) \leq -s$ and $|g_2| < 1$. Since $h = \beta^{s-1}(g_1 + g_2)$,

$$\overline{h} = \begin{pmatrix} (\beta^{(2)})^{s-1}(g_1^{(2)} + g_2^{(2)}) \\ (\beta^{(3)})^{s-1}(g_1^{(3)} + g_2^{(3)}) \\ \vdots \\ (\beta^{(d)})^{s-1}(g_1^{(d)} + g_2^{(d)}) \end{pmatrix}$$

As β is a Pisot or Salem series and $g_1 = c_0 + c_1\beta + \cdots + c_{d-1}\beta^{d-1}$ with $c_i \in \mathbb{F}_q[x]$ and $|c_i| < |\beta|$, we have

$$|g_1^{(2)}| = |c_0 + c_1\beta^{(2)} + \dots + c_{d-1}(\beta^{(2)})^{d-1}| \le |\beta|,$$

F. ABBES AND M. HBAIB

$$|g_1^{(3)}| = |c_0 + c_1 \beta^{(3)} + \dots + c_{d-1} (\beta^{(3)})^{d-1}| \le |\beta|,$$

$$\vdots$$
$$|g_1^{(d)}| = |c_0 + c_1 \beta^{(d)} + \dots + c_{d-1} (\beta^{(d)})^{d-1}| \le |\beta|.$$

Since $\operatorname{ord}_{\beta}(g_2) \leq -s$ and $|g_2| < 1$, we have $\|\overline{g}_2\| > |\beta|$. Thus, there exists $j_0 \in \{2, ..., n\}$ with $|g_2^{(j_0)}| > |\beta|$. So $|g_1^{(j_0)} + g_2^{(j_0)}| > |\beta|$, which implies that $|(\beta^{(j_0)})^{s-1}| |g_1^{(j_0)} + g_2^{(j_0)}| > \inf_{j \in \{2, ..., d\}} |(\beta^{(j)})^{s-1}| |\beta| = r$. Then we obtain $\|\overline{h}\| > r$.

Theorem 3.3. Let β be a Pisot or Salem unit series. Then $\gamma(\beta) > 0$.

Proof. We will show that there exists a positive constant c such that every rational f with |f| < c has a purely periodic β -expansion. Let $f \in \mathbb{F}_q(x, \beta) \cap D(0, 1)$ and assume that f does not have a purely periodic β -expansion. Since β is a Pisot or Salem series, we know that $d_{\beta}(f)$ is periodic (by Theorem 2.3) and let m be the length of the period. So $d_{\beta}(f(\beta^m - 1))$ is finite because the β -expansion is closed under addition i.e.,

$$d_{\beta}(f(\beta^m - 1)) = d_{\beta}(f\beta^m) - d_{\beta}(f).$$

As $d_{\beta}(f)$ is not purely periodic, then $\operatorname{ord}_{\beta}(\beta^m f - f) < 0$. By Lemma 3.2, there exists r > 0 such that $\|\overline{\beta^m f - f}\| > r$.

Since β is a Pisot or Salem series, we have $\|\overline{f}\| \ge \|\overline{\beta^m f - f}\| \ge r$, with

$$\overline{\beta^m f - f} = \begin{pmatrix} (\beta^{(2)})^m f^{(2)} - f^{(2)} \\ (\beta^{(3)})^m f^{(3)} - f^{(3)} \\ \vdots \\ (\beta^{(d)})^m f^{(d)} - f^{(d)} \end{pmatrix}.$$

However $f \in \mathbb{F}_q(x)$, then for all $j \in \{2, ..., d\}$; $|f^{(j)}| = |f|$ and for this, we conclude that $|f| \ge r$.

Theorem 3.4. Let β be a Pisot or Salem element in $\mathbb{F}_q((x^{-1}))$ which has a conjugate $\tilde{\beta}$ satisfying $|\tilde{\beta}| \leq 1/|\beta|$. Then $\gamma(\beta) = 1$.

Proof. Assume that β is a Pisot or Salem series, by Theorem 2.3 we can deduce that $d_{\beta}(f)$ is periodic. Let's suppose that f does not have a purely periodic β -expansion, so $d_{\beta}(f) = 0.a_1 \cdots a_p \overline{a_{p+1} \cdots a_{p+s}}$ and $a_p \neq a_{p+s}$. Hence

$$f = \frac{a_1}{\beta} + \dots + \frac{a_p}{\beta^p} + \frac{a_{p+1}}{\beta^{p+1}} + \dots + \frac{a_{p+s}}{\beta^{p+s}} + \frac{1}{\beta^s} \left(f - \frac{a_1}{\beta} - \dots - \frac{a_p}{\beta^p} \right).$$

Since $a_1, \ldots, a_{p+s} \in \mathbb{F}_q[x]$ and $f \in \mathbb{F}_q(x)$,

$$f = \frac{a_1}{\tilde{\beta}} + \dots + \frac{a_p}{\tilde{\beta}^p} + \frac{a_{p+1}}{\tilde{\beta}^{p+1}} + \dots + \frac{a_{p+s}}{\tilde{\beta}^{p+s}} + \frac{1}{\tilde{\beta}^s} \left(f - \frac{a_1}{\tilde{\beta}} - \dots - \frac{a_p}{\tilde{\beta}^p} \right).$$

We get

$$f\left(1-\frac{1}{\tilde{\beta}^s}\right) = \frac{a_1}{\tilde{\beta}} + \dots + \frac{a_p}{\tilde{\beta}^p} + \frac{a_{p+1}}{\tilde{\beta}^{p+1}} + \dots + \frac{a_{p+s}}{\tilde{\beta}^{p+s}} + \frac{1}{\tilde{\beta}^s} \left(-\frac{a_1}{\tilde{\beta}} - \dots - \frac{a_p}{\tilde{\beta}^p}\right).$$

Therefore

$$f(\tilde{\beta}^{s+p}-\tilde{\beta}^p)=a_1\tilde{\beta}^{s+p-1}+\cdots+a_{p+s}-a_1\tilde{\beta}^{p-1}-\cdots-a_p.$$

Since $|\tilde{\beta}| \leq 1/|\beta|$, then we get

$$|f| |\hat{\beta}^p| = |a_{p+s} - a_p|.$$

So

$$\frac{|f|}{|\beta|^p} \ge |a_{p+s} - a_p|$$

Since $a_{p+s} - a_p \neq 0$, $|f| \geq |\beta|^p$, which is absurd because f is in the unit disk.

Proposition 3.1. If β is a Pisot or Salem series which has a conjugate $\tilde{\beta}$ satisfying $|\tilde{\beta}| \leq 1/|\beta|$, then β is unit.

Proof. Let β be a Salem series of degree d satisfying $\beta^d + A_{d-1}\beta^{d-1} + \cdots + A_1\beta + A_0 = 0$ where $A_i \in \mathbb{F}_q[x]$ $(A_0 \neq 0)$ and let $\beta_1 = \beta, \ldots, \beta_d$ be the conjugates of β . So

$$|A_0| = |\beta\beta_2\cdots\beta_d|.$$

If we have for example $|\beta_2| \leq 1/|\beta|$, so we get

$$|A_0| \leq |\beta_3 \cdots \beta_d|.$$

Therefore

$$|\beta_3| = |\beta_4| = \cdots = |\beta_d| = 1$$
 and $|A_0| = 1$,

what gives that $A_0 \in \mathbb{F}_q^*$.

The "unit" condition is necessary in the Theorem 3.3. In fact, in the non unit base, we get $\gamma(\beta) = 0$. For that we will give the following result in an analogous way to the real case [3].

F. Abbes and M. Hbaib

Proposition 3.2. Let β be a series which is not a unit. Then $\gamma(\beta) = 0$.

Proof. Let $P(f) = A_n f^n + A_{n-1} f^{n-1} + \cdots + A_0$ be the minimal polynomial of β with $A_i \in \mathbb{F}_q[x]$ for all $i \in \{1, \ldots, n\}$ and $A_0 \in \mathbb{F}_q[x] \setminus \mathbb{F}_q^*$. Let $f_n = 1/A_0^n$ with $n \in \mathbb{N}^*$, we will prove that f_n does not have purely periodic β -expansion. We see

$$f_n = \frac{a_1}{\beta} + \dots + \frac{a_k}{\beta^k} + \frac{f}{\beta^k}$$
$$= \left(\frac{a_1}{\beta} + \dots + \frac{a_k}{\beta^k}\right) \left(1 + \frac{1}{\beta^k} + \frac{1}{\beta^{2k}} + \dots\right)$$
$$= \left(\sum_{i=1}^k a_i \beta^{-i}\right) \left(\sum_{i\geq 0} \frac{1}{\beta^{ik}}\right)$$
$$= \frac{\sum_{i=1}^k a_i \beta^{-i}}{1 - \beta^{-k}}$$
$$= \frac{\sum_{i=0}^{k-1} a_{k-i} \beta^i}{\beta^k - 1}.$$

So we have $f_n(1-\beta^k) = \sum_{i=0}^{k-1} (-a_{k-i})\beta^i = (1-\beta^k)/A_0^n \in \mathbb{F}_q[x,\beta]$, then $(1-\beta^k)/A_0^n = c_{n-1}\beta^{n-1} + c_{n-2}\beta^{n-2} + \dots + c_0$ with $c_{n-1}, \dots, c_0 \in \mathbb{F}_q[x]$. Consequently,

$$1 - \beta^{k} = A_{0}^{n} (c_{n-1} \beta^{n-1} + \dots + c_{0})$$

= $(-A_{n} \beta^{n} - A_{n-1} \beta^{n-1} - \dots - A_{1} \underline{\beta})^{n} (c_{n-1} \beta^{n-1} + \dots + c_{0}).$

As a result $1 = \beta(z_t \beta^t + \dots + z_0)$ and this contradicts the hypothesis that β is not unit.

Theorem 3.5. Let β be a quadratic Pisot unit series. Then $\gamma(\beta) = 1$.

Proof. In this case β satisfies $\beta^2 + A\beta + c = 0$, where |A| > 1 and $c \in \mathbb{F}_q^*$ so, the unique conjugate of β is $\tilde{\beta}$ such that

$$\beta \tilde{\beta} = c$$
, which $|\tilde{\beta}| = \frac{1}{|\beta|}$

By Theorem 3.4, we obtain the result.

REMARK 3.3. We remark that if β is a Pisot or Salem not unit series then β has not a conjugate $\tilde{\beta}$ such that $|\tilde{\beta}| = 1/|\beta|$ and the quadratic case is the only case where a Pisot unit series β has a conjugate $\tilde{\beta}$ such that $|\tilde{\beta}| = 1/|\beta|$.

However, if β is an algebraic integer of degree d > 2 over $\mathbb{F}_q[x]$ and β_2, \ldots, β_d their (d-1) conjugates, then we have $|\beta\beta_2\cdots\beta_d| = 1$. If we suppose that for a certain

i with $|\beta_i| = 1/|\beta|$, then

$$\left|\prod_{j\neq i}\beta_i\right|=1,$$

which is absurd because $|\beta_i| < 1$ for all *i* in $\{2, \ldots, d\}$.

Theorem 3.6. Let β be a Salem unit satisfying $\beta^d + A_{d-1}\beta^{d-1} + \cdots + A_1\beta + b = 0$, where $b \in \mathbb{F}_q^*$ and $|A_1| = |A_{d-1}|$. Then $\gamma(\beta) = 1$.

Proof. Let β_2, \ldots, β_d be the d-1 conjugates of β and let's note that $\beta_1 = \beta$, so we have

$$\left|\prod_{1\leq i\leq d}\beta_i\right|=|b|=1.$$

This implies that there exists at least one conjugate of absolute value less than 1.

In the other hand we have:

$$|\beta_1 + \beta_2 + \dots + \beta_d| = |\beta| = |A_{d-1}|.$$

By the symmetrical relations between the roots, we get

$$\sum_{1 \leq i_1 < i_2 < \cdots < i_{d-1} \leq d} \beta_{i_1} \beta_{i_2} \cdots \beta_{i_{d-1}} \bigg| = |A_1|.$$

So if we suppose that β has more then 2 conjugates of absolute value lower to 1 and the other of equal absolute value 1, then we obtain in this case $|A_1| < |\beta|$ which contradicts the hypothesis that $|\beta| = |A_{d-1}| = |A_1|$.

Finally we conclude that β has a unique conjugate $\tilde{\beta}$ such that $|\tilde{\beta}| < 1$ and the other conjugates of equal absolute value 1. So, $|\tilde{\beta}| = 1/|\beta|$ and by Theorem 3.4 every rational series in the unit disk have a purely periodic β -expansion.

Corollary 3.7. Let β be a cubic Salem unit series. Then $\gamma(\beta) = 1$.

Proof. Let β be a cubic Salem unit series. In in this case the minimal polynomial of β is

$$P(y) = y^3 + A_2 y^2 + A_1 y + b \quad \text{where} \quad b \in \mathbb{F}_a^*,$$

and by Theorem 2.1, we have $|A_2| = |A_1|$. According to Theorem 3.4, we deduce that every rational series in the unit disk have a purely periodic β -expansion.

ACKNOWLEDGEMENTS. The authors thank the referee for his valuable suggestions and Prof. M. Benammar for his helpfull.

References

- [1] B. Adamczewski, C. Frougny, A. Siegel and W. Steiner: *Rational numbers with purely periodic* β -expansion, Bull. Lond. Math. Soc. **42** (2010), 538–552.
- [2] S. Akiyama: Self affine tiling and Pisot numeration system; in Number Theory and its Applications (Kyoto, 1997), Dev. Math. 2, Kluwer Acad. Publ., Dordrecht, 1999, 7–17.
- [3] S. Akiyama: *Pisot numbers and greedy algorithm*; in Number Theory (Eger, 1996), de Gruyter, Berlin, 1998, 9–21.
- [4] P.T. Bateman and A.L. Duquette: The analogue of the Pisot-Vijayaraghavan numbers in fields of formal power series, Illinois J. Math. 6 (1962), 594–606.
- [5] V. Berthé and A. Siegel: Purely periodic β-expansions in the Pisot non-unit case, J. Number Theory 127 (2007), 153–172.
- [6] M. Hbaib and M. Mkaouar: Sur le bêta-développement de 1 dans le corps des séries formelles, Int. J. Number Theory 2 (2006), 365–378.
- [7] S. Ito and H. Rao: *Purely periodic* β -expansions with Pisot unit base, Proc. Amer. Math. Soc. **133** (2005), 953–964.
- [8] K.S. Kedlaya: *The algebraic closure of the power series field in positive characteristic*, Proc. Amer. Math. Soc. **129** (2001), 3461–3470.
- [9] B. Li and J. Wu: *Beta-expansion and continued fraction expansion over formal Laurent series*, Finite Fields Appl. **14** (2008), 635–647.
- [10] B. Li, J. Wu and J. Xu: Metric properties and exceptional sets of β -expansions over formal Laurent series, Monatsh. Math. **155** (2008), 145–160.
- [11] J. Neukirch: Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften 322, Springer, Berlin, 1999.
- [12] A. Rényi: Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar 8 (1957), 477–493.
- [13] K. Scheicher: β-expansions in algebraic function fields over finite fields, Finite Fields Appl. 13 (2007), 394–410.
- [14] M. Jellali, M. Mkaouar and K. Scheicher: Purely periodic β -expansions with Pisot unit bases over Laurent series, Int. J. Contemp. Math. Sci. **3** (2008), 357–369.
- [15] K. Schmidt: On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), 269–278.

Farah Abbes Faculté des Sciences de Sfax Departement de Mathematiques BP 1171, Sfax 3000 Tunisia e-mail: farah.abbes@yahoo.fr

Mohamed Hbaib Faculté des Sciences de Sfax Departement de Mathematiques BP 1171, Sfax 3000 Tunisia e-mail: mmmhbaib@gmail.com