RATIONAL LAURENT SERIES WITH PURELY PERIODIC β-EXPANSIONS

FARAH ABBES and MOHAMED HBAIB

Citation	Osaka Journal of Mathematics. 50(3); 807-816
Issue Date	$2013-09$
Textversion	Publisher
Right	©Departments of Mathematics of Osaka University and Osaka City University.
DOI	$10.18910 / 26021$
Is Identical to	https://doi.org//10.18910/26021
Relation	The OJM has been digitized through Project Euclid platform http://projecteuclid.org/ojm starting from Vol. 1, No. 1.

SURE: Osaka City University Repository

https://dlisv03.media.osaka-cu.ac.jp/il/meta pub/G0000438repository

RATIONAL LAURENT SERIES WITH PURELY PERIODIC β-EXPANSIONS

Farah ABBES and Mohamed HBAIB

(Received August 18, 2011, revised January 30, 2012)

Abstract

The aim of this paper is to give families of Pisot and Salem elements β in $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ with the curious property that the β-expansion of any rational series in the unit disk $D(0,1)$ is purely periodic. In contrast, the only known family of reals with the last property are quadratic Pisot numbers $\beta>1$ that satisfy $\beta^{2}=n \beta+1$ for some integer $n \geq 1$.

1. Introduction

β-expansions of real numbers were introduced by A. Rényi [12]. Since then, their arithmetic, diophantine and ergodic properties have been extensively studied by several authors.

Let $\beta>1$ be a real number. The β-expansion of a real number $x \in[0,1]$ is defined as the sequence $\left(x_{i}\right)_{i \geq 1}$ with values in $\{0,1, \ldots,[\beta]\}$ produced by the β-transformation $T_{\beta}: x \rightarrow \beta x(\bmod 1)$ as follows:

$$
\forall i \geq 1, \quad x_{i}=\left[\beta T_{\beta}^{i-1}(x)\right], \quad \text { and thus } \quad x=\sum_{i \geq 1} \frac{x_{i}}{\beta^{i}}
$$

An expansion is finite if $\left(x_{i}\right)_{i \geq 1}$ is eventually 0 . A β-expansion is periodic if there exists $p \geq 1$ and $m \geq 1$ such that $x_{k}=x_{k+p}$ holds for all $k \geq m$; if $x_{k}=x_{k+p}$ holds for all $k \geq 1$, then it is purely periodic. We denote by $\operatorname{Per}(\beta)$ the numbers in $[0,1)$ with periodic β-expansions, $\operatorname{Pur}(\beta)$ the numbers in $[0,1)$ with purely periodic β-expansions and $\operatorname{Fin}(\beta)$ the numbers in $[0,1)$ with finite β-expansions.

Let $\mathbb{Q}(\beta)$ be the smallest fields containing \mathbb{Q} and β. An easy argument shows that $\operatorname{Per}(\beta) \subseteq \mathbb{Q}(\beta) \cap[0,1)$ for every real number $\beta>1$. K. Schmidt [15] showed that if β is a Pisot number (an algebraic integer whose conjugates have modulus <1), then $\operatorname{Per}(\beta)=\mathbb{Q}(\beta) \cap[0,1)$.

The purely periodic β-expansions are also discussed by S. Ito and H. Rao in [7] when they characterize all reals in [0, 1 [having purely periodic β-expansions with Pisot unit base. In [5], V. Berthé and A. Siegel completed the characterization in the Pisot non unit base.

[^0]Set

$$
\gamma(\beta)=\sup \left\{c \in[0,1): \forall r \in \mathbb{Q} \cap[0, c], d_{\beta}(r) \text { is purely periodic }\right\} .
$$

S. Akiyama has proved in [3] that if β is a Pisot unit number satisfying the finiteness property $\left(\operatorname{Fin}(\beta)=\mathbb{Z}\left[\beta^{-1}\right] \cap \mathbb{R}_{+}\right)$, then $\gamma(\beta)>0$.

In the quadratic case, K. Schmidt [15] has proved that if β satisfied $\beta^{2}=n \beta+1$ for some integer $n \geq 1$, then $\gamma(\beta)=1$. Until now, it is the unique known family of reals for which $\gamma(\beta)=1$. In [1] the authors has proved that if β is not Pisot unit, then $\gamma(\beta)=0$, they also showed that if β is a cubic Pisot unit satisfying the finiteness property such that the number field $\mathbb{Q}(\beta)$ is not totally real, then $0<\gamma(\beta)<1$.

In this paper, we consider the analogue of this concept in the algebraic function over finite fields. We will show that the condition Pisot unit is not necessary to have $\gamma(\beta)>0$. Especially, we give a sufficient condition for the conjugates of β to obtain $\gamma(\beta)=1$.

2. β-expansions in $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$

Let \mathbb{F}_{q} be a finite field of q elements, $\mathbb{F}_{q}[x]$ the ring of polynomials with coefficient in $\mathbb{F}_{q}, \mathbb{F}_{q}(x)$ the field of rational functions, $\mathbb{F}_{q}(x, \beta)$ the minimal extension of \mathbb{F}_{q} containing x and β and $\mathbb{F}_{q}[x, \beta]$ the minimal ring containing x and β. Let $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ be the field of formal power series of the form:

$$
f=\sum_{k=-\infty}^{l} f_{k} x^{k}, \quad f_{k} \in \mathbb{F}_{q}
$$

where

$$
l=\operatorname{deg} f:= \begin{cases}\max \left\{k: f_{k} \neq 0\right\} & \text { for } \quad f \neq 0 \\ -\infty & \text { for } \quad f=0\end{cases}
$$

Define the absolute value

$$
|f|= \begin{cases}q^{\operatorname{deg} f} & \text { for } \quad f \neq 0 \\ 0 & \text { for } \quad f=0\end{cases}
$$

Since $|$.$| is not archimedean, |$.$| fulfills the strict triangle inequality$

$$
\begin{aligned}
& |f+g| \leq \max (|f|,|g|) \quad \text { and } \\
& |f+g|=\max (|f|,|g|) \quad \text { if } \quad|f| \neq|g|
\end{aligned}
$$

Let $f \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$, define the integer (polynomial) part $[f]=\sum_{k=0}^{l} f_{k} x^{k}$ where the empty sum, as usual, is defined to be zero. Therefore $[f] \in \mathbb{F}_{q}[x]$ and $(f-[f])$ is in the unit disk $D(0,1)$ for all $f \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$.

Proposition 2.1 ([11]). Let K be complete field with respect to (a non archimedean absolute value $||$.$) and L / K(K \subset L)$ be an algebraic extension of degree m. Then $|$.$| has a unique extension to L$ defined by: $|a|=\sqrt[m]{\left|N_{L / K}(a)\right|}$ and L is complete with respect to this extension.

We apply Proposition 2.1 to algebraic extensions of $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$. Since $\mathbb{F}_{q}[x] \subset$ $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$, every algebraic element over $\mathbb{F}_{q}[x]$ can be evaluated. However, since $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ is not algebraically closed and uch an element do not necessarily expressed as a power series over x^{-1}. For a full characterization of the algebraic closure of $\mathbb{F}_{q}[x]$, we refer to Kedlaya [8].

An element $\beta=\beta_{1} \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ is called a Pisot (resp. Salem) element if it is an algebraic integer over $\mathbb{F}_{q}[x],|\beta|>1$ and $\left|\beta_{j}\right|<1$ for all Galois conjugates β_{j} (resp. $\left|\beta_{j}\right| \leq 1$ and there exist at least one conjugate β_{k} such that $\left|\beta_{k}\right|=1$).
P. Bateman and A.L. Duquette [4] had characterized the Pisot and Salem element in $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$:

Theorem 2.1. Let $\beta \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ be an algebraic integer over $\mathbb{F}_{q}[x]$ and

$$
P(y)=y^{n}-A_{1} y^{n-1}-\cdots-A_{n}, \quad A_{i} \in \mathbb{F}_{q}[x],
$$

be its minimal polynomial. Then
(i) β is a Pisot element if and only if $\left|A_{1}\right|>\max _{2 \leq i \leq n}\left|A_{i}\right|$,
(ii) β is a Salem element if and only if $\left|A_{1}\right|=\max _{2 \leq i \leq n}\left|A_{i}\right|$.

Let $\beta, f \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ with $|\beta|>1$. A representation in base β (or β-representation) of f is an infinite sequence $\left(d_{i}\right)_{i \geq 1}, d_{i} \in \mathbb{F}_{q}[x]$, such that

$$
f=\sum_{i \geq 1} \frac{d_{i}}{\beta^{i}} .
$$

A particular β-representation of f is called the β-expansion of f in base β, noted $d_{\beta}(f)$, which is obtained by using the β-transformation T_{β} in the unit disk which is given by $T_{\beta}(f)=\beta f-[\beta f]$. Then $d_{\beta}(f)=\left(a_{i}\right)_{i \geq 1}$ where $a_{i}=\left[\beta T_{\beta}^{i-1}(f)\right]$.

An equivalent definition of the β-expansion can be obtained by a greedy algorithm. This algorithm works as follows. Set $r_{0}=f$ and let $a_{i}=\left[\beta r_{i-1}\right], r_{i}=\beta r_{i-1}-a_{i}$ for all $i \geq 1$. The β-expansion of f will be noted as $d_{\beta}(f)=\left(a_{i}\right)_{i \geq 1}$.

Note that $d_{\beta}(f)$ is finite if and only if there is a $k \geq 0$ such that $T^{k}(f)=0, d_{\beta}(f)$ is ultimately periodic if and only if there is some smallest $p \geq 0$ (the pre-period length) and $s \geq 1$ (the period length) for which $T_{\beta}^{p+s}(f)=T_{\beta}^{p}(f)$.

Now let $f \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ be an element with $|f| \geq 1$. Then there is a unique $k \in \mathbb{N}$ such that $|\beta|^{k} \leq|f|<|\beta|^{k+1}$. Hence $\left|f / \beta^{k+1}\right|<1$ and we can represent f by shifting
$d_{\beta}\left(f / \beta^{k+1}\right)$ by k digits to the left. Therefore, if $d_{\beta}(f)=0 . d_{1} d_{2} d_{3} \cdots$, then $d_{\beta}(\beta f)=$ $d_{1} \cdot d_{2} d_{3} \cdots$.

If we have $d_{\beta}(f)=d_{l} d_{l-1} \cdots d_{0} \cdot d_{-1} \cdots d_{m}$, then we put $\operatorname{deg}_{\beta}(f)=l$ and $\operatorname{ord}_{\beta}(f)=m$.
In the sequal, we will use the following notations:

$$
\begin{aligned}
& \operatorname{Fin}(\beta)=\left\{f \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right): d_{\beta}(f) \text { is finite }\right\}, \\
& \operatorname{Per}(\beta)=\left\{f \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right): d_{\beta}(f) \text { is eventually periodic }\right\}, \\
& \operatorname{Pur}(\beta)=\left\{f \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right) \text { and }|f|<1: d_{\beta}(f) \text { is purely periodic }\right\} .
\end{aligned}
$$

REmARK 2.2. In contrast to the real case, there is no carry occurring, when we add two digits. Therefore, if $z, w \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$, we have $d_{\beta}(z+w)=d_{\beta}(z)+d_{\beta}(w)$ digitwise.

Theorem 2.2 ([6]). A β-representation $\left(d_{j}\right)_{j \geq 1}$ is the β-expansion of f in the unit disk if and only if $\left|d_{j}\right|<|\beta|$ for $j \geq 1$.

In the fields of formal series case, on the one hand, K. Scheicher, M. Jellali and M. Mkaouar [14] have studied the characterization of purely periodic β-expansions in the Pisot unit base. On the other hand, the following theorems are proved independently by Hbaib-Mkaouar and Scheicher.

Theorem 2.3 ([13]). $\quad \beta$ is Pisot or Salem element if and only if $\operatorname{Per}(\beta)=\mathbb{F}_{q}(x, \beta)$.
Theorem 2.4 ([6]). $\quad \beta$ is Pisot or Salem element if and only if $d_{\beta}(1)$ is periodic.
In the papers [9] and [10], metric results are established and the relation to continued fractions is studied.

3. Results

By analogy with the real case, we define for each β such that $|\beta|>1$ the quantity

$$
\gamma(\beta)=\sup \left\{c \in[0,1): \forall f \in \mathbb{F}_{q}(x) \cap D(0, c), d_{\beta}(f) \text { is purely periodic }\right\} .
$$

In order to prove that $\gamma(\beta)>0$ if β is a Pisot or Salem unit series, we need to introduce some basic notions: Let β be a Pisot or Salem unit series of minimal polynomial $\beta^{d}+A_{d-1} \beta^{n-1}+\cdots+A_{0}$ where $A_{i} \in \mathbb{F}_{q}[x]$ for $i \in\{1, \ldots, d-1\}$ and $A_{0} \in \mathbb{F}_{q}^{*}$. Let $\beta^{(2)}, \ldots, \beta^{(d)}$ be the conjugates of β and we denote by $\bar{\beta}$ the vector conjugate of β given by $\bar{\beta}=\left(\begin{array}{c}\beta^{(2)} \\ \vdots \\ \beta^{(d)}\end{array}\right)$. For $f=r_{0}+r_{1} \beta+r_{2} \beta^{2}+\cdots+r_{d-1} \beta^{d-1}$ with $r_{i} \in \mathbb{F}_{q}(x)$, the j-th conjugate of f in $\mathbb{F}_{q}(x, \beta)$ is given by $f^{(j)}=r_{0}+r_{1} \beta^{(j)}+r_{2}\left(\beta^{(j)}\right)^{2}+\cdots+r_{d-1}\left(\beta^{(j)}\right)^{d-1}$.

We define \bar{f}, the vector conjugate of f by $\bar{f}=\left(\begin{array}{c}f^{(2)} \\ \vdots \\ f^{(d)}\end{array}\right)$ and $\|\bar{f}\|=\sup _{2 \leq k \leq d}\left|f^{(k)}\right|$.
We begin with two lemmas which are essential for the development of the proof of Theorem 3.3.

Lemma 3.1 (Lemma 1, 2). Let β be an algebraic unit of degree n, and M be a positive number. Put

$$
X(p)=\left\{f \in \operatorname{Fin}(\beta):|f| \leq M, \operatorname{ord}_{\beta}(f)=-p\right\} .
$$

Then

$$
\lim _{p \rightarrow \infty} \min _{f \in X(p)}\|\bar{f}\|=\infty
$$

Proof. Assume that there exist a constant B and an infinite sequence $f_{i}(i=$ $1,2, \ldots$) so that both

$$
\left|f_{i}^{(j)}\right| \leq B \quad \text { for } \quad j=2,3, \ldots, d \quad \text { and } \quad \lim _{i \rightarrow \infty} \operatorname{ord}_{\beta}\left(f_{i}\right)=-\infty
$$

holds. As β is a unit, all f_{i} are in $\mathbb{F}_{q}[x, \beta]$ and $\left|f_{i}\right| \leq M$, then these f_{i} 's are finite. On the other hand, by the hypothesis $\lim _{i \rightarrow \infty} \operatorname{ord}_{\beta}\left(f_{i}\right)=-\infty$, the set $\left\{f_{i}, i \geq 1\right\}$ is infinite. This is absurd, which proves the lemma.

Lemma 3.2. Let β be a Pisot or Salem unit series. Then there exists $r>0$ such that for every series h in $\mathbb{F}_{q}(x, \beta)$ satisfying $\operatorname{ord}_{\beta}(h) \leq-1$, we have $\|\bar{h}\|>r$.

Proof. According to Lemma 3.1, there exists $s>0$ such that for every series f in $\mathbb{F}_{q}(x, \beta)$ satisfying $|f|<1$ and $\operatorname{ord}_{\beta}(f) \leq-s$, we have $\|\bar{f}\|>|\beta|$. Put $r=$ $\inf _{j \in\{2, \ldots, d\}}\left|\left(\beta^{(j)}\right)^{s-1}\right||\beta|$, where $\beta^{(2)}, \ldots, \beta^{(d)}$ are the conjuguates of β.

Now, let h be a series in $\mathbb{F}_{q}(x, \beta)$ with $\operatorname{ord}_{\beta}(h) \leq-1$. Then $h=\beta^{s-1} g$ where $\operatorname{ord}_{\beta}(g) \leq-s$. Moreover h can be written such that $h=\beta^{s-1}\left(g_{1}+g_{2}\right)$ where $\operatorname{ord}_{\beta}\left(g_{1}\right) \geq$ $0, \operatorname{ord}_{\beta}\left(g_{2}\right)=\operatorname{ord}_{\beta}(g) \leq-s$ and $\left|g_{2}\right|<1$. Since $h=\beta^{s-1}\left(g_{1}+g_{2}\right)$,

$$
\bar{h}=\left(\begin{array}{c}
\left(\beta^{(2)}\right)^{s-1}\left(g_{1}^{(2)}+g_{2}^{(2)}\right) \\
\left(\beta^{(3)}\right)^{s-1}\left(g_{1}^{(3)}+g_{2}^{(3)}\right) \\
\vdots \\
\left(\beta^{(d)}\right)^{s-1}\left(g_{1}^{(d)}+g_{2}^{(d)}\right)
\end{array}\right) .
$$

As β is a Pisot or Salem series and $g_{1}=c_{0}+c_{1} \beta+\cdots+c_{d-1} \beta^{d-1}$ with $c_{i} \in \mathbb{F}_{q}[x]$ and $\left|c_{i}\right|<|\beta|$, we have

$$
\left|g_{1}^{(2)}\right|=\left|c_{0}+c_{1} \beta^{(2)}+\cdots+c_{d-1}\left(\beta^{(2)}\right)^{d-1}\right| \leq|\beta|
$$

$$
\begin{aligned}
\left|g_{1}^{(3)}\right|= & \left|c_{0}+c_{1} \beta^{(3)}+\cdots+c_{d-1}\left(\beta^{(3)}\right)^{d-1}\right| \leq|\beta|, \\
& \vdots \\
\left|g_{1}^{(d)}\right| & =\left|c_{0}+c_{1} \beta^{(d)}+\cdots+c_{d-1}\left(\beta^{(d)}\right)^{d-1}\right| \leq|\beta| .
\end{aligned}
$$

Since $\operatorname{ord}_{\beta}\left(g_{2}\right) \leq-s$ and $\left|g_{2}\right|<1$, we have $\left\|\bar{g}_{2}\right\|>|\beta|$. Thus, there exists $j_{0} \in\{2, \ldots, n\}$ with $\left|g_{2}^{\left(j_{0}\right)}\right|>|\beta|$. So $\left|g_{1}^{\left(j_{0}\right)}+g_{2}^{\left(j_{0}\right)}\right|>|\beta|$, which implies that $\left|\left(\beta^{\left(j_{0}\right)}\right)^{s-1}\right|\left|g_{1}^{\left(j_{0}\right)}+g_{2}^{\left(j_{0}\right)}\right|>$ $\inf _{j \in\{2, \ldots, d\}}\left|\left(\beta^{(j)}\right)^{s-1}\right||\beta|=r$. Then we obtain $\|\bar{h}\|>r$.

Theorem 3.3. Let β be a Pisot or Salem unit series. Then $\gamma(\beta)>0$.
Proof. We will show that there exists a positive constant c such that every rational f with $|f|<c$ has a purely periodic β-expansion. Let $f \in \mathbb{F}_{q}(x, \beta) \cap D(0,1)$ and assume that f does not have a purely periodic β-expansion. Since β is a Pisot or Salem series, we know that $d_{\beta}(f)$ is periodic (by Theorem 2.3) and let m be the length of the period. So $d_{\beta}\left(f\left(\beta^{m}-1\right)\right)$ is finite because the β-expansion is closed under addition i.e.,

$$
d_{\beta}\left(f\left(\beta^{m}-1\right)\right)=d_{\beta}\left(f \beta^{m}\right)-d_{\beta}(f)
$$

As $d_{\beta}(f)$ is not purely periodic, then $\operatorname{ord}_{\beta}\left(\beta^{m} f-f\right)<0$. By Lemma 3.2, there exists $r>0$ such that $\left\|\overline{\beta^{m} f-f}\right\|>r$.

Since β is a Pisot or Salem series, we have $\|\bar{f}\| \geq\left\|\overline{\beta^{m} f-f}\right\| \geq r$, with

$$
\overline{\beta^{m} f-f}=\left(\begin{array}{c}
\left(\beta^{(2)}\right)^{m} f^{(2)}-f^{(2)} \\
\left(\beta^{(3)}\right)^{m} f^{(3)}-f^{(3)} \\
\vdots \\
\left(\beta^{(d)}\right)^{m} f^{(d)}-f^{(d)}
\end{array}\right)
$$

However $f \in \mathbb{F}_{q}(x)$, then for all $j \in\{2, \ldots, d\} ;\left|f^{(j)}\right|=|f|$ and for this, we conclude that $|f| \geq r$.

Theorem 3.4. Let β be a Pisot or Salem element in $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ which has a conjugate $\tilde{\beta}$ satisfying $|\tilde{\beta}| \leq 1 /|\beta|$. Then $\gamma(\beta)=1$.

Proof. Assume that β is a Pisot or Salem series, by Theorem 2.3 we can deduce that $d_{\beta}(f)$ is periodic. Let's suppose that f does not have a purely periodic β-expansion, so $d_{\beta}(f)=0 . a_{1} \cdots a_{p} \overline{a_{p+1} \cdots a_{p+s}}$ and $a_{p} \neq a_{p+s}$. Hence

$$
f=\frac{a_{1}}{\beta}+\cdots+\frac{a_{p}}{\beta^{p}}+\frac{a_{p+1}}{\beta^{p+1}}+\cdots+\frac{a_{p+s}}{\beta^{p+s}}+\frac{1}{\beta^{s}}\left(f-\frac{a_{1}}{\beta}-\cdots-\frac{a_{p}}{\beta^{p}}\right) .
$$

Since $a_{1}, \ldots, a_{p+s} \in \mathbb{F}_{q}[x]$ and $f \in \mathbb{F}_{q}(x)$,

$$
f=\frac{a_{1}}{\tilde{\beta}}+\cdots+\frac{a_{p}}{\tilde{\beta}^{p}}+\frac{a_{p+1}}{\tilde{\beta}^{p+1}}+\cdots+\frac{a_{p+s}}{\tilde{\beta}^{p+s}}+\frac{1}{\tilde{\beta}^{s}}\left(f-\frac{a_{1}}{\tilde{\beta}}-\cdots-\frac{a_{p}}{\tilde{\beta}^{p}}\right) .
$$

We get

$$
f\left(1-\frac{1}{\tilde{\beta}^{s}}\right)=\frac{a_{1}}{\tilde{\beta}}+\cdots+\frac{a_{p}}{\tilde{\beta}^{p}}+\frac{a_{p+1}}{\tilde{\beta}^{p+1}}+\cdots+\frac{a_{p+s}}{\tilde{\beta}^{p+s}}+\frac{1}{\tilde{\beta}^{s}}\left(-\frac{a_{1}}{\tilde{\beta}}-\cdots-\frac{a_{p}}{\tilde{\beta}^{p}}\right) .
$$

Therefore

$$
f\left(\tilde{\beta}^{s+p}-\tilde{\beta}^{p}\right)=a_{1} \tilde{\beta}^{s+p-1}+\cdots+a_{p+s}-a_{1} \tilde{\beta}^{p-1}-\cdots-a_{p}
$$

Since $|\tilde{\beta}| \leq 1 /|\beta|$, then we get

$$
|f|\left|\tilde{\beta}^{p}\right|=\left|a_{p+s}-a_{p}\right| .
$$

So

$$
\frac{|f|}{|\beta|^{p}} \geq\left|a_{p+s}-a_{p}\right|
$$

Since $a_{p+s}-a_{p} \neq 0,|f| \geq|\beta|^{p}$. which is absurd because f is in the unit disk.
Proposition 3.1. If β is a Pisot or Salem series which has a conjugate $\tilde{\beta}$ satisfying $|\tilde{\beta}| \leq 1 /|\beta|$, then β is unit.

Proof. Let β be a Salem series of degree d satisfying $\beta^{d}+A_{d-1} \beta^{d-1}+\cdots+$ $A_{1} \beta+A_{0}=0$ where $A_{i} \in \mathbb{F}_{q}[x]\left(A_{0} \neq 0\right)$ and let $\beta_{1}=\beta, \ldots, \beta_{d}$ be the conjugates of β. So

$$
\left|A_{0}\right|=\left|\beta \beta_{2} \cdots \beta_{d}\right| .
$$

If we have for example $\left|\beta_{2}\right| \leq 1 /|\beta|$, so we get

$$
\left|A_{0}\right| \leq\left|\beta_{3} \cdots \beta_{d}\right|
$$

Therefore

$$
\left|\beta_{3}\right|=\left|\beta_{4}\right|=\cdots=\left|\beta_{d}\right|=1 \quad \text { and } \quad\left|A_{0}\right|=1
$$

what gives that $A_{0} \in \mathbb{F}_{q}^{*}$.
The "unit" condition is necessary in the Theorem 3.3. In fact, in the non unit base, we get $\gamma(\beta)=0$. For that we will give the following result in an analogous way to the real case [3].

Proposition 3.2. Let β be a series which is not a unit. Then $\gamma(\beta)=0$.
Proof. Let $P(f)=A_{n} f^{n}+A_{n-1} f^{n-1}+\cdots+A_{0}$ be the minimal polynomial of β with $A_{i} \in \mathbb{F}_{q}[x]$ for all $i \in\{1, \ldots, n\}$ and $A_{0} \in \mathbb{F}_{q}[x] \backslash \mathbb{F}_{q}^{*}$. Let $f_{n}=1 / A_{0}^{n}$ with $n \in \mathbb{N}^{*}$, we will prove that f_{n} does not have purely periodic β-expansion. We see

$$
\begin{aligned}
f_{n} & =\frac{a_{1}}{\beta}+\cdots+\frac{a_{k}}{\beta^{k}}+\frac{f}{\beta^{k}} \\
& =\left(\frac{a_{1}}{\beta}+\cdots+\frac{a_{k}}{\beta^{k}}\right)\left(1+\frac{1}{\beta^{k}}+\frac{1}{\beta^{2 k}}+\cdots\right) \\
& =\left(\sum_{i=1}^{k} a_{i} \beta^{-i}\right)\left(\sum_{i \geq 0} \frac{1}{\beta^{i k}}\right) \\
& =\frac{\sum_{i=1}^{k} a_{i} \beta^{-i}}{1-\beta^{-k}} \\
& =\frac{\sum_{i=0}^{k-1} a_{k-i} \beta^{i}}{\beta^{k}-1} .
\end{aligned}
$$

So we have $f_{n}\left(1-\beta^{k}\right)=\sum_{i=0}^{k-1}\left(-a_{k-i}\right) \beta^{i}=\left(1-\beta^{k}\right) / A_{0}^{n} \in \mathbb{F}_{q}[x, \beta]$, then $\left(1-\beta^{k}\right) / A_{0}^{n}=$ $c_{n-1} \beta^{n-1}+c_{n-2} \beta^{n-2}+\cdots+c_{0}$ with $c_{n-1}, \ldots, c_{0} \in \mathbb{F}_{q}[x]$. Consequently,

$$
\begin{aligned}
1-\beta^{k} & =A_{0}{ }^{n}\left(c_{n-1} \beta^{n-1}+\cdots+c_{0}\right) \\
& =\left(-A_{n} \beta^{n}-A_{n-1} \beta^{n-1}-\cdots-A_{1} \underline{\beta}\right)^{n}\left(c_{n-1} \beta^{n-1}+\cdots+c_{0}\right) .
\end{aligned}
$$

As a result $1=\beta\left(z_{t} \beta^{t}+\cdots+z_{0}\right)$ and this contradicts the hypothesis that β is not unit.

Theorem 3.5. Let β be a quadratic Pisot unit series. Then $\gamma(\beta)=1$.
Proof. In this case β satisfies $\beta^{2}+A \beta+c=0$, where $|A|>1$ and $c \in \mathbb{F}_{q}^{*}$ so, the unique conjugate of β is $\tilde{\beta}$ such that

$$
\beta \tilde{\beta}=c, \quad \text { which } \quad|\tilde{\beta}|=\frac{1}{|\beta|} .
$$

By Theorem 3.4, we obtain the result.
Remark 3.3. We remark that if β is a Pisot or Salem not unit series then β has not a conjugate $\tilde{\beta}$ such that $|\tilde{\beta}|=1 /|\beta|$ and the quadratic case is the only case where a Pisot unit series β has a conjugate $\tilde{\beta}$ such that $|\tilde{\beta}|=1 /|\beta|$.

However, if β is an algebraic integer of degree $d>2$ over $\mathbb{F}_{q}[x]$ and $\beta_{2}, \ldots, \beta_{d}$ their $(d-1)$ conjugates, then we have $\left|\beta \beta_{2} \cdots \beta_{d}\right|=1$. If we suppose that for a certain
i with $\left|\beta_{i}\right|=1 /|\beta|$, then

$$
\left|\prod_{j \neq i} \beta_{i}\right|=1
$$

which is absurd because $\left|\beta_{i}\right|<1$ for all i in $\{2, \ldots, d\}$.
Theorem 3.6. Let β be a Salem unit satisfying $\beta^{d}+A_{d-1} \beta^{d-1}+\cdots+A_{1} \beta+b=$ 0 , where $b \in \mathbb{F}_{q}^{*}$ and $\left|A_{1}\right|=\left|A_{d-1}\right|$. Then $\gamma(\beta)=1$.

Proof. Let $\beta_{2}, \ldots, \beta_{d}$ be the $d-1$ conjugates of β and let's note that $\beta_{1}=\beta$, so we have

$$
\left|\prod_{1 \leq i \leq d} \beta_{i}\right|=|b|=1
$$

This implies that there exists at least one conjugate of absolute value less than 1.
In the other hand we have:

$$
\left|\beta_{1}+\beta_{2}+\cdots+\beta_{d}\right|=|\beta|=\left|A_{d-1}\right| .
$$

By the symmetrical relations between the roots, we get

$$
\left|\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{d-1} \leq d} \beta_{i_{1}} \beta_{i_{2}} \cdots \beta_{i_{d-1}}\right|=\left|A_{1}\right| .
$$

So if we suppose that β has more then 2 conjugates of absolute value lower to 1 and the other of equal absolute value 1 , then we obtain in this case $\left|A_{1}\right|<|\beta|$ which contradicts the hypothesis that $|\beta|=\left|A_{d-1}\right|=\left|A_{1}\right|$.

Finally we conclude that β has a unique conjugate $\tilde{\beta}$ such that $|\tilde{\beta}|<1$ and the other conjugates of equal absolute value 1 . So, $|\tilde{\beta}|=1 /|\beta|$ and by Theorem 3.4 every rational series in the unit disk have a purely periodic β-expansion.

Corollary 3.7. Let β be a cubic Salem unit series. Then $\gamma(\beta)=1$.
Proof. Let β be a cubic Salem unit series. In in this case the minimal polynomial of β is

$$
P(y)=y^{3}+A_{2} y^{2}+A_{1} y+b \quad \text { where } \quad b \in \mathbb{F}_{q}^{*}
$$

and by Theorem 2.1, we have $\left|A_{2}\right|=\left|A_{1}\right|$. According to Theorem 3.4, we deduce that every rational series in the unit disk have a purely periodic β-expansion.

Acknowledgements. The authors thank the referee for his valuable suggestions and Prof. M. Benammar for his helpfull.

References

[1] B. Adamczewski, C. Frougny, A. Siegel and W. Steiner: Rational numbers with purely periodic β-expansion, Bull. Lond. Math. Soc. 42 (2010), 538-552.
[2] S. Akiyama: Self affine tiling and Pisot numeration system; in Number Theory and its Applications (Kyoto, 1997), Dev. Math. 2, Kluwer Acad. Publ., Dordrecht, 1999, 7-17.
[3] S. Akiyama: Pisot numbers and greedy algorithm; in Number Theory (Eger, 1996), de Gruyter, Berlin, 1998, 9-21.
[4] P.T. Bateman and A.L. Duquette: The analogue of the Pisot-Vijayaraghavan numbers in fields of formal power series, Illinois J. Math. 6 (1962), 594-606.
[5] V. Berthé and A. Siegel: Purely periodic β-expansions in the Pisot non-unit case, J. Number Theory 127 (2007), 153-172.
[6] M. Hbaib and M. Mkaouar: Sur le bêta-développement de 1 dans le corps des séries formelles, Int. J. Number Theory 2 (2006), 365-378.
[7] S. Ito and H. Rao: Purely periodic β-expansions with Pisot unit base, Proc. Amer. Math. Soc. 133 (2005), 953-964.
[8] K.S. Kedlaya: The algebraic closure of the power series field in positive characteristic, Proc. Amer. Math. Soc. 129 (2001), 3461-3470.
[9] B. Li and J. Wu: Beta-expansion and continued fraction expansion over formal Laurent series, Finite Fields Appl. 14 (2008), 635-647.
[10] B. Li, J. Wu and J. Xu: Metric properties and exceptional sets of β-expansions over formal Laurent series, Monatsh. Math. 155 (2008), 145-160.
[11] J. Neukirch: Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften 322, Springer, Berlin, 1999.
[12] A. Rényi: Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar 8 (1957), 477-493.
[13] K. Scheicher: β-expansions in algebraic function fields over finite fields, Finite Fields Appl. 13 (2007), 394-410.
[14] M. Jellali, M. Mkaouar and K. Scheicher: Purely periodic β-expansions with Pisot unit bases over Laurent series, Int. J. Contemp. Math. Sci. 3 (2008), 357-369.
[15] K. Schmidt: On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), 269-278.

Farah Abbes
Faculté des Sciences de Sfax
Departement de Mathematiques
BP 1171, Sfax 3000
Tunisia
e-mail: farah.abbes@yahoo.fr
Mohamed Hbaib
Faculté des Sciences de Sfax
Departement de Mathematiques
BP 1171, Sfax 3000
Tunisia
e-mail: mmmhbaib@gmail.com

[^0]: 2000 Mathematics Subject Classification. 11R06, 37B50.

