Title	On complete metric space
Author	Nagata, Jun-iti
Citation	Journal of the Institute of Polytechnics, Osaka City University. Ser. A, Mathematics. 6(1); 47-53
Issue Date	1955
Type	Departmental Bulletin Paper
Textversion	Publisher
Publisher	Institute of Polytechnics, Osaka City University
Description	

Placed on: Osaka City University Repository

Placed on: Osaka City University Repository

On complete metric space

By Jun-iti Nagata

(Received April 5, 1955)

We characterized the uniform topology of a complete uniform space by the lattice of uniform coverings satisfying some conditions in previous papers. ${ }^{1)}$ But then we assumed that the uniform space had no isolated point. While the purpose of this paper is to take away this restriction, it is an attempt to establish a unity between the theory of characterization by uniform coverings and that by real valued functions. Now we concern ourselves only with metric spaces.

In $\S 1$ we shall characterize a complete metric space by the lattice of "uniform nbds (in the extended meaning)". In $\wp 2$ we shall give corollaries derived from the result in $\S 1$ and especially the theory of characterization by uniform coverings.

1. From now forth we denote by R a complete metric space.

Definition. We mean by a uniform nbd (in the extended meaning) a real valued function $f(x)$ of R satisfying
I) $f(x) \geq \varepsilon$ for some $\varepsilon>0$,
II) $f(x) \leqq \frac{1}{2 n}, d(x, y) \leqq \frac{1}{2 n}$ imply $f(y) \leqq \frac{1}{n} \quad$ for every natural number n.

We consider a directed set $D(R)$ of uniform nbds satisfying

1) there exist $e_{n} \in D(R)(n=1,2, \cdots)$ such that
a) $e_{n} \geq e_{n+1}$,
b) $\left\{e_{n} \mid n=1,2, \cdots\right\}$ is cofinal in $D(R)$,
c) $\lim _{n \rightarrow \infty} e_{n}(x)=0(x \in R)$,
d) for every $\varepsilon>0, x \in R$ there exists $f \in D(R): f(x)<\varepsilon, f(y) \geqq e_{n}(y)(d(x, y)$ $\left.\geq \frac{1}{n}\right)$,
2) $f, g \in D(R)$ implies $f \vee g \in D(R)^{2)}$.

Definition. We call a sequence $\left\{F_{n} \mid n=1,2, \cdots\right\}$ of subsets
$F_{n}=\left\{f \mid f^{\vee} f_{n} \# b_{n}, f \in D(R)\right\}$ of $D(R)$ a cauchy sequence by $\left\{f_{n}, b_{n}\right\}$ when it

1) On uniform homeomorphism between two uniform spaces, this journal Vol. 3, No. 1-2, 1952. On relations between lattices of finite uniform coverings of a metric space and the uniform topology, this journal Vol. 4, No. 1, 1953.
2) The relation $f \geqq g$ for two elements f, g of $D(R)$ means $f(x) \geqq g(x)$ for every If for $x \in R$ every $f \in D(R)$ there exists e_{n} such that $e_{n} \leqq f$, then we call $\left\{e_{n}\right\}$ cofinal in $D(R)$. For example, $e_{n}=\frac{1}{n}(n=1,2, \cdots)$ satisfy the conditions a), b), c) of 1$) . d(x, y)$ denotes the distance between x and y.
satisfies the following conditions,
i) $f_{n}, b_{n} \in D(R)(n=1,2, \cdots)$,
ii) $\left\{b_{n} \mid n=1,2, \cdots\right\}$ is cofinal in $D(R), b_{n} \geqq b_{n+1}$,
iii) $F_{n} \neq \phi$,
iv) for every $h \in D(R)$ there exists n_{0} such that $f \in F_{m}, g \in F_{n}$ and $m, n \geqq n_{0}$ imply $f^{\vee} g \neq h$.
Lemma 1. Let $e_{n}(n=1,2, \cdots)$ be a sequence of elements of satisfying the condition 1) and let f_{n} be an element satisfying the condition of f for $\varepsilon=e_{n}\left(x_{0}\right)$ in d, then F_{n} $=\left\{f \mid f \vee f_{n} \# e_{n}\right\}(n=1,2, \cdots)$ is a cauchy sequence by $\left\{f_{n}, e_{n}\right\}$.

Proof. The conditions i)- iii) are obviously satisfied.
Let h be an arbitrary element of $D(R)$, then $h\left(x_{0}\right)>\frac{1}{p}$ for some natural number p. From c), d) of 1) there exists n_{0} such that $n \geqq n_{0}$ implies $e_{n}\left(x_{0}\right)<\frac{1}{4 p}, f_{n}(y)$ $\geq e_{n}(y)\left(d\left(x_{0}, y\right) \geqq \frac{1}{4 p}\right)$. If $f^{\vee} f_{m} \not ⿻ e_{m}, g^{\vee} f_{n} \# e_{n}$ for some $m, n \geqq n_{0}$, then it must be $f(y)<a_{m}(y), g(z)<a_{n}(z)$ for some y, z such that $d\left(x_{0}, y\right)<\frac{1}{4 p}, d\left(x_{0}, z\right)<\frac{1}{4 p}$. Since $a_{m}\left(x_{0}\right)<\frac{1}{4 p}$ and $a_{n}\left(x_{0}\right)<\frac{1}{4 p}$, from II) we get $a_{m}(y) \leqq \frac{1}{2 p}, a_{n}(z) \leqq \frac{1}{2 p}$, and hence $f(y)<\frac{1}{2 p}, \quad g(z)<\frac{1}{2 p} . \quad$ Therefore $f\left(x_{0}\right) \leqq \frac{1}{p}, g\left(x_{0}\right) \leqq \frac{1}{p}$ and $f\left(x_{0}\right) \vee g\left(x_{0}\right) \leqq \frac{1}{p}<h\left(x_{0}\right)$. Thus we get $f^{\vee} g \neq h$.

Lemma 2. If $\left\{F_{n} \mid n=1,2, \cdots\right\}$ is a cauchy sequence by $\left\{f_{n}, b_{n}\right\}$, then $A_{n}=\{x \mid x \in R$, $f_{m}(x)<b_{m}(x)$ for some $\left.m \geq n\right\}(n=1,2, \cdots)$ is a cauchy filter of R.

Proof. Let p be an arbitrary natural number, then using iv) for $h=e_{p}$, we get n_{0} such that $f \in F_{m}, g \in F_{n}$ and $m, n \geqq n_{0}$ imply $f \vee g \nexists e_{p}$. Now we shall show that $x, y \in A_{n_{0}}$ implies $d(x, y)<\frac{2}{p}$. To show this, we assume the contrary, i.e. $f_{m}(x)$ $<b_{m}(x), f_{n}(y)<b_{n}(y), m, n \geq n_{0}$ and $d(x, y) \geqq \frac{2}{p}$. Then there exist $f, g \in D(R)$ such that $f(x)<b_{m}(x), f(z) \geqq e_{p}(z)\left(d(x, z) \geqq \frac{1}{p}\right) ; g(y)<b_{n}(y), g(z) \geqq e_{p}(z)(d(y, z)$ $\left.\geqq \frac{1}{p}\right)$ from d) of 1). Since $d(x, y) \geqq \frac{2}{p}$, there hold $f \vee g \geqq e_{p}, f \vee f_{m} \nexists b_{m}$ and $g \vee f_{n}$ $\nexists b_{m}$ simultaneously, but this is impossible. Hence $d(x, y)<\frac{2}{p}$, and hence $\left\{A_{n}\right\}$ is a cauchy filter.

Definition. We denote by $\left\{F_{n}\right\} \sim\left\{G_{n}\right\}$ the relation between two cauchy sequences $\left\{F_{n}\right\}$ and $\left\{G_{n}\right\}$ by $\left\{f_{n}, b_{n},\right\}$ and $\left\{g_{n}, c_{n}\right\}$ respectively such that
for every $h \in D(R)$ there exists n_{0} such that $n \geq n_{0}, f \in F_{n}$ and $g \in G_{n}$ imply $f^{\vee} g \nexists h$.

Lemma 3. In order that $\left\{F_{n}\right\} \sim\left\{G_{n}\right\}$ it is necessary and sufficient that cauchy filters $A_{n}=\left\{x \mid f_{m}(x)<b_{m}(x)\right.$ for some $\left.m \geqq n\right\} \quad(n=1,2, \cdots)$ and $B_{n}=\left\{x \mid g_{m}(x)<c_{m}(x)\right.$
for some $m \geqq n\}(n=1,2, \cdots)$ converge to a point x_{0}.
Proof. If $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ converge to a point $x_{0} \in R$, then for an arbitrary element h of $D(R)$ we can take a natural number p such that $h\left(x_{0}\right)>\frac{1}{p}$. Since $\left\{b_{n}\right\},\left\{c_{n}\right\}$ are cofinal in $D(R)$, there exists n_{0} such that $y \in A_{n_{0}}$ and $z \in B_{n_{0}}$ imply $d\left(x_{0}, y\right)<\frac{1}{4 p}$ and $d\left(x_{0}, z\right)<\frac{1}{4 p}$ respectively, and $b_{n}\left(x_{0}\right)<\frac{1}{4 p}, c_{n}\left(x_{0}\right)<\frac{1}{4 p}\left(n \geq n_{0}\right)$. Hence $f \in F_{n}$, $g \in G_{n}$ and $n \geqq n_{0}$ imply $f(y)<b_{n}(y), g(z)<c_{n}(z)$ for some y, z such that $d\left(x_{0}, y\right)<\frac{1}{4 p}$, $d\left(x_{0}, z\right)<\frac{1}{4 p}$, and hence $b_{n}(y) \leqq \frac{1}{2 p}, c_{n}(z) \leqq \frac{1}{2 p}$, i.e. $f(y)<\frac{1}{2 p}, g(z)<\frac{1}{2 p}$. Therefore we get $f\left(x_{0}\right) \leqq \frac{1}{p}, g\left(x_{0}\right) \leqq \frac{1}{p}$ and $f^{\vee} g \nsupseteq h$.

Conversely, if $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ converge to distinct points x and y respectively, then there exists some natural number p such that $d(x, y)>\frac{2}{p}$. For every n_{0} there exists $n \geq n_{0}$ such that $x^{\prime} \in A_{n}$ and $y^{\prime} \in B_{n}$ imply $d\left(x^{\prime}, y^{\prime}\right) \geqq \frac{2}{p}$. Hence there exist x^{\prime}, y^{\prime} such that $f_{n}\left(x^{\prime}\right)<b_{n}\left(x^{\prime}\right), g_{n}\left(y^{\prime}\right)<c_{n}\left(y^{\prime}\right) ; d\left(x^{\prime}, y^{\prime}\right) \geqq \frac{2}{p}$. Now we get $f, g \in D(R)$ satisfying $f \in F_{n}, g \in G_{n}$ and $f \vee g \geqq e_{p}$ simultaneously as in the proof of Lemma 2. Namely, there holds the negation of $\left\{F_{n}\right\} \sim\left\{G_{n}\right\}$.

From Lemma 3 we can classify all the cauchy sequences of $D(R)$ by the relation \sim. We denote by $\mathfrak{D}(R)$ the set of all such classes. From this lemma and the completeness of R we get a one-to-one correspondence between R and $\mathfrak{D}(R)$; hence we denote by $\mathfrak{D}(A)$ the image of a subset A of R in $\mathfrak{D}(R)$ by this correspondence.

Definition. We call $\mathfrak{D}(A)$ and $\mathfrak{D}(B)$ u-disjoint sets of $\mathfrak{D}(R)$ when for some $h \in D(R)$ and every $\left\{F_{n}\right\} \in \mathscr{D}(x) \in \mathscr{D}(A),\left\{G_{n}\right\} \in \mathscr{D}(y) \in \mathscr{D}(B)$ there exist $f \in F_{n}, g \in G_{n}$ satisfying $f^{\vee} g \geq h$ for an infinite number of n.

Lemma 4. $\mathfrak{D}(A)$ and $\mathfrak{D}(B)$ are u-disjoint if and only if A and B are u-disjoint sets of $R .^{3)}$.

Proof. If A and B are u-disjoint, then $d(A, B)>\frac{2}{p}$ for some natural number p. For every $\left\{F_{n}\right\} \in \mathscr{D}(x) \in \mathscr{D}(A),\left\{G_{n}\right\} \in \mathscr{D}(y) \in \mathscr{D}(B)$ and n_{0} there exists $n \geq n_{0}$ such that $x \in A_{n}$ and $y \in B_{n}{ }^{4)}$ imply $d(x, y) \geq \frac{2}{p}$, for $\left\{A_{n}\right\} \rightarrow x \in A, \quad\left\{B_{n}\right\} \rightarrow y \in B$ and $d(x, y)>\frac{1}{p}$. Since we get $f, g \in D(R)$ satisfying $f \in F_{n}, g \in G_{n}$ and $f^{\vee} g \geqq e_{p}$ as in the proof of Lemma 2, $\mathfrak{D}(A)$ and $\mathfrak{D}(B)$ are u-disjoint according to the definition.

If A and B are not u-disjoint, then for an arbitrary element h of $D(R)$ we can take $x \in A, y \in B: d(x, y)<\frac{1}{4 p}$ for a natural number p such that $\frac{1}{p}<\varepsilon \leqq h(x)(x \in R)$. Let $\left\{F_{n}\right\} \in \mathscr{D}(x)$ and $\left\{G_{n}\right\} \in \mathscr{D}(y)$, then $\left\{A_{n}\right\} \rightarrow x$ and $\left\{B_{n}\right\} \rightarrow y$; hence for some n_{0},
3) We say A and B are u-disjoint when $d(A B)=\inf \{d(x, y) \mid x \in A, y \in B\}>0$
4) In this proof we denote by $\left\{A_{n}\right\},\left\{B_{n}\right\}$ the same caucy filters as in Lemma 3.
$f_{n}(z) \geqq b_{n}(z)\left(d(x, z) \geqq \frac{1}{4 p}\right), g_{n}(z) \geqq c_{n}(z)\left(d(y, z) \geqq \frac{1}{4 p}\right) ; b_{n}(x)<\frac{1}{4 p}, c_{n}(y)<\frac{1}{4 p}\left(n \geqq n_{0}\right)$. Therefore $f \in F_{n}, g \in G_{n}$ imply $f(z)<b_{n}(z) \leqq \frac{1}{2 p}, g\left(z^{\prime}\right)<c_{n}\left(z^{\prime}\right) \leqq \frac{1}{2 p}$ for some z, z^{\prime} such that $d(x, z) \leqq \frac{1}{4 p}, d\left(y, z^{\prime}\right) \leqq \frac{1}{4 p}$. Since $d\left(x, z^{\prime}\right)<\frac{1}{2 p}$, there holds $g(x) \leqq \frac{1}{p}$ from II), and this combining with $f(x) \leqq \frac{1}{p}$ leads to $f^{\vee} g \nexists h$. Namely $\mathfrak{D}(A)$ and $\mathfrak{D}(B)$ are not u-disjoint.

Since we showed previously that the uniform topology of a metric space is defined by u-disjointness ${ }^{5)}$, from this lemma we can define in $\mathscr{D}(R)$ the uniform topology uniformly homeomorphic with that of R. Hence we get the following

Theorem 1. In order that two complete metric spaces R_{1} and R_{2} are uniformly homeomorphic it is necessary and sufficient that $D^{\prime}\left(R_{1}\right)$ and $D^{\prime}\left(R_{2}\right)$ are isomorphic, where $D\left(R_{1}\right)$ and $D\left(R_{2}\right)$ are directed sets of uniform nbds satisfying 1$\left.), 2\right)$.
2. Corollary 1. The uniform topology of a metric space R is characterized by the lattice $L_{a}(R)$ of all uniform nbds (in the extended meaning), i.e. of all real valued functions satisfying I), II).

Proof. Let $e_{n}=\frac{1}{n}$ and define $f(x)=\frac{\varepsilon}{2}+d\left(x_{0}, x\right)$ for each $x_{0} \in R$ and $\varepsilon>0$, then conditions 1), 2) are clearly satisfied. Since $f(x)=\frac{\varepsilon}{2}+\dot{d}\left(x_{0}, x\right) \leqq \frac{1}{2 n}$ and $d(x, y) \leqq \frac{1}{2 n}$ imply $f(y)=\frac{\varepsilon}{2}+d\left(x_{0}, y\right) \leqq \frac{\varepsilon}{2}+d\left(x_{0}, x\right)+d(x, y) \leqq \frac{1}{n}, f$ satisfies II)

Corollary 2. The uniform topology of a metric space R is characterized by the lattice $L_{d^{\prime}}(R)$ of all real valued functions satisfying $\left.I\right)$ and $|f(x)--f(y)| \leqq d(x, y)$ ($x, y \in R$).

Proof. It is obvious.
Corollary 3. The uniform topology of a metric space R is characterized by the lattice $L^{\prime}(R)$ of all mappings of R into $N=\left\{1, \frac{1}{2}, \frac{1}{3}, \cdots\right\}$ satisfying $\left.\left.I\right), I I\right)$.

Proof. Since $e_{n}=\frac{1}{n} \in L^{\prime}(R)$, if we define $f(x)$ such that $f(x)=\frac{1}{n}\left(\frac{1}{n} \leqq \frac{\varepsilon}{2}+d\left(x_{0}\right.\right.$, $\left.x)<\frac{1}{n-1}\right)$ for each $x_{0} \in R$ and $\varepsilon>0$, we can see easily that all conditions are satisfied. We show only that f satisfies II). If $f(x) \leqq \frac{1}{2 n}, d(x, y) \leqq \frac{1}{2 n}$, then $\frac{\varepsilon}{2}+d\left(x_{0}, x\right)<\frac{1}{2 n-1}$, and hence $\frac{\varepsilon}{2}+d\left(x_{0}, y\right)<\frac{1}{2 n-1}+\frac{1}{2 n}<\frac{1}{n-1}$. Therefore $f(y) \leqq \frac{\varepsilon}{2}+d\left(x_{0} y\right)<\frac{1}{n-1}$, and namely $f(y) \leqq n$.

Next, we investigate relations between uniform nbds (in the extended meaning) and uniform coverings. We consider a uniform covering \mathfrak{U} consisting of spheres

[^0]$S_{n(x)}(x)=\left\{y \left\lvert\, d(x, y)<\frac{1}{n(x)} \in N\right.\right\} \quad(x \in R)$. For \mathfrak{H} we define a function $f(\mathfrak{H}, x)$ such that $f(\mathfrak{U}, x)=\operatorname{Max}\left\{\left.\frac{1}{n} \right\rvert\, S_{n}(x) \subseteq S\right.$ for some $\left.S \in \mathfrak{H}\right\}$. Then $f(\mathfrak{U}, x)$ satisfies clearly I).

Lemma 1. $f(\mathfrak{U}, x)$ satisfies $I I)$ for every \mathfrak{H}.
Proof. If we assume $f(y)>\frac{1}{n}, d(x, y) \leqq \frac{1}{2 n}$, then $S_{n-1}(y) \subseteq S$ for some $S \in \mathfrak{U}$. Since $d(x, z)<\frac{1}{2 n-2}$ implies $d(y, z)<\frac{1}{2 n}+\frac{1}{2 n-2}<\frac{1}{n-1}, S_{2 n-2}(x) \subseteq S$. Namely, we get $f(\mathfrak{U}, x) \geqq \frac{1}{2 n-2}>\frac{1}{2 n}$ and condition II).

Hence $f(\mathfrak{U}, x) \in L^{\prime}(R)$ for every \mathfrak{H}.
Lemma 2. $f(\mathfrak{U}, x) \geqq f(\mathfrak{F}, x)(x \in R)$, if and only if $\mathfrak{U}>\mathfrak{B}$. ${ }^{6)}$
Proof. If $\mathfrak{H}>\mathfrak{F}$, then $S_{n}(x) \subseteq S \in \mathfrak{B}$ implies $S_{n}(x) \subseteq S^{\prime} \in \mathfrak{U}$, and hence $f(\mathfrak{V}, x)$ $\leqq f(\mathfrak{U}, x)$. If $\mathfrak{H}>\mathfrak{F}$, then there exists $S_{n}(x) \in \mathfrak{F}$ such that $S_{n}(x) \nsubseteq S$ for every $S \in \mathfrak{H}$, and hence $f(\mathfrak{V}, x) \geqq \frac{1}{n}, f(\mathfrak{U}, x)<\frac{1}{n}$, i.e. $f(\mathfrak{V}, x) \nsubseteq f(\mathfrak{H}, x)$.

Lemma 3. $f(\mathfrak{U} \vee \mathfrak{F}, x)=f(\mathfrak{U}, x) \vee f(\mathfrak{V}, x)$. ${ }^{7)}$
Proof. Let $f(\mathfrak{H} \vee \mathfrak{F}, x)=\frac{1}{n}$, then $S_{n}(x) \subseteq S \in \mathfrak{H} \vee \mathfrak{F}$. Since $S \in \mathfrak{H}$ and $S \in \mathfrak{F}$ imply $\frac{1}{n} \leqq f(\mathfrak{U}, x)$ and $\frac{1}{n} \leqq f(\mathfrak{V}, x)$ respectively, we obtain $\frac{1}{n} \leqq f(\mathfrak{V}, x) \vee f(\mathfrak{U}, x)$. On the other hand $f(\mathfrak{F}, x) \vee f(\mathfrak{U}, x) \leqq f(\mathfrak{U} \vee \mathfrak{F}, x)$ is an immediate consequence of Lemma 2, and hence this lemma is proved.

LEMMA 4. $f(\mathfrak{H} \wedge \mathfrak{V}, x)=f(\mathfrak{U}, x) \wedge f(\mathfrak{V}, x)$, where $\mathfrak{U}_{\wedge} \mathfrak{F}=\left\{S_{n}(x) \mid S_{n}(x) \subseteq S, S^{\prime}\right.$ for some $S \in \mathfrak{H}$ and $\left.S^{\prime} \in \mathfrak{B}\right\}$.

Proof. $f(\mathfrak{U} \wedge \mathfrak{V}, x) \leqq f(\mathfrak{U}, x) \wedge f(\mathfrak{F}, x)$ is an immediate consequence of Lemma 1. Conversely, let $\frac{1}{n}=\operatorname{Min}\{f(\mathfrak{H}, x), f(\mathfrak{B}, x)\}$, then $S_{n}(x) \subseteq S_{\cap} S^{\prime}$ for some $S \in \mathfrak{H}$ and $S^{\prime} \in \mathfrak{B}$ Hence according to the definition of $\mathfrak{H} \wedge \mathfrak{N}$, we obtain $\frac{1}{n} \leqq f(\mathfrak{U} \wedge \mathfrak{V}, x)$.

Combining Lemma 1-Lemma 4, we get
Theorem 2. The totality $L_{u}(R)$ of uniform coverings consisting of spheres is i somorphic to a sublattice of $L^{\prime}(R)$.

We denote by $L(R)$ a subset of $L_{u}(R)$ satisfying the following conditions,

1) ${ }^{\prime} L(R)$ is cofinal in $L_{u}(R)$,
2)' if $\mathfrak{U}, \mathfrak{B} \in L(R)$, then $\mathfrak{U} \vee \mathfrak{B} \in L(R)$,
2) for every $\mathfrak{U} \in L(R)$ and an open set S, there exist $\mathfrak{F} \in L(R)$ such that $S_{n}(x) \in \mathfrak{B}$ implies $S_{n}(x) \nsubseteq S$, and $S_{n}(x) \in \mathfrak{U}$ and $S_{n}(x)_{n} S=\phi$ imply $S_{n}(x) \in \mathfrak{B}$.

Then we obtain
6) We denote by $\mathfrak{W}<\mathfrak{U}$ the relation that for every $S \in \mathfrak{F}$ there exists some $S^{\prime} \in \mathfrak{l}: S \subseteq S^{\prime}$.
7) $\mathfrak{U} \vee \mathfrak{B}=\{S \mid S \in \mathfrak{U}$ or $S \in \mathfrak{B}\}$.

Lemma 5. $\quad\{f(\mathfrak{U}, x) \mid \mathfrak{U} \in L(R)\}$ satisfies 1), 2) for every metric space \bar{R} without isolated point.

Proof. 2) is immediately deduced from 2)' and Lemma 3. If we take $\mathfrak{U}_{m} \in L(R)$ such that $\mathfrak{U}_{n}<\left\{S_{3 n}(x) \mid x \in R\right\}, \mathfrak{U}_{n+1}<\mathfrak{U}_{n}$, then $e_{n}=f\left(\mathfrak{U}_{n}, x\right)(n=1,2, \cdots)$ satisfy clearly a), b) of 1). Next, since an arbitrary point x_{0} of R is no isolated point, for every n there exist $x \in S_{n}\left(x_{0}\right)-x_{0}$ and m such that $x \notin S\left(x_{0}, \mathfrak{U}_{m}\right) .{ }^{8)}$ Since $S_{n}\left(x_{0}\right) \nsubseteq S$ for every $S \in \mathfrak{H}_{m}, e_{m}\left(x_{0}\right)=f\left(\mathfrak{U}_{m}, x_{0}\right)<\frac{1}{n}$. This implies $\lim _{n \rightarrow \infty} e_{n}\left(x_{0}\right)=0$.

Lastly, to see the validity of d$)$, for e_{n} and $\varepsilon^{\prime}>0$ we denote by \mathfrak{F} an element of $L(R)$ satisfying the condition of \mathfrak{F} in 3$)^{\prime}$ for \mathfrak{U}_{n} and $S_{\bar{c}}\left(x_{0}\right)=\left\{y \mid d\left(x_{0}, y\right)<\varepsilon\right.$ $\left.=\operatorname{Min}\left(\varepsilon^{\prime}, \frac{1}{3 n}\right)\right\}$. Then we can easily show that $f(\mathfrak{V}, x)$ satisfies the condition of f in d). $f\left(\mathfrak{F}, x_{0}\right)<\varepsilon$ is obvious from the property of \mathfrak{V} and $S_{z}\left(x_{0}\right)$. If $d\left(x_{0}, x\right) \geqq-\frac{1}{n}$ and $f(\mathfrak{U}, x)=\frac{1}{m}$, then $S_{m}(x) \subseteq S_{p}(y)$ for certain $S_{p}(y) \in \mathfrak{H}$. To show $S_{i}\left(x_{0}\right) \cap S_{p}(y)=\phi$, we assume the contrary. Since $\mathfrak{U}_{n}<\left\{S_{3 n}(x)\right\}$, the assumption that $S_{z}\left(x_{0}\right)_{\cap} S_{p}(y) \neq \phi$ leads to the existence of $y \in R$ such that $d\left(x_{0}, y\right)<\varepsilon, d(y, x)<\frac{2}{3 n}$ and to $d\left(x_{0}, x\right)<\frac{1}{n}$, but this is a contradiction. Hence it must be $S_{\varepsilon}\left(x_{0}\right) \cap S_{p}(y)=\phi$, and hence $S_{m}(x) \subseteq S_{p}(y)$ $\in \mathfrak{V}$ from the property of \mathfrak{V}, which implies $\frac{1}{m} \leqq f(\mathfrak{V}, x)$. Thus d) of 1) is valid for $L(R)$.

From Theorem 1, Theorem 2 and this lemma we get the following proposition previously obtained by the author, ${ }^{9)}$

THEOREM 3. In order that two complete metric spaces R_{1} and R_{2} without isolated point are uniformly homeomorphic it is necessary and sufficient that $L\left(R_{1}\right)$ and $L\left(R_{2}\right)$ are isomorphic, where $L\left(R_{1}\right)$ and $L\left(R_{2}\right)$ are lattices of uniform coverings satisfying $\left.\left.1)^{\prime}, 2\right)^{\prime}, 3\right)^{\prime}$.

From now forth we denote by R a metric space and by R^{*} the completion of R. Let f be a uniform nbd of R, i.e. a real valued function satisfying I), II), then defining $f^{*}: f^{*}(x)=f(x)(x \in R), f^{*}(z)=\lim _{n \rightarrow \infty} \sup \left\{f(x)-d(x, z) \left\lvert\, d(x, z)<\frac{1}{n}\right., x \in R\right\}$, we see easily that f^{*} satisfies I) and II $)^{\prime} \quad f^{*}(x) \leqq \frac{1}{4 n}, d(x, y) \leqq \frac{1}{4 n}$ imply $f^{*}(y) \leqq \frac{1}{n}$ ($x, y \in R^{*}$).

Furthermore we obtain easily the following lemmas.
Lemma 6. $f^{*} \geq g^{*}$, if and only if $f \geqq g$.
Lemma 7. $f^{*} \vee g^{*}=\left(f^{\vee} g\right)^{*}$.
Lemma 8. If $\left\{e_{n}(x)\right\}$ is cofinal in $D(R)$, then $\left\{e_{n}{ }^{*}(x)\right\}$ is cofinal in $D^{*}(R)=$ $\left\{f^{*} \mid f \in D(R)\right\}$.

Lemma 9. If $\lim _{n \rightarrow \infty} e_{n}\left(x_{0}\right)=0\left(x_{0} \in R\right)$, then $\lim _{n \rightarrow \infty} e_{n}{ }^{*}\left(x_{0}\right)=0\left(x_{0} \in R^{*}\right)$.
8) $S\left(x_{0}, \mathfrak{H}_{m}\right)=\smile\left\{S \mid x_{0} \in S \in \mathfrak{U}_{m}\right\}$
9) See "On uniform homeomorphism...". In this paper we proved the theorem generally in a complete uniform space without isolated point.

Lemma 10. If $\left\{e_{n}\right\}$ satisfies d) of 1), then for every $\varepsilon>0$ and $x \in R^{*}$ there exists $f^{*} \in D^{*}(R)$ such that $f^{*}(x)<\varepsilon, f^{*}(y) \geq e_{n}^{*}(y) \quad\left(d(x, y) \geqq \frac{1}{n}\right)$.

We omit the proofs of these lemmas.
Therefore, if $D(R)$ is a directed set of uniform nbds satisfying 1), 2), tnen $D^{*}(R)=\left\{f^{*} \mid f \in D(R)\right\}$ is a directed set satisfying 1), 2) for R^{*}, which elements satisfy I), II)'. Let R_{1} and R_{2} be metric spaces, then an isomorphism between $D\left(R_{1}\right)$ and $D\left(R_{2}\right)$ implies an isomorphism between $D^{*}\left(R_{1}\right)$ and $D^{*}\left(R_{2}\right)$ from Lemma 6, and hence we obtain the following

THEOREM 4. If R_{1} and R_{2} are metric spaces and if $D\left(R_{1}\right)$ and $D\left(R_{2}\right)$ are isomorphic, then R_{1}^{*} and R_{2}^{*} are uniformly homeomorphic, where $D\left(R_{1}\right)$ and $D\left(R_{2}\right)$ are directed sets of uniform nbds of R satisfying I), II).

Corollary 4. $L_{a}(R), L_{d}(R)$ and $L^{\prime}(R)$ of a metric space R characterize the uniform topology of the completion R^{*} respectively.

[^0]: 5) See "On relations ...".
