The structure of rings whose quotient rings are primitive rings with minimal one sided ideals

By Manabu Harada

(Received October 22, 1959)

Recently A. W. Goldie [2] has proved that the quotient ring of a prime ring with some ascending chain condition is a simple ring with minimal condition. In this note we shall show that we can obtain the properties of a ring whose quotient ring is a primitive ring with minimal one sided ideals (P.M.I.), which are analogous to those of a prime ring in [2]. The following example shows that there exists such a ring.

Let \(I \) be the ring of rational integers. Let \(R_n \) be a sub-ring of matrix ring with infinite degree over the ring of rational numbers such that

\[
\begin{pmatrix}
(a_{ij})
\end{pmatrix}
\begin{pmatrix}
m_1

m_2

\vdots
\end{pmatrix}
\in I, \quad (a_{ij}) \in I_n.
\]

Let \(R = \bigcup_n R_n \), then if an element \(a \) of \(R \) is not zero divisor, \(a \) is the following form:

\[
a = \begin{pmatrix}
(a_{ij})
\end{pmatrix}
\begin{pmatrix}
m_1

m_2

\vdots
\end{pmatrix}
\mid a_{ij} \neq 0, \quad m_i \neq 0.
\]

Hence the right (and left) quotient ring of \(R \) is \(Q = \bigcup Q_n \):

\[
Q_n = \begin{pmatrix}
(a_{ij})
\end{pmatrix}
\begin{pmatrix}
m_1

m_2

\vdots
\end{pmatrix}
\in Q_n \quad \text{and} \quad m_i \in Q',
\]

where \(Q' \) is the ring of rational numbers, and \(Q \) is P.M.I.

In this note there are many statements which overlap [2], but we shall repeat those for the sake of completeness.

1. Preliminaries.

Let \(R \) be a ring with the right and left quotient ring \(Q \) and we shall call non zero divisor elements regular elements. We shall denote one sided ideals of \(R \) by Roman and ones of \(Q \) by German.

We have the following statements.
(1) If \(c_1, c_2, \ldots, c_n \) are regular elements of \(R \), then there exist regular elements \(d_1, d_2, \ldots, d_n \) and \(c \) such that
\[
c_i^{-1} = d_i c^{-1}.
\]
We can prove this by the induction with respect to \(n \), cf. Asano [1], and [2] Lemma 4.2.

(2) If \(A \) is a right, left and two sided ideal respectively, then \(AQ, QA \) and \(QAQ \) consist of \(ac^{-1} \), \(c^{-1} a \) and \(d^{-1}ac^{-1} \), \(a \in A \) and \(c, d \in R \), respectively.

Cf. [2] Lemma 4.3.

(3) Let \(r \) be a non zero right ideal of \(Q \), then \(\tau \cap R \neq (0) \).

Let \(S \) be a sub-set of \(Q \). We shall define the following annihilators.
\[
S_r = \{ x \in R, \ Sx = (0) \}, \\
S_r^* = \{ x \in Q, \ Sx = (0) \} \quad \text{and} \\
\tilde{S} = \{ a \in R, \text{there exists a regular element } b \text{ in } R \text{ such that} \\
b^{-1}a \in S \} \cup (S \cap R).
\]

(4) Let \(r \) be a right ideal of \(Q \), then
\[
r = (r \cap R)Q.
\]

It is clear \(r \supseteq (r \cap R)Q \). If \(x \in r \) then \(x = ac^{-1} \), \(c \in R \) and \(a = xc \in r \cap R \). Hence \(x \in (r \cap R)Q \).

(5) \[S_r = S_r^* \cap R \quad \text{and} \quad S_r^* = S_rQ. \]

It is clear that \(S_r^* \supseteq S_rQ \). If \(a \in S_r^* \) and \(a = bc^{-1} \), \(b, c \in R \), then \((0) = Sa = Sbc^{-1} \) hence \(b \in S_r \).

We have clearly

(6) \[S_r^* = (\tilde{S})_r^* \quad \text{and} \quad (\tilde{S})_r = S_r^* \cap R. \]

Let \(l \) be a left ideal of \(Q \), then

(7) \[(l \cap R)_r = l_r^* \cap R. \]

By the definition \(\tilde{l} = l \cap R \) and by (6) we have \((l \cap R)_r = \tilde{l}_r = l_r^* \cap R \).

(8) Let \(I_r \) be a maximal annihilator in \(R \), then \(I_rQ \) is so in \(Q \).

Let \(I_r^* \) be a maximal annihilator in \(Q \), then \(I_r^* \cap R \) is so in \(R \).

It is clear that \(I_rQ \) is an annihilator. If there exists an annihilator \(I_r^* \) such that \(I_r^* \supseteq I_rQ \), then \((l \cap R)_r = l_r^* \cap R \supseteq I_rQ \supseteq R \). By (3) \(l \cap R \neq (0) \), and \((l \cap R)_r = R \), hence \((l \cap R)_r = I_r \) and \(I_r^* = (l_r^* \cap R)Q = (l \cap R)_rQ = I_rQ \). Conversely let \(r \) be a maximal annihilator, then \(r \cap R \) is an annihilator in \(R \) by (7). If \(I_r \supseteq r \cap R \), by (4) we have
\[
r = (r \cap R)Q \supseteq I_rQ = I_r^*, \quad \text{hence} \quad r = I_r^* \supseteq I_r \quad \text{and} \quad r \cap R = I_r^{r}.
\]
Let $I \subseteq (0)$ be a right ideal in R. We shall call maximal right ideals J with $J \cap I = (0)$ complements of I (denoted by I^e, $I^{e'}$, \ldots).

Let I be a right ideal in R. For any complement I^e of I in R there exists a complement $(IQ)^{e'}$ of IQ such that

$$(9) \quad I^eQ = (IQ)^{e'},$$

and conversely for any complement $(IQ)^{e'}$ of IQ there exists a complement I^e of I satisfying (9).

If $x \in (IQ \cap I^eQ)$, then $x = ic^{-1} = jd^{-1}$, $i \in I$, $j \in I^e$ and we have by (2) $c^{-1} = af^{-1}$, $d^{-1} = bf^{-1}$, hence $ia = jb \in I \cap I^e = (0)$ and $x = 0$. If there exists a right ideal I such that $I^eQ \subseteq I$ and $i \cap IQ = (0)$, then $i \cap R \cap I \subseteq i \cap IQ = (0)$, hence since $I^e \subseteq i \cap R$, $I^e = i \cap R$ and $I^eQ = (1 \cap R)Q = I$. Therefore I^eQ is a complement of IQ. Conversely let $(IQ)^{e'}$ be a complement, then from the fact $(IQ)^{e'} \cap R \cap I = (0)$, $(IQ)^{e'} \cap R \supseteq I^e$ hence $(IQ)^{e'} = (IQ)^{e'} \cap R \subseteq I^eQ$. From the above $I^eQ = (IQ)^{e''}$, hence $(IQ)^{e'} = (IQ)^{e''} = I^eQ$.

Let i be a right ideal in Q. For any complement i^e of i in Q there exists a complement $(i \cap R)^{e'}$ of $(i \cap R)$ in R such that

$$(10) \quad i^e \cap R = (i \cap R)^{e'}$$

and conversely for any complement $(i \cap R)^{e'}$ there exists a complement right ideal i^e in Q satisfying (10).

From the fact $(i \cap R)^{e'} \cap R = (0)$ we have $i^e \cap R \subseteq (i \cap R)^{e'}$. $i^e = (i \cap R)Q \subseteq (i \cap R)^{e'}Q = (i \cap R)^{e''} = i^{e''}$ by (9). Hence $i^e = i^{e''}$ and $i^e \cap R = i^{e''} \cap R = (i \cap R)^{e''} \cap R \supseteq (i \cap R)^{e'}$. Conversely $(i \cap R)^{e'} \cap (i \cap R) = (0)$, then $i \cap R \cap R = (i \cap R)^{e'}Q = (0)$. Hence $(i \cap R)^{e'}Q \subseteq i^e$ for some complement I^e of I and $i^e \cap R \supseteq (i \cap R)^{e'}$. By the above $i^e \cap R = (i \cap R)^{e''} \supseteq (i \cap R)^{e'}$, hence $i^e \cap R = (i \cap R)^{e'}$.

2. Uniform right ideals.

We can classify the right ideals in R as follows;

$I \equiv J$ if and only if there exist regular elements $d, d' \in R$ such that for any elements $r \in I$, $r' \in J$, $rd, r'd' \in I$.

It is clear that

$I \equiv J$ if and only if $IQ = JQ$.

We shall denote the class containing I by $[I]$.

Proposition 1. The right ideals in Q are lattice isomorphic to $[I]$.

Proof. From the definition and (3) it is clear that this correspondence is onto and that $(I, I_Q) \subseteq [I]$. If $x \in I, a \subseteq I_Q, x = r_1 q_1 = r_2 q_2$, $r_1 \in I$, and by (1) we have $x = r_1 p_1 t^{-1} = r_2 p_2 t^{-1}$, hence $r_1 p_1 = r_2 p_2 \in I \cap I_Q$ and $x \in (I \cap I_Q)Q$. We have clearly $(I \cap I_Q)Q = I_Q \cap I_Q$.

Thus, the ideal $I \cap I_Q$ is derived from the correspondence $I \rightarrow [I]$.
$[I]Q\cap R$ is the unique maximal right ideal in $[I]$. Since Q is P.M.I. there exist minimal right ideals and we call a right ideal in R which corresponds to a minimal right ideal in Q an uniform right ideal and the unique maximal right ideal in this class basic right ideal.

Proposition 2. If U is a uniform right ideal, then for any non zero right ideals $I, J (\subseteq U)$ $I \cap J \not= \{0\}$.

Proof. Since U is uniform, UQ is irreducible, hence $IQ = JQ = UQ$. From Proposition 1 $I \cap J \not= \{0\}$.

Lemma 1. Let Q be a P.M.I. ring. If a right ideal r is not minimal, then it contains at least two minimal right ideals.

Proof. Let r contain only one minimal right ideal r_0. Then $r_3 \subseteq r_0 \cap r_3$ and $r_3 = r_5 = eQ$ where 3 is the socle of Q. Hence $r_3 = er_3$. For any elements $r \in r, z \in 3$ we have $rz = erz$ i.e. $(er-r)z = 0$. Therefore $er-r \in 3 = \{0\}$ and $er \not= r$. Hence $er = r = eQ$.

Proposition 3. Let U be a right ideal in R. If for any non zero right ideals I, J in $U \ I \cap J \not= \{0\}$, then U is uniform.

Proof. If U is not uniform, there exist two minimal right ideals r_1, r_2 in UQ by Lemma 1. Since $r_1 \cap U \not= \{0\}$, $r_2 \cap U \not= \{0\}$ and $r_1 \cap r_2 \cap U = \{0\}$, it is a contradiction.

Proposition 4. Let I be a right ideal in R. I is uniform if and only if there exist elements y_1, y_2 and regular elements y_1, y_2 in R such that for any elements $x, x' \in I$ $xy_1 = x'y_1, x'y_2 = xy_2$.

Proof. Let xq^{-1} and $x'q'^{-1}$ be elements in IQ. Then by the hypothesis $x'y = xy$ with regular element y. Hence $x'q'^{-1} = xyy'^{-1}q'^{-1} = xq^{-1}qyq'y^{-1}q'^{-1} \in xQ$, therefore IQ is irreducible. The converse is similar.

Proposition 5. There exist mutually isomorphic uniform right ideals in any two classes which contain basic right ideals.

Proof. Let I_1 and I_2 be basic. Since Q is P.M.I. there exists a Q-isomorphism λ of I_1Q to I_2Q. Let $I_1Q = e_1Q, e_i = r_i x_i^{-1}, r_i \in I_1, x_i \in R$ and $\lambda(e_i) = e_2q_i, q_i \in Q$. Then $\lambda(r_i) = \lambda(e_i x_i) = e_2q_i x_i$. If we put $x_2q_i = yz^{-1}, y, z \in R$, we have $0 \not= \lambda(r_1z) = e_2q_i x_i z = e_2x_2^2 s_2 q_i x_i z = r_2 y$. Since I_1Q and I_2Q are irreducible, $[r_1zR^1]^\sim = [I_1]$ and $[r_2yR^1] = [I_2]$. Hence λ sends r_1zR^1 isomorphically onto r_2yR^1.

If e is a primitive idempotent in R, then so is e in Q, hence eR is basic. But basic right ideals are not always principal even if R has the unit. For example, let K be a field and x be an independent over K and R_0 be the subring of elements in $K[x]$ without constant-term. If we put $R = EK + \cup (R_0)_n$ as in the first ex-

1) Mr. Kanzaki kindly pointed out to me this proof.
2) ar^a means the right ideal in R generated by a.++
ample, then its quotient ring is \(Q = EK \cup K(x)_n \). Let \(r = e_{11}Q \). If \(r \cap R \) is principal: \(r \cap R = \left(\begin{array}{cc} f_1, f_2, \ldots, f_n \\ 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 0 \\ \end{array} \right) \), then there exist \(g_1, \ldots, g_n \) and \(k \neq 0 \in K \) such that
\(f_i(k + g_1) + \cdots + f_n g_n = x \), hence min. degree of \(f_i = 1 \). On the other hand there exist \(g_1, \ldots, g_n \) and \(k' \neq 0 \in K \) such that
\(f_i(k'_1 + g_1) + \cdots + f_n g_n = 0 \), hence min. degree of \(f_i(x) \geq 2 \). This is a contradiction. Next example shows that basic right ideals are not always mutually isomorphic. Let \(R = (R_0)_n + e_{33} K + \cdots + e_{nn} K \). If an element \(x \) of \(R \) is not a zero-divisor in \(R \) then \(x \) is regular in \(K(x)_n \), for the adjoint of \(x \) is in \(R \). Let \((x_{ij}), (y_{ij}) \) be elements of \(R \), and suppose that \((x_{ij}) \) is non zero-divisor. Then \((x_{ij})^{-1} (y_{ij}) | x_{ij} | E = \text{adj} (x_{ij}) \cdot (y_{ij}) \) is in \(R \), hence \((x_{ij}) \cdot (y_{ij}) = (y_{ij}) | x_{ij} | E \) and \(| x_{ij} | E \) is a non zero divisor. Therefore \(R \) has the quotient ring \(Q = K(x)_n \). \(e_{11}Q \cap R \) is basic and not principal, because if \(e_{11} Q \cap R = (e_{11} f_1 + e_{12} f_2 + \cdots + e_{nn} f_n) R, f_i \in R_0 \) then \(x = \sum_{i=1}^n f_i g_i, g_i \in R_0 \) which is a contradiction. On the other hand \(e_{33} Q \cap R = e_{33} R \) is basic and principal. Therefore \(e_{11}Q \cap R \) is not isomorphic to \(e_{33} R \).

Proposition 6. Any right ideal \(I \) in \(R \) contains a uniform right ideal in \(R \).

Proof. Since \(Q \) is P.M.I., \(IQ \) contains a minimal right ideal \(\tau \) in \(Q \), and further \((0) = I \cap \tau = I \cap \tau \cap R \) and \((I \cap \tau \cap R) Q = \tau \), hence \(I \cap \tau \cap R \) is uniform.

Proposition 7. Let \(U \) be a uniform right ideal in \(R \). Then

\[
U_I = \{ x \in R \mid x_{rr} U = \{ 0 \} \}.
\]

Proof. If \(xu = 0 \) for any \(u \in U \), then since \(UQ \) is irreducible, \(UQ = uQ \), hence \(xuQ = xuQ = (0) \). Therefore \(x \in U_I \).

An element \(u \) in \(R \) is called right uniform if \(uR^1 \) is a uniform right ideal (equivalently if \(uR \) is uniform \((R_I = R_r = (0)) \)).

We can define similarly left uniform elements. But the left uniform elements coincide with the right uniform elements, because if \(u \) is left uniform, then \(Qu = Qe \) is irreducible where \(e \) is a primitive idempotent, since \(Q \) is P.M.I., \(eQ \) is irreducible, hence \(uQ = ueQ \) is also irreducible. Therefore \(u \) is right uniform, and the converse is similar. Hence we may call right (left) uniform elements simply uniform elements.

Proposition 8. Let \(I \) be a right ideal in \(R \). If there exists some uniform element \(u \) such that \(u_{rr} I = (0) \), then \(I \) is uniform. Furthermore if \(R \) is prime, then the converse is true.

Proof. If \(u_{rr} I = (0) \), for any element \(aq^{-1} \in u_{rr} \cap IQ \), \(a \in I \) we have \(ua = 0 \), hence \(a \in I \cap u_{rr} = (0) \) and so \(u_{rr} \cap IQ = (0) \). Let \(\theta \) be a mapping: \(q \rightarrow uq \). Since \(\theta^{-1}(0) \cap IQ = (0) \), we have a isomorphism \(IQ \approx uQ \), hence \(I \) is uniform. Let \(R \) be prime and \(I \) be uniform. If \(u_{rr} I = (0) \) for all element \(u \) in \(I \), then \(I^2 = 0 \) by Proposition 7. This is a contradiction.
From the definition \(xU \) is uniform if \(U \) is so, hence the sum \(R_0 \) of all uniform right ideals is two sided ideal and \(R_0 \) is the sum of all uniform elements. Therefore \(R_0 \) coincides with the sum of all left uniform ideals. Furthermore \(R_0Q \) is the socle \(\mathcal{S} \) of \(Q \). \(R_0Q \subseteq \mathcal{S} \) and since \((\cap \mathcal{S} R)^2 = \mathcal{S} \), for \(x \in \mathcal{S} \), \(x \in \mathcal{S} \) and \(x \in R_0Q \).

Theorem 1. The cardinal numbers of the maximal length of direct-sums of basic right ideals are equal. Further if \(Q \) is a sub-P.M.I. ring of \(\mathcal{L}_m(m) \) with \(\alpha \)-dim = \(\alpha \)-dim \(m' \), then the cardinal numbers for basic left ideals coincide with ones for basic right ideals, where \(\mathcal{L}_m(m) \) is the ring of continuous endomorphisms of \(m \), topologized by \(m' \)-topology, and \(\Delta \) is the division ring of \(\mathcal{L}_m(m) \)-endomorphisms of \(m \).

Proof. Let \(B = \{ B_a \} \) be the set of basic right ideals. We can order direct-sums \(S_j = \bigoplus_{a \in I} B_a \) of elements \(B_a \) of \(B \) as follows:

\[S_i \supset S_j \quad \text{if and only if} \quad S_i = S_j \bigoplus \bigoplus_{a \in I \setminus J} B_a. \]

By the Zorn’s Lemma there exists a maximal element \(S_0 \) in this order. Then \(S_0 \) meets all basic right ideals. If \(S_0Q \subseteq \mathcal{S} \) there exists a minimal right ideal \(r_0 \) such that \(r_0 \cap S_0Q = \{0\} \). Hence \(\mathcal{S} = R \cap r_0 \cap S_0Q \cap R \). Since \(R \cap r_0 \) is basic, it is a contradiction. Therefore \(S_0Q = \mathcal{S} \). Since \(Q \) is P.M.I. the right dimension of \(\mathcal{S} \) is constant. It is also true for left basic ideals. Further if \(Q \) is as in Theorem, then the left dimension coincides with the right one.

Theorem 2. Let \(U \) be a uniform right ideal in \(R \) and \(e(U) \) be the \(R \)-endomorphism ring of \(U \). Then non zero element of \(e(U) \) is non singular. \(e(U) \) has the right quotient division ring which is the \(Q \)-endomorphism ring of \(Q \)-irreducible module.

Proof. If \(\phi \in e(U) \), then \(\phi \) can be extended to a \(Q \)-endomorphism of \(UQ \). Because if \(uq^{-1} = u'q'^{-1} \in UQ \), then there exist \(p, s, d \) by (1) such that \(q^{-1} = pd^{-1}, q'^{-1} = sd^{-1} \), hence \(\phi(uq^{-1}) = \phi(uq^{-1}) = \phi(u)p d^{-1} = \phi(u')d^{-1} = \phi(u')sd^{-1} = \phi(u')q'^{-1} \). Since \(UQ \) is irreducible, the \(Q \)-endomorphism ring of \(UQ \) is a division ring. Hence if \(\phi \) is not zero, then \(\phi \) is non singular. Let \(\phi \) be any \(Q \)-endomorphism of \(UQ \). Then there exists \(y \) in \(UQ \) such that \(\phi(y) = u \in U \); \(y = u'x^{-1} \), \(u' \in U \) and for any element \(w \) in \(U \) \(\phi_\lambda(w) = \phi(u'w) = \phi(yxw) = uwx = \lambda_x w \) where \(\lambda_a : x \rightarrow ax \), \(x \in R \). Hence \(\psi = \lambda_ux^\lambda_{a^2} \).

3. Complements and annihilators.

Theorem 3. Let \(B \) be basic then \(B = B_{tr} \). A right ideal \(B \) in \(R \) is basic if and only if \(B \) is a minimal annihilator. A right ideal \(M \) in \(R \) is a maximal annihilator if and only if \(M = u \), where \(u \) is a uniform element.

Proof. Let \(B \) be basic, then \(B = BQ \cap R \) and \(BQ = eQ \), \(e = e' \). By (7) \(B_{tr} = (BQ \cap R)_{tr} = BQ_{tr} \cap R = eQ_{tr} \cap R = eQ \cap R = B \). If \(B \subseteq L_r \) then \((QL)_r = L_r Q \subseteq BQ \). Since \(BQ \) is irreducible \(BQ = (QL)_r \). Hence \(B = BQ \cap R = (QL)_{tr} \cap R = L_r \). Therefore
B is a minimal annihilator. Let \(L = L_r \) be a minimal annihilator. If \(L_r Q \subseteq L'_r \) for some subset \(L' \) in \(Q \), then \(L_r = L_r, Q \subseteq L'_r \cap R = L'_r \) by (6). Hence \(L_r = L' \) and \(L_r Q = L'_r Q = L'_r \). Therefore \(L_r Q \) is also a minimal annihilator. Let \(r = eQ \) be an irreducible right ideal in \(Q \) contained in \(L_r Q \). Then \(eQ = (Q_{L_r})_r \) and since \(L_r Q \) is a minimal annihilator, \(eQ = L_r Q \), hence \(L_r = L_r Q \cap R \) is basic. From Proposition 7 we have \(B_r = u_r \) for any element \(u \) in \(B \). Conversely if \(u \) is a uniform element, then \(Qu = u_r \) is irreducible, hence \((Qu)_r = u_r \) is a maximal right ideal. By (8) \(u_r = u_r \cap R \) is a maximal annihilator.

Theorem 4. Let \(M \) be a right ideal in \(R \). \(M \) is a maximal complement in \(R \) if and only if \(MQ \) is a maximal one of right ideals \(r \) with \((r; Q)_r = (0) \) and \(MQ = M \) or if and only if \(M = B^c \) where \(B \) is basic. Let \(M \) be a maximal complement in \(R \). Then (1) for any basic right ideal \(B \subseteq B \) or \(M \cap B = (0) \), (2) \(M \) is minimal irreducible, (3) if \(M \) is of the maximal length of direct-sum of basic right ideals contained in \(M \), then there exists a basic right ideal \(B \) such that \(M \otimes B \) is of the maximal length of direct-sum of basic right ideals in \(R \) and (4) \(M^c \) is basic. Maximal annihilators are maximal complements.

Proof. Let \(M \) be a maximal complement in \(R \); \(M = I^c \). By (9) \(MQ = (IQ)^c \). Let \(MQ \subseteq i \). Since \((i \cap R)^c = i^c \cap R \supseteq M, MQ = (i^c \cap R) Q = i^c \), hence \(MQ \) is a maximal complement in \(Q \), and \(MQ \cap R = M \). Let \(r \) be a right ideal with \((r; Q)_r = (0) \) and \(r \supseteq MQ \). Then since \(r \supseteq i \) there exists a minimal right ideal \(t_0 \) such that \(r \cap t_0 = (0) \). Hence \(r \) is contained in a maximal complement. Therefore \(r = MQ \). Conversely if \(MQ \) satisfies the property mentioned in Theorem, then \(MQ \supseteq i \) and \(MQ \cap t_0 = (0) \); \(t_0 \) a minimal right ideal, and \(MQ \subseteq t_0 \). Since \((t_0 ; Q) = (0), MQ = t_0 \). If \(MQ \subseteq \gamma \), then \((\gamma ; Q)_r = (0) \). By (10) \(M = MQ \cap R = (t_0 ; R) = (t_0 \cap R)^c \). Further if \(M \subseteq \gamma \) then \(MQ \subseteq I^c Q = (IQ)^c \), hence \(MQ = I^c Q \). Therefore \(M = I^c \), and \(M \) is a maximal complement. Let \(M \) be a maximal complement in \(R \), then \(MQ \) is so in \(Q \). Hence there exists a minimal right ideal \(t_0 \) such that \(t_0 \cap MQ = (0) \) and \(MQ = t_0 \). \(M = MQ \cap R = t_0 \cap R = (t_0 \cap R)^c \) by (10) and \(t_0 \cap R \) is basic. Conversely let \(M = B^c \). \(MQ = B^c \) and \(BQ \) is minimal. If \(\gamma = (BQ^c \cap Q) \oplus BQ \cap t_1 \), where \(\gamma \) is the socle of \(Q \), then \(\gamma (\in (BQ^c) \oplus t_1 \cap BQ) = x_1 + x_2, x_1 \in BQ^c, x_2 \in t_1 \), we have \(x_1 = y - x_2 \in (BQ^c \oplus t_1) \cap BQ^c \subseteq \gamma \cap (BQ^c) \). Hence \((BQ^c) \cap t_1 \cap BQ = (0) \) and \(t_1 = (0) \). If \(MQ \subseteq r \), then \(r^c \supseteq \gamma \) hence \(r^c, BQ = (0) \) and \(r^c = MQ \). Therefore \(MQ \) is a maximal complement in \(Q \) and further \(B^c = M \subseteq MQ \cap R = (BQ^c)_r \cap R = (BQ\cap R)^c = B^c \) and we have \(M = MQ \cap R \). 1) Let \(B \) be basic. Since \(BQ \) is a minimal right ideal, \(BQ \subseteq MQ \) or

3) From this theorem a right ideal \(I \) is called irreducible if \(I = M \cap N \) implies \(I = M \) or \(I = N \).
BQ ∩ MQ = (0). Hence B ⊆ MQ ∩ R = M or M ∩ B = (0). 2). If M ⊆ N, M ⊆ S, and
M = N ∩ S, then MQ ⊆ SQ for MQ = SQ implies M = S. Hence SQ ⊆ 3 and NQ ⊆ 3.
Therefore NQ ∩ SQ ⊆ 3 and this is a contradiction. If M ⊆ M, then M = (M ∪
M') ∩ M, hence M is minimal irreducible. From the above argument and the fact
that MQ ∩ R = M, M is a maximal complement. Let MQ ∩ r = (0) for a minimal
right ideal r. Since MQ ⊕ r ⊆ MQ, MQ ⊕ r ⊆ 3. We define the right ideal

\[I = \{ j ∈ MQ, \text{ there exists an element } z ∈ 3 \text{ such that } z = j + r, r ∈ r \}. \]

Then \[i \subseteq 3 ∩ MQ \] and \[z = j + r, j = z ⊕ r, r ∈ r \] are minimal ideals.
M = MQ ∩ R ⊆ 3 ∩ MQ ∩ R = \Sigma r ∩ R. If (MQ)′ is not minimal, then it contains two minimal
right ideals, r₁, r₂ by Lemma 1. Hence MQ ∩ (r₁ ∪ r₂) = (0) and (MQ ∪ r₁) ∩ r₂ = (0).
Therefore since (MQ)′ is minimal and (MQ)′ = M′Q, M′ is uniform and by (1)
M′ is basic. Let M′ be a maximal annihilator. By (8) M′Q = 1 = e is so in Q.
If \[t₀ = Qe \] is a minimal left ideal in I, then \[I_r*x = 1 = e(1 – e)Q \] and \[I_r*e Q = (0). \]
Since \[I_r*e \] is maximal, \[I_r*e \] is a maximal complement.

The following example with field Q/3 analogous to the first one in this note
shows that a maximal complement is not always a maximal annihilator. Let r
be the right ideal generated by elements \[e_{11} + e_{21}, e_{12} + e_{22}, \ldots. \] Since \[(m/\text{mod} : d) = 1, \]
r is a maximal right ideal contained in \[3 \] where \[m \] is an irreducible Q-module and
d is its Q-endomorphism ring. If \[r^k ⊆ r \] then an element \[x \] of \[r^k − r \] is of the
following from

\[x = x₁ + αE, \quad α ∈ d \quad \text{and} \quad x₁ ∈ 3. \]

If \[α = 0 \], then \[x_e ≡ αe ≡ x ∈ r^k \] for a sufficiently large \(i \). Hence \[r^k ⊆ 3 \]. If \[α = 0 \], then \[x ∈ 3 \]. Therefore \[r^k ⊆ 3 \]. From Theorem 4 \(R ∩ r \) is a maximal complement but not
a maximal annihilator since \(r \) is not maximal. Furthermore in this ring \(R \) if a
right ideal \(M \) is minimal irreducible and \(M = MQ ∩ R \), then \(M \) is maximal comple-
ment. Because if \(M \) is minimal irreducible then \(MQ \) is so in \(Q \). Since \(r \) is
minimal irreducible \(MQ ⊆ 3 \), hence \(MQ ⊆ r₀ \) for some minimal right ideal \(r₀ \). If
\(r₀ ⊆ MQ \) then \(MQ = r₀ ∩ (MQ ⊕ r₀) \) is not irreducible. Hence \(MQ = r₀ \) and by the first
mention in the proof \(MQ \) is a maximal complement.

Theorem 5. If \(Q \) satisfies the minimal conditions, then the complement right
ideals coincide with the annihilator right ideals. A right ideal \(M \) is a maximal
complement if and only if \(M \) is minimal irreducible and \(M \) contains no regular
elements.

Proof. Let \(I = J^c \) be a complement right ideal. \(IQ = J^c Q = (JQ)^c = (eQ)^c \)
= (1 – e)Q = (Qe), where \(e^2 = e \), \(JQ = eQ \), because \(Q \) is a simple ring with minimal
conditions. On the other hand if \(IQ ∩ R = I \setminus I \) then \(I^c J = (0) \), hence \((0) = I^c Q ∩
JQ \) which is a contradiction. Therefore \(I = J^c = J^c Q ∩ R = (Qe) r ∩ R = (Qe) r ∩ R \).
Conversely if \(I = J_r \) then \(J_r = J^c r ∩ R = (eQ)^c r ∩ R \) where \(J_r^c = (1 – e)Q \). By (10)
$J_r = J^* \cap R = (eQ)^c \cap R = (eQ \cap R)^c$. Let M be a minimal irreducible right ideal with $MQ = Q$. Then there exists a maximal right ideal r which contains M, $r \cap R \supseteq M$ and since from Theorem 4 $r \cap R$ is minimal irreducible, $M = r \cap R$ is a maximal complement.

Bibliography