Mortality caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae bacteremia; a case control study: alert to Enterobacteriaceae strains with high minimum inhibitory concentrations of piperacillin/tazobactam

Hiroki Namikawa, Koichi Yamada, Kazushi Yamairi, Wataru Shibata, Hiroki Fujimoto, Etsuko Takizawa, Makoto Niki, Kiyotaka Nakaie, Ken-Ichi Oinuma, Mamiko Niki, Yasuhiko Takemoto, Yukihiro Kaneko, Taichi Shuto, Hiroshi Kakeya

Citation	Diagnostic Microbiology and Infectious Disease, 94(3); 287-292		
Issue Date	2019-07		
Published	2019-01-30		
Туре	Journal Article		
Textversion	author		
	©2019 Elsevier Inc. This manuscript version is made available under the		
Rights	CC-BY-NC-ND 4.0 License. <u>https://creativecommons.org/licenses/by-nc-nd/4.0/</u>		
	This is not the published version. Please cite only the published version. The article		
	has been published in final form at <u>https://doi.org/10.1016/j.diagmicrobio.2019.01.018</u> .		
DOI	10.1016/j.diagmicrobio.2019.01.018		

Self-Archiving by Author(s) Placed on: Osaka City University

NAMIKAWA H., et al. (2019). Mortality caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae bacteremia; a case control study: alert to Enterobacteriaceae strains with high minimum inhibitory concentrations of piperacillin/tazobactam. *Diagnostic Microbiology and Infectious Disease*. 94, 287-292. DOI:10.1016/j.diagmicrobio.2019.01.018

1	Mortality caused by extended-spectrum beta-lactamase-producing
2	Enterobacteriaceae bacteremia: Alert to Enterobacteriaceae strains with high
3	minimum inhibitory concentrations of piperacillin/tazobactam
4	
5	Hiroki Namikawa ^{1, 2} , Koichi Yamada ^{1, 4, 5} , Kazushi Yamairi ^{1, 4} , Wataru Shibata ^{1, 4} , Hiroki
6	Fujimoto ^{1, 4} , Etsuko Takizawa ⁴ , Makoto Niki ⁴ , Kiyotaka Nakaie ^{1, 4} , Ken-Ichi Oinuma ^{3, 5} ,
7	Mamiko Niki ^{3, 5} , Yasuhiko Takemoto ² , Yukihiro Kaneko ^{3, 5} , Taichi Shuto ² , Hiroshi
8	Kakeya ^{1, 4, 5}
9	
10	¹ Department of Infection Control Science, Osaka City University, Graduate School of
11	Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
12	² Department of Medical Education and General Practice, Osaka City University,
13	Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
14	³ Department of Bacteriology, Osaka City University, Graduate School of Medicine,
15	1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
16	⁴ Department of Infection Control and Prevention, Osaka City University Hospital, 1-5-7
17	Asahi-machi, Abeno-ku, Osaka 545-8586, Japan
18	⁵ Research Center for Infectious Disease Sciences (RCIDs), Osaka City University
19	Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan

20 Corr	espondence to:
---------	----------------

- 21 Hiroshi Kakeya, MD, PhD
- 22 Department of Infection Control Science, Osaka City University, Graduate School of
- 23 Medicine
- 24 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
- 25 Tel: 81-6-6645-3784; Fax: 81-6-6646-6056
- 26 E-mail: kakeya@med.osaka-cu.ac.jp
- $\mathbf{27}$
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 0.
- 38

39 Abstract

40 Purpose. The incidence of infections caused by extended-spectrum

41 beta-lactamase-producing Enterobacteriaceae (ESBL-PE) has been recently increasing

42 worldwide. ESBL-PE bacteremia has been associated with high mortality and has thus

43 become a clinically critical issue. Accordingly, ESBL-PE strains with low susceptibility

44 to piperacillin/tazobactam (PTZ) are a concern in clinical practice. This study aimed to

45 assess the prognostic factors of patients with bacteremia due to ESBL-PE as well as the

46 antimicrobial susceptibility, particularly to PTZ, among ESBL-PE strains.

47 Methods. A total of 65 patients with ESBL-PE bacteremia who were admitted to Osaka

48 City University Hospital between January 2011 and April 2017 were enrolled and

49 divided into the survivor group (n=52) and nonsurvivor group (n=13). The medical

50 records of these patients were retrospectively reviewed.

51 Results: The survivor group (mean age: 66.2 years) included 26 men, while the

52 nonsurvivor group (mean age: 45.2 years) included 5 men. The male-to-female ratio,

age, underlying disease, leukocyte count, C-reactive protein level, and treatment did not

54 differ between the two groups. Multivariate analysis showed that the independent

55 predictors associated with hospital mortality of ESBL-PE bacteremia were sepsis

56 (p=0.047) and febrile neutropenia (FN) (p=0.008). Further, the minimum inhibitory

57 concentration values of ESBL-PE isolates in nonsurvivors tended to be higher than

	. 1	•	•
58	thoce	1n	survivors.
00	unose	ш	Survivors.

59 C	Conclusions:	Sepsis and I	FN were in	dependent	predictors	of hospital	mortality in
------	--------------	--------------	------------	-----------	------------	-------------	--------------

- 60 ESBL-PE bacteremia; thus early assessment of these conditions is important.
- 61 Furthermore, PTZ should be used with caution in cases of ESBL-PE strains with low
- 62 susceptibility to the drug.

65	Keywords
----	----------

- 66 bacteremia, extended-spectrum beta-lactamase, febrile neutropenia,
- 67 piperacillin/tazobactam, sepsis
- $\mathbf{68}$
- 20
- 69
- 70
- 71

- 72
- 73
- 74
- 75
- 76

77 Introduction

Extended-spectrum beta-lactamase (ESBL) are enzymes that confer resistance to most 78beta-lactam antibiotics including penicillins, cephalosporins, and monobactams [1]. 7980 ESBL are produced by the Enterobacteriaceae, predominantly in Escherichia coli and Klebsiella pneumoniae [2]. In recent years, the incidence of infections caused by 81 ESBL-producing Enterobacteriaceae (ESBL-PE) are increasing worldwide [3]. 82 83 ESBL-PE bacteremia has been associated with high mortality and has thus become a clinically critical issue. Previous studies reported a mortality rate of approximately 84 85 15%–30% in patients with ESBL-PE bacteremia [4-7]. Therefore, determining the predictors of ESBL-PE bacteremia mortality is important in clinical practice. 86 Carbapenems have become widely used as the primary drug of choice for treating 87 88 severe infections caused by ESBL-PE [8]. However, because of the emergence and spread of carbapenemase-producing bacteria, there has been increasing interest in 89 determining potential alternatives to carbapenems [9]. Previous reports showed that 90 β-lactam/β-lactamase inhibitors, including piperacillin/tazobactam (PTZ), are clinically 91 reliable for the treatment of infections caused by ESBL-PE [10, 11]. The 2016 Clinical 92and Laboratory Standards Institute (CLSI) set a PTZ breakpoint of $\leq 16 \,\mu$ g/mL for 93 94ESBL-PE [12]. However, some studies have recently reported a decreased clinical efficacy of PTZ for bacteremia caused by ESBL-PE in the presence of isolates with high 95

 $\mathbf{5}$

96	minimum inhibitory concentrations (MICs) [9, 13, 14]. Some studies reported that the
97	30-day mortality in patients treated with PTZ as empiric therapy for bacteremia caused
98	by ESBL <i>E. coli</i> was lower for isolates with low MIC than those with high MIC [9, 13].
99	Furthermore, another report suggested that a lower PTZ MIC value was recommended
100	as a breakpoint for bacteremia caused by ESBL-PE [14].
101	In the present study, we investigated the clinical characteristics of patients with
102	bacteremia due to ESBL-PE in a tertiary hospital, including the prognostic factors for
103	infection and isolate antimicrobial susceptibility, particularly to PTZ.
104	
105	Materials and methods
106	The medical records of 65 patients with ESBL-PE bacteremia who had been admitted to
107	Osaka City University Hospital between January 2011 and April 2017 were
108	retrospectively reviewed. The age, sex, underlying disease, clinical features, patient
109	medication records, and prognosis were evaluated. If ESBL-PE had been isolated on
110	multiple occasions within a six-year period in the same patient, only the first episode of
111	ESBL-PE bacteremia was reviewed. This study was approved by the Ethics Committee
112	of Osaka City University, and the thesis was approved on October 4, 2017 (Approval
113	number: 3868). The need for written informed consent was waived owing to the

116 Definition of bacteremia

Bacteremia was defined as one or more positive blood cultures from patients with 117118clinical signs of infection, such as fever, shaking chills, and sweats with or without local signs and symptoms [15]. A patient was diagnosed with ESBL-PE urinary tract infection 119(UTI) when the clinical and diagnostic findings included two more of following: 1) 120 ESBL-PE confirmed in a urine specimen, 2) clinical manifestations suggestive of UTI, 121122and 3) imaging findings suggestive of pyelonephritis. Symptoms and urinary findings 123including dysuria, suprapubic pain, hematuria, flank pain, costovertebral-angle tenderness, nausea or vomiting, and pyuria or bacteriuria are characteristic of UTI [16]. 124Further, the imaging findings including perinephric stranding, renal swelling, thickening 125126of Gerota's fascia, and a segmental poor enhancement region are characteristic of pyelonephritis [17]. The diagnosis of ESBL-PE biliary tract infection was made when 127128the clinical and diagnostic findings included three or more of the following: 1) fever and/or chills, 2) laboratory evidence of an inflammatory response, 3) jaundice or 129abnormal liver chemistries,4) biliary dilation or evidence of an etiology observed on 130imaging, 5) ESBL-PE isolated from a bile specimen. 131132

133 Assessment of laboratory data

134	If the initial blood culture was positive, then the leukocyte count, the neutrophil count,
135	C-reactive protein levels, and albumin levels were assessed within 2 days of the culture.
136	Neutropenia was defined as a neutrophil count of $<500/\mu$ L. The 2016 Sepsis-3
137	definitions were applied in the present study [18].
138	
139	Identification of bacteria
140	All ESBL-PE isolates were identified via colony morphologic analysis and gram
141	staining. Isolate identification and antimicrobial susceptibility were confirmed using the
142	MicroScan WalkAway-96 SI (Beckman Coulter, Inc., Brea, CA, USA). The MICs were
143	determined using a dilution antimicrobial susceptibility test in accordance with the
144	manufacturer's instructions (Eiken Chemical, Japan). All plates were incubated at 35°C
145	overnight (16–20 hours). The results were interpreted according to the 2016 CLSI
146	breakpoints.
147	
148	Antimicrobial treatments
149	The attending physician determined the appropriate initial antimicrobial treatment
150	regimen. Antimicrobial treatment administered within five days after bacteremia onset
151	was defined as empirical therapy and that administered afterward as definitive therapy
152	[19]. Inappropriate antibiotic therapy was defined as not matching in vitro susceptibility

according to the criteria of CLSI.

154

155	Statistical	analysis

- 156 Patient characteristics, blood examination data, and treatments were compared between
- 157 the survivor group and nonsurvivor group. Chi-square tests were used for univariate
- 158 comparison of categorical data. Variables with a p-value <0.1 in the univariate analyses
- 159 were considered for inclusion in the backward, stepwise, multivariate logistic
- 160 regressions using EZR (Saitama Medical Center, Jichi Medical University, Saitama,
- 161 Japan), a graphical interface for R (The R Foundation for Statistical Computing, Vienna,
- 162 Austria, version 3.3.1), to determine the independent predictors of hospital mortality of
- 163 ESBL-PE bacteremia. More precisely, it is a modified version of R commander (version
- 164 2.3-0) that includes the statistical functions frequently used in biostatistics. P values

165 <0.05 indicated a statistically significant difference.

166

167 Results

168 Clinical characteristics and laboratory findings

169 The clinical characteristics and laboratory findings of the 65 patients with ESBL-PE

- bacteremia are summarized in Table 1. The cohort included 31 men and 34 women, and
- the mean age was 62.0 years. Of all infections, 55 (84.6%) were caused by *E. coli*, 6

	172	(9.2%) by K.	pneumoniae,	2 (3.1%) t	y Proteus mirabilis,	1 (1.5%	6) by Enterobaci
--	-----	--------------	-------------	------------	----------------------	---------	------------------

173 *cloacae*, and 1 (1.5%) by *Citrobacter amalonaticus*. Of the 65 patients with ESBL-PE

- 174 bacteremia, 42 (64.6%) had malignancy; 14 (21.5%) had diabetes mellitus; 20 (30.8%)
- had sepsis; and 12 (18.5%) had febrile neutropenia (FN). A total of 28 (43.1%) patients
- had received immunosuppressive drug or corticosteroid, and 23 (35.4%) were treated
- 177 with antibiotics 60 days prior to isolation. The most frequent clinical manifestation of
- 178 ESBL-PE infection was UTI (n=29 patients; 44.6%). The hospital mortality rates of the
- infected patients was 20.0%.
- 180
- 181 Treatment
- 182 The empirical and definitive therapies against ESBL-PE bacteremia are summarized in
- 183 Table 2. The most frequently used antibiotic as both empirical and definitive therapy
- 184 was carbapenems (35.4% and 58.1%, respectively).
- 185
- 186 Antimicrobial susceptibility
- 187 The MIC₅₀ and MIC₉₀ values of the various antimicrobial agents against ESBL-PE are
- shown in Table 3. The MIC₅₀ and MIC₉₀ values of meropenem were both $\leq 0.06 \,\mu$ g/mL
- and that of doripenem were both $\leq 0.06 \,\mu \text{g/mL}$. Meanwhile, The MIC₅₀ and MIC₉₀
- 190 values of PTZ were 2 μ g/mL and 4 μ g/mL, respectively. The MICs of PTZ against the

191 ESBL-PE in survivors or nonsurvivors are shown in Table 4. The percentage of

192 ESBL-PE isolates with MIC ≤ 1 was lower in nonsurvivors than that in survivors (10.0%)

193 vs 23.3%). By contrast, the percentage of ESBL-PE isolates with MIC \geq 8 was higher in

nonsurvivors than that in survivors (20.0% vs 6.7%).

195

196 Prognostic factors

- 197 Univariate analysis of predictors associated with hospital mortality of ESBL-PE
- 198 bacteremia are shown in Table 5. The male-to-female ratio, mean age, underlying
- 199 disease, and treatment did not differ between survivors and nonsurvivors. However, FN
- was a predictor of hospital mortality (p=0.01). The independent predictors of hospital
- 201 mortality of ESBL-PE bacteremia according to multivariate analysis were sepsis
- 202 (p=0.047) and FN (p=0.008) (Table 6). The use of PTZ as empirical or definitive

203 therapy was not associated with hospital mortality.

204

205 Discussion

- 206 The results of our study revealed the following. First, sepsis and FN were independent
- 207 predictors of hospital mortality in ESBL-PE bacteremia. Second, ESBL-PE MICs of
- 208 PTZ in nonsurvivors tended to be higher than those in survivors.
- 209 Some studies reported that the presence of sepsis or septic shock is an independent

210	predictor of mortality in patients with ESBL-PE bacteremia [5, 20, 21]. Wang et al. [20]
211	reported that gram-negative bacilli could cause severe sepsis and death, in particular,
212	ESBL-PE bacteremia was associated with severe outcomes. A previous report has
213	shown that endotoxin, a toxin of gram-negative bacilli, induced inflammatory cytokines
214	and caused sepsis and progression to multiple organ dysfunction [22]. Furthermore, Lee
215	et al. [23] reported that inappropriate empirical antibiotic therapy was strongly related to
216	poor outcomes in patients with ESBL-PE bacteremia. These findings suggest that sepsis
217	caused by ESBL-PE bacteremia has high mortality rate. In our study, the percentage of
218	nonsurvivors with sepsis or inappropriate empirical antibiotic therapy were relatively
219	high (53.8% and 46.2%, respectively). However, many of the previous studies have
220	used the conventional definition of sepsis, and the relationship between the mortality of
221	ESBL-PE bacteremia and sepsis as defined in the 2016 CLSI guidelines has not been
222	adequately investigated. In the present study, although mortality of ESBL-PE
223	bacteremia was suggested to be related to sepsis, we believe that more cases should be
224	collected to confirm this relationship.
225	A previous report showed that the presence of neutropenia was associated with 30-day
226	mortality in patients with ESBL-producing <i>E. coli</i> bacteremia [7]. Kim et al. [24]
227	reported that patients with neutropenic fever tended to have prolonged hospital stay and
228	prior use of broad-spectrum cephalosporins, thus increasing the risk for acquiring

229	ESBL-PE and ESBL-PE bacteremia in this patient population. Furthermore, some
230	studies reported that neutropenia was a prevalent complication in immunocompromised
231	patients and was associated with the increased risk of life-threatening bacteremia
232	infection and high morbidity and mortality [25, 26]. The findings of previous reports
233	suggested high mortality due to ESBL-PE bacteremia in patients with febrile
234	neutropenia. By contrast, Wang et al. [20] reported that the presence of neutropenia in
235	patients with ESBL-PE bacteremia was not associated with an increase in the mortality
236	rate. This result was attributed to the use of carbapenem, which is the most
237	recommended antibiotic for bacteremia in FN patients, in 91% of patients and the early
238	shift of definitive antimicrobial therapy to appropriate therapy. In our study, although
239	most FN patients with ESBL-PE bacteremia received appropriate therapy against
240	ESBL-PE, the utilization rates of carbapenems as both an empirical and definitive
241	therapy were relatively low (50.0% and 60.0%, respectively). Therefore, we speculated
242	that FN was an independent predictor of hospital mortality of ESBL-PE bacteremia.
243	Rodríguez-Baño et al. [13] reported that the 30-day mortality in patients empirically
244	treated with PTZ for bacteremia caused by ESBL E. coli was only 4.5% if MIC was
245	\leq 4 µg/mL, or 23% if the MIC was >4 µg/mL. Retamar et al. [9] showed that the 30-day
246	mortality in patients who received PTZ as empiric therapy for bacteremia with a
247	non-urinary focus caused by ESBL E. coli was significantly lower for isolates with MIC

248	of $\leq 2 \mu g/mL$ than those with higher MIC (0% vs 41.1%). Furthermore, a previous study
249	reported that the microbiological and clinical efficacy of PTZ with MICs of $\leq 8 \ \mu g/mL$
250	for bacteremia caused by ESBL-PE was significantly higher than that of MICs of
251	\geq 16 µg/mL and suggested the need to revise the PTZ breakpoint for ESBL-PE [14].
252	These findings suggest that the clinical efficacy of PTZ for bacteremia caused by
253	ESBL-PE was higher for isolates with low PTZ MIC than those with high PTZ MIC. In
254	the present study, the PTZ MICs against ESBL-PE in nonsurvivors were higher than
255	those of survivors (MIC ₅₀ : 4, 2 and MIC ₉₀ : 8, 4, respectively). Furthermore, two
256	(20.0%) ESBL-PE isolates in nonsurvivors exhibited low susceptibility to PTZ (MICs
257	\geq 8 µg/mL). One corresponding patient received PTZ therapy until the end of treatment
258	and died. Although PTZ may be administered for bacteremia caused by ESBL-PE, the
259	findings of previous reports suggest that PTZ should be administered with caution in
260	ESBL-PE strains with low susceptibility to the antibiotic.
261	Our study had several limitations. First, we primarily assessed E. coli bacteremia,
262	which accounted for majority of ESBE-PE bacteremia in our cohort. It is necessary to
263	determine the numbers of patients with bacteremia caused by other ESBL-PE such as <i>K</i> .
264	pneumoniae and P. mirabilis. Second, as this study was conducted only in patients in a
265	tertiary hospital, there was a selection bias. Future studies are necessary to determine
266	the numbers of patients with bacteremia caused by ESBL-PE in a community hospital

267	setting. Third, we conducted this retrospective study primarily with the aim of
268	investigating the predictors of hospital mortality of ESBL-PE bacteremia. Future
269	prospective studies are necessary to compare the efficacy of carbapenems and PTZ for
270	the treatment of bacteremia caused by ESBL-PE.
271	
272	Conclusion
273	The results of our study demonstrated that sepsis and FN were independent predictors
274	of hospital mortality in ESBL-PE bacteremia. Therefore, early assessment of sepsis or
275	FN is important in patients with ESBL-PE bacteremia. Although PTZ may be
276	administered for bacteremia caused by ESBL-PE, it should be administered with
277	caution in ESBL-PE strains with low susceptibility to the antibiotic.
278	
279	Funding: None
280	
281	Acknowledgements: This research was supported by the Research Program on
282	Emerging and Re-emerging Infectious Diseases from the Japan Agency Development,
283	AMED [Grant number JP 17fk0108208 and 18fk0108052h0002] and JSPS KAKENHI
284	[Grant number 16K09939].

- **Conflict of interest**: We declare no conflicts of interest.

288 Informed consent : Not applicable to this stu	288	Informed c	onsent: Not	applicable to	o this study
--	-----	------------	-------------	---------------	--------------

- 290 Ethical approval: The study was approved by the Ethics Committee of Osaka City
- 291 University, and the thesis was approved on October 4, 2017 [Approval number: 3868].

295 References

- 1. Parveen RM, Khan MA, Menezes GA et al (2011) Extended-spectrum β -lactamase
- 297 producing *Klebsiella pneumoniae* from blood cultures in Puducherry, India. Indian J
- 298 Med Res 134(3):392–395
- 299 2. Paterson DL, Bonomo RA (2005) Extended-spectrum beta-lactamases: A clinical
- 300 update. Clin Microbiol Rev 18(4):657–686
- 301 3. Ben-Ami R, Rodríguez-Baño J, Arslan H et al (2009) A multinational survey of risk
- 302 factors for infection with extended-spectrum beta-lactamase-producing

303 enterobacteriaceae in nonhospitalized patients. Clin Infect Dis 49(5):682–690

- 4. Kang CI, Kim SH, Park WB, et al (2004) Bloodstream infections due to extended-
- 305 spectrum beta-lactamase-producing *Escherichia coli* and *Klebsiella pneumoniae*: risk
- factors for mortality and treatment outcome, with special emphasis on antimicrobial
- therapy. Antimicrob Agents Chemother 48(12):4574–4581
- 308 5. Frakking FN, Rottier WC, Dorigo-Zetsma JW et al (2013) Appropriateness of
- 309 empirical treatment and outcome in bacteremia caused by extended-spectrum- β -
- 310 lactamase-producing bacteria. Antimicrob Agents Chemother 57(7):3092–3099
- 6. Denis B, Lafaurie M, Donay JL et al (2015) Prevalence, risk factors, and impact on
- 312 clinical outcome of extended-spectrum beta- lactamase-producing *Escherichia coli*
- bacteraemia: a five-year study. Int J Infect Dis 39:1–6

314	7. Chapelet G, Boureau AS, Dylis A et al (2017) Association between dementia and
315	reduced walking ability and 30-day mortality in patients with extended-spectrum
316	beta-lactamase-producing Escherichia coli bacteremia. Eur J Clin Microbiol Infect
317	Dis 36(12):2417–2422
318	8. Pitout JD, Laupland KB (2008) Extended-spectrum beta-lactamase-producing
319	Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8(3):159-
320	166.
321	9. Retamar P, López-Cerero L, Muniain MA, et al; ESBL-REIPI/GEIH Group (2013)
322	Impact of the MIC of piperacillin-tazobactam on the outcome of patients with
323	bacteremia due to extended-specrum-β-lactamase-producing <i>Escherichia coli</i> .
324	Antimicrob Agents Chemother 57(7):3402–3404
325	10. Peterson LR (2008) Antibiotic policy and prescribing strategies for therapy of
326	extended-spectrum beta-lactamase- producing Enterobacteriaceae: the role of
327	piperacillin-tazobactam. Clin Microbiol Infect 14 Suppl 1:181–184
328	11. Rodríguez-Baño J, Navarro MD, Retamar P, et al. Á; Extended-Spectrum
329	Beta-Lactamases-Red Española de Investigación en Patología Infecciosa/Grupo de
330	Estudio de Infección Hospitalaria Group (2012) β-Lactam/β-lactam inhibitor
331	combinations for the treatment of bacteremia due to extended- spectrum
332	β-lactamase-producing <i>Escherichia coli</i> : a post hoc analysis of prospective cohorts.

- 333 Clin Infect Dis 54(2):167–174
- 12. Clinical and Laboratory Standards Institute (2016) Performance standards for
- antimicrobial susceptibility testing; 26th informational supplement. M100-S26.
- 336 Wayne, PA. Clinical and Laboratory Standards Institute
- 13. Perez F, Bonomo RA (2012) Can we really use ß-lactam/ß-lactam inhibitor
- 338 combinations for the treatment of infections caused by extended-spectrum
- β-lactamase-producing bacteria? Clin Infect Dis 54(2):175–177
- 14. Sugimoto N, Yamagishi Y, Mikamo H (2017) Proposed breakpoint of piperacillin/
- 341 tazobactam againstextended spectrum β -lactamases producing bacteria in
- 342 bacteremia. J infect Chemother 23(1):65–67
- 343 15. Yamada K, Yanagihara K, Hara Y, et al (2011) Clinical
- features of bacteremia caused by methicillin-resistant *Staphylococcus aureus* in a
- tertiary hospital. Tohoku J Exp Med 224(1):61–67
- 16. Hooton TM. Clinical practice (2012) Uncomplicated urinary tract infection. N Engl
- 347 J Med 366(11):1028–1037
- 17. Hammond NA, Nikolaidis P, Miller FH (2012) Infectious and inflammatory diseases
- of the kidney. Radiol Clin North Am 50(2):259–270
- 18. Singer M, Deutschman CS, Seymour CW, et al (2016) The Third International
- 351 Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315(8):801–

353	19. Lee NY, Lee CC	, Huang WH, et al	(2013) Cefepime t	herapy for monomicrobial

- bacteremia caused by cefepime-susceptible extended-spectrum beta-lactamase-
- 355 producing Enterobacteriaceae: MIC matters. Clin Infect Dis 56(4):488–495
- 20. Wang SS, Lee NY, Hsueh PR, et al (2011) Clinical manifestations and prognostic

357 factors in cancer patients with bacteremia due to extended-spectrum

- 358 β-lactamase-producing *Escherichia coli* or *Klebsiella pneumoniae*. J Microbiol
- 359 Immunol Infect 44(4):282–288
- 360 21. Ma J, Li N, Liu Y, et al (2017) Antimicrobial resistance patterns, clinical features,
- and risk factors for septic shock and death of nosocomial *E coli* bacteremia in adult
- 362 patients with hematological disease: A monocenter retrospective study in China.
- 363 Medicine (Baltimore) 96(21):e6959
- 22. Angus DC, van der Poll T. (2013) Severe sepsis and septic shock. N Engl J Med
 365 369(9):840–851
- 366 23. Lee CC, Lee CH, Hong MY, et al (2017) Propensity-matched analysis of the impact
- 367 of extended-spectrum β -lactamase production on adults with community-onset
- 368 Escherichia coli, Klebsiella species, and Proteus mirabilis bacteremia. J Microbiol
- 369 Immunol Infect S1684–1182(17):30098-1
- 24. Kim SH, Kwon JC, Choi SM, et al (2013) Escherichia coli and Klebsiella

371	pneumoniae bacteremia in patients with neutropenic fever: factors associated with
372	extended-spectrum β -lactamase production and its impact on outcome. Ann
373	Hematol 92(4):533–541
374	25. Antoniadou A, Giamarellou H. (2007) Fever of unknown origin in febrile
375	leukopenia. Infect Dis Clin North Am 21(4):1055–1090
376	26. Perron T, Emara M, Ahmed S. (2014) Time to antibiotics and outcomes in cancer
377	patients with febrile neutropenia. BMC Health Serv Res 14:162

379 Tables

Table 1. Clinical characteristics and laboratory findings of the patients with ESBL-PEbacteremia

000	
382	
004	

Variables	Value
Sex (male/female)	31/34
Mean age (years)	62.0 ± 18.5
Bacterial strains, n(%)	
Escherichia coli	55 (84.6%)
Klebsiella pneumoniae	6 (9.2%)
Proteus mirabilis	2 (3.1%)
Enterobacter cloacae	1 (1.5%)
Citrobacter amalonaticus	1 (1.5%)
Underlying disease, n(%)	
Malignancy	42 (64.6%)
Hematological	15 (23.1%)
Immunosuppressive drug or corticosteroid use	28 (43.1%)
Diabetes mellitus	14 (21.5%)
Chronic renal failure	12 (18.5%)
Cardiovascular disease	10 (15.4%)
Digestive disease	10 (15.4%)
Central nervous system disease	9 (13.8%)
Respiratory disease	8 (12.3%)
Endocrine disease	5 (7.7%)
Autoimmune disease	3 (4.6%)
Others	18 (27.7%)
Leukocyte count (/µL)	9007.7 ± 6603.3
Neutrophil count (/µL)	7484.6 ± 5775.2
CRP (mg/dL)	11.1 ± 9.2
Alb (g/dL)	2.9 ± 0.7
Sepsis, n(%)	20 (30.8%)
Febrile neutropenia, n(%)	12 (18.5%)
Use of antibiotics prior to isolation, n(%)	52 (80.0%)
Quinolones	23 (35.4%)

414	Anti-MRSA agents	17 (26.2%)
415	Third-generation cephalosporins	16 (24.6%)
416	Carbapenems	13 (20.0%)
417	Fourth-generation cephalosporins	12 (18.5%)
418	Sulfamethoxazole/trimethoprim	12 (18.5%)
419	Second-generation cephalosporins	10 (15.4%)
420	Sulbactam/ampicillin	7 (10.8%)
421	Piperacillin/Tazobactam	5 (7.7%)
422	None	13 (20.0%)
423	Others	7 (10.8%)
424	Nosocomial infection, n(%)	50 (76.9%)
425	Hospitalization within 90 days, n(%)	23 (35.4%)
426	Central venous catheter, n(%)	25 (38.5%)
427	Urinary catheter, n(%)	22 (33.8%)
428	Surgery, n(%)	17 (26.2%)
429	Polymicrobial infection, n(%)	4 (6.2%)
430	Infection site, n(%)	
431	Urinary tract	29 (44.6%)
432	Biliary tract	6 (9.2%)
433	Wound infection	5 (7.7%)
434	Intravascular device	2 (3.1%)
435	Others	6 (9.2%)
436	Unknown	17 (26.2%)
437	Hospital mortality, n(%)	13 (20.0%)
190	*Data are presented as mean + SD	

438 *Data are presented as mean \pm SD

439Abbreviations: Alb: albumin, CRP: C-reactive protein, ESBL-PE: extended-spectrum440beta-lactamase-producingEnterobacteriaceae, MRSA: methicillin-resistant

441 Staphylococcus aureus, SD: standard deviation

Antibiotic	Empiric therapy, n(%)	Definitive		
		therapy,		
		n(%) ^a		
Carbapenems	23 (35.4%)	36 (58.1%)		
Piperacillin/Tazobactam	9 (13.8%)	9 (14.5%)		
Fourth-generation cephalosporins	6 (9.2%)	1 (1.6%)		
Third-generation cephalosporins	8 (12.3%)	3 (4.8%)		
Cefmetazole	4 (6.2%)	8 (12.9%)		
Quinolones	4 (6.2%)	1 (1.6%)		
Flomoxef	3 (4.6%)	2 (3.2%)		
Others	8 (12.3%)	2 (3.2%)		
^a Three patients died before definitive therapy.				
Abbreviation: ESBL-PE: extended-spec	ctrum beta-lactamase-producin	g		
Enterobacteriaceae				

Table 2. Empiric and definitive therapy against ESBL-PE bacteremia

466

467

468 Table 3. ESBL-PE MICs

MIC range (µg/mL)	MIC ₅₀	MIC ₉₀
≤1-8	2	4
≤0.25-8	1	4
≤1	≤1	≤1
≤0.06–≥4	≥4	≥4
≤0.06–≥4	1	1
≤0.06	≤0.06	≤ 0.06
≤0.06-0.12	≤0.06	≤0.06
≤0.5-2	1	2
≤0.5–≥8	2	≥ 8
≤1–≥8	4	4
≤0.5–≥4	2	≥4
im $\leq 0.5 - \geq 4$	≥4	≥4
≤0.25–≥4	2	≥4
	$\leq 0.25 - 8$ ≤ 1 $\leq 0.06 - \geq 4$ ≤ 0.06 $\leq 0.06 - 0.12$ $\leq 0.5 - 2$ $\leq 0.5 - \geq 8$ $\leq 1 - \geq 8$ $\leq 0.5 - \geq 4$ im $\leq 0.5 - \geq 4$	$ \leq 0.25 - 8 \qquad 1 \\ \leq 1 \qquad \leq 1 \\ \leq 0.06 - \geq 4 \qquad \geq 4 \\ \leq 0.06 - \geq 4 \qquad 1 \\ \leq 0.06 \qquad \leq 0.06 \\ \leq 0.06 - 0.12 \qquad \leq 0.06 \\ \leq 0.5 - 2 \qquad 1 \\ \leq 0.5 - \geq 8 \qquad 2 \\ \leq 1 - \geq 8 \qquad 4 \\ \leq 0.5 - \geq 4 \qquad 2 \\ im \qquad \leq 0.5 - \geq 4 \qquad \geq 4 $

483 *40 strains were preserved.

484 Abbreviations: ESBL-PE: extended-spectrum beta-lactamase-producing

485 Enterobacteriaceae, MICs: minimum inhibitory concentrations

487	Variables			MIC (µg/mL)				
488		≤1	2	4	8	16	MIC ₅₀	MIC ₉₀
489								
490	Survivors ^a	7 (23.3%)	14 (46.7%)	7 (23.3%)	2 (6.7%)	0 (0%)	2	4
491								
492	Nonsurvivors ^b	1 (10.0%)	4 (40.0%)	3 (30.0%)	2 (20.0%)	0 (0%)	4	8
	22.0	1						

486 Table 4. MICs of piperacillin/tazobactam against the ESBL-PE in survivors and nonsurvivors

⁴⁹³ ^a30 strains were preserved.

⁴⁹⁴ ^b10 strains were preserved.

495 ESBL-PE: extended-spectrum beta-lactamase-producing Enterobacteriaceae, MICs: minimum inhibitory concentrations

496

497

Variables	Survivors (n=52)	Nonsurvivors (n=13)	p-value
Male sex	26 (50.0%)	5 (38.5%)	0.66
Age \geq 70 years	23 (44.2%)	2 (15.4%)	0.11
Non Escherichia coli	8 (15.4%)	2 (15.4%)	1.00
Underlying disease			
Malignancy	33 (63.5%)	9 (69.2%)	0.95
Hematological	9 (17.3%)	21 (46.2%)	0.06
Immunosuppressive drug or corticosteroid use	19 (36.5%)	9 (69.2%)	0.06
Diabetes mellitus	11 (21.1%)	3 (23.1%)	1.00
Chronic renal failure	11 (21.1%)	1 (7.7%)	0.47
Cardiovascular disease	8 (15.4%)	2 (15.4%)	1.00
Digestive disease	10 (19.2%)	0 (0%)	0.20
Central nervous system disease	8 (15.4%)	1 (7.7%)	0.79
Respiratory disease	6 (11.5%)	2 (15.4%)	1.00
Endocrine disease	4 (7.7%)	1 (7.7%)	1.00
Autoimmune disease	2 (3.8%)	1 (7.7%)	1.00
Leukocyte count \geq 12000 (/µL)	16 (30.8%)	2 (15.4%)	0.45
$CRP \ge 10 \text{ (mg/dL)}$	22 (42.3%)	6 (46.2%)	1.00
Alb $\leq 2.5 \text{ (g/dL)}$	18 (34.6%)	6 (46.2%)	0.65
Sepsis	13 (25.0%)	7 (53.8%)	0.09
Febrile neutropenia	6 (11.5%)	6 (46.2%)	0.01

Table 5. Univariate analysis of predictors of hospital mortality of ESBL-PE bacteremia

522	Nosocomial infection	38 (73.1%)	12 (92.3%)	0.27
523	Hospitalization within 90 days	19 (36.5%)	4 (30.8%)	0.95
524	Central venous catheter	18 (34.6%)	7 (53.8%)	0.34
525	Urinary catheter	16 (30.8%)	6 (46.2%)	0.47
526	Surgery	13 (25.0%)	4 (30.8%)	0.94
527	Polymicrobial infection	4 (7.7%)	0 (0%)	0.70
528	Non-urinary tract infection	27 (52.0%)	9 (69.2%)	0.42
529	Empirical therapy			
530	Carbapenems	18 (34.6%)	5 (38.5%)	1.00
531	Piperacillin/tazobactam	7 (13.5%)	2 (15.4%)	1.00
532	Definitive therapy ^b			
533	Carbapenems	29 (55.8%)	7 (70.0%)	0.63
534	Piperacillin/tazobactam	8 (15.4%)	1 (10.0%)	1.00
535	Inappropriate empirical therapy	19 (36.5%)	6 (46.2%)	0.75
536	Inappropriate definitive therapy ^b	2 (3.9%)	1 (10.0%)	0.98

^a Chi-square test.

538 ^b Three patients died before definitive therapy.

Alb: albumin, CRP: C-reactive protein, ESBL-PE: extended-spectrum beta-lactamase producing Enterobacteriaceae

540

541

Table 6. Multivariate analysis of predictors associated with hospital mortality of ESBL-PE bacteremia

544			
545	Predictor	OR (95% CI)	p-value
546	Hematological malignancy	ND	ND
547	Immunosuppressive drug or corticosteroid use	ND	ND
548	Sepsis	4.08 (1.02–16.4)	0.047
549	Febrile neutropenia	7.52 (1.70–33.1)	0.008

550 CI: confidence interval, ESBL-PE: extended-spectrum beta-lactamase-producing Enterobacteriaceae,

551 ND: not detected, OR: odds ratio