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ABSTRACT

When a planar shock hits a corrugated interface between two fluids, the Richtmyer–Meshkov instability (RMI) occurs. Vortices are
generated in bulk behind the transmitted and reflected shocks in RMI. As the shock intensity becomes larger, the stronger bulk vortices are
created. The nonlinear evolution of RMI is investigated within the vortex sheet model (VSM), taking the nonlinear interaction between the
interface and the vortices into account. The fluid becomes incompressible as the shocks move away from the interface, and VSM can then be
applied. The vorticity and position of the bulk vortices obtained from the compressible linear theory [F. Cobos-Campos and J. G. Wouchuk,
Phys. Rev. E93, 053111 (2016)] are applied as initial conditions of the bulk point vortices in VSM. The suppression of RMI due to the bulk
vortices is observed in the region such that the corrugation amplitude is less than one-tenth of the wavelength, and the reduction of the
growth is quantitatively evaluated and compared with the compressible linear theory. In the nonlinear stage, the interaction between the
interface and the bulk vortices strongly affects the interfacial shape and the dynamics of bulk vortices, e.g., the creation of a vortex pair is
observed. Strong bulk vortices behind the transmitted shock enhance the growth of spike, supplying flow from spike root to its top and
mushroom umbrella in the fully nonlinear stage.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0016553

I. INTRODUCTION

The Richtmyer–Meshkov instability (RMI)1–4 is a shock-induced
inviscid fluid instability with density stratification, which leads to non-
uniform and non-equilibrium turbulence. RMI is important in various
areas such as astrophysical supernova explosion,5–9 supersonic com-
bustion, inertial confinement fusion (ICF),10–12 and atmospheric and
planetary sciences. When a shock wave crosses the interface in RMI,
the transmitted shock and the reflected shock or rarefaction wave
occur at the interfaces. Here, we consider the case of the reflected
shock. Non-uniform velocity shears are induced at the interface, and

the transmitted and reflected shocks involve ripples due to the passage
of a shock wave across a corrugated interface in RMI.3,13–17 Owing to
the conservation of tangential velocity at the rippled shock fronts,
transverse velocity perturbations are generated inside the compressed
fluids, which leads to the vorticity generation in the bulk.14,16,18–24

Immediately after the shocks pass through the corrugated inter-
face, the compressibility is dominant, where if the amplitude of the
interface is sufficiently small, the compressible linear theory is
valid.14,25 Cobos-Campos and Wouchuk theoretically calculated and
visualized the magnitude of the vorticities of bulk vortices generated

Phys. Plasmas 27, 112301 (2020); doi: 10.1063/5.0016553 27, 112301-1

Published under license by AIP Publishing

Physics of Plasmas ARTICLE scitation.org/journal/php

https://doi.org/10.1063/5.0016553
https://doi.org/10.1063/5.0016553
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0016553
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0016553&domain=pdf&date_stamp=2020-11-02
https://orcid.org/0000-0002-3405-4491
https://orcid.org/0000-0002-5572-1169
https://orcid.org/0000-0001-5953-4080
mailto:cmatsuoka@osaka-cu.ac.jp
https://doi.org/10.1063/5.0016553
https://scitation.org/journal/php


by the shocks. They also concluded that the bulk vortices suppress the
growth of the interface in RMI within the linear theory,24,26 as has
been known in previous works.14,18 In their linear theory, the positions
and the strengths of bulk vortices can be determined from the pre-
shock Atwood number, adiabatic exponent of the fluids, and the shock
intensity with the asymptotic linear growth velocity of the interface.
Cobos-Campos and Wouchuk also confirmed that their analytical cal-
culations fit well with real experiments of RMI.24

When the shocks go away from the corrugated interface, we can
treat the system as incompressible and the non-uniform velocity shear
as a non-uniform vortex sheet.15 By the Lagrange’s theorems on vor-
ticity,27 the vorticity generated in the bulk does not disappear in the
perfect fluid; therefore, the bulk vortices interact with the vortex sheet,
which provides a different evolution from RMI without bulk vortices.
In the current study, approximating the bulk vortices by point vortices,
we investigate the nonlinear interaction between the bulk vortices and
the interface using the vortex sheet model (VSM).28–31

VSM is a powerful tool for investigating the nonlinear interfacial
dynamics such as the Kelvin–Helmholtz instability,32,33 the
Rayleigh–Taylor instability,28,34–36 and RMI,9,28–31,37,38 in which the
unstable interface is regarded as a vortex sheet without thickness.39 In
VSM, the interfacial velocity is provided as the vortex-induced velocity
by the Birkhoff–Rott equation.39–42 By controlling the regularized
parameter d in the Birkhoff–Rott equation,33 VSM can provide the
long-time behavior of an unstable interface. When we select d 6¼ 0,
which is called the vortex method,39 we can calculate the roll-up of the
interface. On the other hand, when we select the regularized parameter
d¼ 0, the numerical results by VSM become spectrally accurate,43

which enables us to compare the numerical results with the analytical
calculations.28,30,44 In the calculation of d ¼ 0, Moore’s curvature sin-
gularity occurs,28,43,45 and the numerical calculation breaks down
before the roll-up of the interface appears. We adopt both calculations
of d¼ 0 and d 6¼ 0 in the present study.

The compressible linear theory14,18,24 shows that the linear
growth rate consists of two terms. One is due to the non-uniform
velocity shear deposited on the interface when the planar shock passes
through the corrugated interface. The other is the term caused by the
bulk vortices formed by the rippled transmission and reflection shocks.
In the present work, a non-uniform velocity shear is given as an initial
condition in VSM, and the bulk vortices are approximated by point
vortices. The vorticity of bulk point vortices and their initial distances
from the interface are given by the values obtained from the linear the-
ory.24 The nonlinear dynamics of the system due to their nonlinear
interaction are numerically calculated and compared with the cases
without the point vortices. Numerical results show that the bulk vorti-
ces have opposing effects on the instability growth dynamics. In the
earlier stage such that the corrugation amplitude is less than 1/10 of
the wavelength, the bulk vortices suppress the RMI growth corre-
sponding to the initial velocity shear at the interface, while the strong
bulk vortices enhance the growth of spike supplying flow from spike
root to its top and mushroom umbrella in the fully nonlinear stage.

This paper is organized as follows. In Sec. II, we briefly describe
the linear growth rate of RMI derived from the compressible linear
theory, which is used to normalize all physical quantities and to deter-
mine the initial conditions of bulk point vortices in the current study.
In Sec. III, we provide an overview of the mathematical model for
VSM with bulk point vortices and derive the governing equations for

describing the motion of the unstable interface coexisting bulk point
vortices. In Sec. IV, we present the numerical results for both cases of
the regularized parameter d ¼ 0 and d 6¼ 0, in which the initial condi-
tions for VSM are determined from the compressible linear theory,
and the calculations for d ¼ 0 are compared with the analytical results
by the linear theory. In this section, we show that the existence of
bulk vortices suppresses RMI in the early stage, while the bulk
vortices enhance the spike growth in the fully nonlinear stage of RMI.
Section V is devoted to conclusion.

II. OVERVIEW OF THE LINEAR GROWTH RATE IN RMI

RMI develops when a plane shock collides with a corrugated
interface separating two different fluids. In this work, we only consider
the case in which a shock is reflected. Once the transmitted and
reflected shock fronts have been formed and have started to separate
from the contact surface at t ¼ þ0, the initial corrugation of the inter-
face begins to grow, and the shock fronts are deformed. As they move
into the fluid, they leave density and vorticity perturbation behind
them.14,18,46–48 The interface perturbation shows damped oscillations,
and when the shock fronts go away from the interface more than a
wavelength of the perturbation,3 the perturbed contact surface reaches
a constant velocity, which we call the asymptotic linear growth
rate.14,18,24,46,48,49

The asymptotic linear growth rate can be exactly expressed in the
following form:14,18,24

vlinc ¼
q2dv

�
2 � q1dv

�
1

q1 þ q2
� q2F2 � q1F1

q1 þ q2

¼ vlin �
q2F2 � q1F1

q1 þ q2
; (1)

where vlin is given by

vlin ¼
q2dv

�
2 � q1dv

�
1

q1 þ q2
: (2)

Equation (2) is derived from the deposition of vorticity at the interface
at t ¼ þ0, and it depends only on the initial tangential velocities, dv�1
and dv�2 , of generated at both sides of the interface just after the inci-
dent shock passes through it (t ¼ þ0), whose expression can be found
in Refs. 1, 3, and 25, and also refer to Eq. (16) in Ref. 24. Here, the suf-
fixes 1 and 2 denote the heavy and light fluids, and the transmitted
and reflected shocks propagate in region 1 (heavy) and region 2 (light),
respectively. The mass density is the post-shock density. A completely
analytical model to solve the zero-order profiles when a shock is
reflected has been recently published.17 The term vlin is enough to esti-
mate the asymptotic growth velocity for weak shocks.14 Hereafter, we
call vlin in Eq. (2) simply as the linear growth rate.

The terms F1 and F2 in Eq. (1) represent the sonic interaction
between the rippled shock fronts and the rippled contact surface for
t > 0þ. They can be written as integrals of the pressure perturbations
along the shock front trajectories14,18,48 (we can also regard F1 and F2
as averaged measures of the vorticity field left by the rippled shock
fronts14). The second term in Eq. (1) comes from the vorticity genera-
tion by the deformed shock fronts in the bulk fluid. Their calculation
requires iterating on a system of coupled functional equations.18,24 It
should also be noted that the second term in Eq. (1) generally reduced
the linear growth vlin.
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The linear growth velocity vlin in Eq. (2) plays an important role
in normalizing physical quantities in the current study as the initial
velocity shear of the interface. We consider here an interface that has
initially sinusoidal velocity shear with the maximum value of the dif-
ference of tangential velocity between the heavy and light fluids, 2vlin
with the wavenumber k. In calculations by VSM, the length and time
are normalized by the wavenumber k and the initial shear velocity vlin
such as kx, ky, and kvlint. The linear growth rate is also used for the
normalization of the strengths of point vortices in Wp [refer to Eq.
(5)] and bulk vorticity xi [i¼ 1, 2, refer to Eq. (7) and Table I] below.

III. GOVERNING EQUATIONS FOR THE VORTEX SHEET
MODEL WITH BULK POINT VORTICES

In this section, we provide an overview of the mathematical
model for VSM with bulk point vortices. A more detailed explanation
is also found in Ref. 31. In applying VSM, the bulk vortices are approx-
imated by bulk point vortices. We consider the state that the shocks
have traveled a distance greater than a wavelength. Then the system
can be regarded as incompressible and irrotational except the interface
(contact surface) and bulk point vortices. We assume that the interface
does not have the thickness, and the point vortices are sizeless singular
points in the bulk.27,50 We consider the two-dimensional flow in which
a fluid interface with density and tangential velocity jumps across that
exists. Since the system is described by the potential flow, the Laplace
equation D/i (i¼ 1, 2) holds in each fluid region across the interface,
where /i is the velocity potential in fluid i.

Now we parameterize points on the interface x ¼ X as

Xðe; tÞ ¼ Xðe; tÞ;Yðe; tÞ½ �

using a Lagrangian parameter e (�p � e � p). We assume the period-
icity in the x direction. When bulk vortices exist in the system, the vor-
tex induced fluid velocityW at an arbitrary point x ¼ ðx; yÞ is given as
the sum of the two velocities

W ¼W s þWp; (3)

in which Ws ¼ ðWs;x;Ws;yÞ is the velocity by the contribution from
the interface

Ws;xðx;yÞ ¼�
1
4p

ðp

�p

cðe0; tÞseðe0; tÞsinhðy�Yðe0; tÞÞ
coshðy�Yðe0; tÞÞ� cos ðx�Xðe0; tÞÞþ d2

de0;

Ws;yðx;yÞ ¼
1
4p

ðp

�p

cðe0; tÞseðe0; tÞ sinðx�Xðe0; tÞÞ
coshðy�Yðe0; tÞÞ� cos ðx�Xðe0; tÞÞþ d2

de0;

(4)

where c ¼ u2 � u1, and c ¼ c � t ¼ @C=@s denotes the (true) vortex
sheet strength derived from the circulation C � /2 � /1, in which the
velocity potential /i (i¼ 1, 2) is related to the fluid velocity ui as

ui ¼ r/i, and s is the arc length, and t is the unit tangential vector of
the interface, respectively. Here, the subscript e denotes the differentia-
tion with respect to e and se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
e þ Y2

e

p
. We take the principal

value of the integral (4) when the point (x, y) is on the interface:
ðx; yÞ ¼ ðX;YÞ. Equation (4) corresponds to the Birkhoff–Rott equa-
tion40–42 if (x, y) is on the interface. The regularized parameter d33 in
Eq. (4) is set to d ¼ 0 when we compare the numerical results by VSM
with the analytical results (refer to Sec. IVC).

On the other hand, Wp ¼ ðWp;x;Wp;yÞ in (3) is the velocity by
the contribution from bulk vortices

Wp;xðx; yÞ ¼ �
1
4p

XNp

j¼1

cp;jsinhðy � yp;jðtÞÞ
coshðy � yp;jðtÞÞ � cos ðx � xp;jðtÞÞ þ d2

;

Wp;yðx; yÞ ¼
1
4p

XNp

j¼1

cp;j sin ðx � xp;jðtÞÞ
coshðy � yp;jðtÞÞ � cos ðx � xp;jðtÞÞ þ d2

;

(5)

where Np is the number of point vortices and cp;j denotes the strength
of point vortex j (j ¼ 1; 2;…Np).

Here, we mention the relation between the strength c or cp;j
(j ¼ 1; 2;…;Np) and the vorticity of the system x ¼ r� u, where
x ¼ xêz; êz—the unit vector in the z direction. We can also define
the strength c (or cp;j) using the integral as

c ¼
þ

xds;

where ds is the line element along the interface or the streamline encir-
clingx. Dividing c by the linear growth rate vlin in Eq. (2), we have

c
vlin
¼

þ
xds

vlin
¼
þ

x
vlin

ds ¼ k
þ

x
kvlin

ds:
(6)

For the vortex sheet or point vortices, the distributionx has d-func-
tional form.27,42,50 Taking this into account and performing the line inte-
gral in Eq. (6) over a wavelength, we obtain the c� x correspondence

c
vlin
¼ x

kvlin
; (7)

from which we can regard the dimensionless vorticity x=ðkvlinÞ as the
dimensionless vortex sheet strength c or the dimensionless point vor-
tex strength cp;j normalized by the linear growth rate vlin. We use the
relation (7) in determining the initial conditions for the nonlinear cal-
culations by VSM (refer to Table I in Sec. IVA).

In VSM, we define the interfacial velocity uþ of a Lagrangian
point labeled by e as

uþðe; tÞ ¼Wjx¼X þ
~ac
2
t; (8)

TABLE I. Initial conditions for the calculations by VSM derived from the linear theory. The vorticity xi=ðkvlinÞ (i¼ 1, 2) is defined at kx ¼ p=2.

ðp1 � p0Þ=p1 x1=ðkvlinÞ ky1 x2=ðkvlinÞ ky2 vclin=vlin A

0.5 0.175928 �2.063134 0.026188 6.398230 0.947413 0.307182
0.7 0.390033 �1.480230 0.049665 4.828697 0.876893 0.277927
0.8 0.600444 �1.254237 0.066041 4.184017 0.821151 0.244675
0.9 1.071423 �1.019868 0.087859 3.560310 0.745436 0.165796
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where Wjx¼X � ðU ;VÞ corresponds to the average velocity
ðu1 þ u2Þ=2 at the interface and ~a is an artificial parameter28,51

depending on the Atwood number A defined by

A ¼ q1 � q2

q1 þ q2
; (9)

in which qi (i¼ 1, 2) is the post-shock density of fluid i as used in Eqs.
(1) and (2). The parameter ~a controls the magnitude of the tangential
velocity. When the regularized parameter d ¼ 0, we select ~a as
~a ¼ �A,28 for which the interfacial velocity uþ becomes a weighted
average of two fluids

uþ ¼ q1u1 þ q2u2
q1 þ q2

; (10)

while we select ~a as ~a ¼ �A2 when d 6¼ 028,31 throughout this paper,
by which we can suppress the rapid increase in the tangential velocity
in rolling-up of the vortex sheet at the late stage.52

Equating uþ with the evolution of the interface, we have the
interfacial velocity for the Lagrangian motion as

dX
dt
¼Wjx¼X þ

~ac
2
t; (11)

where
d
dt
¼ @

@t
þ uþ � r

is the Lagrangian derivative in the frame moving with the interface.
A point vortex velocity is given by substituting its location

x ¼ xp;i into (3)

dxp;i
dt
¼W sjx¼xp;i þWpjx¼xp;i ði ¼ 1; 2;…;NpÞ; (12)

where the term of j¼ i (own contribution) in the integral (5) is
excluded from the summation.

Differentiating the Bernoulli equation obtained from the Euler
equation with respect to e,15,28,31 we obtain the evolution equation for
the vortex sheet strength c as follows:

dc
dt
¼ 2A

se
Xe

dU
dt
þ Ye

dV
dt

� �

�ð1þ ~aAÞc
s2e

ðXeUe þ YeVeÞ þ
Aþ ~a
4se
ðc2Þe: (13)

Solving Eqs. (11), (12), and (13) simultaneously by taking the integrals
(4) and (5) into account, we can determine the motion of the interface
and the trajectories of bulk point vortices.

IV. NUMERICAL RESULTS

In this section, we present the nonlinear evolution of the unstable
interface by VSM. In order to relate the incompressible nonlinear cal-
culations to the compressible RMI continuously, we adopt the analyti-
cal results derived from the compressible linear theory14,17,18,24–26,53,54

as the initial conditions for the calculations by VSM.

A. Initial conditions for bulk point vortices derived
from the linear theory

In this subsection, we briefly mention the physical quantities
obtained by the linear analysis, in which the bulk vortices spread with

finite vorticities. We adopt the centers of these vorticities as point vorti-
ces in calculations by VSM. Table I shows the physical quantities derived
from the compressible linear theory,24 which correspond to the initial
conditions for bulk point vortices adopted in the calculations by VSM.
In Table I, the data were calculated with the same initial pre-shock
parameters as in Fig. 3 of Ref. 24; namely, the pre-shock Atwood number
is 1/3, and the adiabatic exponents c1 ¼ 1:118228 and c2 ¼ 1:1, respec-
tively. The details of the derivation were written in the reference.

The first row of the table, ðp1 � p0Þ=p1, denotes the incident
shock intensity, where p0 and p1 are the pressure ahead and behind
the incident shock.14,25 From now on, we define the case of
ðp1 � p0Þ=p1 ¼ 0:9 as case (I). Since we consider inviscid flow, the
vorticity stored at any point in bulk is equal to the vorticity generated
by the corrugated shock at the instant of time when the wavefront
arrived at that point in bulk. The vorticity is generated as a conse-
quence of the conservation of tangential velocity across the rippled
shock wave. Cobos-Campos and Wouchuk showed that a maximum
or minimum of the perturbed pressure behind the shocks corresponds
to the center of a vortex in bulk.24 In fact, the first zero of the spatial
derivative of the pressure perturbation gives the center of the nearest
points to the interface, ky1 and ky2, and strong vorticities x1 and x2.
These vorticities appear as vortex pairs, and their x coordinates are
fixed at kx ¼ 6p=2. Their values in Table I (the second and fourth
rows) were obtained numerically by the first root of the derivative of
Eq. (22) and evaluated the corresponding vorticity expression, Eq.
(B3) in Ref. 24. They are normalized by the wavelength and kvlin. The
fifth row vclin=vlin namely, the ratio of the asymptotic linear growth rate
with the bulk vorticity and the linear growth rate without bulk vorticity,
is the ratio between the velocities (1) and (2) derived analytically from
the linear theory. The Atwood number A in the sixth row is defined
using the post-shock density at the interface, which is given by Eq. (9)
in the current study. A completely analytical model to solve the zero
order profiles when a shock is reflected has been recently published.17

The bulk vortices obtained by the linear theory form vortex pairs
such that their vorticities become weaker as they are distant from the
interface.24 The normalized vorticities x1=ðkvlinÞ and x2=ðkvlinÞ in
Table I denote the largest vorticities that appear at kx ¼ p=2 in the
heavier fluid (region 1) and the lighter fluid (region 2), respectively.
The same vorticities in their magnitude with negative sign appear at
kx ¼ �p=2 and the same y coordinates ky1 [for x1=ðkvlinÞ] and ky2
[for x2=ðkvlinÞ] in Table I to form vortex pairs. We only consider these
four vortices (two vortex pairs) because the vorticities in far distance
from the interface rapidly decrease,24 and we can ignore the effect of
them on the interface.

Figure 1 depicts the relation between the distance from the bulk
vorticity jky1j (black closed circles) and the normalized vorticity in the
heavier fluid (region 1) x1=ðkvlinÞ (closed squares) as a function of
shock intensity ðp1 � p0Þ=p1. We see that as the shock intensity
increases, the stronger bulk vorticity appears closer to the interface.
This tendency is found in the lighter fluid (region 2) as well (refer to
Table I). It should be noted that the decrease in the distance jky1j is
almost linear but the increase in x1=ðkvlinÞ is exponential.

B. Initial condition for the interface and numerical
methods

As described in Sec. II, all physical quantities are normalized by
the wavenumber k and the linear growth rate vlin in Eq. (2), so that
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they are dimensionless. From now on, the dimensionless variables
space kx, time kvlint, vortex sheet strength c=vlin, and strength of point
vortex cp;j=vlin (j ¼ 1; 2; 3; 4) are used as x, t, c, and cp;j
(j ¼ 1; 2; 3; 4). Under the above normalizations, the initial condition
for the interface is given as

xðe; 0Þ ¼ e; ð�p � e � pÞ
yðe; 0Þ ¼ 0;

cðe; 0Þ ¼ �2 sin e;
(14)

for both cases of the regularized parameter d¼ 0 and d 6¼ 0. As shown
in Eq. (14), the initial perturbation exists only on the vortex sheet
strength c, and there is no corrugation on the initial interface.

As described in Sec. IVA, we regard the initial position of point
vortices as the center of bulk vorticities in the linear theory. Further,
taking the c� x correspondence Eq. (7) into account, we set the ini-
tial condition of four point vortices Pi (i ¼ 1; 2; 3; 4) [two vortex pairs,
ðP1; P3Þ and ðP2;P4Þ] to compare VSM to the linear theory described
in Secs. II and IVA as

P1 : xp;1ð0Þ ¼
p
2
; yp;1ð0Þ ¼ y2; cp;1 ¼ x2=k;

P2 : xp;2ð0Þ ¼
p
2
; yp;2ð0Þ ¼ y1; cp;2 ¼ x1=k;

P3 : xp;3ð0Þ ¼ �
p
2
; yp;3ð0Þ ¼ y2; cp;3 ¼ �x2=k;

P4 : xp;4ð0Þ ¼ �
p
2
; yp;4ð0Þ ¼ y1; cp;4 ¼ �x1=k;

(15)

where yi and xi=k (i¼ 1, 2) are the quantities given in Table I as kyi
and xi=ðkvlinÞ. We mention that the strength of point vortices
cp;i (i ¼ 1; 2; 3; 4) is unchanged with respect to time t from the defini-
tion of point vortices.27,50

Here, we briefly mention the numerical methods adopted in the
current study. When the regularized parameter d ¼ 0, we adopt
the alternate point quadrature method28,55 for spatial integration of
Eq. (4). This scheme is known to be the spectral accuracy.43 When
d 6¼ 0, we adopt the conventional trapezoidal rule for spatial integra-
tion. For the temporal integration, we use the fourth-order
Runge–Kutta scheme throughout this paper for both calculations of

d ¼ 0 and d 6¼ 0. The Fredholm equation of the second kind Eq. (13)
is solved by iteration with tolerance level 10�12. In order to cut the
irregular motion due to the round-off error, we use the filtering tech-
nique introduced by Krasny.33

When d 6¼ 0, we adopt the grid redistribution method using the
Newton’s method to avoid clustering of grid points.9,28,56 There is
another numerical method to avoid the clustering, which is known as
the point insertion scheme.31,33,35 This method can capture the com-
plicated structure of the vortex sheet at the late stage by inserting grid
points successively; however, the roll-up of the vortex sheet is too
strong, and the asymptotic growth rate of bubble and spike deviates35

from the value obtained by the theoretical prediction.57,58 In addition
to that, the point insertion scheme is unsuitable for the calculation of
high Atwood numbers. For more details on the numerical schemes
adopted here, refer to Refs. 9 and 28.

C. Nonlinear interfacial dynamics by VSM for d ¼ 0

In this subsection, we present the numerical results by VSM for d
¼ 0 and compare that with the compressible linear theory. In numeri-
cal calculations, the number of grid points N taken on the interface is
selected as N¼ 1024 for the calculation of d ¼ 0. We set the normal-
ized time step Dt as Dt ¼ 10�4 throughout the calculations for d¼ 0.

Figure 2(a) shows the comparison between the normalized
growth rate v=vlin (open circles) calculated by VSM and vclin=vlin
(closed circles) estimated by the compressible linear theory (the values
of the sixth row in Table I). The velocities v=vlin in VSM are calculated
as the average of bubble and spike velocities at t¼ 0, where we take its
absolute value for the bubble velocity. As we see from the figure, both
lines vclin=vlin and v=vlin are nonlinear with respect to the shock inten-
sity ðp1 � p0Þ=p1, and they decrease as the shock intensity increases.
Since the bulk vortices in VSM are sizeless, there exists the quantitative
difference between vclin=vlin and v=vlin; however, the tendency that the
strong shock suppresses the growth of RMI is found in both cases.

The cross and the closed square at ðp1 � p0Þ=p1 ¼ 0:9 [case (I)]
in Fig. 2(b) denote the values of v=vlin that the bulk point vortices in
region 2 (the lighter fluid region) and region 1 (the heavier fluid
region) are absent, respectively. The value denoted by the closed
square largely deviates from the corresponding open circle. On the
other hand, the value depicted by the cross almost coincides with the
one described by the open circle at the same shock intensity. This indi-
cates that the vortex pair in the heavier fluid (fluid 1) governs the sup-
pression of the growth of the interface and the vortex pair in the
lighter fluid (fluid 2) almost do not affect the growth rate of RMI.
Therefore, the bulk vortices behind the transmitted shock strongly
affect the RMI growth. We mention that when we set stronger vortices
than the ones given by Eq. (15) at the same positions y1 and y2, the
growth rate v=vlin becomes small in comparison to the open circle in
Fig. 2(a) at the same shock intensity.

Figure 2(b) denotes the relation between the normalized growth
rate v=vlin calculated by VSM and the normalized bulk vorticity x1=k
in Table I. From this figure, we see that as the bulk vorticity increases,
the growth rate decreases, which indicates that increasing bulk vortic-
ity suppresses the growth of RMI. Figure 2(b) quantitatively shows
that the bulk vortices, specifically generated behind the transmitted
shock, reduce the linear growth rate determined from the initial veloc-
ity shear generated at the interface when an incident shock passes

FIG. 1. Relation between the distance from the bulk vorticity jky1j and normalized
vorticity x1=ðkvlinÞ.
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through a corrugated interface. We mention that the reversed trend is
observed in later stages, as shown in Figs. 8 and 11.

The reduction of the growth velocity observed in the early stage
of the instability becomes small for the spike growth as the increase in
the corrugation amplitude with time. We present the evolution of the
growth rate of bubble and spike for case (I) in Fig. 3. The solid blue
and red lines denote the bubble and spike velocities for RMI with bulk
point vortices, and the dotted lines with corresponding colors denote
those for RMI without bulk point vortices. The bubble velocities (blue
lines) asymptotically tend to zero for both cases with and without bulk
point vortices. On the other hand, the growth rate of spike velocity
with point vortices (solid red line) increases with time compared to
that without bulk point vortices (dotted red line), and both velocities
eventually tend to almost the same value at t¼ 0.6. These tendencies
for the growth rate of bubble and spike velocities are also found in
other shock intensities; however, the difference of two lines in the

growth rate of spike velocities is most notable in the largest shock as
case (I). The growth of higher harmonics becomes noticeable at
t 	 0:2, and asymmetry for the profile of bubble and spike appears at
around this time. In the linear theory, bubbles and spikes have the
same growth rate and symmetry; however, in the nonlinear model,
bubbles and spikes have different growth rates. Also, even if the corru-
gation amplitude is about 1/30 of the wavelength, we cannot ignore
the higher-order Fourier modes, and the shapes of spikes and bubbles
are not symmetric. In the current study, this becomes remarkable at
around t¼ 0.2.

Figure 4 shows the interfacial structures and the velocity fields
with bulk point vortices for case (I), where the left and right figures
show t¼ 0 and t¼ 0.6, respectively. The numerical method to observe
the velocity field is found in Refs. 9 and 31. The lower fluid is heavier
fluid (fluid 1), and the upper one is lighter fluid (fluid 2). The red andFIG. 2. Vorticity and the linear growth rate: (a) comparison between the normalized

growth rate v=vlin calculated by VSM and vclin=vlin, and (b) normalized growth rate
v=vlin vs normalized vorticity x1=ðkvlinÞ [x1=k in the normalization in Eq. (15)].

FIG. 3. Temporal evolution of the growth rate of bubble (blue) and spike (red) in
case (I) for d ¼ 0, where the solid lines denote the bubble and spike velocities for
RMI with bulk point vortices, and the dotted lines denote those for RMI without bulk
point vortices.

FIG. 4. Interfacial structures for d ¼ 0 with the colored scale of the vortex sheet
strength c and the velocity fields for case (I), where the left and right figures show
t¼ 0 and t¼ 0.6, respectively. The red and blue points denote the point vortices
with counterclockwise rotation (positive sign) and clockwise rotation (negative sign),
respectively. The initial positions of Pi (i ¼ 1; 2; 3; 4) are given by Eq. (15). When
t¼ 0.6 (right figure), the positions of point vortices are P1 ¼ ð1:59; 3:56Þ;
P2 ¼ ð1:35;�0:99Þ; P3 ¼ ð�1:59; 3:56Þ, and P4 ¼ ð�1:35;�0:99Þ.
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blue points in bulk denote the point vortices with counterclockwise
rotation (positive sign) and clockwise rotation (negative sign), respec-
tively. The deformation of the flow around the point vortices is clearly
seen in Fig. 4. It should be noted that the position of the bulk vortices
does move due to the nonlinear interaction with the interface vorticity,
unlike the linear theory.31 The vortices move due to the background
flow induced by the sheared interface and self-interaction between the
point vortices when their distance becomes shorter. Their trajectory
will be shown below in Fig. 10 in detail. The bulk point vortices 1 and
3 in Eq. (15) located in fluid region 2 (upper region) almost do not
move up to the state t¼ 0.6. This is because the vortex pair is away
from the interface, by which the vortex pair in the lighter fluid inter-
acts very weakly with the vortex sheet, at least up to this time. The
bulk point vortices 2 and 4 in Eq. (15) located in fluid region 1 (lower
region) eventually approach the interface, and the distance between
the two vortices becomes closer. The evolution of the system is almost
determined by the interaction between these bulk vortices in region 1
and the interface. The lower region corresponds to the region behind
the transmitted shock in RMI.

As the amplitude of the interface corrugation becomes the order
of k=10 (k the wavelength), the nonlinear interaction between the bulk
vorticity and the interface vorticity becomes very important. We show
the interfacial structures with the colored scale of the vortex sheet
strength c with [left; case (I)] and without (right) bulk point vortices at
t¼ 0.6 in Fig. 5. Since the bubble and spike velocities in RMI with bulk
point vortices are smaller than those in RMI without bulk point vorti-
ces (refer to Fig. 3), the amplitudes of bubble and spike in RMI with
bulk point vortices become smaller than those in RMI without bulk
point vortices at this time. From Figs. 2, 3, and 5, we can conclude that
the existence of bulk vortices suppresses RMI, at least in the earlier
stage of its evolution.

Figure 6 shows the evolution of the absolute value of the max-
imum vortex sheet strength jcj in case (I), where the red and blue
lines denote the sheet strength for RMI with and without bulk
point vortices, respectively. The maximum sheet strength appears
in the neighborhood of x ¼ 6p=2 [refer to the initial condition Eq.
(14) and also see Fig. 7]. As we see from the figure, the maximum
vortex sheet strength with bulk point vortices (red line) grows
much faster and becomes much larger than that without bulk point
vortices (blue line) in the nonlinear stage. From Figs. 2, 3, and 6,
we see that although the existence of bulk vortices suppresses the
growth of RMI in the early stage, the vortex sheet strength
increases.31

We depict the corresponding curvature of the interface structure
shown in Fig. 5 as a function of the Lagrange parameter e in Fig. 7,
where the left and right figures show the curvature of the interface
with and without bulk point vortices. Although the interfacial struc-
ture of the left figure in Fig. 5 is sufficiently smooth, the corresponding
curvature in Fig. 7 has cusps at the vortex cores (e 	 6p=2),47 at
which the vortex sheet strength jcj takes its maximum value. On the
other hand, such cusps are not found in the right figure of Fig. 7 at this
time yet. This suggests that Moore’s curvature singularity28,45 in RMI
with bulk point vortices occurs at an earlier stage than that in RMI
without bulk point vortices, which indicates that the suppression of
the growth rate of bubble and spike does not necessarily stabilize the
evolution of the Kelvin–Helmholtz instability.42,45 The numerical cal-
culation for d ¼ 0 with bulk point vortices breaks down immediately
after (t ¼ þ0:6) the appearance of the curvature singularity. We men-
tion that the cusps, as found in the left figure of Fig. 7, appears in the
neighborhood of e ¼ 6p=2 at t¼ 0.93 for RMI without bulk point
vortices, and the calculation breaks down immediately after this time.
In the current study, Moore’s curvature singularity appears when the
corrugation amplitude becomes about 1/10 of the wavelength.

D. Long time nonlinear interfacial dynamics by VSM
for d 6¼ 0

In this subsection, we present the numerical results by VSM for
d 6¼ 0. The calculation for d 6¼ 0 does not possess the analytical

FIG. 5. Interfacial structures for d ¼ 0 with the colored scale of the vortex sheet
strength c at t¼ 0.6, where the left and right figures show the interface with and
without bulk point vortices for case (I).

FIG. 6. Temporal evolution of the absolute value of the maximum sheet strength c
in case (I), where the red and blue lines denote the maximum value of jcj on the
interface with and without bulk point vortices, respectively.

FIG. 7. Curvature of the interfaces at t¼ 0.6, where the left and right figures show
the curvature of the interface with and without bulk point vortices.
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accuracy as for the calculation in d¼ 0 presented in Subsec. IVC;
however, it enables us to compare the numerical result to the long-
time behavior in experiments59 or hydrodynamic simulations.9,15

Here, we adopt d as d ¼ 0:15. The value d ¼ 0:15 is best suited for
experiments by Jacobs et al.28,59 and the results by the above hydrody-
namic simulations. We mention that there is not much of a difference
in the results between d ¼ 0:1 and d ¼ 0:15.28 In numerical calcula-
tions, the number of grid points N is chosen as N¼ 512, and we set
the normalized time step Dt as Dt ¼ 2:5� 10�3 throughout the cal-
culations for d ¼ 0:15. We consider the case (I) in this subsection.

Figure 8 shows the evolution of the growth rate of bubble and
spike for d ¼ 0:15. The colors and line types are the same as those in
Fig. 3. The discrepancy of the initial growth rate between Figs. 3 and 8
is due to the finite value d. As we see from the figure, the bubble veloci-
ties (blue lines) asymptotically tend to zero for both RMI with and
without bulk point vortices. The growth velocity of spike also decreases
with time for both with and without bulk vortices. However, the
growth velocity of spike is more notably affected by bulk point
vortices. The growth velocity of spike with bulk point vortices (red
solid line) begins to deviate from the one without bulk point vortices
(red dotted line) at around t¼ 4, at which the bulk point vortices in
region 1 (heavier fluid) approach the interface, and the deformation of
spike due to the interaction between bulk vortices and the interface
begins. Unlike the case of d ¼ 0 (Fig. 3), the spike velocity for
d ¼ 0:15 with bulk point vortices is asymptotically larger than that
without bulk point vortices (also refer to Fig. 11 below). The growth
velocity of bubbles decays with 1=t for both cases with and without
bulk point vortices.

The increase in the spike growth at around t¼ 4 in Fig. 8 for the
case with the bulk vortices can be understood as follows. Due to the
background flow in which the point vortices are induced by the vortic-
ity on the interface, the distance between the point vortices in the
lower region becomes shorter, and they are carried to the root of
the spike, as shown in Fig. 9. These point vortices increase the flow to
the tip of the spike, and further to the tip of the mushroom umbrella,
as shown in Fig. 11. As a result, the nonlinear growth of the spike is
greater than it would be without the point vortex.

We present the interfacial structures for d ¼ 0:15 and the veloc-
ity fields with bulk point vortices at t¼ 2 and t¼ 4 in Fig. 9. As with
the case of d ¼ 0 (Fig. 4), the point vortices in the upper region [point
vortices 1 and 3 in Eq. (15)] almost do not move up to this time t¼ 4.
On the other hand, the point vortices in the lower region [point vorti-
ces 2 and 4 in Eq. (15)] located in the heavier fluid approach the inter-
face and increase the vortex sheet strength c by interacting with the
interface. The distance between the point vortices in the lower heavy
region becomes shorter at time t 	 4, mainly due to the background
flow induced by the vortex sheet. Owing to this interaction between
the non-uniform vortex sheet (interface) and the bulk vortices, the
shape of the interface is deformed, and the growth rate of spike devi-
ates from the one without bulk point vortices (refer to Figs. 8 and 11).

The trajectories of point vortices with (left figure) and without
(right figure) the interface are depicted in Fig. 10. When the interface
is absent, both vortex pairs located in fluid 1 and fluid 2 almost do not
move. This indicates that two vortices [point vortices 1 and 3 or point
vortices 2 and 4 in Eq. (15)] without the interface cannot form a vortex
pair because the distance between them is too far. On the other hand,

FIG. 8. Temporal evolution of (the absolute value of) the growth rate of bubble and
spike for d ¼ 0:15, where the solid blue and red lines denote the bubble and spike
velocities for RMI with bulk point vortices, and the dotted blue and red lines denote
those for RMI without bulk point vortices.

FIG. 9. Interfacial structures for d ¼ 0:15 with the colored scale of the vortex sheet
strength c and the velocity fields, where the left and right figures show t¼ 2 and
t¼ 4, respectively. The colors of point vortices are the same as those in Fig. 4. The
initial positions of Pi (i ¼ 1; 2; 3; 4) are the same as Fig. 4. In the left figure (t¼ 2),
the positions of point vortices are P1 ¼ ð1:63; 3:56Þ; P2 ¼ ð0:91;�0:77Þ; P3
¼ ð�1:63; 3:56Þ; P4 ¼ ð�0:91;�0:77Þ, and the corresponding positions in the right
figure (t¼ 4) are P1 ¼ ð1:73; 3:54Þ; P2 ¼ ð0:44;�0:29Þ; P3 ¼ ð�1:73; 3:54Þ;
P4 ¼ ð�0:44;�0:29Þ.

FIG. 10. Trajectories of point vortices (left) with and (right) without the interface for
the initial condition (15), where the colors of point vortices are the same as those in
Figs. 4 and 9, and both figures take the same period of time (0 � t � 10). The
markers of white circle and filled circle denote the initial and final positions of point
vortices, respectively.
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when the interface exists, the background flow induced by the vortex
sheet pushes the point vortices closer in the lower region, and then a
vortex pair is formed. Since the strength of the vortex pair has the
opposite sign, it moves in parallel. The translation direction is down-
ward (9 < t � 10). This phenomenon that the vortex pair moves
downward in parallel against the flow induced by the vortex sheet was
not observed in our previous work.31 In the previous study, the point
vortices move up into the spike and mushroom. This difference in the
dynamics of point vortices may be due to the weaker vorticity in the
previous work compared to case (I). Details of the dynamics of the
point vortices for weaker vorticity will be discussed in the future. The
vortices in the upper region move outward due to the flow induced by
the vortex sheet. Since their vorticity is weak, and they locate far away
from the interface compared with ones in the lower region, the vortices
in the upper region do not affect much on the dynamics of the
interface.

We present the interfacial structures with the colored scale of the
vortex sheet strength c with (left) and without (right) bulk point vorti-
ces at the final stage t¼ 10 in Fig. 11. The amplitude of spike in the left
figure is larger than the one in the right figure. This can be understood
as follows. As observed in Fig. 10, the vortices in the lower region
pump up the flow into the spike, which enhances the growth of the
spike and the roll-up of the interface. Therefore, the strong vortices in
the lower region, i.e., vortices generated behind the transmitted shock,
play a different role in the nonlinear evolution in RMI. In the earlier
stage, they suppress the growth; however, in the fully nonlinear stage
such that the amplitude of the interface corrugation becomes the order
of the wavelength, they enhance the spike growth.

V. CONCLUDING REMARKS

We have investigated the linear and nonlinear interaction
between the interface and bulk point vortices in RMI using VSM. The
initial vorticity of the vortex sheet is determined by the non-uniform
velocity shear deposited on the interface when a planar incident shock
passes through a corrugated interface, which is calculated from the lin-
ear theory. The initial strength and positions of point vortices are
determined from the vortices behind the transmitted and the reflected
shocks in the compressible linear theory. The result obtained from the
compressible linear theory that the existence of bulk vortices sup-
presses RMI was also confirmed in the incompressible VSM with bulk
point vortices, at least in the linear stage. The suppression was

evaluated as a function of the bulk vorticity, and it was compared with
the linear theory. In the fully nonlinear stage, the bulk vortices signifi-
cantly affect the interfacial structure and nonlinear growth of the spike.
Unlike the suppression observed in the early stage, the bulk vortices
enhance the growth of the spike by supplying flow to the spike. In
both early and fully nonlinear stages, the bulk vortices in the heavier
fluid, i.e., vortices behind the transmitted shock, play important roles.
VSM can capture such interfacial deformations and dynamics of bulk
point vortices for a long time.
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