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STABILITY OF LAMB DIPOLES

KEN ABE AND KYUDONG CHOI

Abstract. The Lamb dipole is a traveling wave solution to the two-dimensional Euler equa-
tions introduced by S. A. Chaplygin (1903) and H. Lamb (1906) at the early 20th century.
We prove orbital stability of this solution based on a vorticity method initiated by V. I.
Arnold. Our method is a minimization of a penalized energy with multiple constraints that
deduces existence and orbital stability for a family of traveling waves. As a typical case,
orbital stability of the Lamb dipole is deduced by characterizing a set of minimizers as an
orbit of the dipole by a uniqueness theorem in the variational setting.

1. Introduction

1.1. Lamb dipoles. We consider the two-dimensional vorticity equations:

(1.1)
∂tζ + v · ∇ζ = 0, v = k ∗ ζ in R2 × (0,∞),

ζ = ζ0 on R2 × {t = 0},

with the kernel k(x) = (2π)−1x⊥|x|−2, x⊥ = t(−x2, x1). The equations (1.1) admit a vortex
pair, i.e., a solution of the form

v(x, t) = u(x + u∞t) − u∞,
ζ(x, t) = ω(x + u∞t),

vanishing at space infinity with a constant velocity u∞ ∈ R2. Vortex pairs are pairs of
compactly supported dipoles, symmetrically placed with opposite signs, translating in one
direction. They are theoretical models of coherent vortex structures in large-scale geophysi-
cal flows. See, e.g., [27], [19] for experimental works. By rotational invariance of (1.1), we
take u∞ = t(−W, 0), W > 0, without loss of generality. Substituting (v, ζ) into (1.1) implies
the steady Euler equations for (u, ω) in a half plane:

(1.2)
u · ∇ω = 0 in R2

+,

u→ u∞ as |x| → ∞.
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In the 3rd edition of the book“Hydrodynamics”published at 1906, H. Lamb [30, p.231]
noted an explicit solution to (1.2), generally referred to as the Lamb dipole (Chaplygin-Lamb
dipole), a solution ωL = λmax{ΨL, 0}, uL =

t(∂x2ΨL,−∂x1ΨL), 0 < λ < ∞, of the form

(1.3) ΨL(x) =


CLJ1(λ1/2r) sin θ, r ≤ a,

−W
(
r − a2

r

)
sin θ, r > a,

with the constants

CL = −
2W

λ1/2J0(c0)
, a = c0λ

−1/2,

where (r, θ) is the polar coordinate and Jm(r) is the m-th order Bessel function of the first
kind. The constant c0 is the first zero point of J1, i.e., J1(c0) = 0, c0 = 3.8317 · · · , J0(c0) < 0.
The parameter λ > 0 denotes the strength of the vortex and is related with its impulse by

∫
R2
+

x2ωLdx =
c2

0πW

λ
.

The Lamb dipole (1.3) is the simplest explicit solution to (1.2), symmetric for the x2-
variable, which is a special case of non-symmetric Chaplygin dipoles, independently found
by S. A. Chaplygin in 1903 [14], [15]. See [39] for their origins.

The Lamb dipole is considered as a stable vortex structure in a two-dimensional flow.
Its stability has been studied by an experimental work [19] and also by a numerical work
[24]. On the other hand, despite the explicit form of this classical solution, its mathematical
stability had been an open question since the solution was introduced by S. A. Chaplygin
and H. Lamb at the early 20th century. For solutions with a single-signed vortex such as a
circular vortex [48], [43] or a rectangular vortex [5], stability results have been developed,
while no stability result was known for the Lamb dipole which has a multi-signed vortex
and forms a traveling wave.

There is an interesting relation with solitons in the theory of nonlinear wave equations.
One of classical models that describes propagation of a wave may be the KdV equation [29].
More generally for the gKdV equation,

∂tw + ∂3
xw + ∂x(wp) = 0, x ∈ R, t > 0,

for an integer p ≥ 2, there exists a soliton solution of the form w(x, t) = Qc(x − ct) for c > 0
and Qc(x) = c1/(p−1)Q(c1/2x), where

Q(x) =
(

p + 1
2 cosh2((p − 1)x/2)

)1/(p−1)

,

is called soliton, which is a unique positive solution of the elliptic problem ∂2
xQ + Qp = Q,
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up to translation. Stability of this soliton is well known when the problem is globally well-
posed. Indeed for 2 ≤ p < 5, the gKdV equation is globally well-posed, and if initial
data is close to the soliton, the solution remains nearby the soliton for all time by admitting
translation of Q [6], [49]. Such stability is termed orbital stability. For p = 5, this soliton
is unstable [36] and a finite time blow-up occurs [40], [37]. The Euler equations may have
some aspects of the wave equation. Even for the three-dimensional case, vortex rings form
traveling waves. We shall establish the orbital stability theorem for the Lamb dipole which
is the most typical traveling wave.

In the sequel, we identify a function ζ0 in R2
+ with an odd extension to R2 for the x2-

variable, i.e., ζ0(x1, x2) = −ζ0(x1,−x2). Since a classical solution to (1.1) exists and is sym-
metric for the x2-variable for sufficiently smooth initial data [34], a standard approximation
argument implies the existence of a symmetric global weak solution ζ ∈ BC([0,∞); L2 ∩
L1(R2)) for symmetric initial data ζ0 ∈ L2 ∩ L1(R2) [35]. Here, BC([0,∞); X) denotes the
space of all bounded continuous functions from [0,∞) into a Banach space X. Among other
results, our simplest result is the following:

Theorem 1.1. Let 0 < λ,W < ∞. The Lamb dipole ωL is orbitally stable in the sense
that for ν > 0 and ε > 0, there exists δ > 0 such that for ζ0 ∈ L2 ∩ L1(R2

+) satisfying
x2ζ0 ∈ L1(R2

+), ζ0 ≥ 0, ||ζ0||1 ≤ ν and

inf
y∈∂R2

+

{∥ζ0 − ωL(· + y)∥2 + ∥x2(ζ0 − ωL(· + y))∥1
} ≤ δ,

there exists a global weak solution ζ(t) of (1.1) satisfying

inf
y∈∂R2

+

{∥ζ(t) − ωL(· + y)∥2 + ∥x2(ζ(t) − ωL(· + y))∥1
} ≤ ε, for all t ≥ 0.

Remark 1.2. As we will see later in Remarks 5.2 (i), the smallness condition in Theorem 1.1
can be replaced with a slightly weaker condition infy∈∂R2

+
∥ζ0 − ωL(· + y)∥2 +

∣∣∣∫ x2ζ0dx − µ
∣∣∣

≤ δ for µ = c2
0πW/λ.

Orbital stability of traveling waves to the two-dimensional Euler equations is first studied
by Burton, Lopes and Lopes [12] based on a variational principle using a rearrangement and
the concentration compactness principle. See Burton [11] for a recent improvement. The
works [12], [11] proved orbital stability for a broad class of vortex pairs though stability of
Lamb dipole was unknown. We prove Theorem 1.1 by using a simpler variational principle
in a restricted class of vortex pairs.

1.2. Vorticity method. Theorem 1.1 is a particular case of our general stability theorem.
Let us consider the existence problem (1.2). The equation (1.2)1 implies that the vorticity is
a first integral of the stream line, i.e. an integral curve of u = t(∂x2Ψ,−∂x1Ψ) for the stream
functionΨ. Therefore ω is locally a function ofΨ. We assume that ω is globally represented
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by ω = λ f (Ψ) with some function f (t) and λ > 0. Then solutions of (1.2) can be constructed
by the semi-linear elliptic problem for γ ≥ 0:

(1.4)

−∆Ψ = λ f (Ψ) in R2
+,

Ψ = −γ on ∂R2
+,

∂x1Ψ→ 0, ∂x2Ψ→ −W as |x| → ∞.

The function f is called a vorticity function which is prescribed by a non-negative and non-
decreasing function. In this paper, we shall take

f (t) = t+, t+ = max{t, 0},

for which the Lamb dipole ΨL is a solution to (1.4) for γ = 0 and spt ωL = B(0, a) ∩ R2
+,

i.e., ωL = λ f (ΨL). Here B(0, a) is an open disk centered at the origin with the radius a > 0.
The three parameters W, γ ≥ 0 and λ > 0 are referred to as propagation speed, flux constant
and strength parameter. We chose the flux constant γ so that Ψ = 0 on the boundary of the
vortex core spt ω = Ω. The problem (1.4) is a free-boundary problem since the vortex core
Ω is a priori unknown. Once the core is found, one can find Ψ by solving the two problems:

− ∆Ψ = λΨ in Ω, Ψ = 0 on ∂Ω,

− ∆Ψ = 0 in R2
+\Ω, Ψ = −γ on ∂R2

+, ∂x1Ψ→ 0, ∂x2Ψ→ −W as |x| → ∞.

On the other hand, the core is characterized as Ω = {x ∈ R2
+ | Ψ(x) > 0} by a maximum

principle. The function Ψ = ψ−Wx2−γ is represented by the Green function of the Laplace
operator subject to the Dirichlet boundary condition in a half plane

ψ(x) =
∫
R2
+

G(x, y)ω(y)dy, G(x, y) =
1

4π
log

(
1 +

4x2y2

|x − y|2

)
.(1.5)

To study existence and stability of solutions to (1.4), we consider a variational principle
based on vorticity, called a vorticity method, originating from the idea of Kelvin [45], initi-
ated by Arnold [3], [4]. See also Benjamin [7] for vortex rings. For vortex pairs, vorticity
methods were developed by Turkington [46] and Burton [8]. See also Norbury [42] and
Yang [50] for a stream function method.

Our approach is based on the vorticity method of Friedman-Turkington [23], [22] devel-
oped for vortex rings. For 0 < µ, ν, λ < ∞, we set a space of admissible functions

Kµ,ν =

{
ω ∈ L2(R2

+)

∣∣∣∣∣∣ ω ≥ 0,
∫
R2
+

x2ωdx = µ,
∫
R2
+

ωdx ≤ ν
}
.

We construct solutions of (1.4) by maximizing a penalized energy
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E2,λ[ω] = E[ω] − 1
2λ

∫
R2
+

ω2dx, E[ω] =
1
2

∫
R2
+

∫
R2
+

G(x, y)ω(x)ω(y)dxdy.

For a notational convenience, we formulate the maximization problem as a minimization of
−E2,λ and denote by

Iµ,ν,λ = inf
ω∈Kµ,ν

{−E2,λ[ω]
}
.(1.6)

The constants W, γ ≥ 0 are Lagrange multipliers. This formulation is slightly different
from that of [23], [22], where admissible functions are restricted to a space of symmetric
functions for x1 ∈ R. More precisely, the method in [23], [22] applies to prove compactness
of a minimizing sequence satisfying

(1.7)
ω(x1, x2) = ω(−x1, x2),
ω(x1, x2) is non-increasing for x1 > 0.

The condition (1.7) is essential for the method in [23], [22]. In fact, since the energy −E2,λ is
invariant by translation for the x1-variable, translation of any minimizer is a minimizing se-
quence. In this paper, without assuming (1.7), we shall show that any minimizing sequence
is relatively compact by translation for the x1-variable by using the concentration compact-
ness principle of Lions [31]. The following Theorem 1.3 is an improvement of [23], [22] in
terms of vortex pairs.

Theorem 1.3. Let 0 < µ, ν, λ < ∞. For any minimizing sequence {ωn} satisfying ωn ∈ Kµn,ν,
µn → µ and −E2,λ[ωn] → Iµ,ν,λ, there exists a sequence {yn} ⊂ ∂R2

+ such that {ωn(· + yn)}
and {x2ωn(· + yn)} are relatively compact in L2(R2

+) and L1(R2
+), respectively. In particular,

the problem (1.6) has a minimizer in Kµ,ν.

A novelty in the present paper is the adaptation of the vorticity method of [23], [22],
instead of [46] which prescribes that mass is exactly ν > 0 for admissible functions. As
proved in [23], [22] for vortex rings, mass becomes strictly less than ν > 0 for small λ > 0
with fixed µ, ν. Indeed, the variational principle in [46] does not provide solutions of (1.4)
for small λ > 0. Our existence for small λ > 0 seems a new result although the above
formulation is noted in [46]. See also [42].

Removing the restriction on the strength parameter is essential in the present work since
solutions of (1.4) approach a Lamb dipole as λ → 0. We shall rigorously state this claim
in Theorem 1.5 below. For fixed µ, ν, solutions of (1.6) form a one parameter family for
0 < λ < ∞. In particular, solutions approach a Dirac measure as λ → ∞ and in contrast
a Lamb dipole as λ → 0. A variational characterization of the Lamb dipole is studied
in [9], [10] for solutions to (1.4) for γ = 0.

Orbital stability of vortex pairs is a consequence of compactness of a minimizing se-
quence. We use conservations of Lq-norms, impulse and penalized energy of (1.1):
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(1.8)

||ζ ||q(t) = ||ζ0||q, 1 ≤ q ≤ 2,
||x2ζ ||1(t) = ||x2ζ0||1,
E2,λ(ζ)(t) = E2,λ(ζ0), for all t ≥ 0.

Although a global weak solution ζ(t) of (1.1) obtained by an approximation argument [35]
might have weak regularity at t = 0, by the renormalization property of DiPerna-Lions [18],
the constructed weak solution satisfies the conservations (1.8), i.e., ζ(t) ∈ Kµ,ν for ζ0 ∈ Kµ,ν.
In general, ζ(t) is not symmetric and non-increasing for the x1-variable even if ζ0 is. The
renormalization property of weak solutions to the two-dimensional Euler equations is due
to [33].

The vorticity method not only constructs stationary solutions as lowest energy solutions
but also deduces their stability by compactness of a minimizing sequence, cf. [13] for dis-
persive equations. For the Euler equations, research on orbital stability goes back to Ben-
jamin [7]. See Wan [47] for an early work. For vortex pairs, the first orbital stability result
appeared in Burton, Lopes and Lopes [12] for a certain class of solutions to (1.2) by a vortic-
ity method based on a rearrangement for a prescribed function. See [28], [12] for a physical
background and an introduction to the problem. The method of [12] yields existence of
solutions to (1.4) for small W > 0, γ = 0 with unknown f (t), λ > 0 and deduces their
stability by the L2-norm ||ζ ||2 for compactly supported ζ0 close to the orbit in the stronger
norm ||ζ ||2 + |

∫
x2ζdx|. Burton [11] recently proved orbital stability by using one norm

||ζ ||p + ||ζ ||1 + |
∫

x2ζdx|, p > 2, for both stability of ζ and an initial condition of ζ0. We
prove existence of (1.4) by prescribing f (t) = t+, λ > 0 and deduce their stability by the
norm ||ζ ||2 + ||x2ζ ||1 without assuming compact support for ζ0. Let S µ,ν,λ denote the set of
minimizers of (1.6). Theorem 1.3 implies:

Theorem 1.4. For 0 < µ, ν, λ < ∞, S µ,ν,λ is orbitally stable in the sense that for ε > 0, there
exists δ > 0 such that for ζ0 ∈ L2 ∩ L1(R2

+) satisfying x2ζ0 ∈ L1(R2
+), ζ0 ≥ 0, ||ζ0||1 ≤ ν and

inf
ω∈S µ,ν,λ

{||ζ0 − ω||2 + ||x2(ζ0 − ω)||1} ≤ δ,(1.9)

there exists a global weak solution ζ(t) of (1.1) satisfying

inf
ω∈S µ,ν,λ

{||ζ(t) − ω||2 + ||x2(ζ(t) − ω)||1} ≤ ε, for all t ≥ 0.(1.10)

Theorem 1.4 is a general stability theorem for a family of vortex pairs for 0 < λ < ∞.
If the set of minimizers is characterized as an orbit O(ω) = {ω(· + y) | y ∈ ∂R2

+} for some
vortex pair, one can deduce orbital stability of the vortex pair itself. Since translation of a
minimizer ω of (1.6) is also a minimizer, the orbit O(ω) is a subset of S µ,ν,λ. The converse
inclusion is a uniqueness issue. See [1] for uniqueness of the Hill’s spherical vortex rings
and [9], [10] of the Lamb dipoles.

In this paper, we prove uniqueness of minimizers of (1.6) for small λ > 0, i.e., µν−1λ1/2 ≤
M1 for some M1 > 0. As proved later, for small λ > 0, the flux constant γ vanishes. This
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implies that ψ/x2 is a positive solution to the elliptic problem in R4, i.e., for y = t(y′, y4) ∈
R4,

−∆y

(
ψ(y4, |y′|)
|y′|

)
= λ f

(
ψ(y4, |y′|)
|y′| −W

)
in R4.

Since positive solutions ψ/|y′| of the above problem are radially symmetric for some point
on {y′ = 0} [9], minimizers of (1.6) for small λ > 0 must be translation of a Lamb dipole
ωL for W > 0. As a consequence, it turns out that S µ,ν,λ = O(ωL) for µν−1λ1/2 ≤ M1 and
(1.10) is orbital stability of the Lamb dipole itself. By the constraint on the impulse, the
speed W > 0 is uniquely determined by W = µλ/(c2

0π).

Theorem 1.5. Let 0 < µ, ν, λ < ∞ satisfy µν−1λ1/2 ≤ M1 for some absolute constant
M1 > 0. Let ωL be the Lamb dipole for W = µλ/(c2

0π). Then, minimizers of (1.6) are
translation of the Lamb dipole, i.e.,

S µ,ν,λ =
{
ωL(· + y)

∣∣∣ y ∈ ∂R2
+

}
.(1.11)

The characterization (1.11) implies that S µ,ν,λ is independent of large ν > 0 for fixed
µ, λ, i.e., µν−1λ1/2 ≤ M1. Therefore for given λ,W > 0, ν > 0 and µ = c2

0πW/λ, we take
ν̃ = max{ν, µλ1/2M−1

1 } so that S µ,ν̃,λ = O(ωL). Theorem 1.1 is then deduced from Theorem
1.4.

There is a possibility that uniqueness holds even for solutions to (1.4) for small γ > 0.
See [41], [2] for uniqueness of vortex rings. If the uniqueness holds, one can characterize
S µ,ν,λ as an orbit of some deformed vortex pair supported away from the boundary ∂R2

+.
Theorem 1.4 may include stability of such solutions.

There are few remarks related with nonlinear wave equations. Orbital stability is con-
cerned with stability about a shape of a wave. Indeed, Theorem 1.1 implies that the shape
of ωL is stable by a perturbation for all t ≥ 0. A more advanced question is the asymptotic
behavior of the perturbation ζ(t) as t → ∞. One may expect that a perturbation approaches
some fixed traveling wave as t → ∞. Such stability is termed asymptotic stability in the
study of nonlinear wave equations. Another issue is interaction between traveling waves.
Stability of two Lamb dipoles or more generally stability of a finite number of the dipoles
are open questions. We refer to a survey [44] on stability of solitons.

In this paper, we considered the vorticity function f (t) = t+ to prove the orbital stability
of the Lamb dipole. Our method is also applied to prove orbital stability of more general
vortex pairs and also vortex rings. For example, we are able to take f (t) = t1/(p−1)

+ as a
vorticity function to study existence and orbital stability of vortex pairs for 4/3 < p < ∞
and vortex rings for 6/5 < p < ∞. The stability norm can be replaced with the Lp-norm
with the weighted L1-norm.

A special case is p = ∞ for which the vorticity function becomes an indicator function.
The penalized energy can be replaced with the kinetic energy whose minimizers are vortex
patches [23], [22]. This class particularly includes the Hill’s spherical vortex rings. See [16]
for a stability result.
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We outline the proof of Theorem 1.3. Applicability of the concentration compactness
principle to free boundary problems is noted in the original paper of Lions [32, p.279],
though little is known on stability of evolving free boundaries. The first application to sta-
bility of traveling waves to the two-dimensional Euler equations is due to Burton, Lopes and
Lopes [12] in which stability of a set of minimizers is proved for a large class of vortex pairs
based a variational principle with unknown vorticity functions. The main contribution of the
present work is the reformulation of the problem by prescribing f (t) = t+ and adjusting a
variational principle of vortex rings developed by Friedman-Turkington [23], [22] to vortex
pairs so that the Lamb dipole is obtained as a minimizer. This variational principle involves
multiple constraints and cannot appeal to the subadditivity condition of a minimum found
by Lions [31] to obtain compactness of a minimizing sequence. We sketch the key part of
the proof below.

In the sequel, we reduce the problem to the case ν = λ = 1 by the scaling

ω̂(x) =
1
λν
ω

( x
λ1/2

)
.(1.12)

If ω ∈ Kµ,ν, ω̂ ∈ KM,1 for M = µν−1λ1/2 and E2,1[ω̂] = ν−2E2,λ[ω]. We abbreviate the
notation as Kµ = Kµ,1, Iµ = Iµ,1,1, E2[ω] = E2,1[ω], and S µ = S µ,1,1.

To prove compactness of a minimizing sequence of (1.6), we apply a concentration com-
pactness principle and exclude possibilities of dichotomy and vanishing of the sequence.
Since Iµ is negative and decreasing for µ ∈ (0,∞), vanishing cannot occur. The problem is
to exclude dichotomy of the sequence. Let us consider for simplicity a minimizing sequence
{ωn} ⊂ Kµ satisfying ωn = ω1,n + ω2,n, ω1,n, ω2,n ≥ 0, and for 0 < α < µ,

α =

∫
R2
+

x2ω1,ndx, µ − α =
∫
R2
+

x2ω2,ndx, dist (spt ω1,n, spt ω2,n)→ ∞.

Observe that for example if ω1,n and ω2,n are compactly supported and move away for the
x1-direction, the sequence {ωn} is not compact in L2. If we have the strict subadditivity of
Iµ, i.e., Iµ < Iα + Iµ−α for 0 < α < µ, we immediately conclude that this cannot occur by
letting n→ ∞ in E2[ωn] ≤ E2[ω1,n] + E2[ω2,n] + o(1).

The main difficulty is the fact that Kµ has the multiple constraints (impulse = µ, mass
≤ 1) which is an obstacle to deduce the strict subadditivity of Iµ from the scaling property of
E2. See [31, Corollary II.1]. We overcome this difficulty by reducing the problem to com-
pactness of a sequence satisfying (1.7) and existence of minimizers of (1.6) by using Steiner
symmetrization ω∗i,n, i.e., a rearrangement of ωi,n satisfying (1.7), E2[ωi,n] ≤ E2[ω∗i,n], con-
serving Lq-norms, 1 ≤ q ≤ 2, and impulse. Since ω∗i,n is non-increasing for x1 > 0, we
are able to show that the weak convergence ω∗i,n ⇀ ωi in L2 implies the convergence of the
kinetic energy E[ω∗i,n]→ E[ωi]. This yields

− Iµ ≤ E2[ω1] + E2[ω2],

α ≥
∫
R2
+

x2ω1dx, µ − α ≥
∫
R2
+

x2ω2dx, ||ω1||1 + ||ω2||1 ≤ 1.

A contradiction is deduced from the existence of minimizers of (1.6) (satisfying (1.7)).
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Indeed, there exists a maximizer ω1 of E2 (a minimizer of −E2) under the constraints∫
x2ω1dx ≤ α and ||ω1||1 ≤ 1 − ||ω2||1 for fixed ω2. The maximizer satisfies

∫
x2ω1dx = α

with compact support. Therefore we are able to replace ω1 with ω1 and apply the same
for ω2 for fixed ω1. Since we can assume that spt ω1 ∩ spt ω2 = ∅ by translation for the
x1-variable,

−Iµ ≤ E2[ω1] + E2[ω2] = E2[ω1 + ω2] −
∫
R2
+

∫
R2
+

G(x, y)ω1(x)ω2(y)dxdy ≤ −Iµ.

This implies ωi ≡ 0 for i = 1 or 2, a contradiction to µ =
∫

x2(ω1 + ω2)dx.
The existence of the minimizer ω1 follows from the compactness of a minimizing se-

quence satisfying (1.7). Since we can assume that a minimizing sequence satisfies (1.7) by
Steiner symmetrization, the existence of the minimizer ω1 follows from the convergence of
the kinetic energy.

This paper is organized as follows. In Section 2, we prove that Iµ is negative and decreas-
ing for µ ∈ (0,∞) and that minimizers of (1.6) are solutions of (1.4) with compact support.
In Section 3, we prove compactness of the kinetic energy for a sequence satisfying (1.7) and
existence of minimizers of (1.6). In Section 4, we prove Theorem 1.3 by a concentration
compactness principle. In Section 5, we prove existence of symmetric global weak solu-
tions to (1.1) and deduce Theorem 1.4 by a contradiction argument. In Section 5, we prove
Theorem 1.5 by applying a symmetry result for positive solutions of the semi-linear elliptic
problem [20].

2. A minimization problem

We begin with estimates for the kinetic energy E[ω]. Thanks to the finiteness of the
impulse x2ω ∈ L1, the kinetic energy is finite for ω ∈ L2 ∩ L1 and agrees with the Dirichlet
energy for the stream function. By using energy estimates, we show that Iµ is decreasing
for µ ∈ (0,∞) and any minimizing sequence of Iµ is a bounded sequence in L2. In the
subsequent section, we prove properties of minimizers.

2.1. Properties of Iµ. For the later usage in the proofs of Theorems 1.3 and 1.4, we estimate
difference of two energies.

Proposition 2.1. The estimates
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∣∣∣∣∣∣
∫
R2
+

G(x, y)ω(y)dy

∣∣∣∣∣∣ ≤ Cx1/2
2 ||ω||

1/2
1 ||ω||

1/2
2 ,(2.1)

E[ω] ≤ C||x2ω||1/21 ||ω||1||ω||
1/2
2 ,(2.2) ∣∣∣∣∣∣

∫
R2
+

∫
R2
+

G(x, y)ω1(x)ω2(y)dxdy

∣∣∣∣∣∣ ≤ C||ω1||1/21 ||ω1||1/22 ||x2ω2||1/21 ||ω2||1/21 ,(2.3)

|E[ω1] − E[ω2]| ≤ C||ω1 − ω2||1/21 ||ω1 − ω2||1/22 ||x2(ω1 + ω2)||1/21 ||ω1 + ω2||1/21 ,(2.4)

hold for ω,ωi ∈ L2 ∩ L1(R2
+) satisfying x2ω, x2ωi ∈ L1(R2

+) with some constant C, indepen-
dent of ω, ωi, i = 1, 2.

Proof. We define ψ1 in terms of ω1 by using (1.5). By Hölder’s inequality, for q ∈ (1, 2),
1/q = θ + (1 − θ)/2,

|ψ1(x)| ≤
(∫
R2
+

G(x, y)q′dy
)1/q′

||ω1||q ≤ Cx2/q′

2 ||ω1||q ≤ Cx1−θ
2 ||ω1||θ1||ω1||1−θ2 .

Taking θ = 1/2 implies (2.1) and∣∣∣∣∣∣
∫
R2
+

∫
R2
+

G(x, y)ω1(y)ω2(x)dxdy

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
R2
+

ψ1(x)ω2(x)dx

∣∣∣∣∣∣ ≤ C||ω1||1/21 ||ω1||1/22

∫
R2
+

x1/2
2 |ω2(x)|dx

≤ C||ω1||1/21 ||ω1||1/22 ||x2ω2||1/21 ||ω2||1/21 .

Thus (2.3) holds. The estimate (2.2) follows from (2.3). We suppress the integral region.
Observe that

2(E[ω1] − E[ω2]) =
"

G(x, y)ω1(x)ω1(y)dxdy −
"

G(x, y)ω2(x)ω2(y)dxdy

=

"
G(x, y)ω̃(x)ω1(y)dxdy +

"
G(x, y)ω2(x)ω̃(y)dxdy,

for ω̃ = ω1 − ω2 and by G(x, y) = G(y, x),"
G(x, y)ω2(x)ω̃(y)dxdy =

"
G(y, x)ω2(y)ω̃(x)dxdy =

"
G(x, y)ω̃(x)ω2(y)dxdy.

We see that

2(E[ω1] − E[ω2]) =
"

G(x, y)ω̃(x)ω̂(y)dxdy, ω̂ = ω1 + ω2.

Thus (2.4) follows from (2.3). This completes the proof. □
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We show that the Dirichlet integral of the stream function is finite.

Proposition 2.2. For ω ∈ L2 ∩ L1(R2
+) satisfying x2ω ∈ L1(R2

+) and ω ≥ 0 (ω . 0), the
stream function (1.5) satisfies ψ > 0 in R2

+,

ψ(x)→ 0 as |x| → ∞,(2.5)

E[ω] =
1
2
||∇ψ||22.(2.6)

Proof. By

ψ(x) =
∫
R2
+

G(x, y)ω(y)dy =
∫
|x−y|≥x2/2

G(x, y)ω(y)dy +
∫
|x−y|<x2/2

G(x, y)ω(y)dy,

and G(x, y) ≤ π−1x2y2|x − y|−2,∫
|x−y|≥x2/2

G(x, y)ω(y)dy ≤ 4
πx2
||y2ω||1.

By Hölder’s inequality, 1/q + 1/q′ = 1, 1/q = θ + (1 − θ)/2,

∫
|x−y|<x2/2

G(x, y)ω(y)dy ≤
(∫
|x−y|<x2/2

G(x, y)q′dy
)1/q′ (∫

|x−y|<x2/2
ω(y)qdy

)1/q

≤ Cx2/q′

2 ||ω||θL1(|x−y|<x2/2)||ω||
1−θ
L2(|x−y|<x2/2).

Since ∫
|x−y|<x2/2

ω(y)dy ≤ 2
x2
||y2ω||1,

we have ∫
|x−y|<x2/2

G(x, y)ω(y)dy ≤ C

x4/q−3
2

||x2ω||θL1 ||ω||1−θL2∩L1 .

Hence by (2.1) and for δ ∈ (0, 1), by taking q ∈ (1, 2] sufficiently small,

ψ(x) ≤ Cδ

(1 + x2)1−δ
(||x2ω||L1 + ||ω||L2∩L1

)
, x ∈ R2

+.(2.7)

We take a sequence {ωn} ⊂ C∞c (R2
+) such that ωn → ω in L2 ∩ L1(R2

+) and x2ωn → x2ω in
L1(R2

+). By (2.7),
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ψ(x) =
∫
R2
+

G(x, y)(ω(y) − ωn(y))dy +
∫
R2
+

G(x, y)ωn(y)dy

≤ C
(||x2(ω − ωn)||L1 + ||ω − ωn||L2∩L1

)
+

x2

π infy∈spt ωn |x − y|2 ||y2ωn||L1 .

Sending |x| → ∞ and then n→ ∞ imply (2.5).
We take a non-increasing function θ ∈ C∞c [0,∞) satisfying θ = 1 in [0, 1], θ = 0 in [2,∞)

and set the cut-off function by θR(x) = θ(|x|/R). Since −∆ψ = ω in R2
+ and ψ(x1, 0) = 0, by

multiplying ψθR by −∆ψ = ω and integration by parts,∫
R2
+

(
|∇ψ|2θR −

1
2
ψ2∆θR

)
dx =

∫
R2
+

ψωθRdx.

Since ψ→ 0 as |x| → ∞ by (2.5), the second term vanishes as R→ ∞. Hence (2.6) follows
from the monotone convergence theorem. □

We prove that the function Iµ is negative and decreasing for µ ∈ (0,∞) by using (2.2).

Lemma 2.3.

I0 = 0,(2.8)
−∞ < Iµ < 0, 0 < µ < ∞,(2.9)
Iµ < Iα, 0 < α < µ.(2.10)

Proof. Since

Iµ = − sup
ω∈Kµ

E2[ω], E2[ω] = E[ω] − 1
2

∫
R2
+

ω2dx,

we shall show that

0 < sup
ω∈Kµ

E2[ω] < ∞, 0 < µ < ∞,(2.11)

sup
ω∈Kα

E2[ω] < sup
ω∈Kµ

E2[ω], 0 < α < µ.(2.12)

The property (2.8) is trivial since K0 = {0}. By (2.2) and Young’s inequality, for arbitrary
ε > 0 and ω ∈ Kµ,

E2[ω] ≤ C||x2ω||1/21 ||ω||1||ω||
1/2
2 − 1

2
||ω||22

≤ 3
4

( C
ε1/2 ||x2ω||1/21 ||ω||1

)4/3
+

(
ε2

4
− 1

2

)
||ω||22.
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Thus for ε ≤
√

2,

sup
ω∈Kµ

E2[ω] ≤ Cµ2/3 < ∞.

We set ω1 = 1B(0,a)∩R2
+

for B(0, a) = {x ∈ R2 | |x| < a} and choose a > 0 so that
∫

x2ω1dx =
µ. Set ωσ(x) = σ3ω1(σx), σ > 0, and observe that∫

R2
+

x2ωσdx =
∫
R2
+

x2ω1dx = µ,∫
R2
+

ωσdx = σ
∫
R2
+

ω1dx,

E2[ωσ] = σ2
(
E[ω1] − σ

2

2

∫
R2
+

ω2
1dx

)
.

Thus for sufficiently small σ > 0, ωσ ∈ Kµ and

sup
ω∈Kµ

E2[ω] ≥ E2[ωσ] > 0.

We proved (2.11).
It remains to show (2.12). For ω ∈ Kα, ωτ(x) = τ−2ω(τ−1x), τ > 1, satisfies∫

R2
+

x2ωτ(x)dx = τ
∫
R2
+

x2ω(x)dx = τα,∫
R2
+

ωτ(x)dx =
∫
R2
+

ω(x)dx ≤ 1.

Hence ωτ ∈ Kτα and

sup
ω̃∈Kτα

E2[ω̃] ≥ E2[ωτ] = E[ω] − 1
2τ2

∫
R2
+

ω2dx = E2[ω] +
1
2

(
1 − 1

τ2

) ∫
R2
+

ω2dx > E2[ω].

By taking a supremum for ω ∈ Kα,

sup
ω̃∈Kτα

E2[ω̃] ≥ sup
ω∈Kα

E2[ω].

If supω̃∈Kτα
E2[ω̃] = supω∈Kα

E2[ω], there exists a maximizing sequence {ωn} ⊂ Kα such that
E2[ωn]→ supω∈Kα

E2[ω] and ωn → 0 in L2. By (2.2), E2[ωn]→ 0. This contradicts (2.11).
Hence supω̃∈Kτα

E2[ω̃] > supω∈Kα
E2[ω] and (2.12) holds by taking τ = µ/α. The proof is

complete. □
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Remarks 2.4. (i) The strict subadditivity

Iµ < Iα + Iµ−α, 0 < α < µ,

is unknown, cf. Lions [31].
(ii) Any minimizing sequence {ωn} satisfying ωn ∈ Kµn , µn → µ and −E2[ωn] → Iµ is
uniformly bounded in L2. Indeed, by (2.2) and Young’s inequality, for arbitrary ε > 0 and
ω ∈ Kµ,

1
2
||ω||22 + E2[ω] = E[ω] ≤ C||x2ω||1/21 ||ω||1||ω||

1/2
2

≤ 3
4

( C
ε1/2 ||x2ω||1/21 ||ω||1

)4/3
+
ε2

4
||ω||22.

By taking ε = 1,

||ω||22 ≤ C||x2ω||2/31 ||ω||
4/3
1 − 4E2[ω].

Thus by Iµ < 0, the minimizing sequence {ωn} satisfies lim supn→∞ ||ωn||2 ≤ Cµ1/3.

2.2. Properties of minimizers. We show that minimizers of (1.6) are solutions to (1.4) for
some W > 0 and γ ≥ 0 with compact support. As noted below in Remarks 2.6 (iii), the flux
constant γ vanishes if µ is sufficiently small.

Proposition 2.5. Each minimizer ω ∈ S µ satisfies

(2.13)

ω = f (ψ −Wx2 − γ),

ψ(x) =
∫
R2
+

G(x, y)ω(y)dy,

for some constants W, γ ≥ 0, uniquely determined by ω.

Proof. The proof follows from a standard argument, e.g., [23], [22] for vortex rings. We
set the space K = {ω ∈ L2 ∩ L1(R2

+) | x2ω ∈ L1(R2
+)} equipped with the norm ||ω||K =

||ω||L2∩L1 + ||x2ω||L1 . By (2.2) and (2.4), the functional E2 : K → R is continuous. For ψ
defined in terms of ω ∈ K by using (2.13)2, the estimate (2.3) implies that∣∣∣∣∣∣

∫
R2
+

(ψ − ω)ηdx

∣∣∣∣∣∣ ≤ C||ω||K ||η||K
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for all η ∈ K. The functional E2 has a Gateaux derivative E′2 at any point ω ∈ K and

E′2(ω)η =
d
dε

E2(ω + εη)

∣∣∣∣∣∣
ε=0
=

∫
R2
+

(ψ − ω) ηdx.

The functional E′2(ω) is a bounded linear operator for each ω ∈ K and E′2 : K → K∗ is
continuous. Thus the Fréchet derivative E′2 exists and is continuous on K.

We take an arbitrary minimizer ω ∈ S µ. Since Iµ < 0 by (2.9), the minimizer ω is non-
trivial. We take a constant δ0 > 0 such that |{x ∈ R2

+ | ω ≥ δ0}| > 0. Here |E| denotes the
Lebesgue measure of a set E ⊂ R2

+. We take compactly supported h1, h2 ∈ L∞(R2
+) such that

spt hi ⊂ {ω ≥ δ0}, i = 1, 2,∫
R2
+

h1(x)dx = 1,
∫
R2
+

x2h1(x)dx = 0,∫
R2
+

h2(x)dx = 0,
∫
R2
+

x2h2(x)dx = 1.

We take an arbitrary δ ∈ (0, δ0) and compactly supported h ∈ L∞(R2
+) such that h ≥ 0 on

{0 ≤ ω ≤ δ}. We set

η = h −
(∫
R2
+

hdx
)

h1 −
(∫
R2
+

x2hdx
)

h2

so that
∫
ηdx = 0 and

∫
x2ηdx = 0. Observe that ω + εη ≥ δ − ε||η||∞ ≥ 0 on {ω ≥ δ}

for small ε > 0. Since η = h ≥ 0 on {0 ≤ ω ≤ δ}, ω + εη ≥ 0 on {0 ≤ ω ≤ δ}. Hence
ω + εη ∈ Kµ. Since ω is a minimizer of (1.6),

E′2(ω)η ≤ 0.(2.14)

By the definition of η,

E′2(ω)η = E′2(ω)h − E′2(ω)h1

(∫
R2
+

hdx
)
− E′2(ω)h2

(∫
R2
+

x2hdx
)
.

By setting γ = E′2(ω)h1 and W = E′2(ω)h2,

0 ≥ E′2(ω)h − γ
(∫
R2
+

hdx
)
−W

(∫
R2
+

x2hdx
)
=

∫
R2
+

(ψ −Wx2 − γ − ω) hdx =
∫

0≤ω≤δ
+

∫
ω>δ

.

We set Ψ = ψ −Wx2 − γ. Since h is an arbitrary function satisfying h ≥ 0 on {0 ≤ ω ≤ δ},

(2.15)
Ψ − ω = 0 on {ω > δ},
Ψ − ω ≤ 0 on {0 ≤ ω ≤ δ}.
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Since δ > 0 is arbitrary, sending δ→ 0 implies

(2.16)
Ψ − ω = 0 on {ω > 0},
Ψ ≤ 0 on {ω = 0}.

If Ψ > 0, ω = Ψ. If Ψ ≤ 0, ω = 0. Thus ω = Ψ+ and (2.13) holds.
We take a sequence {xn}, xn =

t(x1,n, x2,n), such that ω(xn) → 0 and xn,1 → ∞, xn,2 → 0.
By (2.16),

lim sup
n→∞

(
ψ(xn) −Wxn,2 − γ

) ≤ 0.

Hence γ ≥ 0. By taking an another sequence {xn} such that ω(xn) → 0 and xn,1 → 0,
xn,2 → ∞, W ≥ 0 follows.

We show uniqueness of W, γ. Suppose that ω satisfies (2.13) for W∗, γ∗ ≥ 0. Then,
Ψ = ψ −W∗x2 − γ∗ satisfies (2.15) for δ ∈ (0, δ0). Hence,

0 ≥
∫
R2
+

(Ψ − ω) hdx =
∫
R2
+

(ψ − ω − γ∗ −W∗x2) hdx

= E′2(ω)h − γ∗
(∫
R2
+

hdx
)
−W∗

(∫
R2
+

x2hdx
)
,

for compactly supported h ∈ L∞(R2
+) satisfying h ≥ 0 on {0 ≤ ω ≤ δ}. By taking h =

±h1,±h2, E′2(ω)h1 = γ∗, E′2(ω)h2 = W∗ follow. The proof is complete. □

Remarks 2.6. (i) The constant W is positive by the identity [46, p.1062],

W =
(

1
2π

∫
R2
+

∫
R2
+

x2 + y2

|x − y∗|2ω(x)ω(y)dxdy
) (∫

R2
+

ω(x)dx
)−1

, y∗ = t(y1,−y2),(2.17)

for minimizers ω ∈ S µ. The identity (2.17) follows by multiplying ∂x2Ψ = ∂x2ψ −W by ω
and integration by parts.
(ii) Every minimizer ω ∈ S µ for γ > 0 satisfies

∫
R2
+

ωdx = 1.

Indeed, suppose that
∫
ωdx < 1. We set

η = h −
(∫
R2
+

x2hdx
)

h2,
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by h and h2 as in the proof of Proposition 2.5 and observe that
∫

x2ηdx = 0. Then, by∫
ωdx < 1, ∫

R2
+

x2(ω + εη)dx =
∫
R2
+

x2ωdx = µ,∫
R2
+

(ω + εη)dx ≤ 1,

for small ε > 0. Thus ω + εη ∈ Kµ. By minimality of ω, (2.14) holds for ω and η and we
have

ψ −Wx2 − ω = 0 on {ω > 0},
ψ −Wx2 ≤ 0 on {ω = 0}.

This implies (2.13)1 for γ = 0, a contradiction to γ > 0.
(iii) There exists a constant M1 > 0 such that if 0 < µ ≤ M1, then every minimizer ω ∈ S µ

satisfies ∫
R2
+

ωdx < 1.

In particular, γ = 0 by (ii). Indeed, suppose that
∫
ωdx = 1. By µ =

∫
R2
+

x2ωdx ≥
2µ

∫
x2≥2µ ωdx, ∫

0<x2<2µ
ωdx = 1 −

∫
x2≥2µ

ωdx ≥ 1
2
.

Observe that by ω = Ψ+ ≤ ψ,∫
0<x2<2µ

ωdx ≤
∫

0<x2<2µ
dx

∫
R2
+

G(x, y)ω(y)dy

=

∫
0<y2<2µ

dy
∫
R2
+

G(y, x)ω(x)dx

=

∫
R2
+

ω(x)dx
∫

0<y2<2µ
G(x, y)dy =

∫
0<x2<4µ

∫
0<y2<2µ

+

∫
x2≥4µ

∫
0<y2<2µ

.

For 0 < x2 < 4µ, we have ∫
0<y2<2µ

G(x, y)dy ≤ Cµ2.

In fact, by
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∫
0<y2<4µ

G(x, y)dy =
∫

0<y2<4µ,
|x−y|<x2/2

+

∫
0<y2<4µ,
|x−y|≥x2/2

.

we estimate

∫
0<y2<4µ,
|x−y|<x2/2

G(x, y)dy ≤ 1
4π

∫
|x−y|<x2/2

log
(
1 +

4x2y2

|x − y|2

)
dy =

x2
2

4π

∫
|z|<1/2

log
(
1 +

4(1 − z2)
|z|2

)
dz

≤ Cµ2.

For |x − y| ≥ x2/2, the triangle inequality yields |x − y∗| ≤ 5|x − y| for y∗ = t(y1,−y2). By
G(x, y) ≤ π−1x2y2|x − y|−2,

∫
0<y2<4µ,
|x−y|≥x2/2

G(x, y)dy ≤ 1
π

∫
0<y2<4µ,
|x−y|≥x2/2

x2y2

|x − y|2 dy ≤ 25
π

∫
0<y2<4µ,
|x−y|≥x2/2

x2y2

|x − y∗|2 dy ≤ Cµ2.

Hence we have the desired estimate.
For x2 ≥ 4µ, by x2 − y2 ≥ x2/2,

∫
0<y2<2µ

G(x, y)dy ≤ x2

π

∫
0<y2<2µ

y2

|x − y|2 dy ≤ Cµ2.

Hence 1/2 ≤
∫

0<x2<2µ ωdx ≤ Cµ2 → 0 as µ→ 0, a contradiction.

The positivity of W > 0 will be shown to imply compactness of support for minimizers.
We denote by BUC(R2

+) the space of all bounded uniformly continuous functions in R2
+

and by Cα(R2
+) the space of all Hölder continuous functions of exponent 0 < α < 1 in

R2
+. For an integer k ≥ 0, BUCk+α(R2

+) denotes the space of all ψ ∈ BUC(R2
+) such that

∂l
xψ ∈ BUC(R2

+) ∩Cα(R2
+), for |l| ≤ k.

Proposition 2.7. For ω ∈ S µ, the stream function (2.13)2 satisfies ψ ∈ BUC2+α(R2
+), 0 <

α < 1, ψ/x2 ∈ BUC1+α(R2
+) and

ψ(x)
x2
→ 0 as |x| → ∞.(2.18)
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Proof. Since ω ∈ L1 ∩ L2, the representation (2.13)2 implies ∇2ψ ∈ Lq, q ∈ (1, 2) and
∇ψ ∈ Lp, 1/p = 1/q − 1/2. By (2.13)1 and (2.5), ψ satisfies

(2.19)

−∆ψ(x) = f (ψ −Wx2 − γ) in R2
+,

ψ = 0 on ∂R2
+,

ψ→ 0 as |x| → ∞.

By the Lipschitz continuity of f , ∂l
xψ ∈ Lp

ul(R
2
+), |l| = 3. Here, Lp

ul(R
2
+) denotes the uniformly

local Lp-space in R2
+. Hence ψ ∈ BUC2+α(R2

+) by Sobolev embedding. Since ψ(x1, 0) = 0
and

ψ(x1, x2)
x2

=

∫ 1

0
(∂2ψ)(x1, x2s)ds,

ψ/x2 ∈ BUC1+α(R2
+) follows. By (2.6) and Hardy’s inequality [38, 2.7.1],∥∥∥∥∥ ψx2

∥∥∥∥∥
2
≤ 2 ∥∇ψ∥2 ,

ψ/x2 ∈ BUC(R2
+) ∩ L2(R2

+) and (2.18) follows. □

Lemma 2.8. The support of ω ∈ S µ is compact in R2
+.

Proof. Since spt ω = {x ∈ R2
+ | ψ(x) −Wx2 − γ > 0} for W > 0 and γ ≥ 0 by (2.13)1 and

(2.16),

Wx2 ≤ ψ(x), x ∈ spt ω.

Since ψ/x2 → 0 as |x| → ∞ by (2.18), the assertion follows. □

To prove Theorem 1.5 later in Section 6, we state properties of the associated stream
function.

Lemma 2.9. For ω ∈ S µ, the stream function ψ ∈ BUC2+α(R2
+), 0 < α < 1, is a positive

solution of (2.19) satisfying ψ/x2 ∈ BUC1+α(R2
+), (2.18) and for

Ω =
{
x ∈ R2

+

∣∣∣ ψ(x) −Wx2 − γ > 0
}
,

Ω is compact in R2
+. If 0 < µ ≤ M1, then γ = 0, where M1 is the constant as in Remarks 2.6

(iii).
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Proof. The assertion follows from Propositions 2.2, 2.7, Lemma 2.8 and Remarks 2.6 (iii).
□

3. Existence of minimizers

We show that if the minimizing sequence {ωn} satisfies (1.7), then the kinetic energy
E[ωn] is concentrated on a bounded domain Q = {x ∈ R2

+ | |x1| < AR, x2 < R} and the weak
convergence of the sequence {ωn} in L2 implies the convergence of the energy E[ωn]. Once
we have the convergence of the energy, the existence of minimizers easily follows.

Proposition 3.1 (Steiner symmetrization). For ω ≥ 0 satisfying ω ∈ L2 ∩ L1(R2
+) and

x2ω ∈ L1(R2
+), there exists ω∗ ≥ 0 such that

(3.1)
ω∗(x1, x2) = ω∗(−x1, x2),

ω∗(x1, x2) is non-increasing for x1 > 0.

Moreover,

||ω∗||q = ||ω||q 1 ≤ q ≤ 2,

||x2ω
∗||1 = ||x2ω||1,

E(ω∗) ≥ E(ω).

Proof. See [21, Appendix I], [46, p.1053]. □

For the later usage in the proof of Theorem 1.3, we state a result for general 0 < µ, ν < ∞
with λ = 1. We first find a minimizer of −E2 in a slightly larger space K̃µ,ν ⊃ Kµ,ν and
then prove that the impulse of this minimizer is exactly µ > 0. The goal of this section is to
prove:

Lemma 3.2. For 0 < µ, ν < ∞, set

K̃µ,ν =

{
ω ∈ L2(R2

+)

∣∣∣∣∣∣ ω ≥ 0,
∫
R2
+

x2ωdx ≤ µ,
∫
R2
+

ωdx ≤ ν
}
.

(i) There exists ω ∈ K̃µ,ν such that

E2[ω] = sup
ω̃∈K̃µ,ν

E2[ω̃].

(ii) This maximizer ω ∈ K̃µ,ν satisfies (1.7),
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∫
R2
+

x2ωdx = µ,

and is with compact support in R2
+.

The proof of Lemma 3.2 is parallel to the case for vortex rings [23], [22] and is given later.
We first use the monotonicity (1.7)2 and deduce a decay estimate for the stream function for
the x1-variable.

Proposition 3.3. Let A ≥ 1. Let ψ be the stream function (1.5) forω ∈ L2∩L1(R2
+) satisfying

x2ω ∈ L1(R2
+) and ω ≥ 0. Assume that (1.7) holds for ω. Then,

ψ(x) ≤ C

( x2

A

)1/2
||ω||1/21 ||ω||

1/2
2 +

1
A
||ω||1 + x2

(
A
x1

)2

||x2ω||1
 , x2 ≤

|x1|
A
.(3.2)

The constant C is independent of ω and A.

Proof. By replacing A with A/2, we prove (3.2) for x2 ≤ 2|x1|/A and A ≥ 2. We may assume
that x1 > 0. Observe that for a non-increasing function g(t) ≥ 0 for t > 0,

∫ t+t/A

t−t/A
g(s)ds ≤ 4

A
||g||L1(0,∞) t > 0, A ≥ 2,

by tg(t) ≤ ||g||1, t > 0. Applying this to ω implies∫
|x1−y1 |<x1/A

ω(y)dy ≤ 4
A
||ω||1.

We set

ψ(x) =
∫
|x−y|<x2/2

G(x, y)dy +
∫
|x−y|≥x2/2

G(x, y)dy =: ψ1 + ψ2.

The conditions x2 ≤ 2x1/A and |x− y| < x2/2 imply |x1− y1| < x1/A. By Hölder’s inequality
for 1/q = θ + (1 − θ)/2, 1/q + 1/q′ = 1,

ψ1(x) =
∫

|x−y|<x2/2,
|x1−y1 |<x1/A

G(x, y)ω(y)dy ≤
(∫
R2
+

G(x, y)q′dy
)1/q′ (∫

|x1−y1 |<x1/A
ωq(y)dy

)1/q

≤ Cx2/q′

2 ||ω||θL1(|x1−y1 |<x1/A)||ω||
1−θ
L2(|x1−y1 |<x1/A).

Taking θ = 1/2 yields ψ1(x) ≤ C(x2/A)1/2||ω||1/21 ||ω||
1/2
2 . We set
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ψ2(x) =
∫

|x−y|≥x2/2,
|x1−y1 |<x1/A

G(x, y)dy +
∫

|x−y|≥x2/2,
|x1−y1 |≥x1/A

G(x, y)dy =: ψ1
2 + ψ

2
2.

By G(x, y) ≤ π−1x2y2|x − y|−2,

ψ1
2(x) ≤ 1

π

∫
|x−y|≥x2/2,
|x1−y1 |<x1/A

x2y2

|x − y|2ω(y)dy ≤ 6
π

∫
|x1−y1 |<x1/A

ω(y)dy ≤ 24
πA
||ω||1,

ψ2
2(x) ≤ 1

π

∫
|x−y|≥x2/2,
|x1−y1 |≥x1/A

x2y2

|x − y|2ω(y)dy ≤ x2

π

(
A
x1

)2

||y2ω||1.

We have obtained (3.2). □

The stream function estimate (3.2) will now be shown to imply that the kinetic energy
E[ω] is concentrated on a bounded domain Q = {x ∈ R2

+ | |x1| < AR, x2 < R}.

Proposition 3.4. Under the assumption of Proposition 3.3,

(3.3)
∫
R2
+\Q

ψ(x)ω(x)dx ≤ C
min{A,R}1/2

(
||ω||2L1∩L2 + ||x2ω||2L1

)
.

The constant C is independent of ω and A,R ≥ 1.

Proof. We decompose∫
R2
+\Q

ψ(x)ω(x)dx =
∫

x2≥R
ψ(x)ω(x)dx +

∫
x2<R,
|x1 |≥AR

ψ(x)ω(x)dx,

and estimate by (2.1)∫
x2≥R

ψ(x)ω(x)dx ≤ C||ω||1/2
L1 ||ω||1/2L2

∫
x2≥R

x1/2
2 ωdx ≤ C

R1/2 ||ω||L1∩L2 ||x2ω||L1 .

Since |x1| ≥ AR and x2 < R imply x2 ≤ x1/A, applying (3.2) yields∫
x2<R,
|x1 |≥AR

ψ(x)ω(x)dx ≤ C
∫

x2<R,
|x1 |≥AR

(( x2

A

)1/2
||ω||L2∩L1 +

1
A
||ω||L1 + x2

1
R2 ||x2ω||L1

)
ω(x)dx

≤ C
min{A,R}1/2

(
||ω||3/2

L1∩L2 ||x2ω||1/2L1 + ||ω||2L1∩L2 + ||x2ω||2L1

)
.
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By Young’s inequality, (3.3) follows. □

Proposition 3.4 implies that the kinetic energy E[ω] is continuous by the weak continuity
in a certain proper subset of L2, as we now show.

Lemma 3.5. Let {ωn} be a sequence such that

sup
n≥1

{||ωn||L2∩L1 + ||x2ωn||L1
}
< ∞,

ωn ⇀ ω in L2(R2
+) as n→ ∞.

Assume that each ωn satisfies (1.7). Then,

E[ωn]→ E[ω] as n→ ∞.

Proof. We decompose the energy into two terms

2E[ωn] =
∫
R2
+

ψn(x)ωn(x)dx =
∫

Q
ψn(x)ωn(x)dx +

∫
R2
+\Q

ψn(x)ωn(x)dx,

and observe that∫
Q
ψn(x)ωn(x)dx =

∫
Q
ωn(x)dx

∫
R2
+

G(x, y)ωn(y)dy

=

∫
Q
ωn(x)dx

∫
Q

G(x, y)ωn(y)dy +
∫

Q
ωn(x)dx

∫
R2
+\Q

G(x, y)ωn(y)dy.

By G(x, y) = G(y, x),∫
Q
ωn(x)dx

∫
R2
+\Q

G(x, y)ωn(y)dy =
∫

Q
ωn(y)dy

∫
R2
+\Q

G(x, y)ωn(x)dx ≤
∫
R2
+\Q

ψn(x)ωn(x)dx.

Applying (3.3) yields∣∣∣∣∣∣2E[ωn] −
∫

Q

∫
Q

G(x, y)ωn(x)ωn(y)dxdy

∣∣∣∣∣∣ ≤ 2
∫
R2
+\Q

ψn(x)ωn(x)dx ≤ C
min{A,R}1/2

.

By estimating E[ω] in the same way,

2 |E[ωn] − E[ω]| ≤
∣∣∣∣∣∣
∫

Q

∫
Q

G(x, y) (ω(x)ω(y) − ωn(x)ωn(y)) dxdy

∣∣∣∣∣∣ + C
min{A,R}1/2
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Since G(x, y) ∈ L2(Q × Q) and ωn(x)ωn(y) ⇀ ω(x)ω(y) in L2(Q × Q), sending n → ∞ and
A,R→ ∞ imply the desired result. □

Proof of Lemma 3.2. By the scaling (1.12), we reduce to the case 0 < µ < ∞, ν = 1 with an
abbreviated notation K̃µ,1 = K̃µ. Let {ωn} ⊂ K̃µ be a maximizing sequence of E2. By Steiner
symmetrization, we may assume that ωn satisfies (1.7). Since {ωn} is uniformly bounded
in L2 as we proved in Remarks 2.4 (ii), by choosing a subsequence (still denoted by {ωn}),
there exists ω ∈ L2 such that ωn ⇀ ω in L2 and ||ω||2 ≤ lim infn→∞ ||ωn||2. The limit ω
belongs to K̃µ and satisfies (1.7). Since {ωn} satisfies the assumption of Lemma 3.5,

sup
ω̃∈K̃µ

E2[ω̃] = lim
n→∞

E2[ωn] = lim
n→∞

E[ωn] − 1
2

lim inf
n→∞

||ωn||22 ≤ E[ω] − 1
2
||ω||22 = E2[ω].

Thus ω ∈ K̃µ is a maximizer. We proved (i).
Since supω∈K̃µ

E2[ω] > 0 as we proved in (2.9), the maximizer ω is a non-trivial function
and satisfies (2.13) for some constants W, γ ≥ 0 as in Proposition 2.5. By the identity (2.17),
we have W > 0. It remains to show ∫

R2
+

x2ωdx = µ.

Suppose that
∫

x2ωdx < µ. We set

η = h −
(∫
R2
+

hdx
)

h1,

by h and h1 as in the proof of Proposition 2.5 so that
∫
ηdx = 0. Then by

∫
x2ωdx < µ,∫

R2
+

(ω + εη)dx =
∫
R2
+

ωdx ≤ 1,∫
R2
+

x2(ω + εη) ≤ µ,

for small ε > 0. Thus ω + εη ∈ K̃µ. By the maximality of ω ∈ K̃µ, (2.14) holds for ω and η
and for γ = E′2[ω]h1,

0 ≥ E′2[ω]η = E′2[ω]h − E′2[ω]h1

∫
R2
+

hdx =
∫
R2
+

(ψ − γ − ω)hdx.

In the same way as in the proof of Proposition 2.5, this implies that

ψ − γ − ω = 0, on {ω > 0},
ψ − γ ≤ 0, on {ω = 0}.
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Thus (2.13) holds for W = 0. Thanks to the uniqueness of W by Proposition 2.5, this yields
a contradiction to W > 0. The compactness of spt ω follows from Lemma 2.8. We have
proved (ii). □

Remark 3.6. It is observed from the proof of Lemma 3.2 that after taking Steiner sym-
metrization, {ωn} satisfies limn→∞ ||ωn||2 = ||ω||2 and hence ωn → ω in L2. We will see in
the next section that any maximizing sequence is relatively compact in L2 by translation for
the x1-variable without the condition (1.7).

4. Concentrated compactness

We prove Theorem 1.3. For a minimizing sequence of (1.6) which does not satisfy the
symmetric and non-increasing condition (1.7), Lemma 3.5 cannot be directly applied to
prove compactness of the sequence. Instead, we apply a concentration compactness prin-
ciple to get compactness of the minimizing sequence up to translation for the x1-variable.
The main difficulty appears when we need to exclude the possibility of dichotomy of the
sequence since the strict subadditivity of Iµ is unknown as in Remarks 2.4 (i). To overcome
this difficulty, we use the idea from Steiner symmetrization and reduce the problem to the
compactness of a symmetric and non-increasing sequence (Lemma 3.5) and the existence of
minimizers of (1.6) (Lemma 3.2).

As used in [31], [13], the concentration-compactness lemma is available even if the mass
is not exactly the same. See also [12, Lemma 1].

Lemma 4.1. Let 0 < µ < ∞. Let {ρn} ⊂ L1(R2
+) satisfy

ρn ≥ 0 n ≥ 1,
∫
R2
+

ρndx = µn → µ as n→ ∞.

There exists a subsequence {ρnk } satisfying the one of the following:
(i) (Compactness) There exists a sequence {yk} ⊂ R2

+ such that ρnk (· + yk) is tight, i.e., for
arbitrary ε > 0 there exists R > 0 such that

lim inf
k→∞

∫
B(yk ,R)∩R2

+

ρnk dx ≥ µ − ε.(4.1)

(ii) (Vanishing) For each R > 0,

lim
k→∞

sup
y∈R2

+

∫
B(y,R)∩R2

+

ρnk dx = 0.(4.2)
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(iii) (Dichotomy) There exists α ∈ (0, µ) such that for arbitrary ε > 0 there exist k0 ≥ 1 and
{ρ1

k}, {ρ2
k} ⊂ L1(R2

+) such that spt ρ1
k ∩ spt ρ2

k = ∅, 0 ≤ ρi
k ≤ ρnk , i=1,2,

(4.3)
lim sup

k→∞

{
||ρnk − ρ1

k − ρ2
k ||L1 +

∣∣∣∣∣∣
∫
R2
+

ρ1
kdx − α

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫
R2
+

ρ2
kdx − (µ − α)

∣∣∣∣∣∣
}
≤ ε,

dist (spt ρ1
k , spt ρ2

k)→ ∞ as k → ∞.

Proof. The assertion is proved in [31, Lemma I.1] for the whole space and the fixed mass
µn = µ by using Lévy’s concentration function. The proof also applies to a half space. The
case µn → µ is reduced to the fixed mass case by setting ρ̃n = ρnµ/µn. □

Remark 4.2. The case (i) is further divided into two cases: (a) lim supk→∞ y2,k = ∞ for
yk =

t(y1,k, y2,k) and (b) supk≥1 y2,k < ∞. In the case (b), we may assume that y2,k = 0 by
replacing R. In fact, B(t(y1,k, 0),R′) ⊃ B(yk,R) for R′ = supk≥1 y2,k + R. Hence

lim inf
k→∞

∫
B(t(y1,k ,0),R′)

ρnk dx ≥ µ − ε.

Proof of Theorem 1.3. Let {ωn} be a minimizing sequence such that ωn ∈ Kµn , µn → µ and
−E2[ωn] → Iµ as n → ∞. By Remarks 2.4 (ii), {ωn} is uniformly bounded in L2. We set
ρn = x2ωn and apply Lemma 4.1. Then, for a certain subsequence still denoted by {ωn}, one
of the three cases, (iii) Dichotomy, (ii) Vanishing, (i) Compactness, should occur. We shall
exclude the first two cases to get compactness of the sequence.

Case 1. Dichotomy:
There exists some α ∈ (0, µ) such that for arbitrary ε > 0, there exist k0 ≥ 1 and {ω1,n}, {ω2,n} ⊂
L1 such that ω3,n = ωn−ω1,n−ω2,n satisfies spt ω1,n∩spt ω2,n = ∅, 0 ≤ ωi,n ≤ ωn, i = 1, 2, 3,
and

lim sup
n→∞

{||x2ω3,n||1 + |αn − α| + |βn − (µ − α)|} ≤ ε,
αn =

∫
R2
+

x2ω1,ndx, βn =

∫
R2
+

x2ω2,ndx,

dn = dist (spt ω1,n, spt ω2,n)→ ∞ as n→ ∞.

By choosing a subsequence, we may assume that supn ||x2ω3,n||1 ≤ 2ε, αn → α and βn → β.
By suppressing the integral region, we see that
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2E[ωn] =
"

G(x, y)ωn(x)ωn(y)dxdy

=

"
G(x, y)ω1,n(x)ω1,n(y)dxdy +

"
G(x, y)ω2,n(x)ω2,n(y)dxdy

+ 2
"

G(x, y)ω1,n(x)ω2,n(y)dxdy +
"

G(x, y)(2ωn(x) − ω3,n(x))ω3,n(y)dxdy.

Applying (2.3) implies

∣∣∣∣∣" G(x, y)(2ωn(x) − ω3,n(x))ω3,n(y)dxdy
∣∣∣∣∣ ≤ C||2ωn − ω3,n||1/21 ||2ωn − ω3,n||1/22 ||x2ω3,n||1/21 ||ω3,n||1/21

≤ Cε1/2.

Since G(x, y) ≤ π−1x2y2|x − y|−2,

"
G(x, y)ω1,n(x)ω2,n(y)dxdy =

"
|x−y|≥dn

G(x, y)ω1,n(x)ω2,n(y)dxdy ≤ µ2

πd2
n
.

Hence

E2[ωn] = E[ωn] − 1
2

∫
R2
+

ω2
ndx ≤ E2[ω1,n] + E2[ω2,n] +

µ2

πd2
n
+Cε1/2.

We take a Steiner symmetrization ω∗i,n of ωi,n to see that

E2[ωn] ≤ E2[ω∗1,n] + E2[ω∗2,n] +
µ2

πd2
n
+Cε1/2,

||ω∗1,n||1 + ||ω∗2,n||1 ≤ 1, ||ω∗1,n||2 + ||ω∗2,n||2 ≤ C,

αn =

∫
R2
+

x2ω
∗
1,ndx, βn =

∫
R2
+

x2ω
∗
2,ndx.

By choosing a subsequence (still denoted by {ω∗i,n}),ω∗i,n ⇀ ωεi in L2 and ||ωεi ||2 ≤ lim infn→∞ ||ω∗i,n||2.
Since ω∗i,n is symmetric and non-increasing for x1 > 0, we apply Lemma 3.5 to get the con-
vergence of the kinetic energy

lim
n→∞

E[ω∗i,n] = E[ωεi ], i = 1, 2.

Sending n→ ∞ implies that
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− Iµ ≤ E2[ωε1] + E2[ωε2] +Cε1/2,

||ωε1||1 + ||ω
ε
2||1 ≤ 1, ||ωε1||2 + ||ω

ε
2||2 ≤ C,

α ≥
∫
R2
+

x2ω
ε
1dx, β ≥

∫
R2
+

x2ω
ε
2dx.

Since ωεi for ε > 0 is also symmetric and non-increasing for x1 > 0, applying the same
argument for ωεi and sending ε→ 0 implies that ωεi ⇀ ωi in L2(R2

+) and

− Iµ ≤ E2[ω1] + E2[ω2],

||ω1||1 + ||ω2||1 ≤ 1,

α ≥
∫
R2
+

x2ω1dx, µ − α ≥
∫
R2
+

x2ω2dx.

If ω1 ≡ 0 and ω2 ≡ 0, we have −Iµ ≤ 0, a contradiction to Iµ < 0 by (2.9). We may assume
that ω1 . 0. We set ν1 = 1−||ω2||1 > 0 and apply Lemma 3.2 to take a maximizer ω1 ∈ K̃α,ν1

of

E2[ω1] = sup
ω∈K̃α,ν1

E2[ω],

such that
∫

x2ω1dx = α and spt ω1 is compact in R2
+. Hence

− Iµ ≤ E2[ω1] + E2[ω2],

||ω1||1 + ||ω2||1 ≤ 1,

α =

∫
R2
+

x2ω1dx, µ − α ≥
∫
R2
+

x2ω2dx.

If ω2 ≡ 0, we have −Iµ ≤ −Iα, a contradiction to Iµ < Iα by (2.10). We may assume that
ω2 . 0. By setting ν2 = 1 − ||ω1||1 > 0 and taking a maximizer ω2 ∈ K̃µ−α,ν2 with compact
support in the same way,

− Iµ ≤ E2[ω1] + E2[ω2],
||ω1||1 + ||ω2||1 ≤ 1,

α =

∫
R2
+

x2ω1dx, µ − α =
∫
R2
+

x2ω2dx.

By translation for the x1-variable, we may assume that spt ω1 ∩ spt ω2 = ∅. Since ω1 +ω2 ∈
Kµ,
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−Iµ ≤ E2[ω1] + E2[ω2] = E2[ω1 + ω2] −
"

G(x, y)ω1(x)ω2(y)dxdy

≤ −Iµ −
"

G(x, y)ω1(x)ω2(y)dxdy ≤ −Iµ.

Hence, ωi ≡ 0 for i = 1 or 2. This contradicts µ =
∫
R2
+

x2(ω1 +ω2)dx. Thus dichotomy does
not occur.

Case 2. Vanishing:

lim
n→∞

sup
y∈R2

+

∫
B(y,R)∩R2

+

x2ωndx = 0, for each R > 0.

We shall show that limn→∞ E[ωn] = 0. Since E2[ωn] ≤ E[ωn], this implies Iµ ≥ 0, a
contradiction to Iµ < 0.

We set

2E[ωn] =
"

G(x, y)ωn(x)ωn(y)dxdy =
"
|x−y|≥R

+

"
|x−y|<R

.

Since G(x, y) ≤ π−1x2y2|x − y|−2,

"
|x−y|≥R

G(x, y)ωn(x)ωn(y)dxdy ≤ µ2

πR2 .

We divide the second term into two terms"
|x−y|<R

G(x, y)ωn(x)ωn(y)dxdy =
"
|x−y|<R,
G≥Rx2y2

+

"
|x−y|<R,
G<Rx2y2

,

and observe that

"
|x−y|<R,
G<Rx2y2

G(x, y)ωn(x)ωn(y)dxdy ≤ Rµ

sup
y∈R2

+

∫
B(y,R)∩R2

+

x2ωn(x)dx

→ 0 as n→ ∞.

We may assume that R ≥ 1. The condition G ≥ Rx2y2 implies |x − y| ≤ R−1/2. Since
|x − y∗| ≤ 2x2 + R−1/2, y∗ = t(y1,−y2),

G(x, y) = − 1
2π

(
log |x − y| − log |x − y∗|) ≤ 1

π

(∣∣∣log |x − y|
∣∣∣ + x2

)
,
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|x−y|<R−1/2

G(x, y)2dy
)1/2

≤ C(R)(1 + x2),

and C(R)→ 0 as R→ ∞. Hence"
|x−y|<R,
G≥Rx2y2

G(x, y)ωn(x)ωn(y)dxdy ≤
"
|x−y|<R−1/2

G(x, y)ωn(x)ωn(y)dxdy

≤ ||ωn||2
∫
R2
+

ωn(x)
(∫
|x−y|<R−1/2

G(x, y)2dy
)1/2

dx

≤ C(R)′.

Sending n → ∞, and then R → ∞ implies limn→∞ E[ωn] = 0. Thus vanishing does not
occur.

Case 3. Compactness:
There exists a sequence {yn} ⊂ R2

+ such that for arbitrary ε > 0, there exists R > 0 such that

lim inf
n→∞

∫
B(yn,R)∩R2

+

x2ωndx ≥ µ − ε.

By translation for the x1-variable, we may assume that yn =
t(0, y2,n). Then, there are two

cases whether (a) lim supn→∞ y2,n = ∞ or (b) supn≥1 y2,n < ∞. We shall first show that the
case (a) does not occur.

(a) lim supn→∞ y2,n = ∞. We may assume that limn→∞ y2,n = ∞ and supn ||x2ωn||L1(R2
+\B(yn,R)) ≤

2ε by choosing a subsequence. We shall show that limn→∞ E[ωn] = 0. This implies
−Iµ = limn→∞ E2[ωn] ≤ limn→∞ E[ωn] = 0, a contradiction to Iµ < 0.

We set

2E[ωn] =
∫
R2
+

ψnωndx =
∫

B(yn,R)∩R2
+

+

∫
R2
+\B(yn,R)

,

for

ψn(x) =
∫
R2
+

G(x, y)ωn(y)dy.

By (2.1),

∫
B(yn,R)∩R2

+

ψnωndx ≤
∥∥∥∥∥∥∥ ψn

x1/2
2

∥∥∥∥∥∥∥
∞

∫
B(yn,R)∩R2

+

x1/2
2 ωndx ≤ Cµ(

y2,n − R
)1/2 → 0 as n→ ∞.

By Hölder’s inequality,
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∫
R2
+\B(yn,R)

ψnωndx ≤
∥∥∥∥∥∥∥ ψn

x1/2
2

∥∥∥∥∥∥∥
∞

(∫
R2
+\B(yn,R)

x2ωndx
)1/2 (∫

R2
+\B(yn,R)

ωndx
)1/2

≤ Cε1/2.

Thus sending n → ∞, and then ε → 0 implies limn→∞ E[ωn] = 0. Thus case (a) does not
occur.

(b) supn≥ y2,n < ∞. We may assume that y2,n = 0 by taking sufficiently large R > 0 as noted
in Remark 4.2, i.e., for B = B(0,R),

lim inf
n→∞

∫
B∩R2

+

x2ωndx ≥ µ − ε.

Since {ωn} is uniformly bounded in L2, by choosing a subsequence, ωn ⇀ ω in L2 for some
ω. By sending n→ ∞, ∫

R2
+

x2ωdx = µ.

Hence ω ∈ Kµ. We shall show that

lim
n→∞

E[ωn] = E[ω].(4.4)

This implies that

−Iµ = lim
n→∞

E2[ωn] ≤ lim
n→∞

E[ωn] − 1
2

lim inf
n→∞

||ωn||22 ≤ E2[ω] ≤ −Iµ.

Hence limn→∞ ||ωn||2 = ||ω||2 and ωn → ω in L2 follows. By∫
R2
+

x2|ωn − ω|dx =
∫

B∩R2
+

x2|ωn − ω|dx +
∫
R2
+\B

x2|ωn − ω|dx ≤ C||ωn − ω||2 +C′ε,

sending n → ∞ and then ε → 0 implies x2ωn → x2ω in L1. Since E2[ωn] → E2[ω], the
limit ω ∈ Kµ is a minimizer of Iµ.

It remains to show (4.4). We decompose

2E[ωn] =
∫
R2
+

ψnωndx =
∫

B∩R2
+

+

∫
R2
+\B
,

and also∫
B∩R2

+

ψnωndx =
∫

B∩R2
+

ω(x)dx
∫
R2
+

G(x, y)ωn(y)dy =
∫

B∩R2
+

∫
B∩R2

+

+

∫
B∩R2

+

∫
R2
+\B

.
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Observe that by G(x, y) = G(y, x),

∫
B∩R2

+

ωn(x)dx
∫
R2
+\B

G(x, y)ωn(y)dy =
∫

B∩R2
+

ωn(y)dy
∫
R2
+\B

G(x, y)ωn(x)dx

≤
∫
R2
+\B

ωn(x)dx
∫
R2
+

G(x, y)ωn(y)dy

=

∫
R2
+\B

ψn(x)ωn(x)dx.

Hence ∣∣∣∣∣∣2E[ωn] −
∫

B∩R2
+

∫
B∩R2

+

G(x, y)ωn(x)ωn(y)dxdy

∣∣∣∣∣∣ ≤ 2
∫
R2
+\B

ψn(x)ωn(x)dx.

By

∫
R2
+\B

ψn(x)ωn(x)dx ≤
∥∥∥∥∥∥∥ ψn

x1/2
2

∥∥∥∥∥∥∥
∞

(∫
R2
+\B

x2ωndx
)1/2 (∫

R2
+\B

ωndx
)1/2

≤ Cε1/2,

and estimating E[ω] in the same way,

2 |E[ωn] − E[ω]| ≤
∣∣∣∣∣∣
∫

B∩R2
+

∫
B∩R2

+

G(x, y) (ωn(x)ωn(y) − ω(x)ω(y)) dxdy

∣∣∣∣∣∣ +Cε1/2.

Since G(x, y) ∈ L2(B × B) and ωn(x)ωn(y) ⇀ ω(x)ω(y) in L2(B × B), sending n → ∞ and
ε→ 0 yields limn→∞ E[ωn] = E[ω]. The proof is now complete. □

5. Orbital stability

We prove Theorem 1.4. We first show existence of global weak solutions of (1.1) sat-
isfying the conservations (1.8). To see this, we recall renormalized solutions of DiPerna-
Lions [18].

5.1. Existence of global weak solutions. We consider the linear transport equation

(5.1)
∂tξ + b · ∇ξ = 0 in R2 × (0,T ),

ξ(x, 0) = ξ0 on R2 × {t = 0},

with the divergence-free drift b, i.e., div b = 0, satisfying
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(5.2)
b ∈ L1(0,T ; W1,1

loc (R2)),
b

1 + |x| ∈ L1(0,T ; L1 + L∞(R2)).

We denote by L0 the set of all measurable functions f such that |{| f | > α}| < ∞ for each
α ∈ (0,∞). We say that ξ ∈ L∞(0,T ; L0) is a renormalized solution of (5.1)1 if ξ satisfies

∂tβ(ξ) + b · ∇β(ξ) = 0 in R2 × (0,T ),(5.3)

for all β ∈ C1 ∩ L∞(R) vanishing near zero, in the sense of distribution. It is proved in [18,
Theorem II. 3] under the condition (5.2) that for ξ0 ∈ L0 there exists a unique renormalized
solution ξ ∈ C([0,T ]; L0) of (5.1) and if ξ0 ∈ Lq(R2), q ∈ [1,∞], the renormalized solution
satisfies ξ ∈ C([0,T ]; Lq(R2)) and

||ξ||q(t) = ||ξ0||q for all t ≥ 0.(5.4)

It is proved in [33, p.357] that every global weak solution of (1.1) for ζ0 ∈ Lq ∩ L1(R2), q ∈
(1,∞), constructed by approximation of ζ0 is a renormalized solution of (5.1) for b = k ∗ ζ,
see also [17]. Thus the conservation (1.8)1 holds for the weak solutions by (5.4).

Proposition 5.1. For symmetric initial data ζ0 ∈ L2 ∩ L1(R2) such that x2ζ0 ∈ L1(R2) and
ζ0 ≥ 0 for x2 ≥ 0, i.e., ζ0(x1, x2) = −ζ0(x1,−x2), there exists a symmetric global weak
solution ζ ∈ BC([0,∞); L2 ∩ L1(R2)) of (1.1) such that x2ζ ∈ BC([0,∞); L1(R2)), ζ ≥ 0 for
x2 ≥ 0, ∫ ∞

0

∫
R2
ζ(∂tφ + v · ∇φ)dxdt = −

∫
R2
ζ0(x)φ(x, 0)dx(5.5)

for v = k ∗ ζ and all φ ∈ C∞c (R2 × [0,∞)). This weak solution ζ satisfies the conservations
(1.8).

Proof. For smooth and symmetric initial data ζ0 ∈ C∞c , there exists a symmetric classical
solution ζ ∈ BC([0,∞); L2∩L1) of (1.1) [34]. Since ζ is conserved on the particle trajectory
map that globally exists and is homeomorphism of R2 onto R2 [35, Proposition 4.1, Corol-
lary 4.1], ζ(·, t) is compactly supported in R2. By the conservations (1.8) and the Biot-Savart
law v = k ∗ ζ, the solution satisfies

(5.6)

ζ ∈ L∞(0,∞; L2 ∩ L1),

x2ζ ∈ L∞(0,∞; L1),

v ∈ L∞(0,∞; Lp), 2 ≤ p < ∞,
∇v ∈ L∞(0,∞; Lq), 1 < q ≤ 2.
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By (5.6)3 and (5.6)4, vζ ∈ L∞(0,∞; Lr), 1 < r < 2. For arbitrary φ ∈ C∞c (R2), we have
||∇k ∗φ||Lr′ ≤ C||φ||Lr′ for 1/r+ 1/r′ = 1 by the estimate of the singular integral operator. By
Fubini’s theorem,∫

R2
v(x, t)φ(x)dx =

∫
R2

(k ∗ ζ)(x, t)φ(x)dx = −
∫
R2
ζ(x, t)(k ∗ φ)(x)dx.

Since ζ(·, t) is compactly supported in R2 and a smooth solution to ∂tζ + v · ∇ζ = 0, by
differentiating the above equation in t,∫

R2
∂tv(x, t)φ(x)dx = −

∫
R2
∂tζ(x, t)(k ∗ φ)(x)dx = −

∫
R2

v(x, t)ζ(x, t) · ∇(k ∗ φ)(x)dx.

Thus ∣∣∣∣∣∫
R2
∂tv(x, t)φ(x)dx

∣∣∣∣∣ ≤ C||vζ ||Lr ||φ||Lr′

for all φ ∈ C∞c (R2). By density of C∞c (R2) in Lr′(R2), the functional φ 7−→
∫
R2 ∂tvφdx is

uniquely extendable to that on Lr′(R2). By Riesz representation theorem, ∂tv(·, t) ∈ Lr(R2)
and the above inequality holds for all φ ∈ Lr′(R2). Thus by duality, ||∂tv||Lr ≤ C||vζ ||Lr and

∂tv ∈ L∞(0,∞; Lr), 1 < r < 2.(5.7)

We set ϕ(x, t) =
∫
R2
+

G(x, y)ζ(y, t)dy by (1.5). We have v = ∇⊥ϕ for ∇⊥ = t(∂2,−∂1). By
(5.7) and applying the Sobolev inequality ||φ||Ls ≤ C||∇φ||Lr , 1/s = 1/r − 1/2, 1 < r < 2 for
φ = ∂tϕ,

∂tϕ ∈ L∞(0,∞; Ls), 2 < s < ∞.(5.8)

We will use (5.7) and (5.8) to obtain the equality (1.8)3.
The function v satisfies the condition (5.2). Indeed, by v = k ∗ ζ, k = k1B+ k1Bc = k1+ k2,

B = B(0, 1), and Young’s inequality,

||v||L1+L∞ ≤ ||k1 ∗ ζ ||L1 + ||k2 ∗ ζ ||L∞ ≤ (||k1||L1 + ||k2||L∞)||ζ ||L1 .

Hence

v ∈ L∞(0,∞; L1 + L∞).(5.9)

The existence of a global weak solution of (1.1) satisfying (5.5)-(5.8) for symmetric ζ0 ∈
L2 ∩ L1, x2ζ0 ∈ L1, ζ0 ≥ 0 for x2 ≥ 0, follows by an approximation of ζ0 by elements
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of C∞c , e.g., [35]. By the conditions (5.6)4, (5.9) and the consistency [18, Theorem II.3
(1)], the constructed global weak solution ζ is a renormalized solution of (5.1). Hence
ζ ∈ BC([0,∞); L2 ∩ L1) and (1.8)1 holds.

The conservations (1.8)2 and (1.8)3 follow from the weak form (5.5). To see this, we
take a cut-off function θ ∈ C∞(R), satisfying θ ≡ 1 in (−∞, 1] and θ ≡ 0 in [2,∞) and
set θR(x) = θ(|x|/R), R ≥ 1, and ηm(t) = θ(m(t − T ) + 1), m ≥ 1, T > 0. For arbitrary
f ∈ BC[0,∞),

∫ ∞

0
f (t)∂tηm(t)dt =

∫ 2

1
f
(

s − 1
m
+ T

)
θ̇(s)ds→ f (T )

∫ 2

1
θ̇(s)ds = − f (T ) as m→ ∞.

Thus by substituting φ = x2θRηm into (5.5) and sending m→ ∞,

∫ T

0

∫
R2
ζv · ∇(x2θR)dxdt =

∫
R2

x2ζ(x,T )θR(x)dx −
∫
R2

x2ζ0(x)θR(x)dx.

Since

ζv · ∇(x2θR) =
(
∂1

(
1
2

(
|v2|2 − |v1|2

))
− ∂2(v1v2)

)
θR + ζvx2 · ∇θR,

sending R→ ∞ implies (1.8)2.
To prove (1.8)3, it suffices to show the conservation of the kinetic energy∫

R2
|v(x,T )|2dx =

∫
R2
|v0(x)|2dx.(5.10)

Since 2E[ω] = ||v||22 by (2.6), (1.8)1 and (5.10) imply (1.8)3. By (5.6) and (5.7), observe that

2
∫ T

0

∫
R2

v · ∂tvdxdt =
∫
R2
|v(x,T )|2dx −

∫
R2
|v0(x)|2dx.(5.11)

By (5.6) and approximation of the test functions in (5.5), we have

∫ T

0

∫
R2
ζ(∂tφ + v · ∇φ)dxdt =

∫
R2
ζ(x,T )φ(x,T )dx −

∫
R2
ζ0(x)φ(x, 0)dx

for all φ ∈ L∞(R2 × (0,T )) satisfying ∇φ, ∂tφ ∈ L∞(0,T ; Ls), 2 < s < ∞. By (5.6)1, (5.6)2
and Proposition 2.2, ϕ ∈ L∞(R2 × (0,T )). By (5.6)3 and (5.8), ∇ϕ, ∂tϕ ∈ L∞(0,T ; Ls). Thus
by substituting ϕ into the above and applying Proposition 2.2,

∫ T

0

∫
R2

v · ∂tvdxdt =
∫
R2
|v(x,T )|2dx −

∫
R2
|v0(x)|2dx.

By (5.11), we have obtained (5.10). The proof is complete. □
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5.2. An application to stability. We now apply Theorem 1.3 for:

Proof of Theorem 1.4. We give a proof for the case 0 < µ < ∞, ν = λ = 1. The proof is
also applied to the general case 0 < µ, ν, λ < ∞ by replacing Kµ, Iµ, S µ by Kµ,ν, Iµ,ν,λ, S µ,ν,λ,
respectively. Suppose that (1.10) were false. Then there exists ε0 > 0 such that for n ≥ 1,
there exist ζ0,n ∈ L2 ∩ L1 satisfying ζ0,n ≥ 0, ||ζ0,n||1 ≤ 1 and tn ≥ 0 such that a global weak
solution in Proposition 5.1 satisfies

inf
ω∈S µ

{||ζ0,n − ω||2 + ||x2(ζ0,n − ω)||1
} ≤ 1

n
,

inf
ω∈S µ

{||ζn(tn) − ω||2 + ||x2(ζn(tn) − ω)||1} ≥ ε0.

We write ζn = ζn(tn) by suppressing tn. We take ωn ∈ S µ such that ||ζ0,n − ωn||2 + ||x2(ζ0,n −
ω)||1 → 0. By (2.4),

∣∣∣E2[ζ0,n] + Iµ
∣∣∣ = ∣∣∣E2[ζ0,n] − E2[ωn]

∣∣∣→ 0 as n→ ∞.

Thus {ζ0,n} is a minimizing sequence such that ζ0,n ∈ Kµn , µn =
∫

x2ζ0,ndx → µ and
−E2[ζ0,n]→ Iµ as n→ ∞.

By the conservations (1.8), ζn ∈ Kµn and

∣∣∣E2[ζn] + Iµ
∣∣∣ = ∣∣∣E2[ζ0,n] + Iµ

∣∣∣→ 0 as n→ ∞.

Hence {ζn} is also a minimizing sequence such that ζn ∈ Kµn , µn → µ and −E2[ζn]→ Iµ. By
Theorem 1.3, there exists a sequence {yn} ⊂ ∂R2

+ such that, by choosing a subsequence (still
denoted by {ζn}), there exists ζ ∈ L2 ∩ L1 such that

ζn(· + yn)→ ζ in L2(R2
+),

x2ζn(· + yn)→ x2ζ in L1(R2
+),

and the limit ζ ∈ Kµ is a minimizer of Iµ, i.e., ζ ∈ S µ. Sending n→ ∞ implies

0 = inf
ω∈S µ

{||ζ − ω||2 + ||x2(ζ − ω)||1} = inf
ω∈S µ

(
lim
n→∞
{||ζn − ω||2 + ||x2(ζn − ω)||1}

)
≥ lim inf

n→∞

(
inf
ω∈S µ

{||ζn − ω||2 + ||x2(ζn − ω)||1}
)
≥ ε0.

We obtained a contradiction. □
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Remarks 5.2. (i) It is observed from the above proof that the assertion of Theorem 1.4 holds
even if impulse of initial data is merely close to µ, i.e., for ε > 0 there exists δ > 0 such that
for ζ0 ∈ L2 ∩ L1(R2

+) satisfying ζ0 ≥ 0, ||ζ0||1 ≤ ν and

inf
ω∈S µ,ν,λ

||ζ0 − ω||2 +
∣∣∣∣∣∣
∫
R2
+

x2ζ0dx − µ
∣∣∣∣∣∣ ≤ δ,(5.12)

there exists a global weak solution of (1.1) satisfying (1.10).
(ii) In [12], orbital stability by the L2-norm is proved if initial data ζ0 is close to a set of
minimizers in the same topology as (5.12).

6. Uniqueness of the Lamb dipole

We prove Theorem 1.5. For minimizers ω ∈ S µ, the associated stream functions are
positive solutions of (2.19) for W > 0 and γ = 0, provided that 0 < µ ≤ M1 as in Lemma
2.9. Our goal is to prove that such solutions are only translations of the Lamb dipole (1.3)
for λ = 1.

6.1. A decay estimate. We consider positive solutions ψ > 0 of the problem:

(6.1)

−∆ψ(x) = f (ψ −Wx2) in R2
+,

ψ = 0 on ∂R2
+,

ψ→ 0 as |x| → ∞,

for some constant W > 0.

Theorem 6.1. Let ψ ∈ BUC2+α(R2
+), 0 < α < 1, be a positive solution of (6.1) for some

W > 0 such that ψ/x2 ∈ BUC1+α(R2
+), ψ/x2 → 0 as |x| → ∞ and for Ω = {x ∈ R2

+ | ψ(x) −
Wx2 > 0}, Ω is compact in R2

+. Then, ψ(x1, x2) = ψL(x1 + q, x2) for some q ∈ R, where
ψL = ΨL +Wx2 and ΨL is the Lamb dipole (1.3) for λ = 1 and the given W > 0.

The uniqueness (up to translations) of weak solutions ψ ∈ Ḣ1
0(R2
+) to (6.1) for W > 0 is

proved by Burton [9, Theorem 2.1] by applying a symmetry result of Fraenkel [20, Theorem
4.2] for positive solutions to semi-linear elliptic problems, see also [25, Theorem 4, 2.3.
Remark 1]. His proof is based on the fact [50, Lemma 1] that Ḣ1

0(R2
+) is isometrically

isomorphic to a subspace of axisymmetric functions in Ḣ1(R4) by the transform

ψ(x1, x2) 7−→ φ(y) =
ψ(x1, x2)

x2
, y = t(y′, y4) ∈ R4, x1 = y4, x2 = |y′|.(6.2)

This reduces weak solutions of (6.1) to those of
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(6.3)
−∆yφ = f (φ −W) in R4,

φ→ 0 as |y| → ∞.

By the Sobolev embedding Ḣ1(R4) ⊂ L4(R4) and differentiability of weak solutions to the
Poisson equation, they are in W2,4(R4) ⊂ BUCα(R4), 0 < α < 1 and satisfy the decay (6.3)2.
The decay implies that f (φ −W) is compactly supported and thus for

Ξ =
{
y ∈ R4

∣∣∣ φ(y) −W > 0
}
,(6.4)

Ξ is compact in R4. By uniqueness of the Poisson equation, φ is expressed in terms of the
Newton potential. The potential representation implies that φ ∈ BUC2+α(R4) is a positive
solution to (6.3) and satisfies the admissible asymptotic behavior for the application of the
moving plane method [20], see below (6.6).

The uniqueness in Theorem 6.1 will be proved without the isometry since the solution
ψ ∈ BUC2+α(R2

+), 0 < α < 1, is a classical solution to (6.1) with compactly supported
Ω ⊂ R2

+. By the transform (6.2), φ ∈ BUC1+α(R4) is a solution of (6.3) in R4\{y′ = 0} with
compactly supported Ξ ⊂ R4.

Following [1, Lemma 2.2], we take a function θ ∈ C∞(R) such that θ(t) = 0 for t ≤ 1 and
θ(t) = 1 for t ≥ 2. For arbitrary ξ ∈ C1

c (R4) and δ > 0, we set ξδ(y) = ξ(y)θ(|y′|/δ) so that
spt ξδ ∩ {y′ = 0} = ∅. The function ξδ ∈ C1

c (R4) satisfies ξδ → ξ in W1,1(R4) as δ→ 0. Since
φ is C2+α in R4\{y′ = 0} and satisfies (6.3)1 in a classical sense, multiplying ξδ by (6.3)1 in
R4\{y′ = 0} and integration by parts,

∫
R4
∇φ · ∇ξδdy =

∫
R4

f (φ −W)ξδdy.

Sending δ → 0 implies that φ ∈ BUC1+α(R4) is a weak solution of the Poisson equation in
R4 in the sense that for all ξ ∈ C1

c (R4),

∫
R4
∇φ · ∇ξdy =

∫
R4

f (φ −W)ξdy.

Thus by differentiability of weak solutions [26, Theorem 8.8], we have φ ∈ W2,2
loc (R4). By the

compactness of Ξ ⊂ R4 and uniqueness of the Poisson equation under the decay condition
φ(y)→ 0 as |y| → ∞, φ is expressed with Γ(y) = (4π2)−1|y|−2 as

φ(y) =
∫
Ξ

Γ(y − z) f (φ −W)dz.(6.5)

This implies that φ ∈ BUC2+α(R4) is a positive solution to (6.3).
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Lemma 6.2. Let φ be as in (6.5). There exists p > 0 and q ∈ R such that

(6.6)
φ(y′, y4 + q) =

p
|y|2 + g(y),

|g(y)| ≤ C
|y|4 , |∇g(y)| ≤ C

|y|5
, for |y| ≥ 2R + |q|,

for some R > 0 such that Ξ ⊂ B(0,R) with some constant C, where B(0,R) is an open ball
in R4.

Proof. By (6.5),

φ(y) = Γ(y)
∫
Ξ

f (φ −W)dz − ∇yΓ(y) ·
(∫
Ξ

z f (φ −W)dz
)
+ g0(y),

|g0(y)| ≤ C
|y|4 , |∇g0(y)| ≤ C

|y|5
, for |y| ≥ 2R.

Hence

φ(y) =
p
|y|2 +

4∑
j=1

p jy j

|y|4 + g0(y),

p =
1

4π2

∫
Ξ

f (φ −W)dz, p j =
1

2π2

∫
Ξ

z j f (φ −W)dz, j = 1, 2, 3, 4.

Since Ξ and φ are symmetric for y′ = 0, p j = 0 for j = 1, 2, 3. By taking q = p4/(2p), (6.6)
follows. □

6.2. Moving plane method. The decay (6.6) is the admissible asymptotic behavior [20,
Definition 4.1 (C)] for the application of the moving plane method.

Proof of Theorem 6.1. We apply a symmetry result for positive solutions to (6.3) satisfying
(6.6) [20, Theorem 4.2] and deduce that ϕ(y) = φ(y′, y4 + q) is radially symmetric in R4 and
decreasing in the radial direction. Since |y| = |x| and ϕ(y) = ϕ(|y|), we deduce that

ψ(x1 + q, x2)
x2

= φ(y′, y4 + q) = ϕ(y′, y4) = ϕ (|x|) .

By translation of ψ for the x1-variable, we may assume that q = 0, i.e., ψ(x1, x2)/x2 = ϕ(|x|).
In polar coordinates defined by x1 = r cos θ, x2 = r sin θ, we set

Ψ(x) = ψ(x) −Wx2 = (ϕ(r) −W)r sin θ =: η(r) sin θ.
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We prove Ψ = ΨL. By (6.1), Ψ satisfies

(6.7)

−∆Ψ = Ψ in Ω,

−∆Ψ = 0 in R2
+\Ω,

Ψ = 0 on ∂R2
+ ∪ ∂Ω,

∂x1Ψ→ 0, ∂x2Ψ→ −W as |x| → ∞.

Since ϕ(r) is decreasing for r > 0 and Ψ = 0 on ∂Ω, there exists some a > 0 such that
ϕ(a) = W and Ω = B(0, a) ∩ R2

+. Substituting Ψ = η(r) sin θ into (6.7)1 implies that η(r) is a
solution of the Bessel’s differential equation:

(6.8)
η̈ +

1
r
η̇ − 1

r2 η + η = 0, η > 0, 0 < r < a,

η(a) = 0.

Solutions of (6.8) are given by a linear combination of the Bessel functions of the first and
second kind of order one. Since η(r) > 0 is bounded at r = 0 and η(a) = 0,

η(r) = C1J1(r),
a = c0,

for some constant C1, where c0 is the first zero point of J1. Hence, Ψ(x) = C1J1(r) sin θ for
r ≤ a.

In a similar way, we consider the region r ≥ a. Since Ψ is harmonic for r > a, η =
C2/r + C3r with some constants C2, C3. Since ∇Ψ = (C2/r2)t(− sin 2θ, cos 2θ) + t(0,C3),
sending r → ∞ implies that C3 = −W. By Ψ = 0 for r = a, C2 = Wa2. Hence Ψ(x) =
−W(r − a2/r) sin θ for r > a.

The constant C1 is determined by continuity of ∂rΨ at r = a, i.e., limr→a+0 ∂rΨ =

limr→a−0 ∂rΨ. By using J̇1(c0) = J0(c0), C1 = −2W/J0(c0) = CL follows. We have proved
Ψ = ΨL. □

Proof of Theorem 1.5. By the scaling (1.12), we reduce to the case ν = λ = 1. By Theorem
1.3, S µ is not empty, i.e., S µ , ∅. Let 0 < µ ≤ M1 for the constant M1 > 0 as in Remarks
2.6 (iii). For an arbitrary ω ∈ S µ, the associated stream function ψ is a positive solution of
(6.1) for some W > 0 satisfying ψ, ψ/x2 → 0 as |x| → ∞ and for Ω = {ψ − Wx2 > 0},
Ω is compact in R2

+ by Lemma 2.9. Applying Theorem 6.1 and ω ∈ Kµ imply that ω is
translation of the Lamb dipole ωL for W = µ/(c2

0π). Hence S µ ⊂ {ωL(· + y) | y ∈ ∂R2
+}.

Since S µ , ∅, there exists ω ∈ S µ and y0 ∈ ∂R2
+ such that ω = ωL(· + y0) for the

Lamb dipole ωL for W = µ/(c2
0π). By translation invariance of E2 for the x1-variable,

{ωL(· + y) | y ∈ ∂R2
+} ⊂ S µ follows. We have proved (1.11). The proof is now complete. □
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