Selective Double Hydrosilylation of Nitriles Catalyzed by an Iron Complex Containing Indium Trihalide

Masaki Ito, Masumi Itazaki, Hiroshi Nakazawa

Citation	ChemCatChem, 8(21): 3323-3325
Issue Date | 2016-11-08
Type | Journal Article
Textversion | Author
Right | This is the peer reviewed version of the following article: ITO, M., ITAZAKI, M., & NAKAZAWA, H. (2016). Selective Double Hydrosilylation of Nitriles Catalyzed by an Iron Complex Containing Indium Trihalide. ChemCatChem. 8, 3323-3325., which has been published in final form at https://doi.org/10.1002/cctc.201600940 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
URI | http://dlisv03.media.osaka-cu.ac.jp/il/meta_pub/G0000438repository_18673899-8-21-3323
DOI | 10.1002/cctc.201600940

SURE: Osaka City University Repository
http://dlisv03.media.osaka-cu.ac.jp/il/meta_pub/G0000438repository

Selective Double-Hydrosilylation of Nitriles Catalyzed by an Iron Complex Containing Indium Trihalide

Masaki Ito, Masumi Itazaki, and Hiroshi Nakazawa*

Abstract: Selective double-hydrosilylation was achieved using tertiary and secondary silanes with an excess of organonitriles (RC≡N (R = alkyl, aryl)), in the presence of a catalytic amount of triirondodecacarbonyl (Fe₃(CO)₁₂) and indium trichloride (InCl₃). This reaction was also catalyzed by an iron complex containing indium trihalide [Fe(MeCN)₆][Fe(CO)₄(InX)₂], prepared by the reaction of Fe₃(CO)₁₂ with InX₃ (X = Cl, Br, I). This is a novel report of the combination of a transition metal complex and an indium source in organic synthesis.

Transformations of organonitriles into other organic compounds catalyzed by a transition metal complex have been reported, e.g., C–CN bond cleavage,[1] hydrosilylation of CH≡N bond.[2] We previously reported the synthesis of silyl cyanide through C–CN bond activation of organonitriles by an iron catalyst.[3]

Among these reactions, hydrosilylation of a CH≡N triple bond is one of the most atom-efficient reactions because the reaction theoretically produces no by-products. In the reaction of RC≡N with hydrosilane R′₂SiH, the expected products are the silylimine (RH₂C≡NSiR′₃), and disilyl amine (RH₂C≡N(SiR′₃)₂), which are formed by single[4a–d] and double[4e–k] hydrosilylation, respectively (Scheme 1). These N-silylated compounds are highly useful precursors of N-containing organic compounds[5] and silicon-containing polymers.[6] Moreover, hydrosilylation of a CH≡N triple bond is an effective method for the reduction of nitriles.[7] Only a few examples of double hydrosilylation catalyzed by a transition metal complex have been reported.[8–k] In addition, catalytic hydrosilylations of nitriles without a transition metal catalyst have been reported; in 2015, Chang’s group reported that B(C₆F₅)₃ demonstrated catalytic activity for chemoselective hydrosilylation of conjugated nitriles.[9] Unfortunately, the catalyst is moisture sensitive and expensive.

Most catalytic reactions for hydrosilylation of nitriles require an excess of hydrosilane in order to afford the disilyl-amine selectively. Here, we report a new catalytic system for the selective double-hydrosilylation of nitriles using an iron-based catalyst, without excess hydrosilane.

Acetonitrile (4.0 mmol), Me₃PhSiH (0.80 mmol), Fe₃(CO)₁₂ (0.027 mmol), and InCl₃ (0.080 mmol) were charged into a sealed glass tube under a dry nitrogen atmosphere, and the solution was heated at 80 °C for 24 h (Scheme 2). After removal of volatile materials under reduced pressure, the disilyl amine MeCH₂–N(SiMe₂Ph)₂ was obtained in 78% yield by extraction with n-hexane and drying in vacuo (Table 1, entry 1). Unexpectedly, double-hydrosilylation had occurred selectively, even if an excess of nitrile over hydrosilane was used. The 1H NMR spectrum of the reaction mixture revealed that the silyl imine was not formed. A deuterium labeling experiment using CD₃CN in place of CH₃CN afforded CD₃CH₂–N(SiMe₂Ph)₂ in 73% yield. To the best of our knowledge, there are no previous reports of an iron complex combined with an indium source used in organic synthesis.[10]

Scheme 2. Double-hydrosilylation of acetonitrile promoted by Fe₃(CO)₁₂ with InCl₃.

Fe₃(CO)₁₂ or InCl₃ when used separately for the double-hydrosilylation of acetonitrile with Me₃PhSiH showed no catalytic activity (Table 1, entries 2, 3). [Fe(MeCN)₆][Fe(CO)₄(InX)₂] prepared from Fe₃(CO)₁₂ and InX₃[10,11] exhibited catalytic activity (entries 4–6), with [Fe(MeCN)₆][Fe(CO)₄(InCl)₂] showing the highest activity among them. When the amount of [Fe(MeCN)₆][Fe(CO)₄(InCl)₂] was reduced from 5 to 1 mol% or when THF was used as a solvent, the yield was greatly diminished (entries 7, 8). Further, the reaction did not proceed at room temperature (entry 9). When [Fe(MeCN)₆][PF₆]₂ was used as a catalyst, hydrosilylation was not observed (entry 10), but the reaction proceeded when [PPN]₃[Fe(CO)₄(InCl)₂] was used (entry 11). It was therefore concluded that the anionic part of [Fe(MeCN)₆][CO]₄Fe(InCl)₂] acted as the catalyst in double-hydrosilylation. The different activities of the iron-indium complexes in entries 4 and 11 may result from the degree of stabilization by the cation.

Scheme 1. Hydrosilylation of nitriles.

1 equiv R′₂SiH
RC≡N
Transition metal cat.
RHC≡N
R′₂SiH
2 equiv R′₂SiH
RH₂C≡N
R′₂SiH
R′₂SiH

[4] M. Ito, Dr. M. Itazaki, Prof. Dr. H. Nakazawa
Department of Chemistry, Graduate School of Science
Osaka City University
Sumiyoshi-ku, Osaka 558-8585, Japan
E-mail: nakazawa@sci.osaka-cu.ac.jp

Supporting information for this article is given via a link at the end of the document.
To explore the scope of double-hydrosilylation reactions catalyzed by $\text{[Fe(MeCN)$_3$]_2(Fe(CO)$_4$(InCl$_3$))}$, several combinations of nitriles and hydrosilanes were examined (Table 2). Reactions were observed for the double-hydrosilylation of Me$_2$PhSiH with RC≡N, where $R = \text{Me, Et, Bu, Pr, Ph, p-Tol, m-Tol or o-Tol}$ (entries 1–4, 6–9). In the case of propane nitrile (EtCN), the main product was EtCH$_2$N(SiMe$_3$)$_2$, with MeCH$_2$N(SiMe$_3$)$_2$ as a by-product (2% NMR yield). The by-product is believed to have formed from MeCN, due to EtCN/MeCN exchange on the cationic part of the catalyst (entry 2). The hydrodysilylation was strongly influenced by steric effects of the substituent on the nitrile carbon; the yield decreased when using t-PrCN (entry 4), and no reaction was observed when using t-BuCN (entry 5). Yields from tolunitrile decreased in the order p-$\geq m$-$\geq o$-tolunitrile, presumably because of the increasing steric hindrance around the nitrile group (entries 7–9). Benzonitrile and p-tolunitrile gave the corresponding disilyl amines in similar yields (entries 6, 7). 4-PyCN was also converted into the corresponding disilyl amine, although the yield was low (entry 10). Nitriles containing electron-withdrawing substituents and NC(CH$_3$)$_2$CN did not undergo hydrodysilylation (entries 11–13). Reactions were observed for the double-hydrosilylation of Me$_2$FcSiH with p-TolCN and Me$_2$PhSiH with MeCN, giving the corresponding disilyl amines in 43% and 76% yields, respectively (entries 14, 15). All disilyl amines obtained were characterized by 1H, 13C(1H), 29Si(1H) NMR, GC/MS, and elemental analyses (see supporting information).

Table 1. Catalytic double-hydrosilylation of acetonitrile with Me$_2$PhSiH.$^{[4]}$

<table>
<thead>
<tr>
<th>entry</th>
<th>cat. [amount (mol%)]$^[[3]$</th>
<th>yield (%)$^[[4]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\text{Fe(CO)}_4(3.3)+\text{InCl}_3(10)$</td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td>$\text{Fe(CO)}_4(3.3)$</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>$\text{InCl}_3(10)$</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>$\text{[Fe(MeCN)$_3$]_2(Fe(CO)$_4$(InCl$_3$)) (5)$</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>$\text{[Fe(MeCN)$_3$]_2(Fe(CO)$_4$(InBr$_3$)) (5)$</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>$\text{[Fe(MeCN)$_3$]_2(Fe(CO)$_4$(InI$_3$)) (5)$</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>$\text{[Fe(MeCN)$_3$]_2(Fe(CO)$_4$(InCl$_3$)) (1)$</td>
<td>trace</td>
</tr>
<tr>
<td>8$^[[6]$</td>
<td>$\text{[Fe(MeCN)$_3$]_2(Fe(CO)$_4$(InCl$_3$)) (5)$</td>
<td>trace</td>
</tr>
<tr>
<td>9$^[[6]$</td>
<td>$\text{[Fe(MeCN)$_3$]_2(Fe(CO)$_4$(InCl$_3$)) (5)$</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>$\text{[PPN$_3$]_2(Fe(CO)$_4$(InCl$_3$)) (5)$</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>$\text{[PPN$_3$]_2(Fe(CO)$_4$(InCl$_3$)) (5)$</td>
<td>35</td>
</tr>
</tbody>
</table>

[a] Me$_2$PhSiH/acetonitrile = 0.8:4.0 mmol. [b] Based on Me$_2$PhSiH. [c] Isolated yield. [d] In THF (0.5 mL). [e] At room temperature.

Table 2. Double-hydrosilylation of various nitriles with hydrosilanes catalyzed by an iron-indium complex.$^{[4]}$

<table>
<thead>
<tr>
<th>entry</th>
<th>R'CN</th>
<th>R'SiH1</th>
<th>RCH$_2$N1(SiMe$_3$)$_2$</th>
<th>yield$^[[4]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeCN</td>
<td>Me$_2$PhSiH</td>
<td>MeCH$_2$N(SiMe$_3$)$_2$ (1)</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>EtCN</td>
<td>Me$_2$PhSiH</td>
<td>EtCH$_2$N(SiMe$_3$)$_2$ (2)</td>
<td>65$^[[4]$</td>
</tr>
<tr>
<td>3</td>
<td>tBuCN</td>
<td>Me$_2$PhSiH</td>
<td>tBuCH$_2$N(SiMe$_3$)$_2$ (3)</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>tPrCN</td>
<td>Me$_2$PhSiH</td>
<td>tPrCH$_2$N(SiMe$_3$)$_2$ (4)</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>tBuCN</td>
<td>Me$_2$PhSiH</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>PyCN</td>
<td>Me$_2$PhSiH</td>
<td>PhCH$_2$N(SiMe$_3$)$_2$ (5)</td>
<td>54</td>
</tr>
<tr>
<td>7</td>
<td>p-TolCN</td>
<td>Me$_2$PhSiH</td>
<td>p-TolCH$_2$N(SiMe$_3$)$_2$ (6)</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>m-TolCN</td>
<td>Me$_2$PhSiH</td>
<td>m-TolCH$_2$N(SiMe$_3$)$_2$ (7)</td>
<td>49</td>
</tr>
<tr>
<td>9</td>
<td>p-TolCN</td>
<td>Me$_2$PhSiH</td>
<td>p-TolCH$_2$N(SiMe$_3$)$_2$ (8)</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>(4-Py)CN</td>
<td>Me$_2$PhSiH</td>
<td>(4-Py)CH$_2$N(SiMe$_3$)$_2$ (9)</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>COCl$_2$</td>
<td>Me$_2$PhSiH</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>(C$_5$F$_5$)CN</td>
<td>Me$_2$PhSiH</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>13</td>
<td>NC(CH$_3$)$_2$CN</td>
<td>Me$_2$PhSiH</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>14</td>
<td>(4-Py)CN</td>
<td>Me$_2$FcSiH</td>
<td>(4-Py)CH$_2$N(SiMe$_3$)$_2$ (10)</td>
<td>43</td>
</tr>
<tr>
<td>15</td>
<td>MeCN</td>
<td>Me$_2$PhSiH</td>
<td>MeCH$_2$N(SiMe$_3$)$_2$ (11)</td>
<td>76</td>
</tr>
</tbody>
</table>

[a] See supporting information for details of reaction conditions. [b] Isolated yield. [c] The relatively low reaction yield of EtCH$_2$N(SiMe$_3$)$_2$ is caused by the difficulty in the removal of MeCN/SiMe$_3$Ph$_2$ produced as a by-product in this reaction, by distillation because of the similar boiling points.

In order to obtain insight into the mechanism of the $\text{[Fe(MeCN)$_3$]_2(Fe(CO)$_4$(InCl$_3$))}$ system, we examined two reactions. First, we carried out the reaction using InCl$_3$ as an additive in excess (eq. i) and found that no hydrodysilylation occurred. We therefore concluded that the dissociation of InCl$_3$ is important in our system.

![Chemical Reaction](image)

We suspected that InCl$_3$ eliminated from the catalyst precursor reacts with hydrosilane to give indium hydride HInCl$_3$, as reported by Baba and co-workers.$^{[12]}$ Moreover, they reported that HInX$_3$ acts as a radical.$^{[13]}$ We examined our reaction system in the presence of TEMPO as a radical scavenger and found that the formation of disilyl amine was suppressed (eq. ii).
We therefore concluded that HInCl₂ was involved in the reaction pathway.

\[
\begin{array}{c}
\text{Me}_2\text{PhSiH} \quad 80 \degree C, 24 \text{ h} \\
\text{Me}_2\text{CH}_2\text{N}_2\text{SiMePh}_2 \quad \text{trace}
\end{array}
\]

Based on the observations mentioned above, we tentatively propose a catalytic cycle, as depicted in Scheme 3. First, one indium ligand in [Fe(CO)₄(InCl)₂]²⁻ dissociates and moniodium-ion species A is generated. Then, the released indium trichloride reacts with hydrosilane to give indium hydride and chlorosilane. One of CO ligands in A is replaced by the nitrile used to give B. Then, B reacts with indium hydride to form indylylimine complex C. Intermediate C reacts with hydrosilane to give silylimine iron complex D, which reacts further to give indylysilylimine complex E. Finally, E reacts with hydrosilane then the nitrile used to produce disilylamine and HInCl₂ with regeneration of B. We think that the silylamine D does not dissociate readily from the iron center and/or D is extremely reactive toward HInCl₂; therefore, selective disilyl amine formation is eventually achieved.

Scheme 3. Proposed catalytic cycle for the formation of a disilyl amine in the reaction of nitrile with hydrosilane promoted by [Fe(MeCN)₆][Fe(CO)₄(InCl)₂].

In summary, we have described an unprecedented selective double-hydrosilylation of organonitriles promoted by a combination of trichloridodecacarbonyl Fe₃(CO)₁₂ with indium trichloride InCl₃. Iron-iodium complex [Fe(MeCN)₆][Fe(CO)₄(InCl)₂] also showed catalytic activity. In our reaction system, only the double hydrosilylation product was obtained and no single hydrosilylation product was produced. Our catalytic system was applicable to various nitriles and hydrosilanes.

Experimental Section

General procedure for synthesis of disilyl amine derivatives in Table 2: Nitrile (4.0 mmol) was treated with tertiary (or secondary) silane (0.80 mmol) in the presence of iron-iodonium catalyst [Fe(CH₃CN)₆][(CO)₄Fe(InCl)₃] (36.5 mg, 0.040 mmol) at 80 °C for 24 h under nitrogen atmosphere. After all volatile materials were removed under reduced pressure, the residue was extracted with n-hexane (2 mL × 3) and the filtrate was dried in vacuo to give the corresponding disilyl amine. Purified product was obtained by distillation using a Kugelrohr.

Acknowledgements

This work was supported by a Challenging Exploratory Research Grant (No. 15K13662), a Grant-in-Aid for Scientific Research Japan (C) (No. 16K05728), a Grant-in-Aid for Scientific Research on Innovative Area “Stimuli-responsive Chemical Species for the Creation of Function Molecules (No. 2408)" (JSPS KAKENHI Grant Number JP15H00957) from MEXT Japan, and the Sasakawa Scientific Research Grant from the Japan Science Society.

Keywords: Double-hydrosilylation • Nitrile • Iron catalyst • Indium halide

Some examples of transition metal/indium catalysis have been reported previously. For example,

A similar reaction using Ru\(3(CO)_{12}\) in place of Fe\(3(CO)_{12}\) afforded ruthenium indane complexes, fac-\(\text{[Ru(NCMe)}_{3}(\text{CO})_{2}(\text{InX})_{3}] \) (X = Cl, Br). M. Itazaki, M. Ito, H. Nakazawa, Eur. J. Inorg. Chem. 2015, 2033-2036.

Selective double-hydrosilylation was achieved using tertiary and secondary silanes with an excess of organonitriles (RC≡N (R = alkyl, aryl)), in the presence of a catalytic amount of triiron dodecacarbonyl (Fe$_3$(CO)$_{12}$) and indium trichloride (InCl$_3$). This reaction was also catalyzed by an iron complex containing indium trihalide [Fe(MeCN)$_6$][Fe(CO)$_4$(InX)$_3$], prepared by the reaction of Fe$_3$(CO)$_{12}$ with InX$_3$ (X = Cl, Br, I).