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Abstract. The nonlinear motion of two interfaces in a three-layer fluid with density

stratification is investigated theoretically and numerically. We consider the situation

such that a uniform current is present in one of the three layers. The linear dispersion

relation is calculated by the Newton’s method, from which the initial conditions for

numerical computations are determined. When the uniform current is present in the

upper (lower) layer, strong vorticity is induced on the upper (lower) interface, and it

rolls up involving the other interface at the late stage of computations. When the

current is present in the middle layer, a varicose wave appears at the initial stage, and

it evolves into an asymmetric heart-shaped vortex sheet at the last computed stage.

These phenomena are presented using the vortex sheet model (VSM) with and without

regularizations.
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1. Introduction

Interfacial dynamics in a layered fluid with density stratification is important in various

areas such as geophysical fluid dynamics [21, 60], internal gravity waves [19, 61], and

plasma physics [63, 35]. In geophysical fluid dynamics and internal gravity waves, the

continuous density profile of an ocean or atmosphere is often approximated to planar

multi-component fluid layers of constant densities. A huge number of researches exist

for the interfacial dynamics in a two-layer fluid with a single interface; however, few

studies exist for the interfacial motion in more than a two-layer fluid, especially for

the nonlinear interfacial motion in a three-layer fluid flow. In the current study, we

investigate the nonlinear motion of two interfaces in a three-layer fluid with uniform

current under gravity, in which the lightest fluid is assumed to lie on the top of the

layer, and the heaviest fluid is set at the bottom layer.

The linear analysis for the multi-layer fluid systems have been investigated in detail

by Mikaelian [43, 44, 45, 46], in which he derived the eigenvalues and eigenfunctions in

the multi-component density stratified Rayleigh-Taylor instability (RTI) [43, 44] and

the Richtmyer-Meshkov instability (RMI) [52, 42, 46]. These are typical interfacial

instabilities that occur in plasma physics [48] and astrophysics [56, 55, 41]. His analysis

is also applicable to unstable interfacial motion in geophysical flows and internal gravity

waves [61]. Extending the linear theory developed by Mikaelian, Liu et al. performed

weakly nonlinear analysis for RMI with two interfaces in a three-layer fluid [33]. These

studies treat an unbounded three-layer fluid. There also exists an analytical study for a

bounded three-layer flow. Panda et al. [50] calculated the stable linear interfacial motion

in a channel with bottom topography using the Fourier transform technique. There also

exist some numerical studies for the motion of interfaces in a multi-layer fluid flow. Chen

and Forbes [15] calculated the nonlinear behavior of steady periodic waves in a three-

layer fluid with uniform shear in the middle layer using a numerical method of Galerkin-

type. Zabusky and Zhang [63] investigated the shock inclined-curtain interaction of a

planar RMI using the piecewise parabolic method (PPM) algorithm [17]. Lee and Kim

presented the numerical result for the two-dimensional Kelvin-Helmholtz instabilities of

multi-component fluids by directly solving the governing equations [31].

The theoretical analyses for the multi-layer fluid flows described above require

daunting tasks, and it is almost impossible to perform such analytical calculations in the

nonlinear regime. In order to investigate the motion of two interfaces in a three-layer

fluid flow, we adopt the vortex sheet model (VSM) [1, 6, 4, 29, 30, 38] and calculate their

nonlinear behavior numerically. It is known that VSM without the regularization of the

singular integral, called the Birkhoff-Rott equation [9, 53, 54], provides the spectral

accuracy (exponential accuracy) [57] if we adopt proper integral methods for spatial

integration, such as the alternative point quadrature method [58]. By which, we can

capture the nonlinear motion of the interfaces with analytical accuracy. On the other

hand, VSM calculated with spectral accuracy is a purely mathematical model, and the

result does not describe the real motion of the interfaces. As a model to describe the
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more realistic long-time behavior of the unstable interfacial motion such as the roll-ups,

the vortex (blob) method regularizing singular integrals [16, 30, 62, 18, 3, 7, 38, 37, 36]

has been applied to various problems for the nonlinear evolution of interfaces. Unlike

the physical regularizations such as the introduction of a vortex layer [8] or the surface

tension effect [26, 34], the vortex method is mathematically proved that the solution

obtained by the method uniformly converges to the Birkhoff-Rott equation as long as

the initial condition is sufficiently smooth [as Eq. (21) adopted in the current study]

[10, 14, 25]. The above studies by VSM treat the dynamics of a single interface in

a two-layer flow. Extending the method of VSM to the motion of two interfaces in

a three-layer RMI, Matsuoka succeeded in capturing the nonlinear interaction of two

vortex sheets in a multi-component flow with density stratification [35]. This model

is applicable to systems with any density differences. In the current study, we adopt

the model equations developed in the above reference [35] and investigate the nonlinear

behavior of unstable two interfaces in a three-layer fluid with uniform current.

We consider an unbounded three-layer fluid such that the lightest fluid is over

the middle layer, and the heaviest fluid is set at the bottom layer, assuming that a

uniform current exists in one of the three fluids. This kind of situation is often found

in the flows with different temperatures in the ocean or atmosphere, where the lighter

(heavier) fluid corresponds to the warmer (cooler) region. The initial conditions for

numerical computations are determined by calculating the linear dispersion relation,

in which the linear frequency is calculated using the Newton’s method. The nonlinear

interfacial motion with current in the upper layer is analogous to the one with current

in the lower layer; however, the motion of interfaces with current in the middle layer is

remarkably different from those two cases. As a result of the linear analysis, a varicose

mode appears in this case. The varicose wave is a mode specific to two-interface systems,

and it corresponds to a wave in which the upper and lower interfaces are 180◦ out of

phase [61].

Varicose instabilities often appear in boundary-layer flows in transition from the

laminar to turbulent flows [2, 11, 12, 13, 28, 51, 59]. Due to the shear flow between

the wall and the laminar flow, the varicose instability develops to a complicated flow

such as streaks with vortical structures [12, 22, 13]. These studies are mainly confined

to the linear analysis or direct numerical simulations (DNS). In the current paper, we

investigate the nonlinear development of the varicose instability using VSM. Unlike

DNS, VSM can capture the finer structure of vortices in the instabilities. We consider

the two-dimensional case; however, the flow structure caused by the varicose instability

is analogous to that observed in the three-dimensional boundary-layer flows [22, 13]. By

calculating the evolution of the velocity field, we reveal how the complicated interfacial

structure in the varicose instability is formed.

This paper is organized as follows. In Section 2, we perform the linear analysis and

derive the dispersion relations for using as the initial conditions of numerical calculations.

In Section. 3, we overview the governing equations to describe the nonlinear dynamics

of two interfaces in a three-layer fluid. In Section. 4, we present some numerical results



4

Figure 1. Schematic figure of the flow configurarion.

by VSM for three cases with different currents. Section 5 is devoted to conclusion.

2. The linear analysis

In this section, we perform the linear analysis and derive some dispersion relations as

the initial conditions for numerical calculations. The governing equations adopted here

[Eqs. (3) and (4) below] for the linear analysis are the same as those used in the reference

[35] except the gravity term.

2.1. Dispersion relations

We consider two-dimensional inviscid and incompressible flows such that two fluid

interfaces I1 and I2 with density stratification exist in it (Figure 1), where the

undisterbed levels of I1 and I2 are set to y = 0 and y = −d (d > 0), respectively.

The fluid motion is assumed to be irrotational except the interfaces I1 and I2. Then the

velocity potential ϕi in the region i (i = 0, 1, 2), which is related to the fluid velocity ui

as ui = ∇ϕi, satisfies the Laplace equation

△ϕi = 0, (i = 0, 1, 2) (1)

and the Bernoulli equation:

ρi

[
∂ϕi

∂t
+

1

2
(∇ϕi)

2 + gy

]
+ pi = Ci(t), (i = 0, 1, 2) (2)

where ρi is the density of fluid i, pi is the pressure, g is the gravitational acceleration, and

Ci(t) is a constant generally depending on time, which is determined from the boundary

condition at Ii. By imposing the pressure continuous condition across the interfaces;

p0 = p1 at I1 (y = 0) and p1 = p2 at I2 (y = −d), and taking into the hydrostatic

pressure condition pi = Ci(t) − ρigy (i = 0, 1, 2, y = 0 at I1 and y = −d at I2), we
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obtain

C1(t) = C0(t) + (ρ0 − ρ1)gd, C2(t) = C1(t) + (ρ1 − ρ2)gd.

Selecting Ci(t) = Ci, a constant, the Bernoulli equation (2) yields

ρi

[
∂ϕi

∂t
+

1

2
(∇ϕi)

2 + gy

]
= ρi−1

[
∂ϕi−1

∂t
+

1

2
(∇ϕi−1)

2 + gy

]
= 0, (i = 1, 2). (3)

We assume that the interfaces I1 and I2 are evaluated as the deviations y = η1(x, t)

and y = η2(x, t) from the undisturbed levels y = 0 and y = −d (Figure 1), respectively.

Then the kinematic boundary conditions at interface Ii (i = 1, 2) are given by

∂η1
∂t

− ∂ϕi

∂y
=

∂ϕi

∂x

∂η1
∂x

(i = 0, 1) at I1,

∂η2
∂t

− ∂ϕi

∂y
=

∂ϕi

∂x

∂η2
∂x

(i = 1, 2) at I2.

(4)

In the current study, we assume that each of the three fluid layers has a primary

uniform velocity Ui(i = 0, 1, 2). Linearizing the kinematic boundary condition (4)

at the non-perturbative interfaces, we obtain the following linearized solutions for ϕi

(i = 0, 1, 2)

ϕ̃0 = ℜ[B0e
−kyei(kx−ωt)] (y > 0),

ϕ̃1 = ℜ[(B11e
ky +B12e

−ky)ei(kx−ωt)] (−d ≤ y ≤ 0),

ϕ̃2 = ℜ[B2e
kyei(kx−ωt)] (y < −d),

(5)

and the vertical displacements of the interfaces at y = 0 and y = −d

η̃1 = ℜ[a1ei(kx−ωt)], η̃2 = ℜ[a2ei(kx−ωt)], (6)

where k is the wavenumber, ω is the linear frequency of the system, and we denote the

first order quantities with tilde. Here, we assume that the amplitude a1 is real. The

coefficients B0, B11, B12, and B2 in (5) are given as

B0 = ℜ
[
i(ω − kU0)

k
a1

]
,

B11 = ℜ
[

i(ω − kU1)

k(ekd − e−kd)
(a1 − a2e

−kd)

]
,

B12 = ℜ
[

i(ω − kU1)

k(ekd − e−kd)
(a2 − a1e

kd)

]
,

B2 = ℜ
[
−i(ω − kU2)

k
a2

]
.

(7)

Taking into the uniform velocities Ui (i = 0, 1, 2) and the equilibrium position of the

interfaces, the velocity potential ϕi (i = 0, 1, 2) and the displacement ηi (i = 1, 2) are

provided as

ϕi = ϕ̃i + Uix (i = 0, 1, 2)

η1 = η̃1, η2 = η̃2 − d
(8)
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Figure 2. The (a) real and (b) imaginary parts of the dispersion curve in Case I given

by (13), where the uniform velocities are U0 = 1, U1 = 0, and U2 = 0. The densities

are ρ̃0 = 0.99 and ρ̃2 = 1.05. The four branches ω1 (black), ω2 (blue), ω3 (green), and

ω4 (red) are depicted in different colors. The vertical lines denote k = 1, the value

selected for the numerical calculations in Section 4.

Figure 3. The (a) real and (b) imaginary parts of the dispersion curve in Case II

given by (13), where the uniform velocities are U0 = 0, U1 = 1, and U2 = 0 (ρ̃0 = 0.99

and ρ̃2 = 1.05). The colors are the same as Figure 2. The vertical lines denote k = 1

(refer to Section 4).

within the linear theory.

Linearizing the Bernoulli equation (3) at the undisturbed level y = 0 and y = −d

and using the result of (7), we obtain the following dispersion relation

D(ω, k) = −D1(ω, k) +
Λ2(ω, k)

D2(ω, k)
= 0, (9)

where

D1(ω, k) = (ρ1 − ρ0)g −
1

k

[
ρ0(ω − kU0)

2 + ρ1(ω − kU1)
2 coth(kd)

]
,

D2(ω, k) = (ρ2 − ρ1)g −
1

k

[
ρ2(ω − kU2)

2 + ρ1(ω − kU1)
2 coth(kd)

]
,
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Figure 4. The (a) real and (b) imaginary parts of the dispersion curve in Case III

given by (13) , where the uniform velocities are U0 = 0, U1 = 0, and U2 = 1 (ρ̃0 = 0.99

and ρ̃2 = 1.05). The colors are the same as Figures 2 and 3. The vertical lines denotes

k = 1 (refer to Section 4).

and

Λ(ω, k) =
ρ1(ω − kU1)

2

k sinh(kd)
. (10)

The linear dispersion relation (9) coincides with the result in the absence of the surface

tention obtained by Craik and Adam [20]. The above calculations are also possible

to perform using the Rayleigh equation [24]. Using the amplitude a1, D1, and Λ, the

amplitude of a2 in (6) is given by

a2(ω, k) = −D1(ω, k)

Λ(ω, k)
a1. (11)

The linear frequency ω is determined by solving the dispersion relation (9). Since

D(ω, k) = 0 in (9) is the fourth order equation with respect to ω; generally, four solutions

exist in D(ω, k) = 0 for a given k. We present the dispersion curves solved by the

Newton’s method in Figures 2 - 4, where ω = ωr+iωi ∈ C (ωr, ωi ∈ R). The calculations
by the Newton’s method are performed with tolerance level 10−12. Here, we select the

density ratio ρ̃i ≡ ρi/ρ1 (i = 0, 2), the initial amplitude a1, the distance d, and the

gravity g as

ρ̃0 = 0.99, ρ̃2 = 1.05,

a1 = 0.2, d = 0.5, g = 1,
(12)

where a1 and d are normalized by the wavelength L = 2π/k as a1/L → a1
and d/L → d, and the gravity g is normalized using the hydrostatic pressure as

gd [(ρ0 − ρ1) + (ρ2 − ρ1)] /(C0 −C2) → g [5, 21]. The density ratios in (12) are selected

as values close to those adopted by Craik and Adam [20], and Chen and Forbes [15].

The typical values of the density ratios are 0 < 1 − ρ̃0 ≪ 1 and 0 < ρ̃2 − 1 ≪ 1 in

geophysical fluid dynamics or internal gravity waves; however, any values are possible
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Figure 5. Varicose condition for various values of U1, where the left and right figures

denote ωi and the real part of the amplitude a2 versus U1.

in plasma physics [43, 44, 45, 46, 33, 35]. We use the parameters (12) in the numerical

calculations in Section 4 except Section 4.3.2, where smaller values of |ρ̃0| are adopted.

For the uniform velocities Ui (i = 0, 1, 2), we consider the following three cases:

U0 = 1, U1 = 0, U2 = 0, (Case I),

U0 = 0, U1 = 1, U2 = 0, (Case II),

U0 = 0, U1 = 0, U2 = 1. (Case III).

(13)

The four branches ω1 (black), ω2 (blue), ω3 (green), ω4 (red) in Figures 2 - 4 are

depicted in colors. In Figure 2 (a), the branch ω1 (black) coincides with ω2 (blue) in

the range of 0.015 < k ≤ 0.07. The branch ω2 takes the same value with ω3 (green) in

the range of 0.07 < k ≤ 0.12, and finally, the branch ω3 coincides with ω4 (red) in the

range of 0.12 < k ≤ 1.5. In Figure 2 (b), the imaginary part of ω3 = 0 for k < 0.07,

ω4 = 0 for k < 0.12, the branch ω1 = 0 for k ≥ 0.07, and ω2 = 0 for k ≥ 0.12.

In Figure 3 (a), the branch ω3 coincides with ω4 in the range of k ≥ 0.05, and the

branch ω1 coincides with ω2 in the range of k ≥ 0.365. In the imaginary part ωi of

Case II, one branch is frequently exchanged with another one, as found in Figure 3 (b).

In Figure 4 (a), the branch ω3 coincides with the branch ω4 in the range of k ≥ 0.12.

In Figure 4 (b), all branches are zero for k ≤ 0.045, and the branches ω1 = ω2 = 0

for k ≥ 0.08. The mode that the most unstable one; i.e., the mode having the largest

positive imaginary part, is realized first. We adopt the mode that the largest imaginary

part appears for k = 1 (vertical lines in Figures 2 - 4) and investigate the behavior of

the solution in the nonlinear regime in Section 4.3.2. We mention that other modes

including ωi < 0 also turn out to be unstable for a longer time than the above mode for

all k > 0 in the current system.
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Figure 6. Varicose condition in Case II in (13) for various values of ρ̃0, where the left

and right figures denote ωi and the real part of the amplitude a2 versus normalized

density ρ̃0. The vertical lines denote ρ̃0 = 0.59, 0.8, and 0.99, the values selected for

the numerical calculations in Section 4.3.

2.2. Varicose mode

When the positive ωi takes its maximum value in the four modes and the amplitude

ℜ(a2) < 0 (out of phase condition), the varicose mode appears. This mode is the main

topic of this article; therefore, we investigate that more specifically in this subsection.

The varicose mode generally appears when U1 ̸= 0 such as Case II in (13). In the

following, we fix the values of ρ̃2, a1, d, and g in (12) and adopt the wavenumber k = 1.

The colors in Figures 5 and 6 are the same as those in Figures 2 - 4.

Figure 5 denotes the varicose condition obtained from the dispersion relation (9)

for various values of U1, where we set to U0 = U2 = 0. The vertical axis a2 in the

right figure denotes ℜ(a2). When U1 > 0.12, the varicose mode starts to appear in the

branch ω2 (blue), and when U1 > 0.26, the mode shifts to the branches ω3 (green) and

ω4 (red). When U1 = 0.22, ωr ∼ kU1 (Λ(ω, k) ∼ 0) occurs; and therefore, the amplitude

a2 in (11) becomes extremely large. Figure 6 denotes the varicose condition in Case

II obtained from the dispersion relation (9) for various values of ρ̃0. As we see from

Figure 6, when the normalized density ρ̃0 is small, the varicose mode is hard to appear.

When ρ̃0 > 0.585, the varicose mode starts to appear mainly in the branch ω4 (red)

including the branch ω3 (green) partially.

The varicose mode appears even in U0 ̸= 0 with U1 = 0 or U2 ̸= 0 with U1 = 0 such

as Case I or III, at least in the linear stage for some values of U0 or U2 when we vary

the wavenumber k. However, the maximum positive imaginary part ωi ≪ 1 for these

cases, and the varicose mode does not persist in the nonlinear regime as long as U1 = 0.

The result in Figure 6 is used in Section 4), does not occur.
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3. Overview of the model formulation

In this section, we overview the governing equations to describe the dynamics of two

interfaces in a three-layer fluid. A more detailed derivation for the model equations is

provided in the references [35]. The formulation adopted here is based on the boundary

integral method [57, 1, 35] developed to describe the motion of unstable interfaces such

as vortex sheets [6, 4], in which the fluid velocity is provided by the vortex induced

velocity called the Birkhoff-Rott equation [9, 53, 54]. The advantage of the vortex sheet

model (VSM) is in the fact that physical quantities such as the velocity field or the

velocity potential in the whole region are determined by only their initial boundary

values. Therefore, we can significantly reduce the computational cost to calculate the

flow field compared to the finite difference scheme or the spectral method.

We assume that the interfaces are L-periodic in the x direction, where L corresponds

to the wavelength of the system given by the wavenumber k as L = 2π/k. We consider

the interfaces x = Xi (i = 1, 2) without thickness and parameterize points on these

interfaces as

Xi(e, t) = [Xi(e, t), Yi(e, t)]

using the same Lagrangian parameter e (−L/2 ≤ e ≤ L/2). Now we consider the

situation such that Ns (Ns ∈ N) interfaces exist in the system. Since the system

is described by the linear field (1), the (average) fluid velocity W at an arbitrary

point x = (x, y) is presented by the superposition of the vortex induced velocities

Wi (i = 1, 2, · · · , Ns) by the contribution from the interfaces Ii as

W =
Ns∑
i=1

Wi. (14)

In the current study, Ns = 2. The vortex induced velocity Wi is given by

Wi,x(x, y) = − 1

2L

∫ L/2

−L/2

γi(e
′, t)si,e(e

′, t) sinh k(y − Yi(e
′, t))

cosh k(y − Yi(e′, t))− cos k(x−Xi(e′, t))
de′,

Wi,y(x, y) =
1

2L

∫ L/2

−L/2

γi(e
′, t)si,e(e

′, t) sin k(x−Xi(e
′, t))

cosh k(y − Yi(e′, t))− cos k(x−Xi(e′, t))
de′,

(15)

where

γi = γi · ti = ∂Γi/∂si, (γi = ui − ui−1) (16)

denotes the (true) vortex sheet strength of interface Ii derived from the circulation

Γi ≡ ϕi − ϕi−1, in which si is the arc length, and ti is the unit tangent of the interface

Ii, respectively. The subscript e denotes the differentiation with respect to e and

si,e =
√

X2
i,e + Y 2

i,e. The integral (15) becomes the principal value integral in case

that the point x = (x, y) is on the interface Ii; i.e., (x, y) = (Xi, Yi) [35].

There is an arbitrariness for the selection of the tangential velocity on an interface

[6, 26]. Taking this into account, we define the interfacial velocity u+
i at each interface

Ii labelled by the Lagrange parameter e as

u+
i = W |x=Xi

− Ai

2
γi, (17)
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where Ai is the Atwood number that denotes the density ratio between fluids i and i−1

(i = 1, 2, · · ·Ns), which is defined by

Ai =
ρi−1 − ρi
ρi−1 + ρi

. (18)

It should be noted that the second term on the right-hand side of (17) only contributes

to the tangential component of the velocity u+
i . The interfacial velocity (17) gives a

weighted average between the fluid velocity ui and ui−1 [35]. Supposing the temporal

evolution of Xi is provided by u+
i in the Lagrange frame, we obtain the relation

dX i

dt
= u+

i ,
d

dt
=

∂

∂t
+ u+

i · ∇, (19)

where d/dt denotes the Largange derivative moving with the velocity u+
i .

From now on, we fix the number of interfaces Ns as N2 = 2. Selecting y = Yi

(i = 1, 2) into the Bernoulli equation (3) and differentiating that with respect to e, we

obtain the evolution equation for the sheet strength γi [35]

dγi
dt

=
2Ai

si,e

(
Xi,e

dWi,x

dt
+ Yi,e

dWi,y

dt

)
− (1− A2

i )γi
s2i,e

(Xi,eWi,x,e + Yi,eWi,y,e)

+
3Ai

2si,e
(γ2

i )e −
A2

i

si,e
(γi,eTi + γiTi,e) +

2AigYi,e

si,e
, (20)

where Ti = ti · Wi. We mention that an artificial parameter α̃ [38, 41, 35] to control

the tangential velocities of interfaces is not necessary for the current system due to the

existence of the linear terms (the uniform current and the gravity term) and the small

Atwood numbers |Ai| ≪ 1 in (18). The former terms stabilize the calculations, and the

latter works for the convergence. Due to the absence of the artificial parameter, some

coefficients in (20) are different from those in the evolution equation of γi in the reference

[35]. Solving (19) and (20) simultaneously by taking (14) and (15) into account, we can

determine the motion of interfaces I1 and I2.

4. Numerical results

In this section, we present the numerical results by the model equations provided in the

previous section Section 3. The initial conditions for the three-layer flow are determined

by (8), setting t = 0 in (5) and (6), where the frequency ω and the initial amplitude

a2 are provided by the dispersion relation (9) and (11), respectively. Here, we set the

initial conditions of the interface (Xi, Yi) and γi (i = 1, 2) as

Xi = e, Y1 = a1 cos ke, Y2 = ℜ
(
a2e

ike
)
,

γ1 = ℜ
(
∂ϕ1

∂x
− ∂ϕ0

∂x

)
t=0
x=e
y=0

, γ2 = ℜ
(
∂ϕ2

∂x
− ∂ϕ1

∂x

)
t=0
x=e
y=−d

, (21)

where a1 is given by (12). The most unstable mode, i.e., the mode that its imaginary

part is maximal for a fixed wavenumber k in the linear dispersion curves, is selected for

numerical calculations.



12

Figure 7. Interfacial structures for Case I without regularization. The colors in

the figure denote t = 0 (black), t = 0.5 (blue), t = 1.0 (green), and t = 1.5 (red),

respectively. A period of two wavelengths is depicted in the figures.

In numerical calculations, we adopt the alternative point quadrature method [58]

for the calculation of the principal value integral P (e) with integrand f(e, e′)

P (ej) =
2h

2L

N−1∑
m=0

m ̸=j=odd

f(ej, em),

which appears in (15) and (20) when (x, y) = (Xi, Yi), where ej = jh is the discretization

of e and h = L/N , N the grid number. For the contribution from the other interface

Ij (i ̸= j), the conventional trapezoidal rule is adopted. The temporal integration is

calculated using the fourth-order Runge-Kutta scheme, and the simultaneous Fredholm

equations of the second kind (20) is solved by iteration with tolerance level 10−12.

For more details of the numerical method, refer to the reference [35]. For the

calculation by VSM with regularization [39, 40, 35], which indicates that we insert a finite

regularized parameter δ2 (this δ is often called Krasny’s δ) into the denominators of the

singular integrals (15) [30]. It is reported that δ = 0.1− 0.2 well describes experimental

results [38, 49]. We select the value of δ as δ = 0.1 throughout this section when δ ̸= 0.

The calculations by the other values of δ are provided in Appendix Appendix A for

comparison. For the calculations without regularization, which indicates δ = 0, we select

the number of grid points N discretizing on the interfaces as N = 512, and the time step

△t as △t = 2.5 × 10−3 throughout this section. The calculations with regularization

(δ = 0.1) in Sections 4.1 (Case I) and 4.2 (Case III) are perfomed with N = 1024

and the time step △t as △t = 1.25× 10−3, while the calculations with regularization in

Section 4.3 are performed with N = 2048 and the time step △t = 6.25×10−4 to capture

the fine structure of the interfaces. We fix the wavenumber of the initial perturbation as

k = 1 in the numerical calculations. The parameters (12) are adopted for all calculations

in the following subsections excluding Section 4.3.2, in which another values of ρ̃0 are

adopted (other parameters are the same). The variables x, y, and t are normalized as

kx → x, ky → y, and |ωr|t → t in the following numerical calculations. The vortex

sheet strength γi (i = 1, 2) in Case I, II, and III [refrer to (13)] are normalized by the

shear velocity Uj (j = 0, 1, 2) as γi/Uj → γi for each case.
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Figure 8. Vortex sheet strengths γ1 and γ2 corresponding to the interfacial structures

in Figure 7, where t = 0 and t = 1.5 are depicted.

Figure 9. Interfacial structures for Case I with regularization. The panels show

t = 0, 3, 4, 5 from the top to the bottom. A period of two wavelengths is depicted in

the figures.

4.1. Nonlinear interfacial motion with current in the upper layer (Case I)

In this subsection, we present the numerical results for Case I in (13). The imaginary

part ωi takes its largest value in the branch ω4 [the red curve in Figure 2 (b)] for the

wavenumber k = 1. Therefore, we take this branch as the initial condition. Then the

linear frequency ω(k) ∈ C and the initial amplitude a2(k) ∈ C are given by

ω(1) = 0.4927047 + 0.4859008i,

a2(1) = −0.0038787 + 0.1193469i,
(22)

for a1 = 0.2.
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Figure 10. Interfacial structures for Case III without regularization. The colors in

the figure denote t = 0 (black), t = 0.5 (blue), t = 1.0 (green), and t = 1.5 (red),

respectively (same as Figure 7). A period of two wavelengths is depicted in the figures.

We present the temporal evolution of two interfaces calculated by VSM without

regularization in Figure 7. The interfaces propagate from left to right, increasing their

amplitudes. The interfacial shapes are asymmetric due to the density stratification,

and the deformation of the upper interface I1 is larger than that of the lower interface

I2. This asymmetricity is enhanced in the long-time behavior by the calculation with

regularization (refer to Figure 9). The calculation without regularization breaks down

at around t = 1.8 due to the occurrence of curvature singularity [47]. Figure 8 shows

the interfacial structures for t = 0 and t = 1.5 with the colored scale of the vortex

sheet strengths γ1 and γ2. For Case I, the sheet strength γ1 takes negative values over

0 ≤ t ≤ 1.5, while the sheet strength |γ2| ∼ 0 within this time range. This suggests that

the vorticity is not induced on the interface that is not directly affected by the velocity

shear.

We show the temporal evolution of two interfaces calculated by VSM with

regularization in Figure 9. The regularization enables us to perform the long-time

computations beyond the curvature singularity. When t ≥ 3, the roll-up of the interfaces

associated with the Kelvin-Helmholtz instability (KHI) appears, and the two interfaces

approach each other. These interfaces merge and behave like a single vortex sheet at the

last computed stage t = 5. A similar phenomenon is also observed in the incompressible

multi-layer RMI [35]. When the roll-up begins, the interfaces hardly propagate, and

the wave energy is available for the roll-up. Since the vortex sheet strength |γ1| > |γ2|,
the roll-up of I1 is stronger than that of I2, which generates the asymmetricity in the

interfacial structure.

4.2. Nonlinear interfacial motion with current in the lower layer (Case III)

In this subsection, we present the numerical results for Case III in (13). The imaginary

part ωi takes its largest value in the branch ω4 [the red curve in Figure 4 (b)] for k = 1.

We take this branch as the initial condition. Then the linear frequency ω(k) and the
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Figure 11. Vortex sheet strengths γ1 and γ2 corresponding to the interfacial structures

in Figure 10, where t = 0 and t = 1.5 are depicted.

Figure 12. Interfacial structures for Case III with regularization. The panels show

t = 0, 3, 4, 5 from the top to the bottom. A period of two wavelengths is depicted in

the figures.

initial amplitude a2(k) are given by

ω(1) = 0.5131064 + 0.4728463i,

a2(1) = 0.3285275 + 0.0021335i,
(23)

for a1 = 0.2.

We present the temporal evolution of two interfaces calculated by VSM without

regularization in Figure 10. The behavior of the interfaces in Case III is analogous

to that in Case I, although the direction of the growth is the opposite. This growth

direction is determined by the sign of the vortex sheet strength induced on the governing
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Figure 13. Interfacial structures for Case II without regularization. The colors in

the figure denote t = 0 (black), t = 0.25 (blue), t = 0.5 (green), and t = 0.75 (red),

respectively. A period of two wavelengths is depicted in the figures.

Figure 14. Vortex sheet strengths γ1 and γ2 corresponding to the interfacial structures

in Figure 13, where t = 0 and t = 0.75 are depicted.

interface, which is I1 in Case I and I2 in Case III (refer to Figures 8 and 11). The

interfacial structures for t = 0 and t = 1.5 with the colored scale of the vortex sheet

strengths γ1 and γ2 are depicted in Figure 11. Contrary to Case I (Figure 8), the sheet

strength γ2 takes positive values over 0 ≤ t ≤ 1.5, while the sheet strength |γ1| ∼ 0

within this time range. This reflects the fact that the vorticity is not induced on the

upper interface I1 that is not directly affected by the velocity shear in the lower layer.

Figure 12 shows the temporal evolution of two interfaces calculated by VSM with

regularization. A similar roll-ups as Figure 9 are found in this figure, although the

direction of the roll-up is opposite to the one in Case I. Since the vortex sheet strength

|γ2| > |γ1|, the roll-up of I2 is stronger than that of I1 in Case III, contrary to Case I. We

mention that the sheet strengths |γ1| and |γ2| in Case I and Case III are considerably

smaller than those in Case II (refer to Section 4.3) even after the roll-up occurs.

4.3. Nonlinear interfacial motion with current in the middle layer (Case II) -varicose

instabilities-

In this subsection, we present the numerical results for Case II in (13). The parameters

in (12) are maintained throughout this subsection except the value of ρ̃0.
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Figure 15. Interfacial structures for Case II with regularization. The panels show

t = 0, 1.3, 1.5, 2 from the top to the bottom. A period of two wavelengths is depicted

in the figures.

4.3.1. Varicose structure of interfaces with small density stratification In this sub-

subsection, we investigate the case with the same value of ρ̃0 (ρ̃0 = 0.99) as the above

two subsections 4.1 and 4.2. The imaginary part ωi takes its largest value in the branch

ω4 [the red curve in Figure 3 (b)] for k = 1. We take this branch as the initial condition.

Then the linear frequency ω(k) and the initial amplitude a2(k) are given by

ω(1) = 0.8001652 + 0.3926127i,

a2(1) = −0.1934602 + 0.0080392i,
(24)

for a1 = 0.2. This initial amplitude a2 gives the varicose wave. The imaginary

part of a2 is extremely small but not zero; therefore, the initial configuration of two

interfaces is not symmetric perfectly. This asymmetricity is enhanced in the subsequent

evolution of the interfaces. We mention that even if the imaginary part of a2 is zero

and the initial configuration of two interfaces is symmetric, the nonlinear evolution

of the interfaces becomes asymmetric as long as the density stratification exists. We

provide the interfacial structures in the absence of the density stratification in Appendix

Appendix B for reference.

Figure. 13 shows the temporal evolution of two interfaces calculated by VSM

without regularization. The varicose wave at t = 0 gradually steepens at one end,

and a teardrop-shaped wave appears at t = 0.75. The asymmetricity of the interfacial

shapes between I1 and I2 is not noticeable for 0 ≤ t ≤ 0.75. The calculation without

regularization breaks down at around t = 0.9, accompanied by the occurrence of
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Figure 16. Enlarged view of the interfacial structure at t = 2 in Figure 15, where the

blue and red lines denote the upper interface I1 and the lower interface I2, respectively.

The neighborhood of the roll-up in the upper figure is further magnified in the lower

figure.

curvature singularity. We show the interfacial structures for t = 0 and t = 0.75 with

the colored scale of the vortex sheet strengths γ1 and γ2 in Figure 14. For Case II,

considerably strong sheet strengths are induced on both interfaces, in which γ1 possesses

a positive sign, and γ2 possesses a negative sign.

We present the temporal evolution of two interfaces calculated by VSM with

regularization in Figure 15. When t = 1.3, the asymmetricity begins to appear between

the interfacial shapes I1 and I2, which is enhanced further as time passes. The steepening

end found in Figure 13 becomes unstable, and multivaluedness appears in the interfaces.

When t ≥ 1.5, the roll-up begins to appear in the interfacial structure, and a heart-

shaped vortex sheet is formed at t = 2. The similar structure as found in Figure 15 is

also observed in the experiment for a boundary-layer flow past a cylindrical roughness

element [13]. In order to observe the fine structure of the roll-up, we present the enlarged
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Figure 17. Interfacial structures with the colored scale of the vortex sheet strengths

and the velocity fields in Case II, where t = 0, 1, 2 from the top to the bottom.

view of the lowest panel (t = 2) of Figure 15 in Figure 16. This structure cannot capture

accurately in lower resolution, such as Case I and III. The stronger sheet strengths than

those in Case I and III (refer to Figures 9 and 12) are induced at the tips of the roll-up

in Figure 16 at the late stage of computations.

Figure 17 shows the interfacial structures and the velocity fields for Case II. The

velocity field is calculated from (15) [41, 35, 40]. In the varicose mode, a kind of

two-dimensional deformable nozzle is formed at t = 0. A high-speed fluid ejects from

the throat in the nozzle like a jet, and a large shear caused by the velocity difference

between inside and outside of an interface is gradually formed in the neighborhood

of the narrowest part of the throat (t = 1 and 2). This shear induces the vorticity,

and therefore, a strong vortex sheet strength appears around the outlet of the nozzle,

which leads to a heart-shaped vortex sheet. This is a typical nozzle jet flow except the

deformation of the interfaces, and a similar flow structure is also found in the boundary

layer streaks [2, 13, 51].

As found in Figure 5, the varicose mode appears even for the smaller values of U1

when we fix the other parameter values. We mention that the interfacial shapes with

these values of U1 have almost the same structure as that of Case II obtained in this

sub-subsection when the regularized parameter δ is identical.
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Figure 18. Interfacial structures for Case II with ρ̃0 = 0.59. The panels show

t = 0, 2, 4, 6 from the top to the bottom.

Figure 19. Interfacial structures for Case II with ρ̃0 = 0.8. The panels show

t = 0, 1, 2, 3 from the top to the bottom.
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4.3.2. Other varicose interfacial structures -effects of density stratification- In this

sub-subsection, we present the numerical results for Case II in (13) with different values

of ρ̃0 (ρ̃0 = 0.59 and 0.8) from the caluculations in Section 4.3.1. All calculations in

this sub-subsection (Figures 18 and 19) are regularized with δ = 0.1. For both cases

ρ̃0 = 0.59 and ρ̃0 = 0.8, the imaginary part ωi takes its largest value in the branch

ω4 (the red curve in the upper figure in Figure 6). We take this branch as the initial

condition. Then the linear frequency ω(k) and the initial amplitude a2(k) are given by

ω(1) = 0.7815345 + 0.185846i,

a2(1) = −0.0030102− 0.0527351i,
(25)

for ρ̃0 = 0.59, and

ω(1) = 0.8149770 + 0.3423959i,

a2(1) = −0.1210145− 0.0316079i,
(26)

for ρ̃0 = 0.8, respectively. The density ρ̃0 = 0.59 is the value that the varicose mode

starts to appear in the current parameters (refer to Figure 6).

Figure 18 shows the interfacial structures with ρ̃0 = 0.59. When the density ratio

ρ̃0 is small, the initial value of |ℜ(a2)| is extremely small, and in-phase modes arise

in the higher harmonics, which disturbs the development to the varicose structure of

the interfaces. The development of instability is relatively slow, and the heart-shaped

structure as found in Section 4.3.1 does not appear for ρ̃0 = 0.59. We present the

temporal evolution of the interfaces with ρ̃0 = 0.8 in Figure 19. The development of

instability is also slow compared to ρ̃0 = 0.99 in Section 4.3.1, and the heart-shaped

structure is not found even in this value of ρ̃0. We mention that it is ρ̃0 > 0.95 that the

similar interfacial structure as Figure 15 starts to appear.

5. Conclusion

This study has presented nonlinear motions of unstable two interfaces in a three-layer

fluid with uniform current and density stratification. We have investigated the temporal

evolutions of the interfaces for three cases such that the uniform current is present in

the upper, middle, and lower layers, respectively. The initial conditions for numerical

computations were provided by the linear analysis, in which the dispersion relations

were calculated by the Newton’s method. Taking the most unstable mode in the

dispersion curves as the initial condition, we investigated the nonlinear evolution of

the two interfaces numerically using VSM with and without regularizations. For the

case that the uniform current was present in the lower layer, the nonlinear behavior

of the interfaces resembled the one for the case that the current was present in the

upper layer, in which the interface with current rolled up, involving the other interface

apart from the current in the roll-up. The two interfaces merged at the late stage of

computations using VSM with regularization, and, finally, they behaved like a single

vortex sheet.



22

On the other hand, the nonlinear evolution of the interfaces when the current was

present in the middle layer was quite different from the above two cases. In this case,

a varicose mode appeared as the initial wave regardless of the wavenumber. When the

initial varicose wave became unstable, it developed into a teardrop-shaped wave, and

finally, an asymmetric heart-shaped vortex sheet was formed at the last computed stage

of the calculation by VSM with regularization. The instability in the varicose wave was

stronger than that in the above two cases , and an intense concentration of the vortex

sheet strength; i.e., the concentration of vorticity occurred at the center of the roll-up.

The heart-shaped structure is formed by a high-speed flow ejecting from the narrowest

part of the throat like a nozzle jet. The interfacial structure is almost unchanged even

though the magnitude of the shear velocity U1 is varied, as long as the shear velocity

exists in the middle layer and the density ratio ρ0/ρ1 is close to 1. On the other hand,

the varicose structures with smaller density ratios ρ0/ρ1 do not form the heart-shaped

vortex sheet even if the shear velocity in the middle layer has a sufficiently large value.

We mention that the density ratios adopted in Section 4.3.2 are the values that are not

realized in geophysical fluid dynamics and internal gravity waves, but those are possible

in plasma physics.

The varicose mode plays an important role even in multi-component planar liquid

sheets [27, 32], in which the varicose instability causes the eventual breakup of a liquid

sheet at full-wavelength intervals of the fundamental wave. The obtained results in

the current study may give some knowledge to that field. As we see from Fig. 5 (b),

the real part of the amplitude a2 diverges at U1 ∼ 0.2175 for a fixed k = 1. Similar

divergence is also observed for k ∼ 0.048 when we fix the shear as U1 = 1 (Case II). In

the neighborhood of these parameter values, numerical calculations immediately break

down. This suggests that the solutions in multi-layer flows (at least in varicose mode)

do not always exist for all d, k and U , although how such singular solutions appear in

nature or experiments are unknown.
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Appendix A. Dependence on the regularized parameter

We present the interfacial structures at the last computed stage with various regularized

parameter δ in Figure 20, where all parameters are the same as those in Section 4.3.1,

and the calculations are performed with N = 2048 and the time step △t = 6.25× 10−4.

As the regularized parameter δ becomes smaller, the roll-up becomes stronger, and it
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Figure 20. Interfacial structures at the last computed stage in Case II with various

regularized parameter δ, where ρ̃0 = 0.99. The panels show t = 2 with δ = 0.1, t = 1.75

with δ = 0.05, t = 1.5 with δ = 0.025, and t = 1.25 with δ = 0.0125 from the top to

the bottom. The top panal coincides with the lowest panel in Figure 15.

Figure 21. The (a) real and (b) imaginary parts of the dispersion curve in Case II

given by (13) without density stratification (ρ̃0 = ρ̃2 = 1). The colors are the same as

Figure 2, 3, and 4.
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Figure 22. Interfacial structures without density stratification. The panels show

t = 0, 1, 2, 3 from the top to the bottom.

Figure 23. Velocity field without density stratification, where t = 3.

occurs at earlier times; however, the varicose structure itself is unchanged. As δ → 0,

the curvature singularity [47] appears in the neighborhood of the narrowest part of

the throat, and the calculation breaks down before the roll-up of interfaces occurs.

Generally, too small values of δ (δ ≤ 0.05) do not describe well the real vortex dynamics

[30, 49].

Appendix B. Varicose structure without density stratification

For comparison, we provide the dispersion relation and the interfacial evolution for

equidensity case in this appendix. We present the dispersion relation for Case II with

ρ̃0 = ρ̃2 = 1 in Figure 21. The colors are the same as Figures 2, 3, and 4 in Section 2.

In Figure 21 (a), the relations ω1 = ω2 (the black line coincides with the blue one) and
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ω3 = ω4 (the green line coincides with the red one) hold, while the relations ω1 = ω3 (the

black line coincides with the green one) and ω2 = ω4 (the blue line coincides with the

red one) hold in Figure 21 (b). The closed region found in the range of 0 < k < 0.365 in

Figure 3 (a) disappears in Figure 21 (a), and the mutivaluedness in the corresponding

range of k in Figure 3 (b) also disappears in Figure 21 (b). For this equidensity case,

the detailed linear analysis is found in the reference [23].

Figure 23 shows the temporal evolution of the interfaces for the equidensity case

(ρ̃0 = ρ̃2 = 1). The parameters except the density are the same as those for Case II

in Section 4.3. The calculations are performed with N = 2048, △t = 6.25 × 10−4, and

δ = 0.1. In the absence of the density stratification, the roll-up is symmetric. The

velocity field at t = 3 (the lowest panel in Figure 22) is provided in Figure 23. A similar

rectangular jet as Figure 17 is found in this figure as well.
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