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Abstract. The dehydrogenative coupling of aromatic 
amides with dimethyl itaconate proceeds smoothly under 
rhodium catalysis through ortho C–H bond cleavage 
directed by their amide group to produce 
benzylidenesuccinates. Aromatic carboxylic acids 
including benzoic and phthalic acids also couple with the 
itaconate to give 1:2 coupling products predominantly. 
Benzylidenesuccinic acid derivatives have been known to 
show various biological activities. These reactions 
provide easy access to the important structures.  

 

Benzylidenesuccinic acids and their derivatives have 
been of interest because of their biological activities.[1] 
Furthermore, they have also drawn attention for their 
utility as synthetic intermediates on the ways toward 
functional molecules and natural products.[2] 
Especially, they undergo asymmetric addition of 
hydrogen[3] and amines[4] to produce chiral 
benzylsuccinic acids as well as amino acids. 
Benzylidenesuccinates used to be prepared via 
classical condensations and Wittig-type reactions.[5] 
Later, Mizoroki-Heck-type arylation of itaconates 
have become utilized for the synthesis of variously 
substituted benzylidenesuccinates.[6] Itaconic acid and 
its derivatives have been recognized as promising 
building-blocks due to their ready availability and 
renewability.[7] Actually, they can be provided by 
industrial fermentation of carbohydrates. Compared 
with the conventional cross-coupling method, the 
transition-metal-catalyzed direct coupling of aromatic 
substrates with itaconates through arene C–H bond 
cleavage is undoubtedly attractive from the atom- and 
step-economic points of view.[8] The dehydrogenative 
coupling with alkenes has been referred to as C–H 
alkenylation and employed for the straightforward 
synthesis of arylalkenes (Scheme 1a).[9] 
Monosubstituted alkenes are usually used in most 
cases of such reaction. In contrast, the reaction with 
1,1-disubstituted alkenes such as itaconates has been 
relatively less explored. In the context of our study on 
C–H alkenylation,[10] we have found that the 
dehydrogenative coupling of aromatic amides and 
carboxylic acids with dimethyl itaconate proceeds 
smoothly under rhodium catalysis through ortho C–H 

bond cleavage directed by amide and carboxy 
functions and disubstituted C=C double bond insertion 
(Scheme 1b). The procedure provides straightforward 
synthetic pathways toward a series of 
benzylidenesuccinates from readily available starting 
materials. The new findings are described herein.  

 

Scheme 1. Dehydrogenative Coupling of Aromatic 
Substrates with Alkenes. 

Previously,  we have reported [ 1 1 ]  that  the 
dehydrogenative coupling of benzamides with another 
kind of  1,1-disubst i tuted alkene,  methyl  2-
trifluoromethylacrylate, can be conducted efficiently 
in the presence of a catalyst system [CpERhCl2]2[12] / 
AgSbF6 and Ag2CO3 as oxidant. Therefore, in an 
initial attempt, N,N-dimethylbenzamide (1a) (0.5 
mmol) was treated with dimethyl itaconate (2) (0.5 
mmol) in the presence of [CpERhCl2]2 (0.01 mmol, 2 
mol %), AgSbF6 (0.2 mmol), Ag2CO3 (1 mmol), and 
AcOH (1 mmol) in ButOH under Ar (1 atm) at 40 oC 
fo r  24  h .  As  a  r e su l t ,  d ime thy l  (E ) -2 - (2 -
(dimethylcarbamoyl)benzylidene)succinate (3a) was 
obtained in 85% yield (Table 1). As in the previous 
Mizoroki-Heck type arylation of itaconates,[6] no 
geometric isomer ((Z)-3a) was detected by GC and 
GC-MS analyses for the reaction mixture. In the case 
using [Cp*RhCl2]2 in place of [CpERhCl2]2 as 
catalyst,[13] the 3a yield considerably decreased 
(~10%). N-Benzoylpyrrolidine and -piperidine also 
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Table 1. Reaction of Aromatic Amides 1 with Itaconic Acid 
(2)[a].  

 
[a] Reaction conditions: 1 (0.5 mmol), 2 (0.5 mmol), 
[CpERhCl2]2 (0.01 mmol), AgSbF6 (0.2 mmol), Ag2CO3 (1 
mmol), AcOH (1 mmol) in ButOH (3 mL) at 40 oC under Ar 
for 24 h. [b] Isolated yield based on the amount of 1 used. [c] 
2,6-Dialkenylated product 4d (9%) was also formed. [d] 2,6-
Dialkenylated product 4e (10%) was also formed. [e] 2,6-
Dialkenylated product 4f (6%) was also formed. [f] 2,6-
Dialkenylated product 4h (11%) was also formed. 

underwent the dehydrogenative coupling with 2 to 
form 3b and 3c, respectively, in excellent yields. In 
addition to tertiary amides, secondary and primary 
benzamides could also be employed for the reaction. 
Thus, N-i-propyl, -n-propyl, and -methylbenzamides 
reacted with 2 smoothly to produce 3d-f in 70-79% 
yields. In these cases, minor amounts (6-10%) of 2,6-
dialkenylated products 4d-f were also detected. The 
reaction of a more sterically hindered benzamide, N-
(2,6-dimethylphenyl)benzamide, gave only a 
monoalkenylated product 3g in 60% yield. In contrast, 
less hindered N-unsubstituted benzamide reacted with 
2 to form mono- (3h) and dialkenylated products (4h) 
in 57 and 11% yields, respectively. Next, the reactions 

of various aroyl- and heteroaroylpyrrolidines with 2 
were examined. 4-Methyl, -methoxy, -chloro, and -
bromo substituted benzoylpyrrolidines underwent the 
mono-alkenylation to form 3i-l in 87-98% yields. The 
dehydrogenative coupling of (1-methyl-1H-indol-2-
yl)-, (benzo[b]furan-2-yl)-, and (benzo[b]thiophen-2-
yl)(pyrrolidin-1-yl)methanones with 2 took place at 
their C3 positions to produce 3m-o in good yields. In 
contrast, the reaction of pyrrolidin-1-yl(thiophen-3-
yl)methanone (1p) with 2 gave a mixture of C2- (3p) 
and C4-alkenylated products (3p’), as shown in 
Scheme 2. Similarly, in the reaction of N-naphtho-2-
ylpyrrolidine (1q), a mixture of C3- (3q) and C1-
alkenylated products (3q’) was formed (Scheme 3). 

 
Scheme 2. Reaction of 1p with 2. 

 

Scheme 3. Reaction of 1q with 2. 

A plausible reaction pathway for the reaction of 1 
with 2 are depicted in Scheme 4. Coordination of the 
amide function of 1 to a CpERh(III) species leads to 
regioselective C–H bond cleavage at the ortho position 
to give a five-membered rhodacycle intermediate A.  
Then, C=C double bond inertion of 2 and subsequent 
b-hydrogen elimination[14] from the resulting B may 
take place to produce 3. Finally, an Rh(I) species 
generated from a hydridorhodium species seems to be 
reoxidized by an Ag salt to regenerate an active 
CpERh(III) species. In cases with sterically less 
crowded secondary and primary benzamides (R1 
and/or R2 = H in Scheme 4), the second alkenylation 
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cycle at the C6-position seems to proceed, albeit with 
low efficiency. 

 

Scheme 4. Plausible Mechanism for the Reaction of 1 with 
2. 

Besides benzamides, acetanilide (5)[15] also 
underwent the dehydrogenative coupling with 2 at the 
ortho-position under similar conditions to produce 6 in 
54% yield (Scheme 5). Thus, the acetylamino moiety 
was shown to act as a directing group in our reaction 
system.  

 

Scheme 5. Reaction of 5 with 2. 

Benzoic acids have been known to be good 
substrates for the rhodium(III)-catalyzed 
dehydrogenative coupling. Under Cp*Rh catalysis, 
ortho-unsubstituted benzoic acids usually undergo 
dialkenylation upon treatment with acrylates and 
styrenes.[16] Thus, benzoic acid (7a) was treated with 
three equivalents of 2 under the standard conditions, 
using a [CpERhCl2]2 / AgSbF6 catalyst system, 
Ag2CO3 oxidant, and AcOH additive in ButOH under 
Ar (1 atm) at 40 oC for 24 h. After methyl esterification 
using MeI and K2CO3 for quantification, a 
dialkenylated product, tetramethyl 2,2'-((2-
(methoxycarbonyl)-1,3-
phenylene)bis(methaneylylidene))(2E,2'E)-
disuccinate (8a), was obtained predominantly in 66% 
yield, along with a minor amount (10%) of 
monoalkenylated product 9a (Table 2). Phthalic acid 
also underwent the reaction in a similar manner to give 
dialkenylated 8b and monoalkenylated 9b in 78 and 
9% yields, respectively. The reaction of isophthalic 
acid was sluggish to produce monoalkenylated 9c as a 

major product (32%) along with a minor amount (6%) 
of dialkenylated 8c. Next, we examined the reactions 
of thiophene mono- and dicarboxylic acids. 
Thiophene-3-carboxylic acid reacted with 2 to afford 
dialkenylated product 8d exclusively in 80% yield. 
The reactions of thiophene- and benzo[b]thiophene-2-
carboxylic acid expectedly gave monoalkenylated 9e 
and 9f, respectively, in good yields. Thiophene-2,5- 
and -3,4-dicarboxylic acids underwent 
monoalkenylation at the C3- and C2-positions, 
respectively, albeit with low efficiency.  

Table 2. Reaction of Aromatic Carboxylic Acids 5 with 
Itaconic Acid (2)[a]  

 
[a] Reaction conditions: 1) 7 (0.5 mmol), 2 (1.5 mmol), 
[CpERhCl2]2 (0.01 mmol), AgSbF6 (0.2 mmol), Ag2CO3 (1 
mmol), AcOH (1 mmol) in ButOH (3 mL) at 40 oC under Ar 
for 24 h. 2) With the addition of MeI (2.5 mmol), K2CO3 
(1.5 mmol), and DMF (2 mL) at rt for 2 h. [b] Isolated yield 
based on the amount of 7 used. [c] 2-Monoalkenylated 
product 9a (10%) was also formed. [d] 3-Monoalkenylated 
product 9b (9%) was also formed. [e] 4,6-Dialkenylated 
product 8c (6%) was also formed. [f] 2,5-Dialkenylated 
product 8h (3%) was also formed. 

In conclusion, we have demonstrated that aromatic 
amides and carboxylic acids undergo rhodium(III)-
catalyzed dehydrogenative coupling with itaconate 
efficiently. This procedure enables to synthesize a 
variety of benzylidenesuccinates straightforwardly 
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from readily available starting materials. Work is 
underway for synthesizing more complicated 
polycarboxylic acid derivatives. 

Experimental Section 
Experimental Details: To a 30 mL two-necked flask with 
a reflux condenser, a balloon, and a rubber cup were added 
[CpERhCl2]2 (0.01 mmol, 9 mg), AgSbF6 (0.2 mmol, 69 mg), 
and ButOH (3 mL). The mixture was stirred under air at 
room temperature for 15 min. Then, benzamide 1 (0.5 
mmol), dimethyl itaconate (2a) (0.5 mmol, 79 mg), Ag2CO3 
(1 mmol, 276 mg), AcOH (1 mmol, 60 mg), and 1-
methylnaphthalene (ca. 50 mg) as internal standard were 
added and the resulting mixture was stirred under argon (1 
atm) at 40 °C (bath temperature) for 24 h. After filtration 
through celite, the mixture was diluted with 
dichloromethane (40 mL). The organic layer was washed by 
1 N HCl (40 mL), water (40 mL, twice), and brine (40 mL) 
and dried over Na2SO4. After removal of the solvents under 
vacuum, products 3 and 4 were purified by column 
chromatography on silica gel using hexane−ethyl acetate as 
eluent.  
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