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Abstract. We investigate the total number of edge crossings (i.e., the
crossing number) of the Euclidean minimum weight Laman graphMLG(P )
on a planar point set P . Bereg et al. (2016) showed that the upper and
lower bounds for the crossing number of MLG(P ) are 6|P |−9 and |P |−3,
respectively. In this paper, we improve these upper and lower bounds
given by Bereg et al. (2016) to 2.5|P |−5 and (1.25−ε)|P | for any ε > 0,
respectively. Especially, for improving the upper bound, we introduce a
novel counting scheme based on some geometric observations.

Keywords: Laman graphs, Sparse and tight graphs, Plane graphs, Ge-
ometric graphs, Edge crossings

1 Introduction

A graph G = (V,E) is called Laman if |E| = 2|V |−3 and |E(H)| ≤ 2|V (H)|−3
for any subgraph H of G with E(H) ̸= ∅. A Laman graph has a property of being
minimally rigid in the plane if it is realized as a generic bar-joint framework [5,
8]. A bar-joint framework is a straight-line realization of a graph in the plane,
and by regarding each edge as a bar and each point as a joint the rigidity
of such a graph can be defined in a natural way (see, e.g., [5]). One of the
most fundamental results in combinatorial rigidity theory asserts that a graph
G realized on a generic point set (i.e., the set of the coordinates is algebraically
independent over the rational field) is rigid if and only if G contains a spanning
Laman subgraph [8]. Laman graphs appear in a wide range of applications, not
only statics but also mechanical design such as linkages, design of CAD systems,
analysis of protein flexibility, and sensor network localization [9, 10].

Given a set P of n points in the Euclidean plane, let G(P ) denote a geometric
graph on P , i.e., G(P ) = (P,E) where E is a set of edges each of which is drawn
as a segment between two points in P . Throughout the paper, we assume that no
three points in P are collinear and all interpoint distances are distinct. The point

⋆ This work is supported by JST CREST Grant Number JPMJCR1402.
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set satisfying these assumptions is called semi-generic. A two-dimensional bar-
joint framework is considered as a geometric graph, thus in this paper, we deal
with geometric graphs where the underlying graphs are Laman, called Euclidean
Laman graphs. It is then natural to consider the Euclidean Laman graph on a
planar point set P with the minimum total edge-length over all Euclidean Laman
graphs on P , i.e., the Euclidean minimum weight Laman graph on P denoted by
MLG(P ).

In order to realize a geometric graph as a bar-joint framework in the real
world, it is important to consider the crossing property of the geometric graph.
A geometric graph is called plane (or non-crossing) if any two edges do not have
a crossing except possibly at their endpoints. In fact, the Euclidean minimum
spanning tree on a semi-generic planar point set P (MST(P ) for short) is plane.
Observe that both Laman graphs and spanning trees are characterized by similar
sparsity conditions: A graph G is called (k, l)-sparse if |E(H)| ≤ k|V (H)| − l
for any subgraph H of G with E(H) ̸= ∅, and a (k, l)-sparse graph is called
(k, l)-tight if it has exactly k|V (H)|− l edges (see, e.g., [8]). A spanning tree is a
(1, 1)-tight graph while a Laman graph is a (2, 3)-tight graph. Since (k, l)-sparse
graphs have several common combinatorial properties such as being independent
sets of a matroid, a natural question is whether the Euclidean minimum weight
(k, l)-tight graph on a point set has a nice crossing property as does the Euclidean
minimum weight (1, 1)-tight graphs.

Bereg et al. [3] studied crossing properties of MLG(P ). They proved as the
main results that MLG(P ) is 6-planar, i.e., each edge in MLG(P ) has at most
six crossings, and MLG(P ) is also quasi-planar, i.e., no three edges in MLG(P )
pairwise cross. In addition, they showed an instance P for which there exists an
edge that has six crossings in MLG(P ).

In the following, we use the terminology crossing number to denote the total
number of crossings. According to the results by Bereg et al. [3], it is easy to
see that the crossing number of MLG(P ) is at most 6× (2|P | − 3)/2 = 6|P | − 9.
Bereg et al. [3] also provided an instance P for which the crossing number of
MLG(P ) is |P | − 3 (as shown in Fig. 3), therefore, there has been a gap between
upper and lower bounds for the crossing number of MLG(P ). In this paper, we
improve these upper and lower bounds given by Bereg et al. [3] to 2.5|P | −
5 and (1.25 − ε)|P | for any ε > 0, respectively. Especially, for improving the
upper bound, we introduce a novel counting scheme based on some geometric
observations, which is the most important contribution presented in the paper.

As for the crossing number of geometric graphs, several classes of proximity
graphs are studied by Ábrego et al. [1], e.g., nearest neighbor graphs, relative
neighborhood graphs, Gabriel graphs and Delaunay graphs. In a k-nearest neigh-
bor graph on a point set P (k-NNG(P ) for short), for p, q ∈ P , pq 3 is included
if and only if p is the i-th closest point among p from q for some i ≥ k or
vice versa. In a k-relative neighborhood graph on a point set P (k-RNG(P ) for
short), for p, q ∈ P , pq is included if and only if Dp(pq) ∩Dq(pq) (where Dp(r)

3 Throughout the paper, for two points p, q, we abuse the notation pq to denote the
line segment between p and q or the length of itself, depending on the context.
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denotes the closed disk with center p and radius r) contains at most k points
among P \ {p, q}. In a k-Gabriel graph on a point set P (k-GG(P ) for short), for
p, q ∈ P , pq is included if and only the circle through p and q with diameter pq
contains at most k points among P \ {p, q}. In a k-Delaunay graphs on a point
set P (k-DG(P ) for short), for p, q ∈ P , pq is included if and only if there is a
circle through p and q that contains at most k other points. Ábrego et al. [1]
proved that for any set P of n points, k-NNG(P ) has at most k3n crossings,
k-RNG(P ) has at most 9k3n crossings, k-GG(P ) has at most 3k2n2 crossings,
and k-DG(P ) has at most 3k2n2 crossings. Note that Bereg et al. [3] showed the
relation among k-NNG(P ), k-RNG(P ), k-GG(P ) and MST(P ). See Lemma 1 for
the details.

The rest of the paper is organized as follows. In Section 2, we introduce some
notations and properties of MLG(P ) given by Bereg et al. [3], that are used
throughout the paper. In Section 3, we provide new geometric observations and
give an efficient counting scheme for improving the upper bound based on the
shown observations. In Section 4, we show how to construct an instance which
achieves the improved lower bound. In Section 5, we discuss future works, which
concludes the paper.

2 Preliminaries

First of all, we introduce some notations used throughout the paper. The closed
disk (resp. circle) with center p and radius r is denoted Dp(r) (resp. Cp(r)).
Consider two points p, q in the plane. Let Lens(pq) = Dp(pq) ∩ Dq(pq). Let
bisect(pq) denote the perpendicular bisector of segment pq. Let Up Lens(pq)
(resp. Low Lens(pq)) denote the intersection of Lens(pq) and the halfplane deter-
mined by bisect(pq) that contains p (resp. q). Let L Lens(pq) (resp. R Lens(pq))
denote the intersection of Lens(pq) and the halfplane determined by the support-
ing line of segment pq that contains a point p′ such that p, q, and p′ are arranged
on triangle pqp′ in clockwise (resp. counterclockwise) order. For a point p and
two half lines ℓ and ℓ′ starting at p in the plane, let anglep(ℓ, ℓ

′) denote the
smaller angle between ℓ and ℓ′, and Conep(ℓ, ℓ

′) denote the cone with apex at p
delimited by ℓ and ℓ′, which corresponds to anglep(ℓ, ℓ

′).
In the rest of this section, we introduce several lemmas and theorems shown

by Bereg et al. [3] since those are useful to prove our main lemmas provided in
the next section. In the following, let P be a set of semi-generic n points in the
Euclidean plane, and for a geometric graph G(P ), we abuse notation G(P ) to
denote a set of edges in G(P ).

Let us start with a property based on which our counting scheme is.

Lemma 1. (Theorem 1.1 in [3]) It holds

MST(P ) ∪ 2-NNG(P ) ⊆ MLG(P ) ⊆ 1-GG(P ) ∩ 2-RNG(P ).

Focusing on MST(P ) ⊆ MLG(P ), we classify the edges in MLG(P ) into ones in
MST(P ) and ones not in MST(P ). The details will be given in the next section.
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Fig. 1. (a) A lens-crossing edge cd for ab. (b) A fan-crossing edge cd for ab.

The following lemma shows properties which points of P in Lens(ab) for
ab ∈ MLG(P ) satisfy.

Lemma 2. (Lemma 2.3 in [3]) Consider an edge ab ∈ MLG(P ).
(i) There exists at most one point of P in each of L Lens(ab) and R Lens(ab).
(ii) If there exists one point of P in each of L Lens(ab) and R Lens(ab), i.e.,
c ∈ L Lens(ab) and d ∈ R Lens(ab), it then holds that ab < cd and cd /∈ MLG(P ).

We introduce key concepts both in our paper and [3]. See also Fig. 1.

Definition 1. (lens-crossing edge) For four points a, b, c, d ∈ P , suppose that
segments ab and cd cross each other, and c, d /∈ Lens(ab). Then, cd is called a
lens-crossing edge for ab.

Definition 2. (fan-crossing edge) For four points a, b, c, d ∈ P , suppose that
segments ab and cd cross each other, and c ∈ Lens(ab) and d /∈ Lens(ab). Then,
cd is called a fan-crossing edge for ab.

The following two lemmas show properties on lens-crossing edges for ab ∈
MLG(P ).

Lemma 3. (Lemma 3.3 in [3]) For four points a, b, c, d ∈ P , suppose that seg-
ment cd is a lens-crossing edge for segment ab, and cd cuts only Up Lens(ab)
(i.e., it does not cut Low Lens(ab)). Then, it holds a ∈ Lens(cd).

Lemma 4. (Lemma 4.1 in [3] 4) Consider an edge ab ∈ MLG(P ). Then, MLG(P )
includes
(i) at most one lens-crossing edge for ab that cuts only Up Lens(ab),
(ii) at most one lens-crossing edge for ab that cuts only Low Lens(ab), and
(iii) no lens-crossing edge for ab that cuts both Up Lens(ab) and Low Lens(ab).

Lemma 4 means that MLG(P ) includes at most two lens-crossing edges for ab ∈
MLG(P ). Especially, it is easy to see the proof of Lemma 4(iii) as follows: Suppose

4 Lemma 4.1 in [3] corresponds to Lemma 4(i)(ii).
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Fig. 2. Illustration of Lemma 4(iii).

that a lens-crossing edge for ab, say cd, is also included in MLG(P ), and cd cuts
both Up Lens(ab) and Low Lens(ab) as shown in Fig. 2. Then, it holds ab < cd
and a, b ∈ Lens(cd), which contradicts Lemma 2(ii).

As for fan-crossing edges for ab ∈ MLG(P ), we have the following lemma.

Lemma 5. (Lemma 4.3 in [3]) Consider an edge ab ∈ MLG(P ). Then, MLG(P )
includes at most four fan-crossing edges for ab.

Based on the proof of Lemma 5 written in [3], we analyze more details and obtain
Lemmas 10 and 11 provided in the next section. Note that, indeed, the proof
of Lemma 5 for the case where only one point exists in Lens(ab) immediately
follows from the proof of Lemma 10.

Let σ(P ) denote the crossing number of MLG(P ). By Lemmas 4 and 5, we
see that every edge in MLG(P ) has at most six crossings. Therefore, σ(P ) is at
most 6× (2n− 3)/2.

Theorem 1. [3] For any set of semi-generic points P , it holds σ(P ) ≤ 6|P |−9.

Bereg et al. [3] also provide an instance P whose crossing number is |P | − 3 as
shown in Fig. 3.

Theorem 2. [3] There exists a set of semi-generic points P such that σ(P ) ≥
|P | − 3.

Fig. 3. MLG(P ) that has |P | − 3 crossings (indicated by black-colored circles).



6 Y. Kobayashi et al.

To conclude this section, we introduce the following useful lemmas implicitly
shown in [11] and [3].

Lemma 6. [11] For three points a, b, c ∈ P , suppose that anglea(ℓ, ℓ
′) < 60◦

and b, c ∈ Conea(ℓ, ℓ
′). Then, the longer of ab and ac is not included in MST(P ).

Lemma 7. [3] For four points a, b, c, d ∈ P , suppose that anglea(ℓ, ℓ
′) < 60◦

and b, c, d ∈ Conea(ℓ, ℓ
′). Then, the longest of ab, ac, and ad is not included in

MST(P ).

3 Improved upper bound for σ(P )

In this section, we show a novel counting scheme based on some geometric ob-
servations, which improves the upper bound for σ(P ) shown in Theorem 1.
Recall that MST(P ) ⊆ MLG(P ) as shown in Lemma 1. In the following, let
MST(P ) = MLG(P ) \ MST(P ). For counting σ(P ), we basically classify the
edges in MLG(P ) into ones in MST(P ) and ones in MST(P ).

Let us first see the following lemma.

Lemma 8. For an edge ab ∈ MST(P ), there is no fan-crossing edge.

Proof. We prove by contradiction that there exists no point of P in Lens(ab):
Suppose that c ∈ P lies in Lens(ab). We then have max{ab, bc, ca} = ab. Since
for any triangle whose vertices are points in P the longest edge is not in MST(P ),
it holds ab /∈ MST(P ), a contradiction. This completes the proof. ⊓⊔

At this point, it is easy to see σ(P ) ≤ 4n− 7 as follows: By Lemmas 4 and 8,
an edge in MST(P ) has at most two crossings in MLG(P ). Therefore, we obtain

σ(P ) ≤ 2|MST(P )|+ 6|MST(P )|
2

=
2(n− 1) + 6(n− 2)

2
= 4n− 7.

In the rest of this section, we further improve this upper bound.
Next see the following lemma.

Lemma 9. For four points a, b, c, d ∈ P , suppose that cd is a lens-crossing edge
for ab. Then, ab is a fan-crossing edge for cd.

Proof. By Lemma 4, without loss of generality, cd cuts Up Lens(ab) and does
not cut Low Lens(ab) (see Fig. 4). Then, by Lemma 3, we have a ∈ Lens(cd).
On the other hand, it holds b /∈ Lens(cd) by Lemma 2(ii). This completes the
proof. ⊓⊔

We now consider classifying crossings in MLG(P ) into two cases.

Definition 3. (f-f crossing/f-l crossing) For four points a, b, c, d ∈ P , suppose
that two segments ab and cd intersect each other.
(i) If cd is a fan-crossing edge for ab, and ab is a fan-crossing edge for cd, we
call the crossing between ab and cd an f-f crossing.
(ii) If cd is a fan-crossing edge for ab, and ab is a lens-crossing edge for cd, we
call the crossing between ab and cd an f-l crossing.
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a

b

c d

Fig. 4. Illustration of the proof of Lemma 9.

Note that if cd is a lens-crossing edge for ab, by Lemma 9, ab must be a fan-
crossing edge for cd. Therefore, every crossing in MLG(P ) is an f-f crossing or
an f-l crossing. Furthermore, since there is no fan-crossing edge for any edge
in MST(P ) by Lemma 8, every crossing in MLG(P ) is a crossing between an
edge e ∈ MST(P ) and a fan-crossing edge for e, which implies that σ(P ) can be
counted only by checking fan-crossing edges for edges in MST(P ).

Prior to details of our counting scheme, we show the following two lemmas.

Lemma 10. Consider an edge ab ∈ MST(P ). Among the crossings between ab
and fan-crossing edges for ab in MLG(P ), there exist at most two f-l crossings.

Proof. First of all, if there exists no point of P in Lens(ab), the statement clearly
holds. According to Lemma 2, we consider other two cases: [Case 1] There exists
one point of P in Lens(ab). [Case 2] There exist two points of P in Lens(ab).
Case 1: Without loss of generality, c ∈ P lies in L Lens(ab). Let ℓa be a
half line emanating from c to a and ℓ′a be a half line emanating from c such
that anglec(ℓa, ℓ

′
a) = 60◦ and ℓ′a cuts R Lens(ab). Similarly, let ℓb be a half

line emanating from c to b and ℓ′b be a half line emanating from c such that
anglec(ℓb, ℓ

′
b) = 60◦ and ℓ′b cuts R Lens(ab).

Let d be a point of P such that cd is a fan-crossing edge for ab and cd lies in
Conec(ℓa, ℓ

′
a) (see Fig. 5(a)). Let d′ be the crossing between segment cd and the

boundary of Lens(ab). Since bisect(ad′) passes through b since ad′ is a chord
of Cb(ab), it is easy to see that a and c lie in the same side of bisect(ad′),
which means ca < cd′. By cd′ ≤ cd, we obtain ca < cd. On the other hand,
since ̸ dca ≤ 60◦ < ̸ dac, we have ad < cd. Hence, it holds a ∈ Lens(cd), i.e., a
crossing between ab and cd is an f-f crossing. In a symmetric manner, we obtain
the same conclusion even if cd lies in Conec(ℓb, ℓ

′
b). Therefore, only if cd lies in

Conec(ℓ
′
a, ℓ

′
b), a crossing between ab and cd can be an f-l crossing. By the fact of

anglec(ℓ
′
a, ℓ

′
b) < 60◦ and Lemma 7, MLG(P ) includes at most two fan-crossing

edges lying in Conec(ℓ
′
a, ℓ

′
b), which completes the proof for Case 1.

Case 2: According to Lemma 2, without loss of generality, c, d ∈ P lie in
L Lens(ab) and R Lens(ab), respectively. Let p (resp. q) be the intersection point
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Fig. 5. (a) Illustration of Case 1 in the proof of Lemma 10. (b) Illustration of Case 2
in the proof of Lemma 10.

of two circles Ca(ab) and Cb(ab) in L Lens(ab) (resp. R Lens(ab)) (see Fig. 5(b)).
We can see c /∈ Dq(ab) and d /∈ Dp(ab) since otherwise c ∈ Dq(ab) or d ∈ Dp(ab)
holds, and then cd < ab holds, which contradicts Lemma 2.

We consider only fan-crossing edges for ab emanating from c since ones em-
anating from d are symmetric. Let ℓa, ℓb, ℓq be a half line emanating from c to
a, b, q respectively. Let h be a point of P such that ch is a fan-crossing edge
for ab and ch lies in Conec(ℓa, ℓq). Let h′ be the crossing between segment ch
and the boundary of Lens(ab), and c′ be the crossing (inside Lens(ab)) between
segment ch and Cq(ab). Since bisect(ah′) passes through b, it is easy to see
that a and c lie in the same side of bisect(ah′), which means ca < ch′. By
ch′ ≤ ch, we obtain ca < ch. Similarly, by considering bisect(ac′), we obtain
ah < ch. Hence, it holds a ∈ Lens(ch), i.e., a crossing between ab and ch is an
f-f crossing. In a symmetric manner, we obtain the same conclusion even if ch
lies in Conec(ℓb, ℓq), which implies that there exists no f-l crossing between ab
and fan-crossing edges for ab. This completes the proof for Case 2. ⊓⊔

Lemma 11. For an edge ab ∈ MST(P ), at most one fan-crossing edge is in-
cluded in MST(P ).

Proof. Consider the same cases as in the proof of Lemma 10.
Case 1: As shown in the proof of Lemma 10, if cd is a fan-crossing edge for ab
and cd lies in Conec(ℓa, ℓ

′
a) or Conec(ℓb, ℓ

′
b), Lens(cd) includes a or b, respectively,

i.e., cd /∈ MST(P ). Therefore, only if cd lies in Conec(ℓ
′
a, ℓ

′
b), cd can be included

in MST(P ). By the fact of anglec(ℓ
′
a, ℓ

′
b) < 60◦ and Lemma 6, MST(P ) includes

at most one fan-crossing edges lying in Conec(ℓ
′
a, ℓ

′
b), which completes the proof

for Case 1.
Case 2: As shown in the proof of Lemma 10, if ch is a fan-crossing edge for ab
and ch lies in Conec(ℓa, ℓq) or Conec(ℓb, ℓq), Lens(cd) includes a or b, respectively,
i.e., ch /∈ MST(P ). Therefore, no fan-crossing edge is included in MST(P ). This
completes the proof for Case 2. ⊓⊔
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3.1 Counting scheme

Recall that every crossing in MLG(P ) is a crossing between an edge e ∈ MST(P )
and a fan-crossing edge for e. In the following, we classify each edge e ∈ MST(P )
into two types: [Type 1] There exists at least one f-l crossing among the crossings
between e and fan-crossing edges for e in MLG(P ). [Type 2] There exists no f-l
crossing among the crossings between e and fan-crossing edges for e in MLG(P ).
Let mi be the number of edges of Type i in MST(P ). Clearly, it holds

m1 +m2 = |MST(P )| = n− 2. (1)

We then consider numbering edges in Type i from 1 to mi in any order, and use
eij to denote the j-th edge in Type i. Recall that every crossing in MLG(P ) is
an f-f crossing or an f-l crossing. For every edge eij ∈ MST(P ), let σf-f

ij (resp.

σf-l
ij ) be the number of f-f (resp. f-l) crossings between eij and fan-crossing edges

for eij in MLG(P ). By Lemma 10, it holds

σf-l
1j ≤ 2 for j = 1, . . . ,m1. (2)

Also, we have by the definition

σf-l
2j = 0 for j = 1, . . . ,m2. (3)

Let σf-f (resp. σf-l) denote the number of f-f (resp. f-l) crossings in MLG(P ).
Clearly, it holds

σ(P ) = σf-f + σf-l. (4)

First, we consider counting σf-f and σf-l by checking fan-crossing edges for every
eij ∈ MST(P ). While counting, each f-f crossing is counted exactly twice. We
thus have

σf-f =
1

2

 2∑
i=1

mi∑
j=1

σf-f
ij

 . (5)

On the other hand, each f-l crossing is counted exactly once. We thus have

σf-l =

2∑
i=1

mi∑
j=1

σf-l
ij =

m1∑
j=1

σf-l
1j . (6)

Note that the second equality in Eq. (6) holds by applying Eq. (3). Summarizing
Eq. (4), Eq. (5) and Eq. (6), we obtain

σ(P ) =
1

2

 2∑
i=1

mi∑
j=1

σf-f
ij

+

m1∑
j=1

σf-l
1j

=
1

2

 2∑
i=1

mi∑
j=1

σf-f
ij +

m1∑
j=1

σf-l
1j

+
1

2

m1∑
j=1

σf-l
1j . (7)
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Next, consider counting the number of fan-crossing edges in MST(P ), say
α, for every eij ∈ MST(P ). Recall that the crossing between eij and an edge
in MST(P ) is always an f-l crossing. Hence by Lemma 11, for an edge e1j , the
number of fan-crossing edges in MST(P ) is at least σf-f

1j + σf-l
1j − 1, and for an

edge e2j , it is exactly σf-f
2j + σf-l

2j = σf-f
2j (by Eq. (3)), i,e,. it holds

α ≥
m1∑
j=1

(σf-f
1j + σf-l

1j − 1) +

m2∑
j=1

σf-f
2j =

2∑
i=1

mi∑
j=1

σf-f
ij +

m1∑
j=1

σf-l
1j −m1. (8)

On the other hand, since each edge in MST(P ) is counted at most twice, and
|MST(P )| = n− 2, we have

α ≤ 2(n− 2). (9)

Summarizing Eq. (8) and Eq. (9), we obtain

2∑
i=1

mi∑
j=1

σf-f
ij +

m1∑
j=1

σf-l
1j ≤ 2(n− 2) +m1. (10)

Hence, we have an improved upper bound for σ(P ) as follows:

σ(P ) ≤ 2(n− 2) +m1

2
+

1

2

m1∑
j=1

σf-l
1j (by substituting Eq. (10) into Eq. (7))

≤ 2(n− 2) +m1

2
+

1

2
· 2m1 (by Eq. (2))

≤ 5

2
(n− 2) (since m1 ≤ n− 2 by Eq. (1)).

Theorem 3. For a set of any semi-generic points P , it holds σ(P ) ≤ 2.5|P |−5.

4 Improved lower bound for σ(P )

In this section, we show how to construct an instance P for which there exist
more crossings in MLG(P ) than one shown by Bereg et al. [3].

Consider a set of five points {a, b, c, d, e} as shown in Fig. 6(a). For a point
o, and two real numbers R and r with R > r > 0, points a, b, c, d are arranged
on Co(R) in this order so that ab = bc = cd = r, and point e is located in Do(R)
such that be = ce = 2r. We call such a set of five points unit w.r.t. (o,R, r) in
the following.

For an integer t > 0, let us consider t numbered units w.r.t. (o,R, r). We
identify points a, b, c, d, e of i-th unit as ai, bi, ci, di, ei, respectively. We now put
t units so that di = ai+1 (regarded as one point) for i = 1, . . . , t − 1 as shown
in Fig. 6(b). Let P (o,R, r, t) denote a set of points constructed in the above
manner. It is then easy to see

|P (o,R, r, t)| = 4t+ 1. (11)
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Fig. 6. (a) A unit w.r.t. (o,R, r). (b) Illustration of how to connect two units.

Let us consider MLG(P (o,R, r, t)). In the following, we take values R, r, t so
that R/t > 1 ≫ r. It is then easy to see that

aibi = bici = cidi(= r) < aici = bidi = cibi+1(≃ 2r) < biei = ciei(= 2r)

< aiei = diei(≃
√
6r) < eiei+1(≃ 3r),

thus MLG(P (o,R, r, t)) consists of edges aibi, bici, cidi, aici, bidi, biei, ciei for
i = 1, . . . , t, and edges cibi+1 for i = 1, . . . , t− 1. Since there are three crossings
in the i-th unit, and each edge cibi+1 has two crossings, it holds

σ(P (o,R, r, t)) = 3t+ 2(t− 1) = 5t− 2. (12)

By Eq. (11) and Eq.(12), we have

σ(P (o,R, r, t))

|P (o,R, r, t)|
=

5t− 2

4t+ 1
=

5

4
− 13

16t+ 4
,

which can be larger than 5/4− ε for any ε > 0 by taking t as a sufficiently large
integer. Notice that P (o,R, r, t) is not semi-generic, however by moving each
point in P (o,R, r, t) infinitesimally, we can obtain a set of semi-generic points P
such that the topology of MLG(P ) is the same as one of MLG(P (o,R, r, t)) and
σ(P ) = σ(P (o,R, r, t)).

Theorem 4. For any ε > 0, there exists a set of semi-generic points P such
that σ(P ) ≥ (1.25− ε)|P |.

5 Future works

Several problems related to the crossing number of MLG(P ) remain open.
One problem is to further improve upper or lower bounds for σ(P ). Although

in this paper, we have improved upper and lower bounds for σ(P ) as shown in
Theorems 3 and 4, respectively, there is still a gap.
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Another interesting problem is to analyze the thickness of MLG(P ). The
thickness of a geometric graph G(P )5 is the smallest number of layers necessary
to partition the edges of G(P ) into layers in such a way that no two edges of
the same layer cross. It is easy to see that the thickness of MLG(P ) is at most 4
since it holds MLG(P ) ⊆ 1-GG(P ) by Lemma 1, and it is shown by Bose et al. [4]
that the thickness of 1-GG(P ) is at most 4. Therefore, a problem of whether the
thickness of MLG(P ) is at most 3 naturally arises. In order to prove this, one
direction worth considering is as follows: Define a graph H = (W,F ) for MLG(P )
such that each vertex e ∈ W corresponds to each edge e ∈ MLG(P ), and for two
vertices e, e′ ∈ W , edge (e, e′) is included in F if and only if edges e and e′

cross each other in MLG(P ). We then notice that the thickness of MLG(P ) is
equal to the chromatic number of H. It is proved by Grötzsch [6] that a planar
triangle-free graph is 3-colorable. On the other hand, Bereg et al. [3] show the
quasi-planarity of MLG(P ), i.e., no three edges in MLG(P ) pairwise cross, which
means that H is triangle-free. Hence, once we prove the planarity of H, the claim
immediately holds.
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