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A CURL-FREE IMPROVEMENT OF THE RELLICH-HARDY

INEQUALITY WITH WEIGHT

NAOKI HAMAMOTO AND FUTOSHI TAKAHASHI

Abstract. We consider the best constant in the Rellich-Hardy inequality

(with a radial power weight) for curl-free vector fields on RN , originally found
by Tertikas-Zographopoulos [12] for unconstrained fields. This inequality is

considered as an intermediate between Hardy-Leray and Rellich-Leray inequal-
ities. Under the curl-free condition, we compute the new explicit best constant
in the inequality and prove the non-attainability of the constant. This paper

is a sequel to [6, 7].

1. Introduction

Let N ∈ N be an integer with N ≥ 2, let γ ∈ R and put x = (x1, · · · , xN ) ∈
RN . In the following, the notation Dγ(RN ) denotes the set of compact supported,
smooth vector fields on RN

u = (u1, u2, · · · , uN ) : RN 3 x 7→ u(x) ∈ RN

with the integrability condition∫
RN

|u|2|x|2γ−2dx < ∞.

1.1. Preceding results and motivation. It is well known that the Hardy-Leray
inequality (

γ + N
2 − 1

)2 ∫
RN

|u|2

|x|2
|x|2γdx ≤

∫
RN

|∇u|2|x|2γdx (1)

holds for any vector field u ∈ Dγ(RN ), with the best constant on the left-hand side.
This was first proved by J. Leray [10] for (N, γ) = (3, 0), as a higher-dimensional
extension of Hardy’s inequality in one dimension [8], see also the book by La-
dyzhenskaya [9]. Costin and Maz’ya [4] improved the best value of the constant by
assuming u to be divergence-free (under the additional assumption of axisymmetry
for N ≥ 3): for the case N = 2, it was shown that the inequality

Cγ

∫
R2

|u|2

|x|2
|x|2γdx ≤

∫
R2

|∇u|2|x|2γdx

holds with the best constant Cγ =

{
3+(γ−1)2

1+(γ−1)2 γ
2
(
|γ + 1| ≤

√
3
)

γ2 + 1
(
|γ + 1| >

√
3
) for divergence-

free vector fields u ∈ Dγ(R2). Since there is an isometry on R2 between divergence-
free fields and curl-free fields, the same conclusion also holds for the two-dimensional
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curl-free fields. As a generalization of this result, we have derived in recent papers
[6, 7] the Hardy-Leray inequality

HN,γ

∫
RN

|u|2

|x|2
|x|2γdx ≤

∫
RN

|∇u|2|x|2γdx (2)

for curl-free fields u ∈ Dγ(RN ) with the best constant

HN,γ =


(
γ + N

2 − 1
)2 3(N−1)+(γ+N

2 −2)
2

N−1+(γ+N
2 −2)

2 if
∣∣γ + N

2

∣∣ ≤ √
N + 1,(

γ + N
2 − 1

)2
+N − 1 otherwise.

(3)

Since Cγ = H2,γ , this result recovers Costin-Maz’ya’s one for N = 2.
The Rellich-Leray inequality is given by

BN,γ

∫
RN

|u|2

|x|4
|x|2γdx ≤

∫
RN

|4u|2|x|2γdx (4)

for unconstrained fields u ∈ Dγ−1(RN ), where the constant BN,γ is sharp when

BN,γ = min
ν∈N∪{0}

(
(γ − 1)

2 −
(
ν + N

2 − 1
)2)2

. (5)

This was found by Rellich [11] for γ = 0 and Caldiroli-Musina [2] for γ 6= 0. In
recent papers [6, 7], we additionally considered the curl-free improvement of the
Rellich-Leray inequality: if u ∈ Dγ−1(RN ) is assumed to be curl-free, then the
same inequality (4) holds with the best constant BN,γ :

BN,γ = min

{(
(γ − 1)2 − N2

4

)2
, min

ν∈N

(γ+N
2 −1)

2
+αν

(γ+N
2 −3)

2
+αν

(
(γ − 2)2 −

(
ν + N

2 − 1
)2)2}

;

(6)
here and hereafter we use the notation

αs = s(s+N − 2) (7)

for any s ∈ R.
In this paper, we are interested in another version of Rellich-Leray inequality

[1, 5, 12]:∫
RN

|4u|2|x|2γdx ≥ AN,γ

∫
RN

|∇u|2

|x|2
|x|2γdx, ∀u ∈ Dγ−1(RN ) (8)

holds with the best constant AN,γ = min
ν∈N∪{0}

AN,γ,ν , where

AN,γ,ν :=


(
γ − N

2

)2
for ν = 0,(

(γ−1)2−(ν+N
2 −1)

2
)2

(γ+N
2 −2)

2
+αν

for ν ∈ N.
(9)

We call (8) the Rellich-Hardy inequality. This inequality was first found for N ≥
5 by Tertikas-Zographopoulos [12, Theorem 1.7]. Subsequently, Beckner [1] and
Ghoussoub-Moradifam [5] established the same inequality when N ∈ {3, 4} and
γ = 0, with the best constants A3,0 = 25

36 and A4,0 = 3. See also Cazacu [3] for the
unified proof of the inequality when γ = 0.

Now, let us assume that γ satisfies

AN,γ = min
ν∈N∪{0}

AN,γ,ν = AN,γ,0 =
(
γ − N

2

)2
.
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Then we see that a successive application of Rellich-Hardy and Hardy-Leray in-
equalities reproduces Rellich-Leray inequality (4): we have∫
RN

|4u|2|x|2γdx ≥ AN,γ,0

∫
RN

|∇u|2|x|2(γ−1)dx (from (8))

≥ AN,γ,0

(
γ + N

2 − 2
)2 ∫

RN

|u|2

|x|2
|x|2(γ−1)dx

(
from (1)

with γ replaced by γ − 1

)

=
(
(γ − 1)

2 −
(
N
2 − 1

)2)2 ∫
RN

|u|2

|x|4
|x|2γdx

≥ BN,γ

∫
RN

|u|2

|x|4
|x|2γdx

with BN,γ given by (5). Hence, Rellich-Hardy inequality can be considered as a
stronger version of Rellich-Leray inequality and plays a role as an intermediate
between Rellich-Leray and Hardy-Leray inequalities.

In the context of the curl-free improvement, it seems also natural to ask whether
the same phenomenon will happen in (8); in particular, the main interest of our
problem is how the best constant in (8) will change when u is assumed to be
curl-free.

1.2. Results. Motivated by the observation above, we aim to derive the best con-
stant in Rellich-Hardy inequality for curl-free fields. Now, our main result reads as
follows:

Theorem 1. Let N ≥ 2. Let u ∈ Dγ−1(RN ) be a curl-free vector field. Then the
inequality ∫

RN

|4u|2|x|2γdx ≥ CN,γ

∫
RN

|∇u|2

|x|2
|x|2γdx (10)

holds with the best constant CN,γ expressed as

CN,γ = min
ν∈N∪{0}

CN,γ,ν ,

where

CN,γ,0 =

(
(γ − 1)2 − N2

4

)2
(
γ + N

2 − 2
)2

+N − 1
= AN,γ,1, (11)

CN,γ,1 =

(
γ − N

2 − 2
)2 ((

γ + N
2 − 1

)2
+N − 1

)
(
γ + N

2 − 3
)2

+ 3(N − 1)

and

CN,γ,ν =

(
(γ−2)2−(ν+N

2 −1)
2
)2(

(γ+N
2 −1)

2
+αν

)
(
(γ−2)2−(ν+N

2 −1)
2
)2

+2(γ−1)
(
(2γ+N−5)αν+(N−1)(γ+N

2 −3)
2
) for ν ≥ 2.

Moreover, we obtain a stronger inequality by adding a remainder term to the
right-hand side of (10).
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Theorem 2. Let CN,γ be the same constant as in Theorem 1. Then there exists
an absolute constant c > 0 such that the inequality∫

RN

|4u|2|x|2γdx− CN,γ

∫
RN

|∇u|2

|x|2
|x|2γdx

≥ c

∫
RN

∣∣∣∇(|x|2−N
2 −γ(x · ∇)

(
|x|γ+N

2 −2u
))∣∣∣2 |x|2γ−2dx

(12)

holds for all curl-free fields u ∈ Dγ−1(RN ).

Remark 3. From the proof below, we see that the constant c on the right-hand side
of (12) can be estimated by

c ≥ 1 when γ ≤ 1,

c ≥ 1/2 when N ≥ 3 and γ > 1,

c ≥ 1/3 when N = 2 and γ > 1.

However, the best possible (the largest) value of c is unknown.

As a direct consequence of Theorem 2, we can conclude that the best constant
CN,γ of the inequality (10) is never attained in Dγ−1(RN ) \ {0}:

Corollary 4. If the equation∫
RN

|4u|2|x|2γdx = CN,γ

∫
RN

|∇u|2

|x|2
|x|2γdx

holds for a curl-free field u ∈ Dγ−1(RN ), then u ≡ 0.

Proof. Let (10) holds true. Then the right-hand side of (12) must vanish. Thus

r∂r

(
rγ+

N
2 −2u(rσ)

)
= rγ+

N
2 −2x0

holds for some constant vector filed x0, where (r,σ) = (|x|,x/|x|). Integrating
both sides on any interval [s, r] ⊂ R+ with respect to the measure 1

rdr, we have

u(rσ) =


(
s
r

)γ+N
2 −2

u(sσ) +
( s

r )
γ+N

2
−2−1

γ+N
2 −2

x0 (γ 6= 2− N
2 )

u(sσ) + x0 log
s
r (γ = 2− N

2 )

.

In the case γ 6= 2− N
2 , take the limit s → ∞ (resp. s → +0) when γ < 2− N

2 (resp.

γ > 2− N
2 ), then we obtain

u(rσ) ≡ −1
γ+N

2 −2
x0 and hence u(x) ≡ u(0).

This fact together with the integrability condition
∫
RN |u|2|x|2γ−4dx < ∞ says that

u(0) must vanish, whence u ≡ 0. In the case γ = 2− N
2 , taking s → 0 leads to

u(rσ) = u(0) + x0 lim
s→0

log
s

r

and the finiteness of the right-hand side yields x0 = 0. Therefore, we see again
that u ≡ u(0) and hence u ≡ 0. □

As another direct consequence of Theorem 2, we have the following fact:
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Corollary 5. Let CN,γ be the same constant as in Theorem 1. Then there exists
an absolute constant c > 0 such that the inequality∫

RN

|∇4ϕ|2|x|2γdx− CN,γ

∫
RN

|D2ϕ|2

|x|2
|x|2γdx

≥ c

∫
RN

∣∣∣∇(|x|2−N
2 −γ(x · ∇)

(
|x|γ+N

2 −2∇ϕ
))∣∣∣2 |x|2γ−2dx

holds for all scalar field ϕ such that ∇ϕ ∈ Dγ−1(RN ). Here D2ϕ denotes a Hessian
matrix of ϕ.

Overview of the remaining content of the present paper. The rest of this
paper is organized as follows: Section 2 provides a minimum required notations
and definitions, and reviews a representation of curl-free fields. Section 3 gives the
proof of Theorem 1: we recall from [7] the scalar-potential expression of L2 integrals
of curl-free fields; after that, we derive Lemma 7 as a key tool for evaluating the
ratio of the two integrals in (10), which also plays a computational part in the
proof of Theorem 2. The proof of Lemma 7 is separated into two cases. Since both
the cases use similar techniques and consist of long calculations, we prove only
one case in the same section, and postpone the other case in Section 6. Section 4
proves Theorem 2 by using an operator-polynomial representation of Rellich-Hardy
integral quotient and by making full use of Lemma 7. Section 5 observes curl-free
improvement phenomena of best constants in some cases.

2. Preliminary for the proof of main theorem

2.1. Notations and definitions in vector calculus on ṘN . Here we summarize
the minimum required notations and definitions for the proof of our main theorems.
We basically use the notation

ṘN = RN \ {0} and SN−1 =
{
x ∈ RN : |x| = 1

}
.

For every vector x ∈ ṘN , the notation

r = |x| > 0, σ = x/|x| ∈ SN−1

denotes the radius of x and its unit-vector part, which defines the smooth trans-
formation

ṘN → R+ × SN−1, x 7→ (r,σ)

together with its inverse

R+ × SN−1 → ṘN , (r,σ) 7→ rσ.

Every vector field u = (u1, u2, · · · , uN ) : ṘN → RN has its radial scalar component
uR = uR(x) and spherical vector part uS = uS(x) given by the formulae

u = σuR + uS , σ · uS = 0

for all x ∈ ṘN ; the two fields are explicitly given by

uR = σ · u and uS = u− σuR.

In a similar way, the gradient operator ∇ =
(

∂
∂x1

, · · · , ∂
∂xN

)
can be decomposed

into the radial derivative ∂r and the spherical gradient ∇σ as

∇ = σ∂r +
1

r
∇σ,
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in order that ∂rf = (∇f)R = σ · ∇f and 1
r∇σf = (∇f)S for all f ∈ C∞(ṘN ). The

notation
∂ := r∂r = x · ∇ (13)

denotes an alternative radial derivative, in order that the above decomposition
formula of ∇ can be rewritten as

r∇ = σ∂ +∇σ.

The Laplace operator 4 =
∑N

k=1 ∂
2/∂x2

k is known to be expressed in terms of (r,σ)
by the formula

4 =
1

rN−1
∂r
(
rN−1∂r

)
+

1

r2
4σ =

1

r2
(
∂2 + (N − 2)∂ +4σ

)
,

where 4σ denotes the Laplace-Beltrami operator on SN−1. We understand that
the action of the operator ∂r or ∂ on a vector field u is associated with the function
r 7→ u(rσ) for σ ∈ SN−1 fixed, whereas ∇σ or 4σ is associated with the function
σ 7→ u(rσ) for r = |x| fixed. As a simple example, the operation of ∇ and 4 on
the scalar field r = |x| or its powers gives ∇r = σ and 4rs = αsr

s−2 for all s ∈ R,
where αs is the same as in (7).

2.2. Radial-spherical-scalar representation of curl-free fields. Every vector
field u ∈ C∞(RN )N is said to be curl-free if

∂uk

∂xj
=

∂uj

∂xk
on RN ∀j, k ∈ {1, · · · , N},

or equivalently if there exists a scalar field ϕ ∈ C∞(RN ) satisfying

u = ∇ϕ on RN . (14)

In view of this equation, we say that u has a scalar potential ϕ. As another
representation of curl-free fields, let us recall the following fact:

Proposition 6 ([7]). Let λ ∈ R. Then a vector field u ∈ C∞(RN )N is curl-free if

and only if there exist two scalar fields f, φ ∈ C∞(ṘN ) satisfying{
f is radially symmetric and

∫
SN−1 φ(rσ)dσ = 0 ∀ r > 0,

r1−λu = σ
(
f + (λ+ ∂t)φ

)
+∇σφ on RN \ {0}.

Moreover, such f and φ are uniquely determined, and they are explicitly given by
the equations

f = r−λ∂ϕ and φ = r−λ
(
ϕ− ϕ

)
,

where we set ϕ(x) = 1
|SN−1|

∫
SN−1 ϕ(|x|σ)dσ as the spherical mean of the scalar

potential ϕ given by (14). In particular, if u has a compact support on ṘN , then
so do f and φ.

Later, we will use Proposition 6 by choosing λ = 2− N
2 − γ. (See (20)).

3. Proof of Theorem 1

In this section, we prove Theorem 1. Roughly speaking, the proof consists of
theoretical part (§3.1 and §3.2) and computational part (from §3.3 to §3.7). Since
the theoretical part is already well established in our previous work, we will only
state its minimum required content: we exploit some L2 formulae of curl-free fields
given in [7]. Instead, emphasis is placed on the computational part.
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3.1. Reduction to the case of compact support on ṘN . Let ϕ be the scalar
potential of the curl-free field u satisfying ϕ(0) = 0. The integrability condition
u ∈ Dγ−1(RN )

(
namely

∫
RN |u|2|x|2γ−4dx < ∞

)
together with the smoothness of

u on RN implies that there exists an integer m > 3
2 − γ satisfying

u(x) = ∇ϕ(x) = O(|x|m), and hence

 ϕ(x) = O(|x|m+1),
∇u(x) = O(|x|m−1),
4u(x) = O(|x|m−2)

as x → 0. Then it additionally follows that the integrals

∫
RN

ϕ2|x|2γ−6dx,

∫
RN

|∇u|2|x|2γ−2dx and

∫
RN

|4u|2|x|2γdx (15)

are all finite.
For the purpose of deriving the best constant CN,γ in inequality (10), it is enough

to consider the case where the curl-free field u = ∇ϕ is compactly supported on
ṘN . Here let us verify this fact. First of all let us define {un} ⊂ C∞

c (ṘN )N as a
sequence of curl-free fields by

un(x) := ∇
(
ζ

(
1

n
log |x|

)
ϕ(x)

)
for every n ∈ N,

where ζ ∈ C∞(R) such that ζ(t) =

{
0 for t ≤ −1

1 for 1 ≤ t
. We use the abbreviations

such as ζn = ζ
(
1
n log |x|

)
, ζ ′n = ζ ′

(
1
n log |x|

)
, and ζ ′′n = ζ ′′

(
1
n log |x|

)
. Noticing the

asymptotic formulae

∂ζn =
1

n
ζ ′n = O(n−1), ∇ζn =

σ

nr
ζ ′n =

σ

r
O(n−1), ∇ζ ′n =

σ

nr
ζ ′′n =

σ

r
O(n−1)
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as n → ∞, we have the following calculations:

un = ∇ (ζnϕ) = (∇ζn)ϕ+ ζn∇ϕ =
σϕ

r
O(1/n) + ζnu,

∇un = ∇
( σ

nr
ζ ′nϕ+ ζnu

)
=

σ

nr
(∇ζ ′n)ϕ+

ζ ′n
n
∇σϕ

r
+ (∇ζn)u+ ζn∇u

=
σσϕ

r2
O(n−2) +

ζ ′n
n

(σ
r
∇ϕ+

(
∇σ

r

)
ϕ
)
+
(σ
r
u
)
O(n−1) + ζn∇u

=
σσϕ

r2
O(n−1) + σ

u

r
O(n−1) + ζn∇u(

where we abbreviate as vw := v ⊗w = (viwj)i,j∈{1,··· ,N}2

the tensor product of two vector fields

)
,

4un = 4∇ (ζnϕ) = ∇
(
(4ζn)ϕ+ 2(∂rζn)∂rϕ+ ζn4ϕ

)
= ∇

((
∂2ζn + (N − 2)∂ζn

)
r−2ϕ+

2∂ζn
r

∂rϕ

)
+∇ (ζn4ϕ)

= ∇
((

n−2ζ ′′n + (N − 2)n−1ζ ′n
) ϕ

r2
+

2ζ ′n
n

∂rϕ

r

)
+∇ (ζn4ϕ)

=
(
n−2∇ζ ′′n + (N − 2)n−1∇ζ ′n︸ ︷︷ ︸

σ
r O(n−1)

) ϕ

r2
+
(
n−2ζ ′′n + (N − 2)n−1ζ ′n︸ ︷︷ ︸

O(n−1)

)
∇ ϕ

r2

+
2∇ζ ′n
n

∂rϕ

r
+

2ζ ′n
n

∇∂rϕ

r
+ (∇ζn)4ϕ+ ζn4∇ϕ

=
σ

r
O(n−1)

ϕ

r2
+O(n−1)∇ ϕ

r2
+

σ∂rϕ

r2
O(n−2) +O(n−1)∇∂rϕ

r

+ σO(n−1)
4ϕ

r
+ ζn4∇ϕ

=
σϕ

r3
O(n−1) +

u

r2
O(n−1) +

σuR

r2
O(n−1) +

∂ru

r
O(n−1)

+
σdivu

r
O(n−1) + ζn4u

hold as n → ∞. Therefore, taking the L2(|x|2γdx) integration yields∫
RN

|un|2

|x|4
|x|2γdx =

∫
RN

|ζnu|2

|x|4
|x|2γdx+O(n−1) →

∫
RN

|u|2

|x|4
|x|2γdx,∫

RN

|∇un|2

|x|2
|x|2γdx =

∫
RN

|ζn∇u|2

|x|2
|x|2γdx+O(n−1) →

∫
RN

|∇u|2

|x|2
|x|2γdx,∫

RN

|4un|2|x|2γdx =

∫
RN

|ζn4u|2|x|2γdx+O(n−1) →
∫
RN

|4u|2|x|2γdx

with the aid of the integrability conditions (15). This fact shows that the two
integrals in (10) can be approximated by curl-free fields with compact support on

ṘN , as desired.

3.2. Radial- and spherical-scalar expression of the integrals. In the rest of
the present section, we use the notation

t = log |x| = log r



RELLICH-HARDY INEQUALITY FOR CURL-FREE FIELDS 9

for an alternative radial coordinate obeying the differential rules

∂t = r∂r = ∂ = x · ∇ and dt = dr/r, (16)

which reproduces the same notation ∂ given in (13). For any parameter λ ∈ R,
let f and φ be the scalar fields determined by the curl-free field u, as given in
Proposition 6, and we set

v(x) = |x|1−λu(x) (17)

as a new vector field in C∞
c (ṘN )N . Then the equation

v = σ
(
f + (λ+ ∂)φ

)
+∇σφ (18)

holds on ṘN . Here we keep in mind that the equations (17) and (18) are invariant
under the following replacement of the quadruple:

(f, φ,v,u) 7−→
(
∂f, ∂φ, ∂v, rλ−1∂(r1−λu)

)
. (19)

Now, we choose

λ = 2− N

2
− γ, (20)

and let us recall from [7, §3.2] that the integral on the right-hand side of the Hardy-
Leray inequality (2) can be expressed in terms of (v, f, φ) as follows:∫

RN

|∇u|2|x|2γdx =

∫∫
R×SN−1

(
(λ− 1)2|v|2 + |∂v|2 + |∇σv|2

)
dtdσ, (21)

∫∫
R×SN−1

|∇σv|2dtdσ =

∫∫
R×SN−1

(
(4σφ)

2 +
(
(λ− 2)2 − 2N

)
|∇σφ|2

)
dtdσ

+

∫∫
R×SN−1

(
|∂∇σφ|2 + (N − 1)|v|2

)
dtdσ, (22)∫∫

R×SN−1

|v|2dtdσ =

∫∫
R×SN−1

(
f2 + (∂φ)2 + λ2φ2 + |∇σφ|2

)
dtdσ

=

∫∫
R×SN−1

(
f2 + φ

(
λ2 − ∂2 −4σ

)
φ
)
dtdσ. (23)

Here the last equality follows from integration by parts together with the support
compactness of v or f, φ. Applying (23) to (19), we also obtain∫∫

R×SN−1

|∂v|2dtdσ =

∫∫
R×SN−1

(
(∂f)2 + (∂2φ)2 + λ2(∂φ)2 + |∂∇σφ|2

)
dtdσ

=

∫∫
R×SN−1

(
f(−∂2)f + φ

(
λ2 − ∂2 −4σ

)
(−∂2φ)

)
dtdσ (24)
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by integration by parts. After plugging (22) into (21), substitute (23) and (24) into
the L2 terms of v and ∂v; then we get

∫
RN

|∇u|2|x|2γdx =
(
(λ− 1)2 +N − 1

) ∫∫
R×SN−1

|v|2dtdσ +

∫∫
R×SN−1

|∂v|2dtdσ

+

∫∫
R×SN−1

(
(4σφ)

2 +
(
(λ− 2)2 − 2N

)
|∇σφ|2 + |∂∇σφ|2

)
dtdσ

=
(
(λ− 1)2 +N − 1

) ∫∫
R×SN−1

(
f2 + φ

(
λ2 − ∂2 −4σ

)
φ
)
dtdσ

+

∫∫
R×SN−1

(
f(−∂2)f + φ

(
λ2 − ∂2 −4σ

)
(−∂2φ)

)
dtdσ

+

∫∫
R×SN−1

φ
(
42

σ −
(
(λ− 2)2 − 2N

)
4σ + ∂24σ

)
φdtdσ

=

∫∫
R×SN−1

(
φP1(−∂2,−4σ, λ)φ+ fP0(−∂2, λ)f

)
dtdσ

by integration by parts, where we have defined two polynomials P1 and P0 by



P1(τ, a, λ) =
(
(λ− 1)2 +N − 1

) (
λ2 + τ + a

)
+
(
λ2 + τ + a

)
τ + a2 +

(
(λ− 2)2 − 2N

)
a+ aτ

= a2 +
(
2λ2 − 6λ+ 4−N + 2τ

)
a

+
(
λ2 + τ

) (
(λ− 1)

2
+N − 1 + τ

)
,

P0(τ, λ) = (λ− 1)2 +N − 1 + τ.

Now let us replace γ by γ − 1; in view of (20), this manipulation is equivalent to
replacing λ by λ + 1. Then the result of the above integral computation changes
into

∫
RN

|∇u|2

|x|2
|x|2γdx =

∫∫
R×SN−1

(
φP1(−∂2,−4σ)φ+ fP0(−∂2)f

)
dtdσ,

where and hereafter we abbreviate as

P1(τ, a) := P1(τ, a, λ+ 1)

= a2 +
(
2
(
λ2 − λ+ τ

)
−N

)
a

+
(
(λ+ 1)2 + τ

) (
λ2 +N − 1 + τ

)
,

P0(τ) := P0(τ, λ+ 1) = λ2 +N − 1 + τ,


(25)

as the expression in terms of f, φ for the integral on the right-hand side of the
Rellich-Hardy inequality (10). To express the left-hand side, we exploit the result
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of [7, Eq.(30),(31) with λ replaced by λ+ 1]: it holds that∫
RN

|4u|2|x|2γdx =

∫∫
R×SN−1

(
φQ1(−∂2,−4σ)φ+ fQ0(−∂2)f

)
dtdσ,

where Q1 and Q0 are the polynomials given by

Q1(τ, a) =
(
τ + a+ (λ− 1)2

)( (
τ + a+ (λ+ 1)2

) (
τ + a+ (λ+N − 1)2

)
−(2λ+N)2a

)
=
(
τ + a+ (λ− 1)2

)(
τ2 +

(
2 (a+ αλ+1) + (N − 2)2

)
τ + (a− αλ+1)

2
)
,

Q0(τ) =
(
τ + (λ− 1)2

) (
τ + (λ+N − 1)2

)
.


(26)

To proceed further, let us apply to φ and f the one-dimensional Fourier transfor-
mation with respect to t: we set

φ̂(τ,σ) =
1√
2π

∫
R
e−iτtφ(etσ)dt, f̂(τ) =

1√
2π

∫
R
e−iτtf(etσ)dt

for (τ,σ) ∈ R×SN−1, where i =
√
−1. Also we apply to φ̂ the spherical harmonics

decomposition:

φ̂ =
∑
ν∈N

φ̂ν ,

{
−4σφ̂ν = ανφ̂ν ,

αν = ν(ν +N − 2) ∀ν ∈ N.

Now, we are in a position to evaluate the quantity∫
RN |4u|2|x|2γdx∫

RN |∇u|2|x|2γ−2dx
, (27)

which we simply call the R-H quotient. To this end, by using (25), (26) and the
L2(R) isometry of the Fourier transformation, we have

∫
RN |4u|2|x|2γdx∫

RN |∇u|2|x|2γ−2dx
=

∫∫
R×SN−1

(∑
ν∈N

Q1(τ
2, αν)|φ̂ν |2 +Q0(τ

2)|f̂ |2
)
dτ dσ

∫∫
R×SN−1

(∑
ν∈N

P1(τ
2, αν)|φ̂ν |2 + P0(τ

2)|f̂ |2
)
dτ dσ

≥ min

{
inf

τ∈R\{0}

Q0(τ
2)

P0(τ2)
, inf

ν∈N
inf

τ∈R\{0}

Q1(τ
2, αν)

P1(τ2, αν)

}
= min

{
inf
τ>0

Q0(τ)

P0(τ)
, inf

ν∈N
inf
τ>0

Q1(τ, αν)

P1(τ, αν)

}
. (28)

Hence, our goal is reduced to evaluate the fractions Q0/P0 and Q1/P1. In the
following subsections, we will show that the infimum values of these fractions are
achieved at τ = 0.

3.3. Evaluation of Q0/P0. A direct calculation yields

Q0(τ)

P0(τ)
=

(
τ + (λ− 1)2

) (
τ + (λ+N − 1)2

)
λ2 +N − 1 + τ

= τ + (λ+N − 2)
2
+ (N − 1)

(
1− (2λ+N − 2)

2

τ + λ2 +N − 1

)
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for all τ ≥ 0. The last expression is of the form g(τ) = τ + a − b
τ+c for some

constants a, b ≥ 0 and c > 0, which leads to g(τ)− g(0) = τ + bτ
c(τ+c) ≥ τ . Thus we

have
1

τ

(
Q0(τ)

P0(τ)
− Q0(0)

P0(0)

)
≥ 1 ∀τ > 0, (29)

whence in particular we obtain inf
τ>0

Q0(τ)

P0(τ)
=

Q0(0)

P0(0)
=

(λ− 1)2 (λ+N − 1)
2

λ2 +N − 1
.

3.4. The case when P1 has zeros. Here we specify when P1(τ, αν) = 0 happens.
Notice from (25) that P1(τ, a) is strictly monotone increasing in τ ≥ 0 for any
a > 0, and hence it holds that

P1(τ, a) > P1(0, a)

= a2 +
(
2(λ− 1/2)2 − 1

2 −N
)
a+ (λ+ 1)2

(
λ2 +N − 1

)
for all τ > 0, as well as that

P1(τ, α1) > P1(0, α1) = P1(0, N − 1) = λ2
(
(λ+ 1)2 + 3(N − 1)

)
for all τ > 0. Notice on the right-hand side of the (three lines) above inequality
that the center of the graph of the quadratic function a 7→ P1(0, a) is located at

a = −
(
λ− 1

2

)2
+ 1

4 + 1
2N ≤ 2N = α2. Then we see that for all τ > 0 and ν ≥ 2,

P1(τ, αν) > P1(0, αν)

≥ P1(0, α2)

= λ4 + 2λ3 + 5Nλ2 − 2(N + 1)λ+ (N + 1)(2N − 1)

= λ2(λ+ 1)2 + 2(2N − 1)λ2 + (N + 1)(λ− 1)2 + 2(N2 − 1)

≥ 2(N2 − 1) > 0.

In view of the above discussion, we see that

P1(τ, αν) = 0 holds if and only if (τ, ν, λ) = (0, 1, 0)

Hence, every time we treat the rational polynomial Q1/P1, we have to deal with
the case λ = 0

(
or equivalently γ = 2 − N

2

)
as a special one. For this reason, in

the rest of this paper we always assume λ 6= 0
(
⇔ γ 6= 2 − N

2

)
unless others are

specified.

3.5. Evaluation of Q1/P1. Let us check that

inf
τ>0

Q1(τ, a)

P1(τ, a)
=

Q1(0, a)

P1(0, a)
∀a ∈ {αν}ν∈N

in order to evaluate (28) from below. This equation is equivalent to the in-

equality Q1(τ,a)
P1(τ,a)

≥ Q1(0,a)
P1(0,a)

(∀τ > 0), which can be verified by directly evaluating

Q1(τ, a)P1(0, a) − P1(τ, a)Q1(0, a) to be nonnegative. However, we further show
the following stronger fact, which serves as a key tool for the proof of Theorem 2:

Lemma 7. There exists a constant number c0 > 0 such that the inequality

1

τ

(
Q1(τ, a)

P1(τ, a)
− Q1(0, a)

P1(0, a)

)
≥ c0

holds for all τ > 0 and a ∈ {αν}ν∈N.
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Here we give the proof of the lemma only for the case γ ≤ 1. Since the proof for
γ > 1 follows by a similar technique, we postpone it in later section (see §6). The
proof of Lemma 7 consists of tedious computations, and we used Maxima in the
course of the proof. However, we need many computational techniques to simplify
the calculations and ideas to make the proof understandable, even with the use of
Maxima.
Proof of Lemma 7 for γ ≤ 1

(
or equivalently λ ≥ 1 − N

2

)
. It suffices to check the

inequality for c0 = 1:

1

τ

(
Q1(τ, a)

P1(τ, a)
− Q1(0, a)

P1(0, a)

)
≥ 1 ∀τ > 0, ∀a ∈ {αν}ν∈N .

To this end, we directly compute the left-hand side minus right-hand side: by using
(25) and (26) we get

1

τ

(
Q1(τ, a)

P1(τ, a)
− Q1(0, a)

P1(0, a)

)
− 1

=
1

τ

(τ + a+ (λ− 1)2
) (

τ2 +
(
2 (a+ αλ+1) + (N − 2)2

)
τ + (a− αλ+1)

2
)

a2 +
(
2 (λ2 − λ+ τ)−N

)
a+ ((λ+ 1)2 + τ) (λ2 +N − 1 + τ)

−
(
a+ (λ− 1)2

)
(a− αλ+1)

2

a2 +
(
2(λ2 − λ)−N

)
a+ (λ+ 1)2 (λ2 +N − 1)

)
− 1

= (2λ+N − 2)︸ ︷︷ ︸
≥ 0

G0(a) +G1(a)τ

P1(0, a)P1(τ, a)
, (30)

where we have defined

G0(a) := (2λ+N)a3 +
( (

2λ2 −N + 5
)
(2λ+N)− 2(N − 1)

)
a2

+

(
2λ5 + (N − 8)λ4 − 8Nλ3 − 2(N2 + 2N − 2)λ2

− 2(6N − 7)λ− 2N2 −N + 4

)
a

+ (N − 1)(2λ+N − 2)(λ+ 1)4,

G1(a) := (2λ+N)a2 +
(
(2λ+N)

(
(λ− 1)2 −N + 1

)
− 2(N − 1)

)
a

+ (N − 1)(2λ+N − 2)(λ+ 1)2


(31)

as cubic and quadratic polynomials in a. Then the necessary and sufficient condition
for the nonnegativity of (30) (∀τ ≥ 0) is given by the inequalities

G1(a) ≥ 0 and G0(a) ≥ 0 ∀a ∈ {αν}ν∈N,

whence our goal is reduced to showing them. The first inequality is easier to prove,
by considering the Taylor series of G1(a) at a = α1: a straightforward calculation
yields

G1(α1 + s) = s2(2λ+N) + s
(
(N − 1)(N + 2λ− 2) + (λ− 1)2(2λ+N)

)
+ 2(N − 1)λ2(2λ+N − 1) (32)

for all s ∈ R. Since λ ≥ 1 − N
2 , notice here that the coefficients of the powers of

s are all nonnegative, which tells us that G1(α1 + s) ≥ 0 for all s ≥ 0. This fact
directly implies G1(a) ≥ 0 for all a ∈ {αν}ν∈N, as desired.
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Now, all we have to do is to show G0(a) ≥ 0 for a ∈ {αν}ν∈N. To do so, let us
consider the Taylor series of G0(a) at a = α1, and we get

G0(α1 + s) = s3(2λ+N) + s2G2(λ) + sG1(λ) + 2(N − 1)λ4(2λ+N − 1) (33)

by a straightforward calculation, where

G2(λ) := (2λ+N − 2)
(
(λ+ 1)2 + λ2 +N + 3

)
+ (N − 1)2 + 9, (34)

G1(λ) := λ4(2λ+N − 8) + 2λ2
(
2− 4λ− 4N +N2

)
+N2(2λ+N). (35)

Noticing that G2(λ) ≥ 0 and G0(α1) ≥ 0, we aim to prove the following fact:

if 1− N
2 ≤ λ ≤ 1 then G1(λ) ≥ 0, (36)

or if 1 < λ then G0(α2 + s) ≥ 0 ∀s ≥ 0, (37)

which implies the desired inequality G0(a) ≥ 0 ∀a ∈ {αν}ν∈N.
For the proof of (36), let λ be parameterized as

λ = 1− Ns

2
, 0 ≤ s ≤ 1.

Then we directly compute

G1(λ) =

(
1− Ns

2

)4

(N −Ns− 6) + 2

(
1− Ns

2

)2 (
2Ns− 2− 4N +N2

)
+N2 (N −Ns+ 2)

= 1
16N

5(1− s)s4 + 1
8N

4(s− 2)2s2 + 1
2N

3(1− s)
(
2− 4s− 5s2

)
+ 2N2(2 + 3s− 6s2) +N(19s− 7)− 10

= 1
16 (N − 2)5(1− s)s4 + 1

8 (N − 2)4s2
(
s2 + (1− s)

(
5s2 + 4

) )
+ 1

2 (N − 2)3
(
(1− s)s2

(
(1− s)2 + 4s2

)
+ 2

(
1− 3s+ 3s2

) )
+ (N − 2)2

(
(1− s)2

(
4s+ 2(1− s2) + 5(1− s3)

)
+ 3− 2s

)
+ (N − 2)

(
(1− s)2s(17− s− 5s2) + 21− 10s− 3s2

)
+ 2s

(
(1− s)(3 + s)

(
5− 4s+ s2

)
+ 4
)

as a Taylor series of the function N 7→ G1(λ) = G1

(
1− Ns

2

)
at N = 2. Notice here

that the coefficients of the powers of N − 2 are all nonnegative since 0 ≤ s ≤ 1.
Therefore, we get G1(λ) ≥ 0, as desired.

Now, all that is left is to show (37). To this end, notice from (33) that

1

s
G0(α1 + s) ≥ sG2(λ) + G1(λ)

≥ s(2λ+N − 2)
(
(λ+ 1)2 + λ2

)
+ λ4(2λ+N − 8) + 2λ2

(
2− 4λ− 4N +N2

)
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holds for all s > 0. Replacing s by N + 1 + s on both sides, we then get

G0(α2 + s)

N + 1 + s
=

1

N + 1 + s
G0(α1 +N + 1 + s)

≥ (N + 1 + s)(2λ+N − 2)
(
(λ+ 1)2 + λ2

)
+ λ4(2λ+N − 8) + 2λ2

(
2− 4λ− 4N +N2

)
= 2(λ− 1)5 + (λ− 1)4(N + 2) + 4(λ− 1)3(s+ 2N − 4)

+ 2(λ− 1)2
(
(N + 6)s+ 2N2 + 6N − 18

)
+ 2(λ− 1)

(
(3N + 5)s+ 5N2 + 2N − 14

)
+ 5Ns+ 7N2 − 2N − 10

for all s ≥ 0. Notice here that the coefficients of the powers of λ − 1 are all
nonnegative since N ≥ 2. Therefore, from the assumption λ > 1 we have obtained
G0(α2 + s) ≥ 0, as desired. □

Since the polynomial function P1(τ, a) is quadratic in τ , it is clear from (30) that

lim
τ→∞

1

τ

(
Q1(τ, a)

P1(τ, a)
− Q1(0, a)

P1(0, a)

)
= 1

for each a ≥ α1. Therefore, the constant number c0 of Lemma 7 is optimal when
c0 = 1, in the sense that

inf
τ>0

inf
ν∈N

1

τ

(
Q1(τ, αν)

P1(τ, αν)
− Q1(0, αν)

P1(0, αν)

)
= 1

holds as far as γ ≤ 1.

3.6. A lower bound for the R-H quotient. In view of the estimate (28) for the
R-H quotient (27), it follows from §3.3, §3.4 and §3.5 that the inequality∫

RN

|4u|2 |x|2γdx ≥ CN,γ

∫
RN

|∇u|2|x|2γ−2dx

holds for curl-free fields u with the constant number

CN,γ = min

{
inf
ν∈N

inf
τ>0

Q1(τ, αν)

P1(τ, αν)
, inf

τ>0

Q0(τ)

P0(τ)

}
= min

{
min
ν∈N

Q1(0, αν)

P1(0, αν)
,
Q0(0)

P0(0)

}
.

Notice from (25) and (26) that the last two fractions are explicitly written as

Q1(0, αν)

P1(0, αν)
=

(
αν + (λ− 1)2

)
(αλ+1 − αν)

2

(αλ+1 − αν)
2
+ (2λ+N − 2)

(
(2λ+ 1)αν − (N − 1)(λ+ 1)2

)
=

(
(γ−2)2−(ν+N

2 −1)
2
)2(

αν+(γ+N
2 −1)

2
)

(
(γ−2)2−(ν+N

2 −1)
2
)2

+2(γ−1)
(
(2γ+N−5)αν+(N−1)(γ+N

2 −3)
2
) ,

Q0(0)

P0(0)
=

(λ− 1)2(λ+N − 1)2

λ2 +N − 1
=

(
(γ − 1)2 − 1

4N
2
)2(

γ + N
2 − 2

)2
+N − 1

,

by recalling the notation (20) together with the aid of the identity

αs − αt =
(
s+ N

2 − 1
)2 − (t+ N

2 − 1
)2 ∀s, t ∈ R; (38)
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in other words, we have

Q1(0, αν)

P1(0, αν)
= CN,γ,ν ,

Q0(0)

P0(0)
= CN,γ,0

in terms of the same notation in Theorem 1. Therefore, we have obtained

CN,γ = min
ν∈N∪{0}

CN,γ,ν

as a lower bound for the R-H quotient (27), which coincides with the same constant
number CN,γ given in Theorem 1.

3.7. Sharpness of CN,γ. We show here the optimality for the constant CN,γ in the
inequality (10). To this end, we construct a sequence of curl-free fields minimizing
the value of the R-H quotient (27). First of all, choose ν0 ∈ N∪{0} to be such that

min
ν∈N∪{0}

CN,γ,ν = CN,γ,ν0 .

If γ = 2− N
2 , by the same computation as (44) below (§5) we have CN,γ,1 > CN,γ,0

for all N ≥ 2, which implies that ν0 6= 1. Hence it follows from §3.4 that we can
always assume that P1(0, αν0) > 0.

Define a sequence of curl-free fields {un}n∈N ⊂ C∞
c (ṘN )N by the formula

un(x) :=

{
x|x|λ−1h

(
1
n log |x|

)
if ν0 = 0

∇
(
|x|λ+1φn(x)

)
otherwise

together with
φn(x) = h

(
1
n log |x|

)
Y (x/|x|)

for any h ∈ C∞
c (R)\{0} such that

∫
R(h(t))

2dt = 1. Here Y ∈ C∞(SN−1) \ {0}
denotes a spherical harmonic function satisfying the eigenequation

−4σY = αν0
Y on SN−1.

Also define {vn} ⊂ C∞
c (ṘN )N as a sequence of vector fields by the formula

un(x) = |x|λvn(x)

in the same way as (17). Then we have

vn =

{
σfn if ν0 = 0

σ(∂ + λ+ 1)φn +∇σφn otherwise
,

where fn is given by fn(x) = h( 1n log |x|). In this setting, let us now apply the
formulae (25) and (26) to the case (u, f, φ) = (un, fn, 0) or (u, f, φ) = (un, 0, φn).
Then we have

∫
RN |4un|2|x|2γdx∫

RN |∇un|2|x|2γ−2dx
=


∫
R h( t

n )Q0(−∂2
t )h(

t
n )dt∫

R h( t
n )P0(−∂2

t )h(
t
n )dt

if ν0 = 0,∫
R h( t

n )Q1(−∂2
t , αν0)h(

t
n )dt∫

R h( t
n )P1(−∂2

t , αν0)h(
t
n )dt

otherwise.

=


∫
R h(t)Q0

(
−n−2∂2

t

)
h(t)dt∫

R h(t)P0 (−n−2∂2
t )h(t)dt

if ν0 = 0,∫
R h(t)Q1(−n−2∂2

t , αν0
)h (t) dt∫

R h(t)P1(−n−2∂2
t , αν0)h (t) dt

otherwise.
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Notice on the right-hand side that the denominator always exceeds a fixed positive
number, since P0(0) ≥ N−1 > 0 and P1(0, αν0) > 0 as mentioned above. Therefore,
passing to n → ∞, we get

∫
RN |4un|2|x|2γdx∫

RN |∇un|2|x|2γ−2dx
=


O(1/n2) +Q0(0)

O(1/n2) + P0(0)
if ν0 = 0

O(1/n2) +Q1(0, αν0)

O(1/n2) + P1(0, αν0
)

otherwise

−→ CN,γ,ν0
= CN,γ ,

which gives the desired sharpness of CN,γ .
Now, the proof of Theorem 1 has been completed. □

4. Proof of Theorem 2

Let ν1 denote the positive integer such that

CN,γ,ν1 = min
ν∈N

CN,γ,ν .

In order to estimate the difference between both sides of the inequality (10), recall
from the same calculation in the first line of (28) the expression of the integrals:

∫
RN

|4u|2|x|2γdx =

∫∫
R×SN−1

(
Q0(τ

2)|f̂ |2 +
∑
ν∈N

Q1(τ
2, αν)|φ̂ν |2

)
dτ dσ,

∫
RN

|∇u|2

|x|2
|x|2γdx =

∫∫
R×SN−1

(
P0(τ

2)|f̂ |2 +
∑
ν∈N

P1(τ
2, αν)|φ̂ν |2

)
dτ dσ.
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Then we have the following estimate:∫
RN

|4u|2|x|2γdx− CN,γ

∫
RN

|∇u|2

|x|2
|x|2γdx

=

∫
RN

|4u|2|x|2γdx−min

{
Q1(0, αν1)

P1(0, αν1
)
,
Q0(0)

P1(0)

}∫
RN

|∇u|2

|x|2
|x|2γdx

≥
∫
RN

|4u|2|x|2γdx−
∫∫

R×SN−1

Q0(0)

P0(0)
P0(τ

2)|f̂ |2

−
∫∫

R×SN−1

Q1(0, αν1
)

P1(0, αν1
)

∑
ν∈N

P1(τ
2, αν)|φ̂ν |2dτdσ

=

∫∫
R×SN−1

(
Q0(τ

2)− Q0(0)

P0(0)
P0(τ

2)

)
|f̂ |2dτdσ

+
∑
ν∈N

∫∫
R×SN−1

(
Q1(τ

2, αν)−
Q1(0, αν1

)

P1(0, αν1)
P1(τ

2, αν)

)
|φ̂ν |2dτdσ

≥
∫∫

R×SN−1

P0(τ
2)τ2|f̂ |2dτdσ + c0

∑
ν∈N

∫∫
R×SN−1

P1(τ
2, αν)τ

2|φ̂ν |2dτdσ

≥ min {1, c0}
∫∫

R×SN−1

(
P0(τ

2)τ2|f̂ |2 +
∑
ν∈N

P1(τ
2, αν)τ

2|φ̂ν |2
)
dτdσ

= min {1, c0}
∫∫

R×SN−1

(
(∂f)P0(−∂2)∂f + (∂φ)P1(−∂2,−4σ)∂φ

)
dtdσ

= min {1, c0}
∫
RN

∣∣∇ (|x|λ∂ (|x|−λu
))∣∣2

|x|2
|x|2γdx,

where the last equation follows by applying the replacement (19) to the integral
equation in (25), and where we the fourth inequality follows by using the inequalities
(29) and

1

τ2

(
Q1(τ

2, αν)

P1(τ2, αν)
− Q1(0, αν1

)

P1(0, αν1)

)
≥ 1

τ2

(
Q1(τ

2, αν)

P1(τ2, αν)
− Q1(0, αν)

P1(0, αν)

)
≥ c0 ∀(τ, ν) ∈ (R \ {0})× N,

as verified by using the same constant c0 given in Lemma 7. Finally, by restoring
the notations (20) and (16), we obtain∫

RN

|4u|2|x|2γdx− CN,γ

∫
RN

|∇u|2

|x|2
|x|2γdx

≥ c

∫
RN

∣∣∣∇(|x|2−N
2 −γ(x · ∇)

(
|x|γ+N

2 −2u
))∣∣∣2 |x|2γ−2dx

for some absolute constant c > 0. The proof of Theorem 2 is now complete, although
the optimal value of c is not known. □

5. An observation of the best constant CN,γ in Theorem 1

Concerning the constants in the inequalities (8) and (10), it holds that

CN,γ ≥ AN,γ (39)
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as a matter of course. Here we wish to evaluate whether the strict inequality
CN,γ > AN,γ holds or not. However, since the expression for CN,γ is complicated
and its full picture seems difficult to reveal, we describe it for only some specific
values of γ.

5.1. Preliminary: a review of AN,γ,ν . In view of the original best constant (9)
in Rellich-Hardy inequality, let us observe the increase or decrease of the function
ν 7→ AN,γ,ν . In terms of the notation (20), the expression of AN,γ,ν in (9) can be
rewritten as

AN,γ,ν =


(λ+N − 2)2 for ν = 0,

(αν − αλ)
2

αν + λ2
for ν ∈ N.

(40)

with the aid of (38). Then a direct calculation from this expression yields

AN,γ,1 −AN,γ,0

N − 1
= −3λ2 + 4(N − 2)λ+N2 − 5N + 5

λ2 +N − 1
(41)

and

AN,γ,ν+1 −AN,γ,ν

2ν +N − 1

=
αναν+1 + λ2

(
2ν(ν +N − 1) +

(
1 + 1

N−1λ
2
)(
AN,γ,1 −AN,γ,0

))
(αν + λ2) (αν+1 + λ2)

(42)

for all ν ∈ N. Notice that the numerator of the right-hand side is monotone
increasing in ν ≥ 0, as well as that the denominator is always positive. Therefore,
for every k ∈ N ∪ {0} the two inequalities

AN,γ,k ≤ AN,γ,k+1 and AN,γ,ν ≤ AN,γ,ν+1 (∀ν ≥ k) (43)

are equivalent.

5.2. The case γ = 2−N
2 (or equivalently λ = 0). Let us deal with this “singular”

case, in the sense of §3.4. Following from the definitions of AN,γ and CN,γ , we have

AN,2−N
2
= min

{
AN,2−N

2 ,0, min
ν∈N

AN,2−N
2 ,ν

}
= min

{
(2−N)

2
, min

ν∈N
αν

}
= min

{
(N − 2)2, N − 1︸ ︷︷ ︸

=α1

}

=

{
0 (N = 2)

N − 1 (N ≥ 3)
,

CN,2−N
2
= min

{
CN,2−N

2 ,0, CN,2−N
2 ,1, min

ν∈N\{1}
CN,2−N

2 ,ν

}
(44)

= min
{
N − 1, N3

3N−2 , CN,2−N
2 ,2

}
= min

{
N − 1, N3

3N−2 ,
(N+1)(2N+1)

2N−1

}
= N − 1.
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Here the third equality from the last in (44) follows with the aid of computing

CN,2−N
2 ,ν = (αν + 1)

(
1− N−2

αν−1

)
which is monotone increasing in ν ≥ 2. Summarizing the results above, we have
obtained

C2,1 = C2,1,0 = 1 > 0 = A2,1,0 = A2,1,

CN,2−N
2
= CN,2−N

2 ,0 = N − 1 = AN,2−N
2 ,1 = AN,2−N

2
(N ≥ 3).

In particular, we see that the best constant in the two-dimensional Rellich-Hardy
inequality (with γ = 1) can be really improved by the curl-free condition on the
test vector fields.

5.3. The case γ 6= 2 − N
2 (or equivalently λ 6= 0 ). Recall from §3.6 and §3.4

thatCN,γ,ν =

(
αν + (λ− 1)2

)
(αλ+1 − αν)

2

P1(0, αν)
,

P1(0, αν) = (αλ+1 − αν)
2
+ (2λ+N − 2)

(
(2λ+ 1)αν − (N − 1)(λ+ 1)2

)
> 0

for ν ∈ N. By using this expression together with (40), a direct computation yields
CN,γ,ν −AN,γ,ν−1 = −2(ν − λ− 1)2W (αν)(ν +N − 2)

(αν−1 + λ2)P1(0, αν)
,

CN,γ,ν −AN,γ,ν+1 =
2νW (αν)(1− ν −N − λ)2

(αν+1 + λ2)P1(0, αν)

for all ν ∈ N, where

W (αν) = λ2(2λ+N − 4)(2λ+N) + (N − 2)2 −
(
αν + λ2 − 1

)2
.

Then we have

(CN,γ,ν −AN,γ,ν−1) (CN,γ,ν −AN,γ,ν+1) ≤ 0

or equivalently

min{AN,γ,ν−1, AN,γ,ν+1} ≤ CN,γ,ν ≤ max{AN,γ,ν−1, AN,γ,ν+1} (45)

for all ν ∈ N. Based on this fact, let us consider the following two simplest cases:

The case AN,γ = AN,γ,1. It holds from (11) that

AN,γ = AN,γ,1 = CN,γ,0 ≥ CN,γ ,

and hence that CN,γ = AN,γ from (39). This fact says that the curl-free restriction
causes no effect on the improvement of the best constant. Now, we seek for when
the equation AN,γ = AN,γ,1 will happen. In view of the inequalities (43) with
k = 1, this equation is equivalent to that both the inequalities

AN,γ,1 ≤ AN,γ,0 and AN,γ,1 ≤ AN,γ,2
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hold true; in other words, AN,γ = AN,γ,1 holds if and only if both the numerators
of the right-hand sides of (41) and (42)ν=1 evaluate to

3λ2 + 4(N − 2)λ+N2 − 5N + 5 ≥ 0, and

α2α1 + λ2
(
2N +

(
1 + 1

N−1λ
2
)
(AN,γ,1 −AN,γ,0)

)
= −3λ4 − 4(N − 2)λ3 − (N2 − 7N + 5)λ2 + 2N(N − 1)

≥ 0.

For example, if γ = 0
(
or equivalently λ = 2− N

2

)
, then the two inequalities become

N2 − 4N − 4 ≤ 0, and

N4 − 4N3 + 12N2 + 64N − 64 ≥ 0 (which is always true).

This is the case when N ≤ 4, and hence we have
C2,0 = C2,0,0 = A2,0,1 = A2,0 = 0,

C3,0 = C3,0,0 = A3,0,1 = A3,0 = 25
36 ,

C4,0 = C4,0,0 = A4,0,1 = A4,0 = 3,

which says that no curl-free improvement occurs when N ∈ {2, 3, 4} and γ = 0.
We may understand the above result in the following way: we can choose a

sequence {un}n∈N of vector fields by the formula

wn(x) = xfn(|x|) (n = 1, 2, · · ·)
in order that ∫

RN |4un|2|x|2γdx∫
RN |∇wn|2|x|2γ−2dx

→ AN,γ,1 (n → ∞),

where {fn(r)}n∈N are a smooth functions vanishing near r = 0. We may see
this fact by noticing that each coordinate function xk (k = 1, · · · , N) satisfies the
eigenequation −4σxk = α1xk. On the other hand, it is easy to check that {wn}n∈N
are always curl-free, whence CN,γ ≤ AN,γ . Therefore, we get CN,γ = AN,γ from
AN,γ = AN,γ,1.

The case AN,γ = AN,γ,0. Since AN,γ,1 ≥ AN,γ,0 = AN,γ , we see from (43) and (45)
that

AN,γ,ν−1 ≤ CN,γ,ν ≤ AN,γ,ν+1

holds for all ν ∈ N. This fact implies

min
k∈N∪{0}

CN,γ,2k = CN,γ,0 and min
k∈N

CN,γ,2k−1 = CN,γ,1,

whence

CN,γ = min {CN,γ,0, CN,γ,1} .
On the other hand, a direct computation yields

CN,γ,1 − CN,γ,0 =
(λ− 1)2 (AN,γ,1 −AN,γ,0) +

(N2−1)
5

(5λ+2N−4)2+N2+N−1
λ2+N−1

(λ+ 1)2 + 3(N − 1)

> 0

from AN,γ,1 ≥ AN,γ,0. Therefore, it holds from (11) that

CN,γ = CN,γ,0 = AN,γ,1,
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or equivalently that

CN,γ −AN,γ = AN,γ,1 −AN,γ,0.

This fact together with (41) shows that the inequality CN,γ > AN,γ (namely the
effect of the curl-free-improvement) holds as far as the right-hand side of (41) is
strictly negative, or equivalently∣∣γ − N+4

6

∣∣ < 1
3

√
N2 −N + 1.

For example, this is the case if γ = 0 and N ≥ 5, whence we have

CN,0 = CN,0,0 = AN,0,1 =
(N2

4 −1)2

N2

4 −N+3
> N2

4 = AN,0,0 = AN,0

for all N ≥ 5.
We may understand the above phenomenon in the following way: we can choose

a sequence {wn}n∈N of vector fields by the formula

wn(x) = (fn,1(|x|), · · · , fn,N (|x|)) (n = 1, 2, · · · )

in order that ∫
RN |4wn|2|x|2γdx∫

RN |∇wn|2|x|2γ−2dx
→ AN,γ,0 (n → ∞). (46)

In order for wn to be curl-free, it must hold that

∂fn,j
∂xk

− ∂fn,k
∂xj

=
∂r

∂xk
f ′
n,j −

∂r

∂xj
f ′
n,k =

xk

r
f ′
n,j −

xj

r
f ′
n,k = 0, ∀j, k ∈ {1, · · · , N},

where the notation (· · · )′ denotes the derivative of a one-dimensional function. This
fact implies that f ′

n,k = (xk/xj)f
′
n,j for all j 6= k, and hence that

fn,j = const ∀j ∈ {1, · · · , N}

from the radial symmetry of the function x 7→ fn,j(|x|). Consequently, we have
|4wn| = |∇wn| ≡ 0. This phenomenon indicates that there may be no curl-free
sequence {wn}n∈N satisfying (46), which we can naturally interpret as a result of
the inequality CN,γ > AN,γ .

Incidentally, let us further consider the case1− N
2 +

√
N + 1 ≤ γ ≤ N+4

6 + 1
3

√
N2 −N + 1 for 3 ≤ N ≤ 11∣∣γ − N+4

6

∣∣ ≤ 1
3

√
N2 −N + 1 for N ≥ 12

which ensures both CN,γ = CN,γ,0 and

HN,γ−1 =
(
γ + N

2 − 2
)2

+N − 1

from (3). (For γ = 0, this is the case for all N ≥ 8.) Then a successive application
of Rellich-Hardy inequality and Hardy-Leray inequality reproduces Rellich-Leray
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inequality: for all curl-free fields u ∈ Dγ−1(RN ), it holds that∫
RN

|4u|2|x|2γdx ≥ CN,γ

∫
RN

|∇u|2|x|2γ−2dx (from (10))

≥ CN,γHN,γ−1

∫
RN

|u|2

|x|2
|x|2γ−2dx

(
from (2)

with γ replaced by γ − 1

)
= CN,γ,0

((
γ + N

2 − 2
)2

+N − 1
)∫

RN

|u|2

|x|2
|x|2γ−2dx

=
(
(γ − 1)2 − N2

4

)2 ∫
RN

|u|2

|x|2
|x|2γ−2dx

≥ BN,γ

∫
RN

|u|2

|x|4
|x|2γdx

with BN,γ given by (6). Therefore, even under the curl-free constraint, Rellich-
Hardy inequality bridges between Hardy-Leray and Rellich-Leray inequalities, and
so serves as a stronger version of the Rellich-Leray inequality.

6. Completion of the proof of Lemma 7

In this section, we prove Lemma 7 for the case γ > 1 (or equivalently λ < 1− N
2 )

with the aid of Maxima, by a similar technique to the former case. More precisely,
our goal is to show the two inequalities:

1

τ

(
Q1(τ, a)

P1(τ, a)
− Q1(0, a)

P1(0, a)

)
≥ 1

2
when N ≥ 3,

1

τ

(
Q1(τ, a)

P1(τ, a)
− Q1(0, a)

P1(0, a)

)
≥ 1

3
when N = 2

for all a ∈ {αν}ν∈N, which clearly satisfies the conclusion of the lemma.

6.1. The case N ≥ 3. By adding 1/2 to both sides of (30), we have

1

τ

(
Q1(τ, a)

P1(τ, a)
− Q1(0, a)

P1(0, a)

)
− 1

2

= (2λ+N − 2)
G0(a) +G1(a)τ

P1(0, a)P1(τ, a)
+

1

2

=
(2λ+N − 2) (G0(a) +G1(a)τ)

P1(0, a)
(
P1(0, a) + τ2 +

(
2 (a+ λ2 + λ) +N

)
τ
) +

1

2

=
τ2P1(0, a) + τE1(a) + E0(a)

2P1(τ, a)P1(0, a)
, (47)

where

E1(a) := 2(2λ+N − 2)G1(a) +
(
2(a+ λ2 + λ) +N

)
P1(0, a), (48)

E0(a) := 2 (2λ+N − 2)G0(a) + (P1(0, a))
2

(49)

Then it suffices to check that

E1(a) ≥ 0 and E0(a) ≥ 0 ∀a ∈ {αν}ν∈N
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or that

E1(α1 + s) ≥ 0 and E0(α1 + s) ≥ 0 ∀s ≥ 0. (50)

In the following, let us check the two inequalities in (50).

Proof of E1(α1 + s) ≥ 0. A direct computation from (25) yields

P1(0, α1 + s) = (α1 + s)2 +
(
2(λ2 − λ)−N

)
(α1 + s)

+ (λ+ 1)2
(
λ2 +N − 1

)
= s2 + s

(
2λ2 − 2λ+N − 2

)
+ λ2

(
(λ+ 1)2 + 3N − 3

)
. (51)

Substitute (32) and (51) into (48) with a = α1 + s; then a straightforward compu-
tation yields

E1(α1 + s) = 2(2λ+N − 2)G1(α1 + s) +
(
2(α1 + s+ λ2 + λ) +N

)
P1(0, α1 + s)

= 2(2λ+N − 2)

 s2(2λ+N)

+ s
(
(N − 1)(2λ+N − 2) + (λ− 1)2(2λ+N)

)
+2(N − 1)λ2(2λ+N − 1)


+
(
2s+ 2

(
λ2 + λ

)
+ 3N − 2

)( s2 + s
(
2λ2 − 2λ+N − 2

)
+λ2

(
(λ+ 1)2 + 3N − 3

) )
= 2s3 + s2E12(λ) + sE11(λ) + λ2E10(λ) ∀s ≥ 0

as a Taylor series of E1(a) at a = α1, where we set

E12(λ) := 2(2λ+N − 2)(2λ+N) + 2
(
λ2 + λ

)
+ 3N − 2

+ 2
(
2λ2 − 2λ+N − 2

)
= 14λ2 + 2(4N − 5)λ+ (N + 2)(2N − 3)

= 2
(
2λ+N − 5

4

)2
+ 6λ2 + 6(N − 2) + 23

8 ,

E11(λ) := 2(2λ+N − 2)
(
(N − 1)(2λ+N − 2) + (λ− 1)2(2λ+N)

)
+ 2λ2((λ+ 1)2 + 3N − 3) +

(
2
(
λ2 + λ

)
+ 3N − 2

) (
2λ2 − 2λ+N − 2

)
= 14λ4 + 4(2N − 5)λ3 + 2N(N + 1)λ2

+ 4(N − 1)(N − 2)λ+
(
2N2 −N + 2

)
(N − 2)

= 6λ4 + 1
2λ

2
(
(4λ+ 2N − 5)2 + 16N − 9

)
+ (N − 2)

(
(2λ+N − 1)2 +N2 +N + 1

)
,

E10(λ) := 4(N − 1)(2λ+N − 2)(2λ+N − 1)

+
(
2(λ2 + λ) + 3N − 2

) (
(λ+ 1)2 + 3N − 3

)
= (λ+ 1)4 + (λ+ 1)2λ2 + (N − 1)

((
5λ+ 8N−6

5

)2
+ 36N2+21N+89

25

)
.

Notice that E12(λ), E11(λ) and E10(λ) are all nonnegative; then E1(α1 + s) ≥ 0
holds from s ≥ 0, which proves the desired inequality.
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Proof of E0(α1 + s) ≥ 0. Substitute (33) and (51) into (49) with a = α1 + s; then
a straightforward computation yields

E0(α1 + s) = 2 (2λ+N − 2)G0(α1 + s) + (P1(0, α1 + s))
2

= 2(2λ+N − 2)

(
s3(2λ+N) + s2G2(λ) + sG1(λ)

+ 2(N − 1)λ4(2λ+N − 1)

)
+
(
s2 + s

(
2λ2 − 2λ+N − 2

)
+ λ2

(
(λ+ 1)2 + 3N − 3

) )2
= s4 + s3E03(λ) + s2E02(λ) + 2sE01(λ) + λ4E00(λ) ∀s ≥ 0

(52)

as a Taylor series of E0(a) at a = α1, where we set

E03(λ) := 2(2λ+N − 2)(2λ+N) + 2
(
2λ2 − 2λ+N − 2

)
= 1

2 (4λ+ 2N − 3)2 + 4λ2 + 4(N − 3) + 7
2 ,

E02(λ) := 2(2λ+N − 2)G2(λ) +
(
2λ2 − 2λ+N − 2

)2
+ 2λ2

(
(λ+ 1)2 + 3N − 3

)
, (53)

E01(λ) := (2λ+N − 2)G1(λ) + λ2
(
(λ+ 1)2 + 3N − 3

) (
2λ2 − 2λ+N − 2

)
, (54)

E00(λ) := 4(N − 1)(2λ+N − 2)(2λ+N − 1) +
(
(λ+ 1)2 + 3N − 3

)2
= (λ+ 1)4 + (N − 1)

(
(4λ+ 2N − 3)2 + 6(λ+ 1)2 + 9N − 10

)
.

Hence, in order to show E0(α1 + s) ≥ 0 (∀s ≥ 0), it suffices to check the nonneg-
ativity of {E0k(λ)}k=0,1,2,3. Since it is clear that E03(λ) ≥ 0 and E00(λ) ≥ 0, all
that is left is to show the two inequalities

E02(λ) ≥ 0 and E01(λ) ≥ 0. (55)

To this end, substitute (34) into (53), then we get

E02(λ) = 2(2λ+N − 2)
(
(2λ+N − 2)

(
(λ+ 1)2 + λ2 +N + 3

)
+ (N − 1)2 + 9

)
+
(
2λ2 − 2λ+N − 2

)2
+ 2λ2

(
(λ+ 1)2 + 3N − 3

)
= 22λ4 + 4(4N − 5)λ3 + 2(N + 4)(2N + 1)λ2 + 4N (4N − 3)λ

+
(
4N2 +N + 2

)
(N − 2)

= 2λ4 + 5λ2
(
2λ+ 4N

5 − 1
)2

+N
(
5λ+ 8N−6

5

)2
+ λ2

(
4
5N

2 +N + 3
)
+ 1

25 (N − 3)
(
36N2 + 29N + 51

)
+ 53

25 .

Since N ≥ 3, this result implies E02(λ) ≥ 0, whence we have proved the first
inequality of (55). In the same way, the proof of the second could also be carried
out by the method of completing the square (see Appendix); however, we work
here in a different way. From the assumption λ < 1 − N

2 , we see that λ can be
parameterized as

λ = 1− N

2
− s, s > 0.

Then we have

G1(λ) = G1

(
1− N

2 − s
)

= (−6− 2s)
(
1− N

2 − s
)4

+ 2
(
1− N

2 − s
)2 (

4s− 2− 2N +N2
)
+ 2N2(1− s)
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from (35). Substituting this expression into (54), we compute

E01(λ) = E01

(
1− N

2 − s
)

= −2s

(
(−6− 2s)

(
1− N

2 − s
)4

+ 2N2(1− s)

+ 2
(
1− N

2 − s
)2 (

4s− 2− 2N +N2
) )

+
(
1− N

2 − s
)2 (

s2 + (N − 4)s+ 1
4 (N + 2)2

)(
2s2 + 2(N − 1)s+ 1

2

(
N2 − 4

) )
= 6s6 + 2(7N − 9)s5 + 1

2

(
(N − 3)(27N + 25) + 55

)
s4

+
(
(N − 3)

(
7N2 + 2N − 14

)
+ 34

)
s3

+ 1
8

(
(N − 3)2

(
17N2 + 46N + 107

)
+ 740(N − 3) + 601

)
s2

+
(
(N − 4)

(
3
8N

2(N2 +N + 4) + 11N + 14
)
+ 86

)
s+ 1

32

(
N2 − 4

)3
as a Taylor series of E01(λ) at λ = 1 − N

2 . When N ≥ 4, the coefficients of the
powers of s are all positive, and hence E01(λ) ≥ 0 holds true. Moreover, even when
N = 3, we directly see that

E01(λ) = E01

(
1− 3

2 − s
)
= 6s6 + 24s5 + 55

2 s4 + 34s3 + 601
8 s2 − 15s+ 125

32︸ ︷︷ ︸
> 0

≥ 0.

Therefore, we have obtained the second inequality of (55) for all N ≥ 3, as desired.

6.2. The case N = 2. Applying the same calculation in (30) to the case N = 2,
we have the identity

1

τ

(
Q1(τ, a)

P1(τ, a)
− Q1(0, a)

P1(0, a)

)
− 1 =

2λ (G0(a) +G1(a)τ)

P1(0, a)P1(τ, a)
,

where

P1(τ, a) = τ2 + 2
(
a+ λ2 + λ+ 1

)
τ +

(
a+ λ2 − λ− 1

)2
+ (4λ+ 3)λ2

is the same as in (25) with N = 2, and where G0(a) and G0(a) are the same as in
(31) with N = 2. Adding 2/3 to both sides of the above identity, we then get

1

τ

(
Q1(τ, a)

P1(τ, a)
− Q1(0, a)

P1(0, a)

)
− 1

3

=
2

3

1 +
3λ (G0(a) +G1(a)τ)(

τ2 + 2
(
a+ λ2 + λ+ 1

)
τ
)
P1(0, a) + (P1 (0, a))

2


=

2

3
· τ

2P1(0, a) + 2τF1(a) + F0(a)

P1(0, a)P1(τ, a)
,

where

F1(a) :=
(
a+ λ2 + λ+ 1

)
P1(0, a) +

3
2λG1(a), (56)

F0(a) := (P1(0, a))
2
+ 3λG0(a). (57)

Thus, it is enough to show that

F1(a) ≥ 0 and F0(a) ≥ 0 ∀a ∈ {αν = ν(ν + 1)}ν∈N
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under the assumption λ < 1− N
2 = 0.

Proof of F1(a) ≥ 0 for a ∈ {αν}ν∈N. It suffices to check that F1(α1 + s) ≥ 0, i.e.,

F1(1 + s) ≥ 0 ∀s ≥ 0.

In order to compute the left-hand side, apply N = 2 to (51) and (32); then we get

P1(0, 1 + s) = s2 + 2sλ(λ− 1) + λ2
(
(λ+ 1)2 + 3

)
, (58)

1
2G1(1 + s) = (λ+ 1)s2 + s

(
λ+ (λ− 1)2(λ+ 1)

)
+ λ2(2λ+ 1).

Substitute them into (56) and (57) with a = 1 + s, then we have

F1(1 + s) =
(
s+ λ2 + λ+ 2

)
P1(0, 1 + s) + 3

2λG1(1 + s)

=
(
s+ λ2 + λ+ 2

) (
s2 + 2sλ(λ− 1) + λ2

(
(λ+ 1)2 + 3

) )
+ 3λ

(
(λ+ 1)s2 + s

(
λ+ (λ− 1)2(λ+ 1)

)
+ λ2(2λ+ 1)

)
= s3 + 2

(
3λ2 + λ+ 1

)
s2 + λ(6λ− 1)

(
λ2 + 1

)
s

+ λ2
(
λ4 + 3λ3 + 14λ2 + 11λ+ 8

)
= s3 +

(
6
(
λ+ 1

6

)2
+ 11

6

)
s2 − λ(1− 6λ)

(
λ2 + 1

)
s

+ λ2
(
(λ+ 1)2

(
λ+ 1

2

)2
+ 27

4 (λ+ 1)2 + (2λ− 1)2
)

In view of the right-hand side, the coefficients of the powers of s are all positive
since λ < 0, which implies that F1(a) ≥ 0 for all a ≥ α1, as desired.

Proof of F0(a) ≥ 0 for a ∈ {αν}ν∈N. First of all, let us compute F0(1 + s). To this
end, apply N = 2 to (33), (34) and (35); then we get

1
2G0(1 + s) = (λ+ 1)s3 + 1

2s
2G2(λ) +

1
2sG1(λ) + λ4(2λ+ 1)

= (λ+ 1)s3 + s2
(
2λ3 + 2λ2 + 6λ+ 5

)
+ s(λ− 1)

(
λ4 − 2λ3 + 6λ2 − 8λ− 4

)
+ λ4(2λ+ 1).

Substitute this expression and (58) into (57) with a = 1 + s, then we have

F0(1 + s) = (P1(0, 1 + s))
2
+ 3λG0(1 + s)

=
(
s2 + 2sλ(λ− 1) + λ2

(
(λ+ 1)2 + 3

) )2
+ 3λ

(
2(λ+ 1)s3 + s2G2(λ) + sG1(λ) + 2λ4(2λ+ 1)

)
=
(
s2 + 2sλ(λ− 1) + λ2

(
(λ+ 1)2 + 3

) )2
+ 6λ

(
(λ+ 1)s3 + s2

(
2λ3 + 2λ2 + 6λ+ 5

)
+ λ4(2λ+ 1)

+ s(λ− 1)
(
λ4 − 2λ3 − 6λ2 − 8λ− 4

) )
= s4 + 2λ(5λ+ 1)s3 + 2λ(9λ3 + 4λ2 + 24λ+ 15)s2

+ 2λ(λ− 1)
(
5λ4 − 2λ3 − 10λ2 − 24λ− 12

)
s

+ λ4
(
(λ+ 1)4 + 9(λ+ 1)2 + 9λ2 + 6

)
(59)



28 N. HAMAMOTO AND F. TAKAHASHI

as a Taylor series of F0(a) at a = α1 = 1. Then it is clear that F0(α1) = F0(1) ≥ 0,
and hence our goal is reduced to showing F0(a) ≥ 0 for a ≥ α2. For this purpose,
it suffices to check that

F0(α2 + s) = F0(4 + s) ≥ 0 ∀s ≥ 0.

To this end, notice from (59) that

F0(1 + s)

s
≥ F0(1 + s)− F0(1)

s

= s3 + 2λ

(
(5λ+ 1)s2 +

(
9λ3 + 4λ2 + 24λ+ 15

)
s

+(λ− 1)
(
5λ4 − 2λ3 − 10λ2 − 24λ− 12

) )

holds for all s > 0. Replacing s by 3 + s on both sides, we get

F0(4 + s)

3 + s
≥ (s+ 3)3 + 2λ

 (5λ+ 1)(s+ 3)2

+
(
9λ3 + 4λ2 + 24λ+ 15

)
(s+ 3)

+ (λ− 1)
(
5λ4 − 2λ3 − 10λ2 − 24λ− 12

)


= s3 +
(
(λ+ 1)2 + 9λ2 + 8

)
s2

+
(
14λ4 + λ2

(
4(λ+ 1)2 + 83

)
+ 21(λ+ 1)2 + 6

)
s

+ 3λ6 + λ4
(
7(λ− 1)2 + 27

)
+ λ2(2λ− 1)2

+ 16(4λ+ 1)2 + (λ+ 2)2 + 7

≥ 0,

and therefore F0(4 + s) ≥ 0 for all s ≥ 0, as desired.

Appendix

Here we give another proof of the second inequality E01(λ) ≥ 0 of (55), by the
method of completing the square.

Substitute (35) into (54), then we have

E01(λ) = (2λ+N − 2)

(
λ4(2λ+N − 8) + N2(2λ+N)

+ 2λ2
(
2− 4λ− 4N +N2

) )
+ λ2

(
(λ+ 1)2 + 3N − 3

) (
2λ2 − 2λ+N − 2

)
= 2λ6 + 1

4

(
(4λ+ 2N − 9)2 + 8N − 25

)
λ4

+
(
N(4N − 1) + 2

)
λ2 +N2(N − 1)(λ+ 2)2 + 4N2

+ (N − 6)
(
(2λ+N − 1)2λ2 +N3

)
by a straightforward computation, whence we get

E01(λ) ≥ 0 for all N ≥ 6.
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Moreover, the same also applies to the case N ∈ {3, 4, 5}, as can be directly verified
by the following calculation:

when N = 3, E01(λ) = 6λ6 − 6λ5 + 10λ4 − 24λ3 + 41λ2 + 72λ+ 27

= 1
63

(
λ+ 2

3

)2 (
40 +

(
28λ− 145

3

)2)
+
(
λ+ 2

3

)4 ( 1
18 + 1

6 (6λ− 11)2
)
+ 26

9

(
3λ+ 11

9

)2
+ 1405

729 ;

when N = 4, E01(λ) = 6λ6 − 2λ5 − 6λ4 − 24λ3 + 92λ2 + 192λ+ 128

=
(
2λ3 − 1

2λ
2 − 8λ− 8

)2
+ 2λ6 + 103

4 λ4

+ 4λ2 + 16(λ+ 2)2;

when N = 5, E01(λ) = 6λ6 + 2λ5 − 16λ3 + 181λ2 + 400λ+ 375

= 5
(
λ3 − 3

2

)2
+ λ2

(
λ2 + λ− 1

2

)2
+ ( 252 λ+ 16)2 + 49

2 λ2 + 431
4 .

Therefore, we have obtained E01(λ) ≥ 0 for all N ≥ 3, as desired.

Acknowledgments.
The second author (F.T.) was supported by JSPS Grant-in-Aid for Scientific Re-
search (B), No.19H01800. This work was partly supported by Osaka City University
Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Math-
ematics and Theoretical Physics JPMXP0619217849).

References

[1] W. Beckner, Weighted inequalities and Stein-Weiss potentials, Forum Mathematicum 20 (01

Jul. 2008), no. 4, 587–606.
[2] P. Caldiroli and R. Musina, Rellich inequalities with weights, Calculus of Variations and

Partial Differential Equations 45 (2012), no. 1-2, 147–164.
[3] C. Cazacu, A new proof of the Hardy-Rellich inequality in any dimension, Proceedings of the

Royal Society of Edinburgh: Section A Mathematics (2019), 1–11.
[4] O. Costin and V. G. Maz’ya, Sharp Hardy–Leray inequality for axisymmetric divergence-free

fields, Calculus of Variations and Partial Differential Equations 32 (2008), no. 4, 523–532.

[5] N. A. Ghoussoub and A. Moradifam, Bessel pairs and optimal Hardy and Hardy–Rellich

inequalities, Mathematische Annalen 349 (2011), no. 1, 1–57.
[6] N. Hamamoto and F. Takahashi, Sharp Hardy-Leray and Rellich-Leray inequalities for curl-

free vector fields, Mathematische Annalen (2019), https://doi.org/10.1007/s00208-019-01945-

x
[7] , Sharp Hardy-Leray inequality for curl-free fields with a remainder term, Journal of

Functional Analysis 280 (2021), no. 1, 108790 (24 pages)
[8] G. H. Hardy, Note on a theorem of Hilbert, Mathematische Zeitschrift 6 (1920), no. 3–4,

314–317.

[9] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Mathematics
and its Applications, vol. 2, Gordon and Breach, Science Publishers, New York-London-Paris,

1969, Translated from the Russian by Richard A. Silverman and John Chu.
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