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L∞ decay estimate and asymptotic behavior of
solutions to 1D Schrödinger equations with

long range dissipative nonlinearity

Naoyasu Kita and Yoshihisa Nakamura

Abstract

This manuscript presents the decay estimate of the solutions to the
initial value problem of 1D Schrödinger equations including a subcriti-
cal dissipative nonlinearity λ|u|p−1u with 2.367 ≈ p0 ≤ p < 3, Imλ < 0
and (p− 1)|Reλ| ≤ 2

√
p|Imλ|. Our aim is to determine the decay-rate

of the solutions in L∞, without size restriction on the initial data, for
smaller nonlinear power p than those treated in the former known re-
sults. If the nonlinear power rises up to 2.686 ≈ (5 +

√
33)/4 < p < 3,

the asymptotic leading term of the solution is also obtained.

1 Introduction

We consider the Cauchy problem of nonlinear Schrödinger equations :{
i∂tu = −1

2
∂2

xu + λ N (u)
u(0, x) = u0(x),

(1.1)

where (t, x) ∈ R×R and u(t, x) is a complex-valued unknown function. For
the gauge-invariant nonlinearity, we assume that

λ = λ1 + iλ2 with λ1, λ2 ∈ R,

N (u) = |u|p−1u.
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2 N. Kita and Y. Nakamura

If p = 3, the equation (1.1) arises in the nonlinear fiber engineering.
According to Chapter 11 in [1] or physical manuscript [2], there is a complex
Ginzburg-Landau equation:

i
∂U

∂ξ
− 1

2
(s + id)

∂2U

∂τ 2
+ N2|U |2U =

i

2
(µ − µ2|U |2)U, (1.2)

where U stands for the dimension-less amplitude of electric field propagating
through an optical fiber, ξ the position along the fiber, τ the time-variable
expressing the oscillation of the electric field, s, d, N , µ and µ2 denotes
the scale of dispersion, diffusion, nonlinear Kerr effect, amplification and
nonlinear dissipation, respectively. Therefore the equation (1.1) corresponds
to the special and artificial case of (1.2) in which s < 0, d = 0 and µ = 0
together with the power of nonlinearity generalized from 3 to p. We want to
treat (1.2) as an evolution equation and so replace the variables ξ and τ by
t and x respectively following the mathematical convention.

There are large amount of articles concerning with the decay estimate
and asymptotic behavior of solutions to nonlinear Schrödinger equations. In
the case of small data, it is often said that the smaller the nonlinear power
p is, the more difficult the problem seeking for asymptotic behavior of the
solution becomes. In detail, the difficulty depends on whether the improper
integral

∫ ∞
1

N (u(t))/u(t)dt is finite or not when u(t) is expected to be like a

free solution : u(t) = O(t−1/2) as t → ∞ in L∞. From this point of view, the
asymptotic behavior of solutions dramatically changes at p = 3. In fact, for
p > 3 (supercritical case), the nonlinearity decays rapidly enough as t → ∞,
and so it is easy to show that there exists some function φ such that u(t)
asymptotically tends to (it)−1/2eix2/2tφ̂(x/t) as t → ∞ without depending
on the sign of λ2. On the other hand, for p = 3 (critical case) and λ2 = 0,
Hayashi-Naumkin [8] obtained ‖u(t)‖L∞ = O(t−1/2) and

u(t, x) ∼ (it)−1/2eix2/2te−iΘ(t,x/t)φ̂(x/t) as t → ∞, (1.3)

where the real-valued phase modification Θ(t, x) arises in the asymptotic
leading term of the solution. For p = 3 and the dissipative nonlinear case, i.e.,
λ2 < 0, Shimomura [19] proved that ‖u(t)‖L∞ = O(t−1/2(log t)−1/2) and (1.3)
with Θ(t, x) complex-valued. It is noticeable that, in this critical dissipative
case, the nonlinearity explicitly affects the decay rate of u(t). In the similar
situation, but the initial data belongs to the homogeneous weighted L2 space
so that the scale-invariance is valid, Hayashi-Li [6] also obtained the same
decay property as in [19]. For 1 < p < 3 (sub-critical case) and λ2 = 0,
Hayashi-Kaikina-Naumkin [5] obtained ‖u(t)‖L∞ = O(t−1/2) and specified
the asymptotic leading term like (1.3) by imposing the high regularity and
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non-zero condition on the initial data. Their work also showed that the
expression of real-valued Θ(t, x) changes at p = 2 and lower. For λ2 < 0 and
3 − δ < p < 3 with δ > 0 sufficiently small, Kita-Shimomura [14] obtained
‖u(t)‖L∞ = O(t−1/(p−1)) and (1.3) with Θ(t, x) complex-valued, where the
small initial data satisfies u0 ∈ H1 and xu0 ∈ L2 without imposing the
high regularity and non-zero condition. Surveying these known results and
referring to the decay-rate of ‖u(t)‖L∞ , we know that, in the dissipative
nonlinear case, the dispersion caused by the Lapracian survives for large
time if p > 3, but the dissipation caused by λN (u) survives if p < 3. We
note here that, in the sub-critical dissipative case, the decay rate of ‖u(t)‖L∞

is just similar to that of a solution to the corresponding ordinary differential
equation : i∂tu = λN (u).

We have so far summarized the progress for small solutions to (1.1) in
particular. One may then ask how about a large initial data. As far as the au-
thors know, it is possible to obtain the decay estimate and asymptotic behav-
ior of u(t) without size restriction on the initial data, but so-called the strong
dissipative condition : λ2 < 0 and (p − 1)|λ1| ≤ 2

√
p|λ2| is required. Under

this strong dissipative condition, it is well-known that the nonlinear operator
F (u) ≡ −1

2
∂2

xu+λN (u) becomes monotone, i.e., Im(F (u1)−F (u2), u1−u2) <
0 holds, where ( · , · ) stands for the L2-inner product (refer to [17] for detail).
Furthermore the monotone property helps ‖Ju(t)‖L2 bounded by ‖xu0‖L2 for
all time, where J = exp(it∂2

x/2)x exp(−it∂2
x/2) = x+ it∂x is the infinitesimal

generator of Galilean transform. The global estimate of ‖Ju(t)‖L2 always
lies at the core of our interest because the remainder terms arising in the
proof is more or less bounded by ‖Ju(t)‖L2 . The strong dissipative condition
therefore reduces the complexity of the estimates of remainder terms for large
initial data. Following this idea, Kita-Shimomura [15] obtained the decay-
estimate and asymptotic behavior of u(t), which is similar to those of small
data solutions as mentioned above. In [15], the range of p is assumed to be
2.686 ≈ (5 +

√
33)/4 < p ≤ 3. Recently Jin-Jin-Li [12] have succeeded in ex-

tending the range of p to 2.586 ≈ (19+
√

145)/12 < p ≤ 3. Their approach is
based on the estimate : ‖J2u(t)‖L2 ≤ Ct3−p which is deduced from u0 ∈ H1

, x2u0 ∈ L2 and the strong dissipative condition. The asymptotic analysis
for critical nonlinear Schrödinger equations has been extensively studied by
several mathematicians. For example, refer to [5, 7, 10, 11] for derivative
nonlinear case, and [9, 18] for final value problem.

Our aim in this manuscript is to research decay property of the solution
for the sub-critical nonlinearity without size restriction on the initial data,
but under the strong dissipative condition. We note here that the problem
will be solved for the nonlinear power p smaller than those treated in [15, 12].
More concretely speaking, the proof will be performed for p0 ≤ p < 3, where
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the lower bound p0 is the smallest positive root of the quartic equation:

(7p2 + 22p − 93)2 − 48(3p − 7)2(p + 3) = 0. (1.4)

The numerical value of p0 is 2.367 · · · due to Excel of Microsoft Office 2013.
Our goals are the following.

Theorem 1.1. Let 2.367 ≈ p0 ≤ p < 3, where p0 is the smallest positive root
of (1.4). Also let λ2 < 0 and

(p − 1)|λ1| ≤ 2
√

p|λ2|. (1.5)

If u0 ∈ H1 and xu0 ∈ L2, then there exists a unique global solution u to
(1.1) such that u ∈ C([0,∞); H1)∩C1([0,∞); H−1) and xu ∈ C([0,∞); L2).
Furthermore, for some positive constants K0 and K1, the solution satisfies

‖u(t)‖L∞ ≤ K0(1 + t)−1/(p−1), (1.6)

‖u(t)‖L2 ≤ K1(1 + t)−(2/3)(1/(p−1)−1/2). (1.7)

Enhancing the constraint of p, we are able to specify the asymptotic
leading term of u(t) in L∞.

Theorem 1.2. Let 2.686 ≈ (5 +
√

33)/4 < p < 3 and λ2 < 0 together with
(1.5). If u0 ∈ H1 and xu0 ∈ L2, then, for the solution in Theorem 1.1, there
exists some function φ̂ ∈ L∞ ∩ L2 such that

u(t, x) = (it)−1/2eix2/2te−iΘ(t,x/t)φ̂(x/t)

+o(t−1/(p−1)) as t → ∞ in L∞, (1.8)

where the complex-valued function Θ(t, x) is described as

Θ(t, x) =
λ

(p − 1)|λ2|
log

{
1 +

2(p − 1)|λ2|
3 − p

(t(3−p)/2 − 1)|φ̂(x)|p−1

}
.

In Theorem 1.2 (1.8), the function φ̂ is not always equal to 0 if u0 6= 0
and ‖u0‖H1 + ‖xu0‖L2 is sufficiently small. The detail of this statement will
be given as a remark on the final stage of this manuscript. Therefore the
decay rate of ‖u(t)‖L∞ in (1.6) is sharp. In Theorem 1.1 (1.7), one might
think whether the decay rate of ‖u(t)‖L2 is sharp or not. The authors believe
that it depends on the feature of φ̂(x) as |x| → ∞. Roughly speaking, if we
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assume that the top term on the right hand side of (1.8) is dominant as
t → ∞ in L2 as well, we see that

‖u(t)‖L2 ∼ ‖e−iΘ(t)φ̂‖L2

=

∥∥∥∥∥
{

1 +
2(p − 1)|λ2|

3 − p
(t(3−p)/2 − 1)|φ̂|p−1

}−1/(p−1)

φ̂

∥∥∥∥∥
L2

as t → ∞. If φ̂ is compactly supported on R (this is not so general
case), then ‖u(t)‖L2 = O(t−1/(p−1)+1/2) as t → ∞. On the other hand, if
φ̂(x) = |x|−1/2−σ for |x| >> 1 with σ > 0, then we can deduce ‖u(t)‖L2 =
O(t{−1/(p−1)+1/2}×{2σ/(1+2σ)}) as t → ∞. This example suggests that the
smaller σ > 0 one takes, the worse decay rate the ‖u(t)‖L2 comes to hold.

Throughout this manuscript, we employ the following notation. For q ∈
[1,∞), Lq denotes the set of the measurable function f satisfying ‖f‖Lq ≡(∫

R
|f(x)|qdx

)1/q
< ∞. L∞ denotes the set of the measurable function f

satisfying ‖f‖L∞ ≡ ess. supx∈R |f(x)| < ∞. The Sobolev space H1 stands
for the set of the integrable function f such that f ∈ L2 and ∂xf ∈ L2. The
norm of H1 is given by ‖f‖H1 = ‖f‖L2 + ‖∂xf‖L2 . The dual space of H1 is
denoted by H−1. Let U(t) = exp(it∂2

x/2) be the Schrödinger group. It is also
expressed by the integral kernel, i.e.,

U(t)f(x) =
1√
2πit

∫
ei|x−y|2/2tf(y)dy.

By expanding |x − y|2, we see that U(t) is factorized like

U(t)f = MDFMf,

where M is the multiplication of eix2/2t, Df(x) = (it)−1/2f(x/t), F the
Fourier transform given by Ff(ξ) = (2π)−1/2

∫
e−iξxf(x)dx. We will of-

ten use the operator J = U(t)xU(−t) = x + it∂x, which is the infinitesimal
generator of Galilean transform. The operator J is convenient to obtain the
weighted estimate of the solution since it commutes with i∂t + 1

2
∂2

x.
In section 2, the transformed function v(t) = U(−t)u(t) will be induced,

which plays an important role to estimate ‖u(t)‖L∞ , since

u(t) = U(t)v(t) = MDFMv(t) = MDFv(t) + (a remainder term).

In section 3, we will present the proof of Theorem 1.1 and 1.2 after providing
Proposition 3.2. Our idea of the proof is based on the iteration technique
by which the decay estimate of ‖Fv(t)‖Lqn+1 is obtained successively from
that of ‖Fv(t)‖Lqn . The detail of such iteration argument will be stated in
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Proposition 3.2. It also helps the relaxation of the range of the nonlinear
power, since the former known results employed a rough estimate where
‖Fv(t)‖L∞ arising in the nonlinear estimate was simply bounded by ‖u(t)‖L2

and ‖Ju(t)‖L2 . The delicate treatment of ‖Fv(t)‖L∞ through the Gagliardo-
Nirenberg inequality : Lqn ∩ H1 ⊂ L∞ brings us the refinement. In the final
part of section 3, we will discuss the property that φ̂ 6= 0 for small u0.

2 Basic Estimate and Deformation

In this section, some deformations of (1.1) are heuristically described. These
deformations will play an important role to prove Theorem 1.1 in the subse-
quent sections. The argument for the deformations looks somewhat formal
because the derivatives of several quantities with respect to t are going to be
performed without rigorous justification like the cut-off and regularization
technique.

By the contraction mapping principle applied to the integral equation
associated with (1.1), the local existence of the solution such that u ∈
C([0, T0]; H

1) ∩ C1([0, T0]; H
−1) and xu ∈ C([0, T0]; L

2) follows for some
T0 > 0 (refer to [3, 4, 13]). It is easy to see the decreasing property of
‖u(t)‖L2 since

d

dt
‖u(t)‖2

L2 = λ2‖u(t)‖p+1
Lp+1 < 0.

To observe the decay property of u, the global estimate of ‖Ju(t)‖L2 is re-
quired where J = exp(it∂2

x/2)x exp(−it∂2
x/2) = x + it∂x, since it will often

arise in the estimates of reminder terms. Note that [J, i∂t + 1
2
∂2

x] = 0, where
[A,B] = AB − BA. Then we have

(i∂t +
1

2
∂2

x)Ju = λJN (u)

= λ
p + 1

2
|u|p−1Ju − λ

p − 1

2
|u|p−3u2Ju

and hence it follows that

d

dt
‖Ju‖2

L2 = 2Im

(
λ

∫
JuJN (u)dx

)
= (p + 1)λ2

∫
|u|p−1|Ju|2dx

−(p − 1)Im

(
λ

∫
|u|p−3u2(Ju)2dx

)
≤ Cp,λ‖u‖p−1

L∞ ‖Ju‖2
L2 , (2.1)
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where Cp,λ = (p + 1)λ2 + (p − 1)|λ| ≤ 0 due to (1.5) in Theorem 1.1. This
implies that ‖Ju(t)‖L2 ≤ ‖xu0‖L2 for any t ≥ 0. The analogy holds for
‖∂xu(t)‖L2 , and the local solution can be continued to the global one. We
have the following basic estimates of the solution.

Lemma 2.1. Let λ2 < 0 and (1.5) hold. Then it follows that there exists a
unique global solution u to (1.1) such that u ∈ C(0,∞; H1) ∩ C1(0,∞; H−1)
and xu ∈ C(0,∞; L2). Furthermore, the solution satisfies

‖u(t)‖L2 ≤ ‖u0‖L2 , (2.2)

‖∂xu(t)‖L2 ≤ ‖∂xu0‖L2 , (2.3)

‖Ju(t)‖L2 ≤ ‖xu0‖L2 . (2.4)

To obtain both Theorem 1.1 and 1.2, we write u(t) = U(t)v(t), where
v(t) = U(−t)u(t). Note that U(t) = MDFM . Making use of v(t), we have

‖u(t)‖L∞ = ‖U(t)v(t)‖L∞

= ‖MDFMv(t)‖L∞

≤ t−1/2‖Fv(t)‖L∞ + t−1/2‖F(M − 1)v(t)‖L∞ (2.5)

The remainder term of (2.5) is estimated by the Sobolev inequality and
Plancherel identity, i.e.,

‖F(M − 1)v(t)‖L∞ ≤ C‖F(M − 1)v(t)‖1/2

L2 ‖∂ξF(M − 1)v(t)‖1/2

L2

≤ Ct−1/4‖Ju(t)‖L2 . (2.6)

Note here that, to obtain the last inequality of (2.6), we used |M−1| ≤ |x|/
√

t
and ‖xv‖L2 = ‖U(t)xU(−t)u‖L2 = ‖Ju‖L2 . Plugging (2.6) into (2.5) and
applying (2.4), we have

‖u(t)‖L∞ ≤ t−1/2‖Fv(t)‖L∞ + Ct−3/4‖Ju(t)‖L2

≤ t−1/2‖Fv(t)‖L∞ + Ct−3/4‖xu0‖L2 . (2.7)

Our interest now turns into the estimate of ‖Fv(t)‖L∞ . Via the same deriva-
tion as Duhamel’s principle from the nonlinear Schrödinger equation (1.1),
it follows that

∂t(Fv) = −iλFU(−t)N (U(t)v).

Note that U(−t) = M−1F−1D−1M−1 and N (eiθu) = eiθN (u) for θ ∈ R (the
gauge invariance of N (u)). Then we have

∂t(Fv) = −iλt−(p−1)/2FM−1F−1N (FMv)

= −iλt−(p−1)/2N (Fv) + R(t), (2.8)
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where

R(t) ≡ −iλt−(p−1)/2
(
FM−1FN (FMv) −N (Fv)

)
= −iλt−(p−1)/2(F(M−1 − 1)FN (FMv))

−iλt−(p−1)/2(N (FMv) −N (Fv)). (2.9)

To control the first term on the right hand side of (2.8) which looks slowly
decaying, we transform Fv like w(t, ξ) = eiλΦ(t,ξ)Fv(t, ξ), where

Φ(t, ξ) =

∫ t

1

τ−(p−1)/2|Fv(τ, ξ)|p−1dτ.

By (2.8), we know that the new function w satisfies

∂tw = eiλΦR(t). (2.10)

In addition, the phase function Φ satisfies

∂tΦ = t−(p−1)/2|Fv|p−1

= t−(p−1)/2|w|p−1e(p−1)λ2Φ,

which is equivalent to

e(p−1)|λ2|Φ = 1 + (p − 1)|λ2|
∫ t

1

τ−(p−1)/2|w(τ)|p−1dτ. (2.11)

For the estimate of‖u(t)‖L∞ and in particular ‖Fv(t)‖L∞ , the inequalities
and identities (2.7), (2.8), (2.10) and (2.11) will be often taken into account.

3 Proof of Theorems

We are going to prove Theorem 1.1 and 1.2 in this section. The refinement
of the estimate of the remainder term (2.9) significantly contributes to the
extension of the range of p.

Lemma 3.1. Let 2 ≤ q ≤ r ≤ ∞ and v(t) = U(−t)u(t). Then, for some
positive constant C, it follows that

‖R(t)‖Lr ≤ Ct−(p−1)/2−1/2r−1/4

×(‖Fv‖(p−1)q/(q+2)
Lq ‖Ju‖(2p+q)/(q+2)

L2 + t−(p−1)/4‖Ju‖p
L2).(3.1)
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Proof. Let R(t) = R1(t) + R2(t), where

R1(t) = −iλt−(p−1)/2(F(M−1 − 1)FN (FMv)), (3.2)

R2(t) = −iλt−(p−1)/2(N (FMv) −N (Fv)). (3.3)

By the Gagliardo-Nirenberg inequality : ‖f‖Lr ≤ C‖f‖(r+2)/2r

L2 ‖∂ξf‖(r−2)/2r

L2 ,

‖R1(t)‖Lr ≤ Ct−(p−1)/2‖F(M−1 − 1)FN (FMv)‖(r+2)/2r

L2

×‖∂ξF(M−1 − 1)FN (FMv)‖(r−2)/2r

L2 .

Also making use of |M−1 − 1| ≤ |x|/
√

t and the Plancherel identity, we have

‖R1(t)‖Lr ≤ Ct−(p−1)/2−1/2r−1/4‖∂ξN (FMv)‖L2

≤ Ct−(p−1)/2−1/2r−1/4‖FMv‖p−1
L∞ ‖∂ξFMv‖L2

≤ Ct−(p−1)/2−1/2r−1/4‖FMv‖p−1
L∞ ‖Ju‖L2 . (3.4)

To estimate ‖FMv‖L∞ in (3.4), we apply the simple trigonometric inequal-
ity ‖FMv‖L∞ ≤ ‖Fv‖L∞ + ‖F(M − 1)v‖L∞ and the Gagliardo-Nirenberg
inequality Lq ∩ H1 ⊂ L∞, i.e.,

‖FMv‖L∞ ≤ ‖Fv‖L∞ + ‖F(M − 1)v‖L∞

≤ C‖Fv‖q/(q+2)
Lq ‖∂ξFv‖2/(q+2)

L2 + Ct−1/4‖Ju‖L2 .

≤ C‖Fv‖q/(q+2)
Lq ‖Ju‖2/(q+2)

L2 + Ct−1/4‖Ju‖L2 (3.5)

Plugging (3.5) into (3.4), we see that

‖R1(t)‖Lr

≤ Ct−(p−1)/2−1/2r−1/4

×(‖Fv‖q/(q+2)
Lq ‖Ju‖2/(q+2)

L2 + Ct−1/4‖Ju‖L2)p−1‖Ju‖L2

≤ Ct−(p−1)/2−1/2r−1/4

×(‖Fv‖(p−1)q/(q+2)
Lq ‖Ju‖(2p+q)/(q+2)

L2 + t−(p−1)/4‖Ju‖p
L2) (3.6)

As for R2(t), we see that

‖R2(t)‖Lr ≤ Ct−(p−1)/2(‖FMv‖L∞ + ‖Fv‖L∞)p−1‖F(M − 1)v‖Lr

Applying the Sobolev inequality to ‖F(M − 1)v‖Lr and using |M − 1| ≤
|x|/

√
t, we have

‖R2(t)‖Lr ≤ Ct−(p−1)/2−1/2r−1/4(‖FMv‖L∞ + ‖Fv‖L∞)p−1‖Ju‖L2 .
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According to the analogy of the estimate (3.5),

‖R2(t)‖Lr

≤ Ct−(p−1)/2−1/2r−1/4

×(‖Fv‖(p−1)q/(q+2)
Lq ‖Ju‖(2p+q)/(q+2)

L2 + t−(p−1)/4‖Ju‖p
L2). (3.7)

Combining (3.6) and (3.7), we have

‖R(t)‖Lr

≤ Ct−(p−1)/2−1/2r−1/4

×(‖Fv‖(p−1)q/(q+2)
Lq ‖Ju‖(2p+q)/(q+2)

L2 + t−(p−1)/4‖Ju‖p
L2). (3.8)

This completes the proof of (3.1). ¤

In the proof of Lemma 3.1, ‖FMv‖L∞ and ‖Fv‖L∞ appeared. In the
idea of [15], these two quantities were roughly estimated like ‖FMv‖L∞ ≤
C‖FMv‖H1 ≤ C(‖u0‖L2 + ‖xu0‖L2) etc. due to the Sobolev inequality and
Lemma 2.1. However we are going to take much care of ‖FMv‖L∞ and
‖Fv‖L∞ so that R(t) gains more decay rate. This is the key to succeed in
the extension of the range of p. By the iteration technique together with
Lemma 3.1, we obtain (rough) decay estimate of ‖Fv(t)‖Lq for any large
q < ∞.

Proposition 3.2. Let u be the solution to (1.1) and v = U(−t)u. For
n = 1, 2, · · · , let {qn} and {dn} be the sequences determined by the recurrent
relation :

q1 = 2, qn+1 = qn + (p − 1),

d1 =
3 − p

3(p − 1)
, dn+1 =

2qndn + (3 − p)

2qn+1

(3.9)

Furthermore let p0 be the smallest positive root of (1.4). Then, for p ∈ [p0, 3),
there exist some positive constants Cn’s such that

‖Fv(t)‖Lqn ≤ Cn(1 + t)−dn . (3.10)

Remark here that qn and dn satisfying the recurrent relation (3.9) are
able to be explicitly described. In fact, we have

qn = 2 + (p − 1)(n − 1), dn =
(3 − p)(4 + 3(p − 1)(n − 1))

6(p − 1)(2 + (p − 1)(n − 1))
. (3.11)
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Then it is easy to see that {dn} is monotone increasing and limn→∞ dn =
1/(p − 1) − 1/2, but Cn in (3.10) possibly diverges as n → ∞.

Proof. We are going to apply the mathematical induction.
(The case n = 1) Taking account of (2.8), we see that

d

dt
‖Fv‖2

L2 ≤ 2Re

∫
Fv∂tFvdξ

= −2|λ2|t−(p−1)/2‖Fv‖p+1
Lp+1 + 2Re

∫
FvR(t)dξ. (3.12)

By Hölder’s inequality and Placherel’s identity, we have

‖Fv‖2p
L2 ≤ ‖Fv‖p−1

L1 ‖Fv‖p+1
Lp+1

≤ C‖Fv‖(p−1)/2

L2 ‖ξFv‖(p−1)/2

L2 ‖Fv‖p+1
Lp+1

≤ C‖Fv‖(p−1)/2

L2 ‖∂xu‖(p−1)/2

L2 ‖Fv‖p+1
Lp+1 ,

which turns out to be

‖Fv‖(3p+1)/2
L∞ ≤ C‖∂xu‖(p−1)/2

L2 ‖Fv‖p+1
Lp+1 . (3.13)

Note that ‖∂xu‖L2 ≤ ‖∂xu0‖L2 due to Lemma 2.1. Then, plugging (3.13)
into (3.12) and applying Lemma 3.1 with r = q = 2 and ‖Ju‖L2 ≤ ‖xu0‖L2 ,
we have

d

dt
‖Fv‖2

L2 ≤ −C|λ2|t−(p−1)/2‖Fv‖(3p+1)/2 + Ct−(p−1)/2−1/2‖Fv‖L2 ,

which is equivalent to

d

dt
‖Fv‖L2 ≤ −C|λ2|t−(p−1)/2‖Fv‖(3p−1)/2

L2 + Ct−(p−1)/2−1/2. (3.14)

We are going to solve this ordinary differential inequality by following the
idea of Li-Sunagawa [16]. For readers’ convenience, we introduce how to solve
it here. Let γ > 0 be sufficiently large. Then, by the simple computation
and (3.14),

d

dt
(tγ‖Fv‖L2)

= γtγ−1‖Fv‖L2 + tγ
d

dt
‖Fv‖L2

≤ γtγ‖Fv‖L2 − C|λ2|tγ−(p−1)/2‖Fv‖(3p−1)/2

L2 + Ctγ−p/2. (3.15)
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Applying Young’s inequality to the first term on the RHS of (3.15), we see
that

γtγ‖Fv‖L2 ≤ Cεt
γ−2p/(3p−3) + εtγ−(p−1)/2‖Fv‖(3p−1)/2

L2 , (3.16)

where the positive constant Cε diverges as ε ↓ 0. Plugging (3.16) into (3.15)
and taking ε > 0 so small that ε ≤ C|λ2| holds, we see that

d

dt
(tγ‖Fv‖L2) ≤ γtγ−2p/(3p−3) + Ctγ−p/2.

Since 7/3 ≤ p as in the assumption of Proposition 3.2, tγ−2p/(3p−3) ≥ tγ−p/2

for t ≥ 1. Then it follows that

d

dt
(tγ‖Fv‖L2) ≤ Ctγ−2p/(3p−3). (3.17)

Integrating (3.17) from 1 to t and dividing with tγ, we have

‖Fv(t)‖L2 ≤ t−γ‖Fv(1)‖L2 + C(t−(3−p)/(3p−3) − t−γ). (3.18)

Taking γ > −(3 − p)/(3p − 3), we obtain the case n = 1 of Proposition 3.2.

(The case n = k + 1) Assume that

‖Fv(t)‖Lqk ≤ Ckt
−dk (3.19)

holds. By (2.8),

1

qk+1

d

dt
‖Fv‖qk+1

Lqk+1

= Re

∫
|Fv|qk+1−2Fv∂tFvdξ

≤ −|λ2|t−(p−1)/2‖Fv‖qk+1+p−1

Lqk+1+p−1 + ‖Fv‖qk+1−1

Lqk+1 ‖R(t)‖Lqk+1 . (3.20)

Apply Hölder’s inequality : ‖Fv‖2qk+1

Lqk+1 ≤ ‖Fv‖ak
Lqk‖Fv‖qk+1+p−1

Lqk+1+p−1 to the first
term of (3.20) and Lemma 3.1 with r = qk+1, q = qk to the second. Then we
have

d

dt
‖Fv‖Lqk+1 ≤ −|λ2|t−(p−1)/2‖Fv‖qk+1+1

Lqk+1

‖Fv‖qk

Lqk

+Ct−(p−1)/2−1/2qk+1−1/4‖Fv‖(p−1)qk/(qk+2)
Lqk

+Ct−(p−1)/2−1/2qk+1−p/4.
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Plugging the assumption (3.19) into the above inequality, we see that

d

dt
‖Fv‖Lqk+1 ≤ −|λ2|

Ck

t−σ1‖Fv‖qk+1+1

Lqk+1

+CC
(p−1)qk/(qk+2)
k t−σ2 + Ct−σ3 , (3.21)

where

σ1 = (p − 1)/2 − qkdk,
σ2 = (p − 1)/2 + 1/2qk+1 + 1/4 + (p − 1)qkdk/(qk + 2),
σ3 = (p − 1)/2 + 1/2qk+1 + p/4.

(3.22)

Analogously in the argument (3.15)–(3.18), we have

‖Fv(t)‖Lqk+1 ≤ Ct−(1−σ1)/qk+1 + Ct−(σ2−1) + Ct−(σ3−1). (3.23)

Firstly it is immediately shown that σ2 < σ3 if 7/3 < p < 3, due to dk <
1/(p − 1) − 1/2 and 2 ≤ qk. Secondly it can be shown that (1 − σ1)/qk+1 ≤
σ2 − 1 for 2.367 ≈ p0 ≤ p < 3. This is because (1 − σ1)/qk+1 ≤ σ2 − 1 is
equivalent to

(3 − p)/2 + qkdk

qk+1

≤ 2p − 5

4
+

1

2qk+1

+
(p − 1)qkdk

qk + 2
, (3.24)

and, substituting (3.11) into (3.24) together with the tough computation, we
have the quadratic inequality of k:

0 ≤ 3(p − 1)2(3p − 7)k2 + (p − 1)(7p2 + 22p − 93)k

+4(3p − 7)(p + 3). (3.25)

In order to verify (3.25) for all k = 1, 2, · · · , we require 3p − 7 > 0 and
alternative conditions below :

(i) 7p2 + 22p − 93 ≥ 0,

(ii) 7p2 + 22p − 93 < 0 and the discriminant is non-positive, i.e.,

(7p2 + 22p − 93)2 − 48(3p − 7)2(p + 3) ≤ 0. (3.26)

Let p0 ≈ 2.367 be the smallest positive real root of the LHS of (3.26). Also
note that we are considering the proof under the original constraint p < 3.
Then (1 − σ1)/qk+1 ≤ σ2 − 1 holds for p0 ≤ p < 3, which implies, due to
(3.23), that

‖Fv(t)‖Lqk+1 ≤ C ′t−(1−σ1)/qk+1 . (3.27)



14 N. Kita and Y. Nakamura

By putting Ck+1 = C ′ and dk+1 = (1 − σ1)/qk+1, the proof is complete. ¤

Now we are ready for the proof of our main theorems.

Proof of Theorem 1.1. The global existence and uniqueness of the solution
directly follows from Lemma 2.1. The L2-decay estimate (1.7) is obtained by
Proposition 3.2 with n = 1. It remains to prove the L∞-decay estimate of u.
Differentiating tγ|Fv|2 with respect to t and applying (2.8), we have

∂t(t
γ|Fv|)

= γtγ−1|Fv| + tγRe

(
Fv

|Fv|
∂tFv

)
≤ γtγ−1|Fv| − |λ2|tγ−(p−1)/2|Fv|p + tγ‖R(t)‖L∞ . (3.28)

According to Young’s inequality, the first term of (3.28) is bounded by
Cεt

γ−1/(p−1)−1/2+εtγ−(p−1)/2|Fv|p, where ε > 0 is taken so small that ε < |λ2|.
Then we have

∂t(t
γ|Fv|) ≤ Cεt

γ−1/(p−1)−1/2 + tγ‖R(t)‖L∞ . (3.29)

Applying Lemma 3.1 and Proposition 3.2 with q = qn for sufficiently large n
to ‖R(t)‖L∞ in (3.29), we see that

∂t(t
γ|Fv|) ≤ Cεt

γ−1/(p−1)−1/2 + Ctγ−5/4+δn , (3.30)

where δn > 0 is sufficiently small and we have used qn → ∞ and dn →
1/(p − 1) − 1/2 as n → ∞. Integrating (3.30) from 1 to t and dividing both
hand sides with tγ, we have

‖Fv‖L∞ ≤ Ct−1/(p−1)+1/2. (3.31)

Recall (2.7). Then ‖u(t)‖L∞ ≤ Ct−1/(p−1) follows. ¤

Proof of Theorem 1.2. By (2.10) and (2.11),

w(t) = w(T ) +

∫ t

T

eiλΦR(τ)dτ, (3.32)

|eiλΦ| ≤
{

1 + (p − 1)|λ2|
∫ t

1

τ−(p−1)/2|w(τ)|p−1dτ

}1/(p−1)

. (3.33)

Let CT = max{1, sup0≤t≤T ‖w(t)‖L∞} for T > 1, and let

T ∗ = sup{T ′; sup
T≤t<T ′

‖w(t)‖L∞ < 2CT}. (3.34)
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We first show that T ∗ = ∞ by the contradiction argument. Note that, for
t ∈ [T, T ∗), (3.33) yield

|eiλΦ| ≤ Ct(3−p)/2(p−1)CT , (3.35)

where the positive constant C does not depend on T – we will employ this con-
vention for the positive constant C in what follows. Then, applying Lemma
3.1 and (3.31) to (3.32), we have

‖w(t)‖L∞ ≤ CT + CCT

∫ ∞

T

τ (3−p)/2(p−1) · τ−5/4dτ

≤ (1 + CT (3−p)/2(p−1)−1/4)CT . (3.36)

Note that (3 − p)/2(p − 1) − 1/4 < 0. Then, taking T sufficiently large in
(3.36), we see that

‖w(t)‖L∞ ≤ 3

2
CT . (3.37)

If T ∗ > 0 was finite, it would follow that 2CT ≤ (3/2)CT by taking t ↑ T ∗

in (3.37). This is the contradiction. Therefore ‖w(t)‖L∞ is bounded from
above. So is ‖w(t)‖L2 due to the similar argument. Let ψ̂ ∈ L∞ ∩ L2 be

ψ̂ = w(1) +

∫ ∞

1

eiλΦ(τ)R(τ)dτ, (3.38)

where the improper integral is taken in L∞ ∩ L2 and

Φ(τ) =
1

(p − 1)|λ2|
log

(
1 + (p − 1)|λ2|

∫ τ

1

s−(p−1)/2|w(s)|p−1ds

)
. (3.39)

By Lemma 2.1, we have

‖w(τ) − ψ̂‖L∞ ≤
∫ ∞

τ

‖eiλΦR(s)‖L∞ds

≤ Cτ−β (3.40)

with β = 1/4 − (3 − p)/2(p − 1) > 0. From (3.40), it follows that

‖|w(τ)|p−1 − |ψ̂|p−1‖L∞ ≤ C(‖w(τ)‖p−2
L∞ + ‖ψ̂‖p−2

L∞ )‖w(τ) − ψ̂‖L∞

≤ Cτ−β. (3.41)

Hence, for large T > 0, there exists some real-valued function ηT ∈ L∞ such
that ‖ηT‖L∞ ≤ 1/2 and furthermore

(p − 1)|λ2|
∫ t

T

τ−(p−1)/2(|w(τ)|p−1 − |ψ̂|p−1)dτ

= ηT + O(t−β+(3−p)/2) (3.42)
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as t → ∞ in L∞. We here note that −β+(3−p)/2 < 0 if (5+
√

33)/4 < p, and
this is the main reason why the constraint of p is required in the assumption
of Theorem 1.2. Applying (3.42) to (3.39), we see that

Φ(t) =
1

(p − 1)|λ2|
log (A(t, ξ) + ρ(t, ξ)) (3.43)

as t → ∞ in L∞, where

A(t, ξ) = 1 + ηT +
2(p − 1)|λ2|

3 − p
(t(3−p)/2 − T (3−p)/2)|ψ̂(ξ)|p−1,

and ρ(t, ·) belongs to L∞ with ‖ρ(t, ·)‖L∞ = O(t−β+(3−p)/2) as t → ∞. Ap-
plying (3.40) and (3.43) to Fv = e−iλΦw, we have

Fv(t)

= ψ̂

{
exp

(
−iλ

(p − 1)|λ2|
log A(t, ·)

)}
(1 + O(t−β+(3−p)/2)) (3.44)

as t → ∞ in L∞. Furthermore let φ̂ = ψ̂ exp
(

−iλ
(p−1)|λ2| log(1 + ηT )

)
. Then

(3.44) yields

Fv(t) = e−iΘ(t)φ̂ (1 + O(t−β+(3−p)/2)) (3.45)

as t → ∞ in L∞, where

Θ(t) =
λ

(p − 1)|λ2|
log

(
1 +

2(p − 1)|λ2|
3 − p

(t(3−p)/2 − T (3−p)/2)|φ̂|p−1

)
.

Noting that u(t) = MDFv + O(t−3/4+α) in L∞ by (2.7), we obtain (1.8). ¤

Remark. In Theorem 1.2, the final state φ̂ is not equal to 0 if u0 6= 0
and ‖u0‖H1 + ‖xu0‖L2 is sufficiently small. We want to prove this statement
here. Let u0 = εf0 with ‖f0‖H1 + ‖xf0‖L2 < 1 and ε > 0 sufficiently small.
We denote, by uε(t), the solution to (1.1) with εf0 as the initial data. We
also write vε(t) = U(−t)uε(t) and wε(t) = eiλΦε(t)Fvε(t) where Φε(t) =∫ t

1
τ−(p−1)/2|Fvε(τ)|p−1dτ . By (3.38), we have

ψ̂ε = L2- lim
t→∞

wε(t)

= wε(1) +

∫ ∞

1

eiλΦεR(τ)dτ. (3.46)
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We note that, by the integral equation, the first term of (3.46) is written as

wε(1) = Fvε(1)

= εFf0 − iλ

∫ 1

0

FU(−s)N (uε(s))ds. (3.47)

Since sup0≤t≤1 ‖uε(t)‖H1 ≤ Cε by the contraction mapping principle, (3.47)
yields

wε(1) = εFf0 + O(εp) in L2. (3.48)

We next note that the second term of (3.46) is estimated as∥∥∥∥∫ t

1

eiλΦεR(τ)dτ

∥∥∥∥
L2

≤
∫ ∞

1

‖eiλΦε‖L∞‖R(τ)‖L2dτ.

Applying (3.35) to ‖eiλΦε‖L∞ and Lemma 3.2 (3.14) to ‖R(τ)‖L2 , we see that∥∥∥∥∫ t

1

eiλΦεR(τ)dτ

∥∥∥∥
L2

≤ Cε

∫ ∞

1

τ (3−p)/2(p−1) × τ−(p−1)/2−1/2+α(‖Fvε(τ)‖L∞ + εt−1/4+α)p−1dτ.

Write ‖Fvε‖L∞ = ‖Fvε‖1−θ
L∞ · ‖Fvε‖θ

L∞ ≤ C‖Fvε‖1−θ
L∞ · ‖uε‖θ/2

L2 ‖Juε‖θ/2

L2 by the
Sobolev inequality with θ > 0 sufficiently small. Then, applying ‖Fvε‖L∞ ≤
Kt−1/(p−1)+1/2 and Proposition 3.1, we have∥∥∥∥∫ t

1

eiλΦεR(τ)dτ

∥∥∥∥
L2

≤ Cε1+θ(p−1)

∫ ∞

1

τ (3−p)/2(p−1) × τ−(p−1)/2−1/2+α

×τ (1−θ)(−1+(p−1)/2)+θα(p−1)/2dτ

≤ Cε1+θ(p−1). (3.49)

Combining (3.46), (3.48) and (3.49), we see that

ψ̂ε = εFf0 + O(εp) + O(ε1+θ(p−1)) in L2.

Hence, taking ε > 0 sufficiently small , we have ‖ψ̂ε‖L2 6= 0 if f0 6= 0. Recall

that φ̂ = ψ̂ exp
{

−iλ
(p−1)|λ2| log(1 + η)

}
and ‖η‖L∞ ≤ Cεp−2. Then φ̂ 6= 0 if

u0 6= 0 and the size of u0 is sufficiently small.
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