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ABSTRACT

The classical Poincaré conjecture that every homotopy 3-sphere is diffeomor-
phic to the 3-sphere is proved by G. Perelman by solving Thurston’s program on
geometrizations of 3-manifolds. A new confirmation of this conjecture is given
by combining R. H. Bing’s result on this conjecture with Smooth Unknotting
Conjecture for an S2-link and Smooth 4D Poincaré Conjecture.
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1. Introduction
A homotopy 3-sphere is a smooth 3-manifold M homotopy equivalent to the 3-

sphere S3. It is well-known that a simply connected closed connected 3-manifold is
a smooth homotopy 3-sphere. The following theorem, called the classical Poincaré
Conjecture coming from [22, 23] is positively shown by Perelman [20, 21] solving
positively Thurston’s program [24] on geometrizations of 3-manifolds (see [19] for
detailed historical notes).

Theorem 1.1. Every homotopy 3-sphere M is diffeomorphic to the 3-sphere S3.

The purpose of this paper is to give an alternative proof to Theorem 1.1 by
combining R. H. Bing’s result in [2, 3] on the classical Poincaré conjecture with
Smooth Unknotting Conjecture and Smooth 4D Poincaré Conjecture to be explained
from now on. Let F be a smooth surface-link with a component system Fi, (i =
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1, 2, . . . , n) in the 4-sphere S4. The fundamental group π1(S
4 \ F, v) (with v a base

point) is a meridian-based free group if the group π1(S
4 \ F, v) is a free group with a

basis represented by a meridian system mi (i = 1, 2, . . . , n) of Fi, (i = 1, 2, . . . , n) with
a base point v. The smooth surface-link F is a trivial surface-link if the components
Fi, (i = 1, 2, . . . , n) bound a disjoint handlebody system smoothly embedded in S4.
Smooth Unknotting Conjecture for a surface-link is the following conjecture.

Smooth Unknotting Conjecture. Every smooth surface-link F in S4 with a
meridian-based free fundamental group π1(S

4 \ F, v) is a trivial surface-link.

The positive proof of this conjecture is claimed by [13, 15] with supplement [14].
The result when F is an S2-link (i.e., a surface-link with only S2-components) is
applied in this paper. A homotopy 4-sphere is a smooth 4-manifold X homotopy
equivalent to the 4-sphere S4. Smooth 4D Poincaré Conjecture is the following con-
jecture.

Smooth 4D Poincaré Conjecture. Every 4D smooth homotopy 4-sphere X is
diffeomorphic to the 4-sphere S4.

The positive proof of this conjecture is claimed by [16, 17]. For the proof of
Theorem 1.1, the following result of R. H. Bing in [2, 3] is used:

Bing’s Theorem. A homotopy 3-sphere M is diffeomorphic to S3 if, for every knot
k in M , there is a 3-ball in M containing the knot k.

Thus, the main result of this paper is to prove the following lemma.

Lemma 1.2. For every knot k in M , there is a 3-ball in M containing the knot k.

For the proof of Lemma 1.2, Artin’s spinning construction of a knot in S3 in [1]
is generalized into a connected graph in a homotopy 3-sphere M to produce a spun
S2-link in S4 with free fundamental group (not always meridian-based free group).
This explanation is done in Section 2. In Section 3, it is shown that every S2-link
in S4 with free fundamental group is a ribbon S2-link by using Smooth Unknotting
Conjecture for an S2-link and Smooth 4D Poincaré Conjecture. In Section 4, the
proof of Lemma 1.2 is done. To do this, it is shown that the spun torus-knot of a
knot in M is a ribbon-torus knot in S4 which is a sum of the spun S2-link of a proper
arc system a∗ in a boundary collar of a compact once-punctured manifold M (o) of
M and the spun S2-link of a proper arc system e∗ in M (o) with meridian-based free
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fundamental group π1(M
(o) \ e∗, v). To see this, an argument of a chord diagram of

the spun S2-link of a proper arc system a∗ in a boundary collar of M (o) in [12] is used.
In this way, it is shown that the knot k is in a 3-ball of M completing the proof of
Lemma 1.2 and the proof of Theorem 1.1 is completed.

Conventions. The unit n-disk is denoted by Dn with the origin 0 as a standard
notation, but the unit 2-disk D2 is fixed in the complex plane C. A smooth n-
manifold diffeomorphic to the unit n-disk Dn is called an n-ball for n ≥ 3 or n-disk
for n = 2. A point 1 is fixed in the n-sphere Sn = ∂Dn+1.

2. Artin’s spinning construction of a connected graph in a homotopy 3-
sphere

For a homotopy 3-sphere M , let M (o) be the compact once-punctured manifold
cl(M \B) of M for a 3-ball B in M . Let

S = ∂B = ∂M (o)

be the boundary 2-sphere of M (o). The closed smooth 4-manifold X(M) defined by

X(M) = M (o) × S1 ∪ S ×D2

is called the spun manifold of M with axis 4-submanifold S ×D2. As a convention,
the 3-submanifold M (o) × 1 of the product M (o) × S1 is identified with M (o). In
particular, a point (q, 1) ∈ M (o) × 1 is identified with the point q ∈ M (o). This
4-manifold X(M) is a smooth homotopy 4-sphere by the van Kampen theorem and
a homological argument and hence X(M) is diffeomorphic to the 4-sphere S4 by
Smooth 4D Poincaré Conjecture. A legged loop with base point v is the union k ∪ ω
of a loop k and an arc ω joining the base point v with a point of k. The arc ω is
called the leg. A legged loop system with base point v is the union

γ = ∪n
i=1ki ∪ ωi

of n legged loops ki ∪ ωi (i = 1, 2, . . . , n) meeting only at the same base point v.
Let k(γ) = ∪n

i=1ki = k∗ denote the loop system of the legged loop system of γ. Let
ω∗ = ∪n

i=1ωi and v∗ = k∗ ∩ω∗. For a maximal tree τ of γ containing the base point v,
a regular neighborhood B of τ in M with γ ∩ B a regular neighborhood of τ in γ is
taken as 3-ball B used for the compact once-punctured manifold M (o) = cl(M \ B)
of M . Deform the subgraph γ ∩ B of γ so that

ω∗ ⊂ B, ω∗ ∩ S = ∂ω∗ and k∗ ∩B = k∗ ∩ S = a′∗

for an arc system a′∗ in k∗, where note that the base point v is moved into S. Let

a(γ) = ∪n
i=1ai = a∗
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for a proper arc ai = cl(ki \ a′i) (i = 1, 2, . . . , n) in M (o). Let

ȧ(γ) = ∂a∗ = ∂a′∗

be the set of 2n points in the boundary 2-sphere S of M (o). The spun S2-link of the
graph γ is the S2-link S(γ) in the 4-sphere X(M) defined by

S(γ) = a(γ)× S1 ∪ ȧ(γ)×D2.

Lemma 2.1. The inclusion M (o) \ a(γ) ⊂ X(M) \ S(γ) induces an isomorphism

σ : π1(M \ γ, v) → π1(X(M) \ S(γ), v)

sending a meridian system of the proper arc system a(γ) in M (o) to a meridian system
of S(γ).

Proof of Lemma 2.1. Note that there is a canonical isomorphism

π1(M
(o) \ a(γ), v) ∼= π1(M \ γ, v).

Then the desired isomorphism σ is obtained by applying the van Kampen theorem
between (M (o)\a(γ))×S1 and (S\ȧ(γ))×D2. This completes the proof of Lemma 2.1.
□

Here is a note on Lemma 2.1.

Note 2.2. A general connected graph γ with Euler characteristic χ(γ) = 1 − n in
M is deformed into a legged loop system γ in M by choosing a maximal tree to
shrink to a base point v. Note that there are only finitely many maximal trees of γ
such that the loop systems k(γ) of the resulting legged loop systems γ are distinct as
links. By Lemma 2.1, we can obtain finitely many distinct spun S2-links in S4 with
isomorphic fundamental groups obtained by taking different maximal trees of the
connected graph γ. This is a detailed explanation on the spun S2-link of a connected
graph associated with a maximal tree in [7, p.204] when M = S3.

An argument on Lemma 2.1 is further developed when the homotopy 3-sphere M

is given by a Heegaard spitting V ∪V ′ pasting along a Heegaard surface F = ∂V = ∂V ′

of genus n. A spine of a handlebody V of genus n is a legged loop system γ with
base point v in F = ∂V such that the inclusion map γ → V induces an isomorphism
π1(γ, v) → π1(V, v). A regular neighborhood V̇ of γ in F is a planar surface in F .
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By [5, Theorem 10.2], there is a diffeomorphism (V̇ × [0, 1], V̇ × 0) → (V, V̇ ) sending
every point (x, 0) ∈ V̇ ×0 to x ∈ V̇ . The surface V̇ is called a spine surface of V . Let
γ and γ′ be spines of the handlebodies V and V ′ with the same base point v ∈ F ,
respectively. A legged Heegaard loop system in M is the legged loop system γγ′ in M
with base point v obtained by pushing γ\v and γ′\v into the interiors IntV and IntV ′,
respectively. The fundamental groups of the spun S2-links S(γγ′) = S(γ)∪S(γ), S(γ)
and S(γ) in the 4-sphere X(M) given by Lemma 2.1 are free groups, as shown in the
following lemma:

Lemma 2.3. The fundamental groups π1(X(M) \ S(γ), v) and π1(X(M) \ S(γ′), v)
are free groups of rank n and the fundamental group π1(X(M) \ S(γγ′), v) is a free
group of rank 2n.

Proof of Lemma 2.3. The closed complements cl(M \ N(γ)), cl(M \ N(γ′)) and
cl(M \N(γ)) are diffeomorphic to the handlebodies V ′, V and F (o)×[0, 1] for the once-
punctured surface F (o) of F , respectively. Since the fundamental groups π1(V

′, v),
π1(V, v) and π1(F

(o) × [0, 1], v) are free groups of ranks n, n and 2n, respectively, the
desired result is obtained from Lemma 2.1. □

It should be noted that these free groups in Lemma 2.3 are not necessarily
meridian-based free groups. Here is an example.

Figure 1: A legged loop system γ in S3 with free fundamental group of rank 2

Example 2.4. Let γ be a legged loop system with base point v in S3 illustrated in
Fig. 1 with free fundamental group π1(S

3\γ, v) of rank 2. In fact, a trivial legged loop
system is obtained by sliding an edge along another edge, so that the fundamental
group π1(S

3 \ k(γ), v) is a free group of rank 2. A regular neighborhood V of γ in S3

and the closed complement V ′ = cl(S3 \ V ) constitute a genus 2 Heegaard splitting

5



V ∪V ′ of S3 by noting that the 3-manifold V ′ is a handlebody of genus 2 by the loop
system theorem and the Alexander theorem (cf. e.g., [7]). Thus, the union V ∪ V ′

is a genus 2 Heegaard splitting of S3. The legged loop system γ with vertex v is a
spine of V by sliding the base point v into ∂V . By Lemma 2.3, the spun S2-link S(γ)
in the 4-sphere X(S3) = S4 has the free fundamental group π1(X(S3) \ S(γ), v) of
rank 2, which does not admit any meridian basis because the S2-link S(γ) contains
a component of the spun trefoil S2-knot in S4 whose fundamental group is known to
be not infinite cyclic.

Given a proper arc system a∗ in M (o), there is a legged loop system γ in M with
the proper arc system a(γ) = a∗ in M (o). The S2-link S(γ) in X(M) is uniquely
determined by the arc system a∗ and thus denoted by S(a∗). The following lemma is
directly used for the proof of Lemma 1.2.

Lemma 2.5. Let a∗ be a proper arc system in a compact once-punctured manifold
M (o) = cl(M \ B) of a homotopy 3-sphere M . If the S2-link S(a∗) in the 4-sphere
X(M) is a trivial S2-link, then the proper arc system a∗ is in a boundary-collar
S × [0, 1] of M (o).

Proof of Lemma 2.5. By Lemma 2.1, the fundamental group π1(M
(o) \ a(γ), v) is

a meridian-based free group. Consider the 2-sphere S is the boundary of the product
d× [0, 1] for a disk d so that d× 0 contains one end of the proper arc system a∗ and
d×1 contains the other end of the proper arc system a∗. Let (E;E0, E1) be the triplet
obtained from (M (o), d× 0, d× 1) by removing a tubular neighborhood of a∗ in M (o).
Then the inclusion E0 ⊂ E induces an isomorphism

π1(E0, v) → π1(E, v).

By [5, Theorem 10.2], E is diffeomorphic to the connected sum of the product E0 ×
[0, 1] and a homotopy 3-sphere. This means that the proper arc system a∗ is in a
boundary-collar S × [0, 1]. This completes the proof of Lemma 2.5. □

3. Ribbonness of an S2-link with free fundamental group The 4D handlebody
of genus n is the boundary 3-disk sum

Y D = D4♮nı=1S
1 ×D3

i

obtained from n copies S1×D3
i (i = 1, 2, . . . , n) of the 4D solid torus S1×D3 and the

4-disk D4 by pasting a 3-disk system consisting of a boundary 3-disk in (S1\{1})×D3
i

for every i to a system of disjoint n boundary 3-disks of D4. A legged loop system
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γD in the 4D handlebody Y D of genus n is standard if the legged loop system γD has
the following two conditions:

• The loop system k(γD) is consistent with the system S1 × 1i (i = 1, 2, . . . , n), and

• The base point v is in the 4-disk D4 and the legs ωi (i = 1, 2, . . . , n) of γD do not
meet the 3-disks 1×D3

i (i = 1, 2, . . . , n).

Note that the legs (i = 1, 2, . . . , n) of γD are ∂-relatively unique up to isotopies
in Y D. The 4D closed handlebody of genus n is the double of the 4D handlebody Y D

of genus n, that is the 4-manifold

∂(Y D × [0, 1]) = Y D × 0 ∪ (∂Y D)× [0, 1] ∪ Y D × 1

which is canonically identified with the following 4-manifold

Y S = S4#n
i=1S

1 × S3
i ,

where the connected summands S3 and S1 × S3
i correspond to the doubles of the

3-disk summands D4 and S1×D3
i , respectively. The 4D handlebody Y D × 0 in Y S is

identified with Y D. A legged loop system γ with vertex v of the 4D closed handlebody
Y S of genus n is standard if it is v-relatively isotopic to a standard legged loop system
γD of Y D ⊂ Y S. A standard legged loop system of Y S is denoted by γS. A homology
4-sphere is a smooth 4-manifold X with an isomorphism H∗(X;Z) ∼= H∗(S

4;Z). A 4D
closed homology handlebody of genus n is a smooth 4-manifold Y with an isomorphism
H∗(Y ;Z) ∼= H∗(Y

S;Z) for the 4D closed handlebody Y S of genus n. For an S2-link L
in X, take a normal disk bundle L×D2 in X and a 3-disk system D3

L with ∂D3
L = L.

This transformation from X into the 4-manifold

Y = cl(X \ L×D2) ∪D3
L × S1

is called the surgery of X along the S2-link L. Conversely, the transformation from
Y into X is called the surgery of Y along the loop system 0∗ × S1 by observing that
D3

L × S1 is a regular neighborhood of 0∗ × S1 in Y . The following lemma is a more
or less known fact.

Lemma 3.1. Let Y be the 4-manifold obtained from a homology 4-sphere X by
surgery along any n-component S2-link L. Then the 4-manifold Y is a 4D closed
homology handlebody of genus n such that the inclusion X \L×D2 ⊂ Y induces an
isomorphism

π1(X \ L×D2, v) → π1(Y, v).
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Proof of Lemma 3.1. To see that H2(Y ;Z) = 0, use the Euler characteristic
χ(Y ) = 2n. Since H1(Y ;Z) ∼= Zn, we have H2(Y ;Z) = 0 by Poincaé duality, which
shows that Y is a 4D closed homology handlebody of genus n. The isomorphism
i∗ : π1(X \ L×D2, v) → π1(Y, v) is obtained by a general position argument. □

A meridian system of an S2-link L in X is a legged loop system γL in the closed
complement cl(X \L×D2) for a normal disk bundle L×D2 in X such that the loop
system k(γL) is the loop system p∗ ×S1 for a point system p∗ in L with one point for
every component of L. By Lemma 3.1, note that the meridian system γL induces a
legged loop system γ in Y such that the loop system k(γ) represents a homological
basis of the homology group H1(Y ;Z). Conversely, given any legged loop system γ
in Y such that the loop system k(γ) represents a homological basis of H1(Y ;Z), then
the 4-manifold X obtained from Y along the loop system k(γ) is a homology 4-sphere
and the legged loop system γ induces a meridian system γL of an S2-link L in X. A
4D closed homotopy handlebody of genus n is a 4D closed homology handlebody Y of
genus n such that the fundamental group π1(Y, p) is a free group of rank n. A legged
loop system γ with base point v in a 4D closed homotopy handlebody Y of genus n
is a basis system if the inclusion γ ⊂ Y induces an isomorphism

π1(γ, v) → π1(Y, v).

For example, a standard legged loop system γS of the 4D closed handlebody Y S is
a basis system. The following classification lemma is a result of Smooth Unknotting
Conjecture for an S2-link and Smooth 4D Poincaré Conjecture.

Lemma 3.2. Let Y S be the 4D closed handlebody of genus n, and γS a standard
legged loop system with base point vS of Y S. For every 4D closed homotopy handle-
body Y of genus n and every basis system γ in Y , there is an orientation-preserving
diffeomorphism

f : Y → Y S

such that f(γ) = γS. Given any spin structures on Y and Y S, the diffeomorphism f
can be taken spin-structure-preserving.

Proof of Lemma 3.2. Let X be the 4-manifold obtained from Y by surgery along
the loop system k∗ = k(γ). This 4-manifold X is diffeomorphic to the 4-sphere S4

by Smooth 4D Poincaré Conjecture since it is a smooth homotopy 4-sphere by the
van Kampen theorem and a homological argument. Since X is obtained from Y by
replacing a normal disk bundle k∗×D3 of k∗ in Y with D2

∗×S2 for the disk system D2
∗

bounded by k∗. Then there is an S2-link L = 0∗ × S2 in X. Since the basis system γ

8



of Y induces a meridian system of L in X, Lemma 3.1 implies that the fundamental
group π1(X \L, v) is a meridian based free group. By Smooth Unknotting Conjecture
for an S2-link, the S2-link L is a trivial S2-link in the 4-sphere X. By the back surgery
replacing D2

∗ × S2 in X with k(γ) × D3 in Y , there is an orientation-preserving
diffeomorphism f : Y → Y S with f(k∗) = k(γS

∗ ). Since a regular neighborhood
N(f(γ)) of f(γ) in Y S is isotopic to Y D in Y S, the diffeomorphism f : Y → Y S is
modified to have f(γ) = γS. Given any spin structures on Y and Y S, note that there is
an orientation-preserving spin-structure-changing diffeomorphism : S1×S3 → S1×S3

(see [4] for a similar diffeomorphism on S1 × S2). Thus, by composing f with the
orientation-preserving spin-structure-changing diffeomorphisms on some connected
summands of Y S which are copies of S1 × S3, the diffeomorphism f : Y → Y ′

is modified into an orientation-preserving spin-structure-preserving diffeomorphism.
This completes the proof of Lemma 3.2. □

The following corollary is directly obtained from Lemmas 2.3, 3.1 and 3.2.

Corollary 3.3. Let γγ′ be a legged Heegaard loop system of a homotopy 3-sphere
M associated with a Heegaard.splitting V ∪ V ′ of genus n, and Y (M ; γγ′) the 4D
closed homology handlebody obtained from the 4-sphere X(M) by surgery along the
spun S2-link L(γγ′) of γγ′. Then the 4D closed homology handlebody Y (M ; γγ′) is
diffeomorphic to the 4D closed handlebody Y S of genus 2n.

A surface-link L in S4 is a ribbon surface-link if L is equivalent to a surface-link
obtained from a trivial S2-link LS in S4 by surgery along embedded 1-handles on LS

(see [18]). The following lemma is obtained.

Lemma 3.4. Any S2-link L in S4 with free fundamental group π1(S
4 \ L, v) is a

ribbon S2-link.

Proof of Lemma 3.4. Let Ki (i = 1, 2, . . . , n) be the components of L. Let Y be the
4-manifold obtained from S4 by surgery along L. Let γ be a legged loop system in Y
induced from a meridian system γL of L in S4. Let k(γ) = k∗ be the loop system of
γ in Y . The surgery manifold X of Y along k∗ is identified with the 4-sphere S4. In
precise, let X = cl(Y \N(k∗))∪D∗×S2 for a regular neighborhood N(k∗) = k∗×D3

of k∗ in Y and the disk system D∗ with ∂D∗ = k∗, where the 2-sphere system 0∗ ×S2

is identified with L. By Lemma 3.2, Y is identified with the closed 4D handlebody
Y S of genus n. Let γS be a standard legged loop system of Y = Y S with the same
vertex v as γ. Let k(γS) = kS

∗ be the loop system of γS in Y , which is disjoint from
k∗. Let xi (i = 1, 2, . . . , n) be a basis of the free group π1(Y, v) of rank n represented
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by γS. Let yi (i = 1, 2, . . . , n) be an element system in π1(Y, v) represented by γ. By
a basis change of the basis xi (i = 1, 2, . . . , n), assume that the product x−1

i yi is in
the commutator subgroup [π1(Y, v), π1(Y, v)] of π1(Y, v) for every i. Let

Y 0 = cl(Y \N(kS
∗ ))

for a regular neighborhood N(kS
∗ ) = kS

∗ ×D3 of kS
∗ in Y . Also, let

X0 = cl(X \N(kS
∗ ))

by considering N(kS
∗ ) in X. Since the loop system kS

∗ is a trivial loop system in the
4-sphere X, there is a disjoint disk system Ω∗ with ∂Ω∗ = kS

∗ smoothly embedded in
X. Note that the intersection N(kS

∗ ) ∩ Ω∗ is a boundary collar of Ω∗. Let

Ω′
∗ = cl(Ω∗ \ (N(kS

∗ ) ∩ Ω∗)

which is a proper disk system in X0. Let S1 × S3
i = kS

i × S3 (i = 1, 2, . . . , n) be
the connected summands of the closed 4D handlebody Y = Y S. For every i, let
S3
i = pi × S3

i for a point pi ∈ kS
i . Let Vi = S3

i ∩ Y 0 be a 3-ball obtained from
S3
i by removing the interior of a 3-ball neighborhood of the point pi = pi × 1 with

∂Vi ⊂ ∂Y 0. Let

Y + = Y 0 ∪n
i=1 Ω̃i × d

be the 4-manifold obtained from Y 0 by attaching 2-handles Ω̃i × d (i = 1, 2, . . . , n) to
the boundary ∂Y 0 = ∪n

i=1k
S
i ×S2 of Y 0 where Ω̃i is a disk with ∂Ω̃i = ∂Ω′

i and a disk
d in the 2-sphere S2. Similarly, let

X+ = X0 ∪n
i=1 Ω̃i × d

be the 4-manifold obtained from X0 by attaching 2-handles Ω̃i× d (i = 1, 2, . . . , n) to
the boundary ∂X0 identical to ∂Y 0. Let (kS+

∗ , p+∗ ) be a moving of the pair (kS
∗ , p∗)

into the boundary pair (∂Y 0, ∂V∗). Let k
S+
i × [0, 1] be an annulus in kS+

i ×S2 ⊂ ∂Y 0

for an arc [0, 1] in S2. Consider that the element x−1
i is represented by the loop kS+

i ×0
in Y 0. Since yi is a word of the letters xj (j = 1, 2, . . . , n) in the fundamental group
π1(Y, v), the element yi is represented in Y 0 by a band sum ki of the loop kS+

i × 1
and the boundary loop system ∂Pi of a disk system Pi consisting of suitably oriented
parallel disks of Ω̃j in Ω̃j×d (j = 1, 2, . . . , n) along a band system µi. Let bi be a band
in the anulus kS+

i × [0, 1] spanning the loop kS+
i and the loop ki with the centerline

ḃi = p+i × [0, 1]. Let k′
i be the loop in Y 0 obtained by a band sum of kS+

i × 0 and ki
along the band bi. The union

∆i = cl(kS+
i × [0, 1] \ bi) ∪n

i=1 Pi ∪ µi
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is considered as a disk smoothly embedded in Y + whose boundary loop ∂∆i represents
the element x−1

i yi in Y 0. Further, the disk system ∆i (i = 1, 2, . . . , n) is made disjoint.
By construction, the disk ∆i meets the 3-ball system V∗ only with the isolated finite
point set Pi ∩ ∂V∗ and with simple proper arcs βi,j (j = 1, 2, . . . , ni) in ∆i coming
from the transverse intersection of the band system µi and the interior IntV∗ of the
3-ball system V∗. Let Bi,j (j = 1, 2, . . . , ni) be disjoint 3-ball neighborhoods of the
arcs βi,j (j = 1, 2, . . . , ni) in IntVi, and Si,j (j = 1, 2, . . . , ni) the boundary 2-spheres
of Bi,j (j = 1, 2, . . . , ni). Then the following claim (#) is obtained.

(#) The S2-link ∪n
i=1 ∪

ni
j=1 Si,j in Y becomes a trivial S2-link in the 4-sphere X after

the surgery of Y along the loop system k∗.

By assuming the proof of the claim (#), the proof of Lemma 3.4 is completed as

follows. Let (S3)
(∗)
i be a multi-punctured 3-ball obtained from S3

i by removing the
interiors of the 3-balls Bi,j (j = 1, 2, . . . , ni) and a 3-ball neighborhood N(qi) = qi×D3

of the point qi = p+i ×1 ∈ ki in Vi. Note that the S
2-link ∪n

i=1∂N(qi) in Y changes into
the S2-link L = ∪n

i=1Ki in X after the surgery of Y along k∗. Since Ki is equivalent

to a 2-sphere in (S3)
(∗)
i obtained from the trivial S2-link ∂Vi ∪n

i=1 ∪
ni
j=1Si,j in X by

surgery along disjoint embedded 1-handles in (S3)
(∗)
i , it is shown that the S2-link L is

a ribbon S2-link in the 4-sphere X. This completes the proof of Lemma 3.4 assuming
the claim (#).

Proof of (#). Let V ′
∗ be the 3-ball system obtained from the 3-ball system V∗ by

removing an open boundary collar which remains containing all the arcs βi,j, so that

V ′
∗ ∩ Ω̃j = ∅. Since every arc βi,j splits the disk ∆h containing the arc βi,j into two

regions, there is an arc βi′,j′ such that a region ∆′
h of the disk ∆h splitted by the

βi′,j′ does not contain any other arc βi′′,j′′ and does not meet the arc system b∗ ∩ k∗.
The boundary of a regular neighborhood relative to V ′

∗ of the region ∆′
h in Y + is a

3-sphere containing the 3-ball Bi′,j′ whose complementary 3-ball is denoted by B̃i′,j′ .
Let V ′′

∗ be the 3-ball system obtained from V ′
∗ by replacing the 3-ball Bi′,j′ with the

3-ball B̃i′,j′ . Then V ′′
∗ ∩∆′

h = ∅. Continue this process on V ′′
∗ instead of V ′

∗ . Finally,

a system of disjoint 3-balls B̃i,j (i = 1, 2, . . . , n; j = 1, 2, . . . , ni) bounded by the 2-
spheres Si,j (i = 1, 2, . . . , n; j = 1, 2, . . . , ni) and a 3-ball system V ′′′

∗ disjoint from
the union ∆∗ ∪ b∗ are obtained in Y +. Consider that X+ is obtained from Y + by a
surgery along a loop system k+

∗ disjointedly parallel to the loop system k∗ in Y + so
that k+

∗ is in the interior Int(Y 0) of Y 0 and disjoint from the disk system ∆∗. The
disk system ∆∗ is now embedded into X+ and the 3-ball B̃i,j for any i, j is embedded
into a regular neighborhood of ∆∗ in the 4-manifold cl(Y + \N(k+

∗ )) = cl(X+ \N(L)).
Since the band system µi except for the attaching part is made disjoint from the
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disk system Ω′
∗, the loop system k+

∗ is made disjoint from the disk system Ω′
∗. For

a normal disk bundle Ω′
∗ × d of Ω′

∗ in cl(Y 0 \ N(k+
∗ )) = cl(X0 \ N(L)), the union

U = Ω′
∗ × d ∪ Ω̃∗ × d = (Ω′

∗ ∪ Ω̃∗) × d in cl(Y + \ N(k+
∗ )) = cl(X+ \ N(L)) is

diffeomorphic to the product S2 × d and the intersection U ∩∆∗ coincides with the
disk system P∗. By an isotopy of X+ keeping U setwise fixed and keeping the outside
of a neighborhood of U in X+ fixed, the disk system P∗ is deformed into a disk system
PX
∗ in Ω′

∗× d ⊂ X0, so that the disk system ∆∗ is deformed into a disk system ∆X
∗ in

Ω′
∗× d ⊂ X0. Since the 3-ball B̃i,j for any i, j is embedded in a regular neighborhood

of ∆∗ in the 4-manifold X+, the 3-ball system B̃i,j is isotopically deformed into a

3-ball systemB̃X
i,j in X0 while the 2-spheres Si,j (i = 1, 2, . . . , n; j = 1, 2, . . . , ni) are

fixed. This means that the 2-spheres Si,j (i = 1, 2, . . . , n; j = 1, 2, . . . , ni) are a trivial
S2-link in the surgery manifold X. This completes the proof of (#). □

This completes the proof of Lemma 3.4. □

A group presentation (y1, y2, . . . , yn+s| r1, r2, . . . , rs) of deficiency n is a Wirtinger
presentation if every relator ri is written as a form y−1

ji
wjyj′iw

−1
i for two generators

yjji, yj′i with distinct indexes ji, j
′
i and a word wi in the letters yj (j = 1, 2, . . . , n+ s).

It is known that the fundamental group of an n-component ribbon S2-link has a
Wirtinger presentation of deficiency n for some s (cf. [7, p. 193], [18, pp. 56-60]).
An algebraic version of Lemma 3.4 means the following result in combinatorial group
theory.

Corollary 3.5. Let Fn be the free group of rank n with a basis xi (i = 1, 2, . . . , n). Let
x′
i (i = 1, 2, . . . , n) be a set of elements normally generating the free group Fn written

as words in the letters xi (i = 1, 2, . . . , n) such that the products x′
ix

−1
i (i = 1, 2, . . . , n)

belong to the commutator subgroup [Fn,Fn] of Fn. Then the free group Fn admits
a Wirtinger presentation

(y1, y2, . . . , yn+s| r1, r2, . . . , rs)

of deficiency n for some s such that the elements yi (i = 1, 2, . . . , n + s) are written
as words in the letters xi (i = 1, 2, . . . , n) containing the elements x′

i (i = 1, 2, . . . , n)
as the given words.

4. Main result: Proof of Lemma 1.2

The following observation relates a knot to a Heegaard splitting of a closed con-
nected orientable 3-manifold.
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Lemma 4.1. For any knot k in any closed connected orientable 3-manifold M , there
is a Heegaard splitting V ∪V ′ of M such that the knot k is equivalent to a component
of the loop system k(γ) of a spine γ of V in M .

Proof of Lemma 4.1. By considering k as a polygonal loop in M , there is a
triangulation T of M whose 1-skeleton T (1) contains the knot k. The graph T (1) is
deformed into a legged loop system γ in M so that k is a component of the loop
system k(γ). Let V be a regular neighborhood of γ in M which is a handlebody. The
closed complement V ′ = cl(M \ V ) is also a handlebody, so that we have a Heegaard
splitting V ∪ V ′ of M . The legged loop system γ is deformed into a spine of the
handlebody V . □

By combining Lemmas 2.3, 3.4 with Lemma 4.1, the following corollary is ob-
tained, because any component of a ribbon S2-link in S4 is a ribbon S2-knot in S4.

Corollary 4.2. For any knot k in any homotopy 3-sphere M , the spun-S2-knot S(k)
of k in X(M) = S4 is a ribbon S2-knot in S4.

A chord diagram is a diagram C in S2 consisting of a based loop system o (i.e.,
a trivial oriented link diagram ) and a chord system α joining the based loops where
intersections among the chords are permitted (see [8, 9, 10, 11, 12] for the detailed
arguments). For a disk δ in S2, a chord diagram in the delta δ is the intersection
C ∩ δ for a chord diagram C = C(o, α) in S2 such that the circle ∂δ does not
meet the based loop system o and meets the chord system α transversely. From
a chord diagram C = C(o, α) in S2, a ribbon surface-link R(C) in the 4-sphere S4 is
constructed in a unique way. In fact, the ribbon surface-link R(C) is obtained from a
trivial oriented S2-link L0 in S4 constructed from the based loop system o by surgery
along an embedded 1-handle system h(α) on L0 thickening the chord system α. The
ribbon surface-link R(C) in S4 is uniquely constructed from the chord diagram C by
using the Horibe-Yanagawa’s lemma in [18] for uniqueness of the trivial S2-link L0

constructed from the based loop system o and an argument in [6] for uniqueness of
the embedded 1-handle system h(α) constructed from the chord system α.

Lemma 4.3. Let a∗ be a proper oriented arc system in a compact once-punctured
manifold M (o) = cl(M \ B) of a homotopy 3-sphere M which is obtained from an
oriented proper arc diagram D in a disk δ contained in the boundary 2-sphere S of
M (o) by pushing the interior of an upper-arc around every crossing point of D into
the interior of M (o). Then the S2-link S(a∗) in X(M) is a ribbon S2-link in X(M)
with a chord diagram C in δ obtained from the arc diagram D by changing every

13



crossing point as in Fig. 2.

Figure 2: Changing a crossing point into a based loop with chords

Proof of Lemma 4.3. This fact is observed in [12, Theorem 2.3 (3)] for an inbound
arc diagram whose closure is a knot chord diagram. The present claim is similarly
shown for any oriented arc diagram. □

In Lemma 4.3, note that the arc diagram D is recovered from the chord diagram
C by taking the upper-arc of every based loop. The proof of Lemma 1.2 is given as
follows.

4.4: Proof of Lemma 1.2. Let k be a non-trivial knot in a homotopy 3-sphere
M . By Corollary 4.2, the spun S2-knot S(k) in the 4-sphere X(M) = S4 is a ribbon
S2-knot. The spun torus-knot of k in the 4-sphere X(M) is given by the inclusion

T (k) = k × S1 ⊂ M (o) × S1 ⊂ M (o) × S1 ∪ S ×D2 = X(M).

The spun S2-knot S(k) in X(M) is obtained from T (k) by a 2-handle surgery and
conversely the spun torus-knot T (k) is obtained from the spun S2-knot S(k) by 1-
handle surgery. By definition, the spun torus-knot T (k) is a ribbon torus-knot and
hence bounds a ribbon solid torus VR in X(M). Let

VR = ∪n
i=1Bi ∪ hi

for a disjoint 3-ball system Bi (i = 1, 2, . . . , n) in X(M) and an embedded disjoint
1-handle system hi (i = 1, 2, . . . , n) on the 2-sphere system ∂Bi (i = 1, 2, . . . , n) in
X(M) so that the 1-handle hi spans ∂Bi and ∂Bi+1 for every i with Bn+1 = B1 and
every 3-ball Bi meets just one 1-handle hji for some ji (1 ≤ ji ≤ n) with a transverse
disk dji in the interior of Bi. Since the knot k is non-trivial in M (o) and there is a
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canonical isomorphism

π1(M
(o) \ k, v) → π1(X(M) \ T (k), v)

by the van Kampen theorem, the longitude of k in M (o) represents an infinite order
element in the fundamental group π1(X(M)\T (k), v), which implies that the meridian
loop of VR (i.e., the simple loop of T (k) bounding a meridian disk of VR) is a uniquely
specified loop in T (k) up to isotopies of T (k). Fix an orientation of knot k. Then by
the construction of T (k), the meridian disk orientation of the ribbon solid torus VR is
uniquely specified and the ribbon solid torus VR specifies uniquely a disjoint oriented
deformed meridian disk system di (i = 1, 2, . . . , n) in VR so that the knot k meets the
disk di with just one boundary arc orientation-coherently and just one interior point
transversely and the union k∪n

i=1 di (called a chord-disk system) recovers VR uniquely
by thickening k and di (i = 1, 2, . . . , n) (see the left figure of Fig. 3). The disk system
di (i = 1, 2, . . . , n) is isotopically deformed into M (o) by an isotopy of X(M) keeping
k fixed, so that the chord-disk system k ∪n

i=1 di is in M (o). To show this claim, let αi

be a simple arc in di joining the point k ∩ Intdi with a point in the arc k ∩ ∂di for
all i. The arc system αi (i = 1, 2, . . . , n) is deformed into a bi-collar neighborhood
M o)× [−1, 1] of M (o) with M (o)×0 = M (o) in X(M) by an isotopy keeping M (o) fixed.
Then the arc system αi (i = 1, 2, . . . , n) is projected into M (o) by a general position
argument. A deformed disk system di (i = 1, 2, . . . , n) in M (o) is obtained from the
arc system αi (i = 1, 2, . . . , n) in M (o) by extending them as a small disk system,
completing the proof of the claim. Let k× be the graph in M (o) obtained from the
chord-disk system k∪n

i=1 di by shrinking every disk di into a 4-degree vertex for every
i. By taking a maximal tree τ(k×) of k×, one finds a disk δ in M (o) containing the
maximal tree τ(k×). Let ei (i = 1, 2, . . . , n+1) be the arc system cl(k× \τ(k×)) where
the number n + 1 is uniquely determined by the Euler characteristic χ(K×) = −n.
Then the chord-disk system

k×× = cl((k ∪n
i=1 di) \ (∪n+1

i=1 ei))

can be drawn as a chord diagram C in the disk δ with the based loop system oi =
∂di (i = 1, 2, . . . , n) so that the chord diagram of the two arcs of k on the disk di for
every i are drawn with the two arcs as bold lines transversely meeting as in the right
figure of Fig. 3. Let ai (i = 1, 2, . . . , n+1) be the arc system cl(k\∪n+1

i=1 ei). By replacing
the chord diagram of the two arcs of k on the disk di for every i with an arc diagram,
that is, by replacing the right diagram of Fig. 2 with the left diagram of Fig. 2, the
diagram C changes into an arc diagram D of the arc system ai (i = 1, 2, . . . , n) in
the disk δ. Deform the disk δ into the 2-sphere S = ∂M (o) so that a collar δ × [0, 1]
of δ in M (o) with δ × 0 = δ belongs to a boundary collar S × [0, 1] of S in M (o)

with S × 0 = S. The arc system ai (i = 1, 2, . . . , n) is realized in the collar δ × [0, 1]
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from the arc diagram D by pushing the interiors of the upper-arcs of D into the
interior of δ × [0, 1]. By Lemma 4.3, the spun S2-link ∪n

i=1S(ai) in X(M) with the
chord system C in δ is obtained as in Fig. 2. This means that the spun S2-link
∪n

i=1S(ai) bounds a part V ′
R of the ribbon solid torus VR belonging to the 4-ball

A = (δ × [0, 1]) × S1 ∪ δ × D2 in X(M). Since the spun torus-knot T (k) is the
union of the spun S2-link ∪n

i=1S(ei) and the spun S2-link ∪n
i=1S(ai) by deleting the

common disk interiors, the spun S2-link ∪n
i=1S(ei) in X(M) bounds disjoint 3-balls

cl(VR \ V ′
R) in the 4-ball A′ = cl(X(M) \ A). Let X ′(M) be the spun 4-sphere of M

on the once-punctured manifold M
(o)
δ = cl(M (o) \ δ × [0, 1]) of M , and S ′ = ∂M

(o)
δ

the boundary 2-sphere. The spun S2-link ∪n
i=1S(ei) is a trivial S2-link in the 4-sphere

X ′(M). By Lemma 2.5, the proper arc system ei (i = 1, 2, . . . , n) is in a boundary-

collar S ′ × [0, 1] of the once-punctured manifold M
(o)
δ . This means that there is a

3-ball in M (o) containing the knot k. This completes the proof of Lemma 1.2. □

Figure 3: A diagram of the two arcs of k on the disk di

This completes the proof of Theorem 1.1.
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