Classical Poincar'e conjecture via 4D topology

Akio Kawauchi

Citation	OCAMI Preprint Series. 2022.22-2.
Issue date	$2022-05-02$
Type	Preprint
Textversion	Author

From: OCAMI
http://www.sci.osaka-cu.ac.jp/OCAMI/publication/preprint/preprint.html

Classical Poincaré conjecture via 4D topology

Akio KAWAUCHI
Osaka Central Advanced Mathematical Institute, Osaka Metropolitan University
Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
kawauchi@omu.ac.jp

Abstract

The classical Poincaré conjecture that every homotopy 3 -sphere is diffeomorphic to the 3 -sphere is proved by G. Perelman by solving Thurston's program on geometrizations of 3 -manifolds. A new confirmation of this conjecture is given by combining R. H. Bing's result on this conjecture with Smooth Unknotting Conjecture for an S^{2}-link and Smooth 4D Poincaré Conjecture.

Keywords: Homotopy 3-sphere, Smooth unknotting, Smooth homotopy 4-sphere. Mathematics Subject Classification 2010: Primary 57M40; Secondary 57N13, 57Q45

1. Introduction

A homotopy 3-sphere is a smooth 3-manifold M homotopy equivalent to the 3sphere S^{3}. It is well-known that a simply connected closed connected 3 -manifold is a smooth homotopy 3 -sphere. The following theorem, called the classical Poincaré Conjecture coming from [22, 23] is positively shown by Perelman [20, 21] solving positively Thurston's program [24] on geometrizations of 3-manifolds (see [19] for detailed historical notes).

Theorem 1.1. Every homotopy 3 -sphere M is diffeomorphic to the 3 -sphere S^{3}.

The purpose of this paper is to give an alternative proof to Theorem 1.1 by combining R. H. Bing's result in [2, 3] on the classical Poincaré conjecture with Smooth Unknotting Conjecture and Smooth 4D Poincaré Conjecture to be explained from now on. Let F be a smooth surface-link with a component system $F_{i},(i=$
$1,2, \ldots, n$) in the 4 -sphere S^{4}. The fundamental group $\pi_{1}\left(S^{4} \backslash F, v\right.$) (with v a base point) is a meridian-based free group if the group $\pi_{1}\left(S^{4} \backslash F, v\right)$ is a free group with a basis represented by a meridian system $m_{i}(i=1,2, \ldots, n)$ of $F_{i},(i=1,2, \ldots, n)$ with a base point v. The smooth surface-link F is a trivial surface-link if the components $F_{i},(i=1,2, \ldots, n)$ bound a disjoint handlebody system smoothly embedded in S^{4}. Smooth Unknotting Conjecture for a surface-link is the following conjecture.

Smooth Unknotting Conjecture. Every smooth surface-link F in S^{4} with a meridian-based free fundamental group $\pi_{1}\left(S^{4} \backslash F, v\right)$ is a trivial surface-link.

The positive proof of this conjecture is claimed by [13, 15] with supplement [14]. The result when F is an S^{2}-link (i.e., a surface-link with only S^{2}-components) is applied in this paper. A homotopy 4 -sphere is a smooth 4 -manifold X homotopy equivalent to the 4 -sphere S^{4}. Smooth 4D Poincaré Conjecture is the following conjecture.

Smooth 4D Poincaré Conjecture. Every 4D smooth homotopy 4-sphere X is diffeomorphic to the 4 -sphere S^{4}.

The positive proof of this conjecture is claimed by [16, 17]. For the proof of Theorem 1.1, the following result of R. H. Bing in $[2,3]$ is used:

Bing's Theorem. A homotopy 3 -sphere M is diffeomorphic to S^{3} if, for every knot k in M, there is a 3-ball in M containing the knot k.

Thus, the main result of this paper is to prove the following lemma.
Lemma 1.2. For every knot k in M, there is a 3-ball in M containing the knot k.
For the proof of Lemma 1.2, Artin's spinning construction of a knot in S^{3} in [1] is generalized into a connected graph in a homotopy 3 -sphere M to produce a spun S^{2}-link in S^{4} with free fundamental group (not always meridian-based free group). This explanation is done in Section 2. In Section 3, it is shown that every S^{2}-link in S^{4} with free fundamental group is a ribbon S^{2}-link by using Smooth Unknotting Conjecture for an S^{2}-link and Smooth 4D Poincaré Conjecture. In Section 4, the proof of Lemma 1.2 is done. To do this, it is shown that the spun torus-knot of a knot in M is a ribbon-torus knot in S^{4} which is a sum of the spun S^{2}-link of a proper arc system a_{*} in a boundary collar of a compact once-punctured manifold $M^{(o)}$ of M and the spun S^{2}-link of a proper arc system e_{*} in $M^{(o)}$ with meridian-based free
fundamental group $\pi_{1}\left(M^{(o)} \backslash e_{*}, v\right)$. To see this, an argument of a chord diagram of the spun S^{2}-link of a proper arc system a_{*} in a boundary collar of $M^{(o)}$ in [12] is used. In this way, it is shown that the knot k is in a 3 -ball of M completing the proof of Lemma 1.2 and the proof of Theorem 1.1 is completed.

Conventions. The unit n-disk is denoted by D^{n} with the origin $\mathbf{0}$ as a standard notation, but the unit 2-disk D^{2} is fixed in the complex plane \mathbb{C}. A smooth n manifold diffeomorphic to the unit n-disk D^{n} is called an n-ball for $n \geq 3$ or n-disk for $n=2$. A point $\mathbf{1}$ is fixed in the n-sphere $S^{n}=\partial D^{n+1}$.

2. Artin's spinning construction of a connected graph in a homotopy 3sphere

For a homotopy 3 -sphere M, let $M^{(o)}$ be the compact once-punctured manifold $\operatorname{cl}(M \backslash B)$ of M for a 3-ball B in M. Let

$$
S=\partial B=\partial M^{(o)}
$$

be the boundary 2-sphere of $M^{(o)}$. The closed smooth 4-manifold $X(M)$ defined by

$$
X(M)=M^{(o)} \times S^{1} \cup S \times D^{2}
$$

is called the spun manifold of M with axis 4 -submanifold $S \times D^{2}$. As a convention, the 3 -submanifold $M^{(o)} \times 1$ of the product $M^{(o)} \times S^{1}$ is identified with $M^{(o)}$. In particular, a point $(q, 1) \in M^{(o)} \times 1$ is identified with the point $q \in M^{(o)}$. This 4-manifold $X(M)$ is a smooth homotopy 4 -sphere by the van Kampen theorem and a homological argument and hence $X(M)$ is diffeomorphic to the 4 -sphere S^{4} by Smooth 4D Poincaré Conjecture. A legged loop with base point v is the union $k \cup \omega$ of a loop k and an arc ω joining the base point v with a point of k. The arc ω is called the leg. A legged loop system with base point v is the union

$$
\gamma=\cup_{i=1}^{n} k_{i} \cup \omega_{i}
$$

of n legged loops $k_{i} \cup \omega_{i}(i=1,2, \ldots, n)$ meeting only at the same base point v. Let $k(\gamma)=\cup_{i=1}^{n} k_{i}=k_{*}$ denote the loop system of the legged loop system of γ. Let $\omega_{*}=\cup_{i=1}^{n} \omega_{i}$ and $v_{*}=k_{*} \cap \omega_{*}$. For a maximal tree τ of γ containing the base point v, a regular neighborhood B of τ in M with $\gamma \cap B$ a regular neighborhood of τ in γ is taken as 3-ball B used for the compact once-punctured manifold $M^{(o)}=\operatorname{cl}(M \backslash B)$ of M. Deform the subgraph $\gamma \cap B$ of γ so that

$$
\omega_{*} \subset B, \quad \omega_{*} \cap S=\partial \omega_{*} \quad \text { and } \quad k_{*} \cap B=k_{*} \cap S=a_{*}^{\prime}
$$

for an arc system a_{*}^{\prime} in k_{*}, where note that the base point v is moved into S. Let

$$
a(\gamma)=\cup_{i=1}^{n} a_{i}=a_{*}
$$

for a proper arc $a_{i}=\operatorname{cl}\left(k_{i} \backslash a_{i}^{\prime}\right)(i=1,2, \ldots, n)$ in $M^{(o)}$. Let

$$
\dot{a}(\gamma)=\partial a_{*}=\partial a_{*}^{\prime}
$$

be the set of $2 n$ points in the boundary 2-sphere S of $M^{(o)}$. The spun S^{2}-link of the graph γ is the S^{2}-link $S(\gamma)$ in the 4 -sphere $X(M)$ defined by

$$
S(\gamma)=a(\gamma) \times S^{1} \cup \dot{a}(\gamma) \times D^{2}
$$

Lemma 2.1. The inclusion $M^{(o)} \backslash a(\gamma) \subset X(M) \backslash S(\gamma)$ induces an isomorphism

$$
\sigma: \pi_{1}(M \backslash \gamma, v) \rightarrow \pi_{1}(X(M) \backslash S(\gamma), v)
$$

sending a meridian system of the proper arc system $a(\gamma)$ in $M^{(o)}$ to a meridian system of $S(\gamma)$.

Proof of Lemma 2.1. Note that there is a canonical isomorphism

$$
\pi_{1}\left(M^{(o)} \backslash a(\gamma), v\right) \cong \pi_{1}(M \backslash \gamma, v)
$$

Then the desired isomorphism σ is obtained by applying the van Kampen theorem between $\left(M^{(o)} \backslash a(\gamma)\right) \times S^{1}$ and $(S \backslash \dot{a}(\gamma)) \times D^{2}$. This completes the proof of Lemma 2.1.

Here is a note on Lemma 2.1.

Note 2.2. A general connected graph γ with Euler characteristic $\chi(\gamma)=1-n$ in M is deformed into a legged loop system γ in M by choosing a maximal tree to shrink to a base point v. Note that there are only finitely many maximal trees of γ such that the loop systems $k(\gamma)$ of the resulting legged loop systems γ are distinct as links. By Lemma 2.1, we can obtain finitely many distinct spun S^{2}-links in S^{4} with isomorphic fundamental groups obtained by taking different maximal trees of the connected graph γ. This is a detailed explanation on the spun S^{2}-link of a connected graph associated with a maximal tree in [7, p.204] when $M=S^{3}$.

An argument on Lemma 2.1 is further developed when the homotopy 3 -sphere M is given by a Heegaard spitting $V \cup V^{\prime}$ pasting along a Heegaard surface $F=\partial V=\partial V^{\prime}$ of genus n. A spine of a handlebody V of genus n is a legged loop system γ with base point v in $F=\partial V$ such that the inclusion map $\gamma \rightarrow V$ induces an isomorphism $\pi_{1}(\gamma, v) \rightarrow \pi_{1}(V, v)$. A regular neighborhood \dot{V} of γ in F is a planar surface in F.

By [5, Theorem 10.2], there is a diffeomorphism $(\dot{V} \times[0,1], \dot{V} \times 0) \rightarrow(V, \dot{V})$ sending every point $(x, 0) \in \dot{V} \times 0$ to $x \in \dot{V}$. The surface \dot{V} is called a spine surface of V. Let γ and γ^{\prime} be spines of the handlebodies V and V^{\prime} with the same base point $v \in F$, respectively. A legged Heegaard loop system in M is the legged loop system $\gamma \gamma^{\prime}$ in M with base point v obtained by pushing $\gamma \backslash v$ and $\gamma^{\prime} \backslash v$ into the interiors $\operatorname{Int} V$ and $\operatorname{Int} V^{\prime}$, respectively. The fundamental groups of the spun S^{2}-links $S\left(\gamma \gamma^{\prime}\right)=S(\gamma) \cup S(\gamma), S(\gamma)$ and $S(\gamma)$ in the 4 -sphere $X(M)$ given by Lemma 2.1 are free groups, as shown in the following lemma:

Lemma 2.3. The fundamental groups $\pi_{1}(X(M) \backslash S(\gamma), v)$ and $\pi_{1}\left(X(M) \backslash S\left(\gamma^{\prime}\right), v\right)$ are free groups of rank n and the fundamental group $\pi_{1}\left(X(M) \backslash S\left(\gamma \gamma^{\prime}\right), v\right)$ is a free group of rank $2 n$.

Proof of Lemma 2.3. The closed complements $\operatorname{cl}(M \backslash N(\gamma)), \operatorname{cl}\left(M \backslash N\left(\gamma^{\prime}\right)\right)$ and $\operatorname{cl}(M \backslash N(\gamma))$ are diffeomorphic to the handlebodies V^{\prime}, V and $F^{(o)} \times[0,1]$ for the oncepunctured surface $F^{(o)}$ of F, respectively. Since the fundamental groups $\pi_{1}\left(V^{\prime}, v\right)$, $\pi_{1}(V, v)$ and $\pi_{1}\left(F^{(o)} \times[0,1], v\right)$ are free groups of ranks n, n and $2 n$, respectively, the desired result is obtained from Lemma 2.1.

It should be noted that these free groups in Lemma 2.3 are not necessarily meridian-based free groups. Here is an example.

Figure 1: A legged loop system γ in S^{3} with free fundamental group of rank 2

Example 2.4. Let γ be a legged loop system with base point v in S^{3} illustrated in Fig. 1 with free fundamental group $\pi_{1}\left(S^{3} \backslash \gamma, v\right)$ of rank 2. In fact, a trivial legged loop system is obtained by sliding an edge along another edge, so that the fundamental group $\pi_{1}\left(S^{3} \backslash k(\gamma), v\right)$ is a free group of rank 2. A regular neighborhood V of γ in S^{3} and the closed complement $V^{\prime}=\operatorname{cl}\left(S^{3} \backslash V\right)$ constitute a genus 2 Heegaard splitting
$V \cup V^{\prime}$ of S^{3} by noting that the 3 -manifold V^{\prime} is a handlebody of genus 2 by the loop system theorem and the Alexander theorem (cf. e.g., [7]). Thus, the union $V \cup V^{\prime}$ is a genus 2 Heegaard splitting of S^{3}. The legged loop system γ with vertex v is a spine of V by sliding the base point v into ∂V. By Lemma 2.3, the spun $S^{2}-\operatorname{link} S(\gamma)$ in the 4 -sphere $X\left(S^{3}\right)=S^{4}$ has the free fundamental group $\pi_{1}\left(X\left(S^{3}\right) \backslash S(\gamma), v\right)$ of rank 2 , which does not admit any meridian basis because the S^{2}-link $S(\gamma)$ contains a component of the spun trefoil S^{2}-knot in S^{4} whose fundamental group is known to be not infinite cyclic.

Given a proper arc system a_{*} in $M^{(o)}$, there is a legged loop system γ in M with the proper arc system $a(\gamma)=a_{*}$ in $M^{(o)}$. The $S^{2}-\operatorname{link} S(\gamma)$ in $X(M)$ is uniquely determined by the arc system a_{*} and thus denoted by $S\left(a_{*}\right)$. The following lemma is directly used for the proof of Lemma 1.2.

Lemma 2.5. Let a_{*} be a proper arc system in a compact once-punctured manifold $M^{(o)}=\operatorname{cl}(M \backslash B)$ of a homotopy 3 -sphere M. If the S^{2}-link $S\left(a_{*}\right)$ in the 4 -sphere $X(M)$ is a trivial S^{2}-link, then the proper arc system a_{*} is in a boundary-collar $S \times[0,1]$ of $M^{(o)}$.

Proof of Lemma 2.5. By Lemma 2.1, the fundamental group $\pi_{1}\left(M^{(o)} \backslash a(\gamma), v\right)$ is a meridian-based free group. Consider the 2 -sphere S is the boundary of the product $d \times[0,1]$ for a disk d so that $d \times 0$ contains one end of the proper arc system a_{*} and $d \times 1$ contains the other end of the proper arc system a_{*}. Let $\left(E ; E_{0}, E_{1}\right)$ be the triplet obtained from $\left(M^{(o)}, d \times 0, d \times 1\right)$ by removing a tubular neighborhood of a_{*} in $M^{(o)}$. Then the inclusion $E_{0} \subset E$ induces an isomorphism

$$
\pi_{1}\left(E_{0}, v\right) \rightarrow \pi_{1}(E, v)
$$

By [5, Theorem 10.2], E is diffeomorphic to the connected sum of the product $E_{0} \times$ $[0,1]$ and a homotopy 3 -sphere. This means that the proper arc system a_{*} is in a boundary-collar $S \times[0,1]$. This completes the proof of Lemma 2.5.
3. Ribbonness of an S^{2}-link with free fundamental group The $4 D$ handlebody of genus n is the boundary 3 -disk sum

$$
Y^{D}=D^{4} \mathfrak{n}_{1=1}^{n} S^{1} \times D_{i}^{3}
$$

obtained from n copies $S^{1} \times D_{i}^{3}(i=1,2, \ldots, n)$ of the 4 D solid torus $S^{1} \times D^{3}$ and the 4 -disk D^{4} by pasting a 3 -disk system consisting of a boundary 3 -disk in $\left(S^{1} \backslash\{1\}\right) \times D_{i}^{3}$ for every i to a system of disjoint n boundary 3 -disks of D^{4}. A legged loop system
γ^{D} in the 4D handlebody Y^{D} of genus n is standard if the legged loop system γ^{D} has the following two conditions:

- The loop system $k\left(\gamma^{D}\right)$ is consistent with the system $S^{1} \times \mathbf{1}_{i}(i=1,2, \ldots, n)$, and
- The base point v is in the 4 -disk D^{4} and the legs $\omega_{i}(i=1,2, \ldots, n)$ of γ^{D} do not meet the 3 -disks $1 \times D_{i}^{3}(i=1,2, \ldots, n)$.

Note that the legs $(i=1,2, \ldots, n)$ of γ^{D} are ∂-relatively unique up to isotopies in Y^{D}. The $4 D$ closed handlebody of genus n is the double of the 4 D handlebody Y^{D} of genus n, that is the 4-manifold

$$
\partial\left(Y^{D} \times[0,1]\right)=Y^{D} \times 0 \cup\left(\partial Y^{D}\right) \times[0,1] \cup Y^{D} \times 1
$$

which is canonically identified with the following 4-manifold

$$
Y^{S}=S^{4} \#_{i=1}^{n} S^{1} \times S_{i}^{3}
$$

where the connected summands S^{3} and $S^{1} \times S_{i}^{3}$ correspond to the doubles of the 3 -disk summands D^{4} and $S^{1} \times D_{i}^{3}$, respectively. The 4D handlebody $Y^{D} \times 0$ in Y^{S} is identified with Y^{D}. A legged loop system γ with vertex v of the 4D closed handlebody Y^{S} of genus n is standard if it is v-relatively isotopic to a standard legged loop system γ^{D} of $Y^{D} \subset Y^{S}$. A standard legged loop system of Y^{S} is denoted by γ^{S}. A homology 4 -sphere is a smooth 4-manifold X with an isomorphism $H_{*}(X ; \mathbf{Z}) \cong H_{*}\left(S^{4} ; \mathbf{Z}\right)$. A $4 D$ closed homology handlebody of genus n is a smooth 4-manifold Y with an isomorphism $H_{*}(Y ; \mathbf{Z}) \cong H_{*}\left(Y^{S} ; \mathbf{Z}\right)$ for the 4D closed handlebody Y^{S} of genus n. For an S^{2}-link L in X, take a normal disk bundle $L \times D^{2}$ in X and a 3-disk system D_{L}^{3} with $\partial D_{L}^{3}=L$. This transformation from X into the 4-manifold

$$
Y=\operatorname{cl}\left(X \backslash L \times D^{2}\right) \cup D_{L}^{3} \times S^{1}
$$

is called the surgery of X along the S^{2}-link L. Conversely, the transformation from Y into X is called the surgery of Y along the loop system $\mathbf{0}_{*} \times S^{1}$ by observing that $D_{L}^{3} \times S^{1}$ is a regular neighborhood of $\mathbf{0}_{*} \times S^{1}$ in Y. The following lemma is a more or less known fact.

Lemma 3.1. Let Y be the 4 -manifold obtained from a homology 4 -sphere X by surgery along any n-component S^{2}-link L. Then the 4 -manifold Y is a 4 D closed homology handlebody of genus n such that the inclusion $X \backslash L \times D^{2} \subset Y$ induces an isomorphism

$$
\pi_{1}\left(X \backslash L \times D^{2}, v\right) \rightarrow \pi_{1}(Y, v)
$$

Proof of Lemma 3.1. To see that $H_{2}(Y ; \mathbf{Z})=0$, use the Euler characteristic $\chi(Y)=2 n$. Since $H_{1}(Y ; \mathbf{Z}) \cong \mathbf{Z}^{n}$, we have $H_{2}(Y ; \mathbf{Z})=0$ by Poincaé duality, which shows that Y is a 4 D closed homology handlebody of genus n. The isomorphism $i_{*}: \pi_{1}\left(X \backslash L \times D^{2}, v\right) \rightarrow \pi_{1}(Y, v)$ is obtained by a general position argument.

A meridian system of an S^{2}-link L in X is a legged loop system γ_{L} in the closed complement $\operatorname{cl}\left(X \backslash L \times D^{2}\right)$ for a normal disk bundle $L \times D^{2}$ in X such that the loop system $k\left(\gamma_{L}\right)$ is the loop system $p_{*} \times S^{1}$ for a point system p_{*} in L with one point for every component of L. By Lemma 3.1, note that the meridian system γ_{L} induces a legged loop system γ in Y such that the loop system $k(\gamma)$ represents a homological basis of the homology group $H_{1}(Y ; \mathbf{Z})$. Conversely, given any legged loop system γ in Y such that the loop system $k(\gamma)$ represents a homological basis of $H_{1}(Y ; \mathbf{Z})$, then the 4-manifold X obtained from Y along the loop system $k(\gamma)$ is a homology 4-sphere and the legged loop system γ induces a meridian system γ_{L} of an S^{2}-link L in X. A $4 D$ closed homotopy handlebody of genus n is a 4D closed homology handlebody Y of genus n such that the fundamental group $\pi_{1}(Y, p)$ is a free group of rank n. A legged loop system γ with base point v in a 4D closed homotopy handlebody Y of genus n is a basis system if the inclusion $\gamma \subset Y$ induces an isomorphism

$$
\pi_{1}(\gamma, v) \rightarrow \pi_{1}(Y, v)
$$

For example, a standard legged loop system γ^{S} of the 4 D closed handlebody Y^{S} is a basis system. The following classification lemma is a result of Smooth Unknotting Conjecture for an S^{2}-link and Smooth 4D Poincaré Conjecture.

Lemma 3.2. Let Y^{S} be the 4D closed handlebody of genus n, and γ^{S} a standard legged loop system with base point v^{S} of Y^{S}. For every 4D closed homotopy handlebody Y of genus n and every basis system γ in Y, there is an orientation-preserving diffeomorphism

$$
f: Y \rightarrow Y^{S}
$$

such that $f(\gamma)=\gamma^{S}$. Given any spin structures on Y and Y^{S}, the diffeomorphism f can be taken spin-structure-preserving.

Proof of Lemma 3.2. Let X be the 4 -manifold obtained from Y by surgery along the loop system $k_{*}=k(\gamma)$. This 4 -manifold X is diffeomorphic to the 4 -sphere S^{4} by Smooth 4D Poincaré Conjecture since it is a smooth homotopy 4 -sphere by the van Kampen theorem and a homological argument. Since X is obtained from Y by replacing a normal disk bundle $k_{*} \times D^{3}$ of k_{*} in Y with $D_{*}^{2} \times S^{2}$ for the disk system D_{*}^{2} bounded by k_{*}. Then there is an $S^{2}-\operatorname{link} L=0_{*} \times S^{2}$ in X. Since the basis system γ
of Y induces a meridian system of L in X, Lemma 3.1 implies that the fundamental group $\pi_{1}(X \backslash L, v)$ is a meridian based free group. By Smooth Unknotting Conjecture for an S^{2}-link, the S^{2}-link L is a trivial S^{2}-link in the 4 -sphere X. By the back surgery replacing $D_{*}^{2} \times S^{2}$ in X with $k(\gamma) \times D^{3}$ in Y, there is an orientation-preserving diffeomorphism $f: Y \rightarrow Y^{S}$ with $f\left(k_{*}\right)=k\left(\gamma_{*}^{S}\right)$. Since a regular neighborhood $N(f(\gamma))$ of $f(\gamma)$ in Y^{S} is isotopic to Y^{D} in Y^{S}, the diffeomorphism $f: Y \rightarrow Y^{S}$ is modified to have $f(\gamma)=\gamma^{S}$. Given any spin structures on Y and Y^{S}, note that there is an orientation-preserving spin-structure-changing diffeomorphism : $S^{1} \times S^{3} \rightarrow S^{1} \times S^{3}$ (see [4] for a similar diffeomorphism on $S^{1} \times S^{2}$). Thus, by composing f with the orientation-preserving spin-structure-changing diffeomorphisms on some connected summands of Y^{S} which are copies of $S^{1} \times S^{3}$, the diffeomorphism $f: Y \rightarrow Y^{\prime}$ is modified into an orientation-preserving spin-structure-preserving diffeomorphism. This completes the proof of Lemma 3.2.

The following corollary is directly obtained from Lemmas 2.3, 3.1 and 3.2.

Corollary 3.3. Let $\gamma \gamma^{\prime}$ be a legged Heegaard loop system of a homotopy 3-sphere M associated with a Heegaard.splitting $V \cup V^{\prime}$ of genus n, and $Y\left(M ; \gamma \gamma^{\prime}\right)$ the 4D closed homology handlebody obtained from the 4 -sphere $X(M)$ by surgery along the spun S^{2}-link $L\left(\gamma \gamma^{\prime}\right)$ of $\gamma \gamma^{\prime}$. Then the 4D closed homology handlebody $Y\left(M ; \gamma \gamma^{\prime}\right)$ is diffeomorphic to the 4D closed handlebody Y^{S} of genus $2 n$.

A surface-link L in S^{4} is a ribbon surface-link if L is equivalent to a surface-link obtained from a trivial S^{2}-link L^{S} in S^{4} by surgery along embedded 1-handles on L^{S} (see [18]). The following lemma is obtained.

Lemma 3.4. Any S^{2}-link L in S^{4} with free fundamental group $\pi_{1}\left(S^{4} \backslash L, v\right)$ is a ribbon S^{2}-link.

Proof of Lemma 3.4. Let $K_{i}(i=1,2, \ldots, n)$ be the components of L. Let Y be the 4-manifold obtained from S^{4} by surgery along L. Let γ be a legged loop system in Y induced from a meridian system γ_{L} of L in S^{4}. Let $k(\gamma)=k_{*}$ be the loop system of γ in Y. The surgery manifold X of Y along k_{*} is identified with the 4 -sphere S^{4}. In precise, let $X=\operatorname{cl}\left(Y \backslash N\left(k_{*}\right)\right) \cup D_{*} \times S^{2}$ for a regular neighborhood $N\left(k_{*}\right)=k_{*} \times D^{3}$ of k_{*} in Y and the disk system D_{*} with $\partial D_{*}=k_{*}$, where the 2 -sphere system $0_{*} \times S^{2}$ is identified with L. By Lemma 3.2, Y is identified with the closed 4D handlebody Y^{S} of genus n. Let γ^{S} be a standard legged loop system of $Y=Y^{S}$ with the same vertex v as γ. Let $k\left(\gamma^{S}\right)=k_{*}^{S}$ be the loop system of γ^{S} in Y, which is disjoint from k_{*}. Let $x_{i}(i=1,2, \ldots, n)$ be a basis of the free group $\pi_{1}(Y, v)$ of rank n represented
by γ^{S}. Let $y_{i}(i=1,2, \ldots, n)$ be an element system in $\pi_{1}(Y, v)$ represented by γ. By a basis change of the basis $x_{i}(i=1,2, \ldots, n)$, assume that the product $x_{i}^{-1} y_{i}$ is in the commutator subgroup $\left[\pi_{1}(Y, v), \pi_{1}(Y, v)\right]$ of $\pi_{1}(Y, v)$ for every i. Let

$$
Y^{0}=\operatorname{cl}\left(Y \backslash N\left(k_{*}^{S}\right)\right)
$$

for a regular neighborhood $N\left(k_{*}^{S}\right)=k_{*}^{S} \times D^{3}$ of k_{*}^{S} in Y. Also, let

$$
X^{0}=\operatorname{cl}\left(X \backslash N\left(k_{*}^{S}\right)\right)
$$

by considering $N\left(k_{*}^{S}\right)$ in X. Since the loop system k_{*}^{S} is a trivial loop system in the 4-sphere X, there is a disjoint disk system Ω_{*} with $\partial \Omega_{*}=k_{*}^{S}$ smoothly embedded in X. Note that the intersection $N\left(k_{*}^{S}\right) \cap \Omega_{*}$ is a boundary collar of Ω_{*}. Let

$$
\Omega_{*}^{\prime}=\operatorname{cl}\left(\Omega_{*} \backslash\left(N\left(k_{*}^{S}\right) \cap \Omega_{*}\right)\right.
$$

which is a proper disk system in X^{0}. Let $S^{1} \times S_{i}^{3}=k_{i}^{S} \times S^{3}(i=1,2, \ldots, n)$ be the connected summands of the closed 4D handlebody $Y=Y^{S}$. For every i, let $S_{i}^{3}=p_{i} \times S_{i}^{3}$ for a point $p_{i} \in k_{i}^{S}$. Let $V_{i}=S_{i}^{3} \cap Y^{0}$ be a 3 -ball obtained from S_{i}^{3} by removing the interior of a 3 -ball neighborhood of the point $p_{i}=p_{i} \times \mathbf{1}$ with $\partial V_{i} \subset \partial Y^{0}$. Let

$$
Y^{+}=Y^{0} \cup_{i=1}^{n} \widetilde{\Omega}_{i} \times d
$$

be the 4-manifold obtained from Y^{0} by attaching 2 -handles $\widetilde{\Omega}_{i} \times d(i=1,2, \ldots, n)$ to the boundary $\partial Y^{0}=\cup_{i=1}^{n} k_{i}^{S} \times S^{2}$ of Y^{0} where $\widetilde{\Omega}_{i}$ is a disk with $\partial \widetilde{\Omega}_{i}=\partial \Omega_{i}^{\prime}$ and a disk d in the 2 -sphere S^{2}. Similarly, let

$$
X^{+}=X^{0} \cup_{i=1}^{n} \widetilde{\Omega}_{i} \times d
$$

be the 4-manifold obtained from X^{0} by attaching 2-handles $\widetilde{\Omega}_{i} \times d(i=1,2, \ldots, n)$ to the boundary ∂X^{0} identical to ∂Y^{0}. Let $\left(k_{*}^{S+}, p_{*}^{+}\right)$be a moving of the pair $\left(k_{*}^{S}, p_{*}\right)$ into the boundary pair $\left(\partial Y^{0}, \partial V_{*}\right)$. Let $k_{i}^{S+} \times[0,1]$ be an annulus in $k_{i}^{S+} \times S^{2} \subset \partial Y^{0}$ for an arc $[0,1]$ in S^{2}. Consider that the element x_{i}^{-1} is represented by the loop $k_{i}^{S+} \times 0$ in Y^{0}. Since y_{i} is a word of the letters $x_{j}(j=1,2, \ldots, n)$ in the fundamental group $\pi_{1}(Y, v)$, the element y_{i} is represented in Y^{0} by a band sum k_{i} of the loop $k_{i}^{S+} \times 1$ and the boundary loop system ∂P_{i} of a disk system P_{i} consisting of suitably oriented parallel disks of $\widetilde{\Omega}_{j}$ in $\widetilde{\Omega}_{j} \times d(j=1,2, \ldots, n)$ along a band system μ_{i}. Let b_{i} be a band in the anulus $k_{i}^{S+} \times[0,1]$ spanning the loop k_{i}^{S+} and the loop k_{i} with the centerline $\dot{b}_{i}=p_{i}^{+} \times[0,1]$. Let k_{i}^{\prime} be the loop in Y^{0} obtained by a band sum of $k_{i}^{S+} \times 0$ and k_{i} along the band b_{i}. The union

$$
\Delta_{i}=\operatorname{cl}\left(k_{i}^{S+} \times[0,1] \backslash b_{i}\right) \cup_{i=1}^{n} P_{i} \cup \mu_{i}
$$

is considered as a disk smoothly embedded in Y^{+}whose boundary loop $\partial \Delta_{i}$ represents the element $x_{i}^{-1} y_{i}$ in Y^{0}. Further, the disk system $\Delta_{i}(i=1,2, \ldots, n)$ is made disjoint. By construction, the disk Δ_{i} meets the 3 -ball system V_{*} only with the isolated finite point set $P_{i} \cap \partial V_{*}$ and with simple proper $\operatorname{arcs} \beta_{i, j}\left(j=1,2, \ldots, n_{i}\right)$ in Δ_{i} coming from the transverse intersection of the band system μ_{i} and the interior $\operatorname{Int} V_{*}$ of the 3-ball system V_{*}. Let $B_{i, j}\left(j=1,2, \ldots, n_{i}\right)$ be disjoint 3-ball neighborhoods of the $\operatorname{arcs} \beta_{i, j}\left(j=1,2, \ldots, n_{i}\right)$ in $\operatorname{Int} V_{i}$, and $S_{i, j}\left(j=1,2, \ldots, n_{i}\right)$ the boundary 2-spheres of $B_{i, j}\left(j=1,2, \ldots, n_{i}\right)$. Then the following claim (\#) is obtained.
(\#) The S^{2}-link $\cup_{i=1}^{n} \cup_{j=1}^{n_{i}} S_{i, j}$ in Y becomes a trivial S^{2}-link in the 4 -sphere X after the surgery of Y along the loop system k_{*}.

By assuming the proof of the claim (\#), the proof of Lemma 3.4 is completed as follows. Let $\left(S^{3}\right)_{i}^{(*)}$ be a multi-punctured 3-ball obtained from S_{i}^{3} by removing the interiors of the 3-balls $B_{i, j}\left(j=1,2, \ldots, n_{i}\right)$ and a 3-ball neighborhood $N\left(q_{i}\right)=q_{i} \times D^{3}$ of the point $q_{i}=p_{i}^{+} \times 1 \in k_{i}$ in V_{i}. Note that the S^{2}-link $\cup_{i=1}^{n} \partial N\left(q_{i}\right)$ in Y changes into the S^{2}-link $L=\cup_{i=1}^{n} K_{i}$ in X after the surgery of Y along k_{*}. Since K_{i} is equivalent to a 2-sphere in $\left(S^{3}\right)_{i}^{(*)}$ obtained from the trivial S^{2}-link $\partial V_{i} \cup_{i=1}^{n} \cup_{j=1}^{n_{i}} S_{i, j}$ in X by surgery along disjoint embedded 1-handles in $\left(S^{3}\right)_{i}^{(*)}$, it is shown that the S^{2}-link L is a ribbon S^{2}-link in the 4 -sphere X. This completes the proof of Lemma 3.4 assuming the claim (\#).

Proof of (\#). Let V_{*}^{\prime} be the 3 -ball system obtained from the 3 -ball system V_{*} by removing an open boundary collar which remains containing all the arcs $\beta_{i, j}$, so that $V_{*}^{\prime} \cap \widetilde{\Omega}_{j}=\emptyset$. Since every arc $\beta_{i, j}$ splits the disk Δ_{h} containing the arc $\beta_{i, j}$ into two regions, there is an arc $\beta_{i^{\prime}, j^{\prime}}$ such that a region Δ_{h}^{\prime} of the disk Δ_{h} splitted by the $\beta_{i^{\prime}, j^{\prime}}$ does not contain any other arc $\beta_{i^{\prime \prime}, j^{\prime \prime}}$ and does not meet the arc system $b_{*} \cap k_{*}$. The boundary of a regular neighborhood relative to V_{*}^{\prime} of the region Δ_{h}^{\prime} in Y^{+}is a 3 -sphere containing the 3 -ball $B_{i^{\prime}, j^{\prime}}$ whose complementary 3 -ball is denoted by $\widetilde{B}_{i^{\prime}, j^{\prime}}$. Let $V_{*}^{\prime \prime}$ be the 3-ball system obtained from V_{*}^{\prime} by replacing the 3 -ball $B_{i^{\prime}, j^{\prime}}$ with the 3-ball $\widetilde{B}_{i^{\prime}, j^{\prime}}$. Then $V_{*}^{\prime \prime} \cap \Delta_{h}^{\prime}=\emptyset$. Continue this process on $V_{*}^{\prime \prime}$ instead of V_{*}^{\prime}. Finally, a system of disjoint 3-balls $\widetilde{B}_{i, j}\left(i=1,2, \ldots, n ; j=1,2, \ldots, n_{i}\right)$ bounded by the 2spheres $S_{i, j}\left(i=1,2, \ldots, n ; j=1,2, \ldots, n_{i}\right)$ and a 3 -ball system $V_{*}^{\prime \prime \prime}$ disjoint from the union $\Delta_{*} \cup b_{*}$ are obtained in Y^{+}. Consider that X^{+}is obtained from Y^{+}by a surgery along a loop system k_{*}^{+}disjointedly parallel to the loop system k_{*} in Y^{+}so that k_{*}^{+}is in the interior $\operatorname{Int}\left(Y^{0}\right)$ of Y^{0} and disjoint from the disk system Δ_{*}. The disk system Δ_{*} is now embedded into X^{+}and the 3 -ball $\widetilde{B}_{i, j}$ for any i, j is embedded into a regular neighborhood of Δ_{*} in the 4-manifold $\operatorname{cl}\left(Y^{+} \backslash N\left(k_{*}^{+}\right)\right)=\operatorname{cl}\left(X^{+} \backslash N(L)\right)$. Since the band system μ_{i} except for the attaching part is made disjoint from the
disk system Ω_{*}^{\prime}, the loop system k_{*}^{+}is made disjoint from the disk system Ω_{*}^{\prime}. For a normal disk bundle $\Omega_{*}^{\prime} \times d$ of Ω_{*}^{\prime} in $\operatorname{cl}\left(Y^{0} \backslash N\left(k_{*}^{+}\right)\right)=\operatorname{cl}\left(X^{0} \backslash N(L)\right)$, the union $U=\Omega_{*}^{\prime} \times d \cup \widetilde{\Omega}_{*} \times d=\left(\Omega_{*}^{\prime} \cup \widetilde{\Omega}_{*}\right) \times d$ in $\operatorname{cl}\left(Y^{+} \backslash N\left(k_{*}^{+}\right)\right)=\operatorname{cl}\left(X^{+} \backslash N(L)\right)$ is diffeomorphic to the product $S^{2} \times d$ and the intersection $U \cap \Delta_{*}$ coincides with the disk system P_{*}. By an isotopy of X^{+}keeping U setwise fixed and keeping the outside of a neighborhood of U in X^{+}fixed, the disk system P_{*} is deformed into a disk system P_{*}^{X} in $\Omega_{*}^{\prime} \times d \subset X^{0}$, so that the disk system Δ_{*} is deformed into a disk system Δ_{*}^{X} in $\Omega_{*}^{\prime} \times d \subset X^{0}$. Since the 3-ball $\widetilde{B}_{i, j}$ for any i, j is embedded in a regular neighborhood of Δ_{*} in the 4 -manifold X^{+}, the 3-ball system $\widetilde{B}_{i, j}$ is isotopically deformed into a 3 -ball system $\widetilde{B}_{i, j}^{X}$ in X^{0} while the 2 -spheres $S_{i, j}\left(i=1,2, \ldots, n ; j=1,2, \ldots, n_{i}\right)$ are fixed. This means that the 2 -spheres $S_{i, j}\left(i=1,2, \ldots, n ; j=1,2, \ldots, n_{i}\right)$ are a trivial S^{2}-link in the surgery manifold X. This completes the proof of (\#).

This completes the proof of Lemma 3.4.

A group presentation $\left(y_{1}, y_{2}, \ldots, y_{n+s} \mid r_{1}, r_{2}, \ldots, r_{s}\right)$ of deficiency n is a Wirtinger presentation if every relator r_{i} is written as a form $y_{j_{i}}^{-1} w_{j} y_{j_{i}^{\prime}} w_{i}^{-1}$ for two generators $y_{j} j_{i}, y_{j_{i}^{\prime}}$ with distinct indexes j_{i}, j_{i}^{\prime} and a word w_{i} in the letters $y_{j}(j=1,2, \ldots, n+s)$. It is known that the fundamental group of an n-component ribbon S^{2}-link has a Wirtinger presentation of deficiency n for some s (cf. [7, p. 193], [18, pp. 56-60]). An algebraic version of Lemma 3.4 means the following result in combinatorial group theory.

Corollary 3.5. Let \mathbf{F}_{n} be the free group of rank n with a basis $x_{i}(i=1,2, \ldots, n)$. Let $x_{i}^{\prime}(i=1,2, \ldots, n)$ be a set of elements normally generating the free group \mathbf{F}_{n} written as words in the letters $x_{i}(i=1,2, \ldots, n)$ such that the products $x_{i}^{\prime} x_{i}^{-1}(i=1,2, \ldots, n)$ belong to the commutator subgroup $\left[\mathbf{F}_{n}, \mathbf{F}_{n}\right]$ of \mathbf{F}_{n}. Then the free group \mathbf{F}_{n} admits a Wirtinger presentation

$$
\left(y_{1}, y_{2}, \ldots, y_{n+s} \mid r_{1}, r_{2}, \ldots, r_{s}\right)
$$

of deficiency n for some s such that the elements $y_{i}(i=1,2, \ldots, n+s)$ are written as words in the letters $x_{i}(i=1,2, \ldots, n)$ containing the elements $x_{i}^{\prime}(i=1,2, \ldots, n)$ as the given words.

4. Main result: Proof of Lemma 1.2

The following observation relates a knot to a Heegaard splitting of a closed connected orientable 3-manifold.

Lemma 4.1. For any knot k in any closed connected orientable 3-manifold M, there is a Heegaard splitting $V \cup V^{\prime}$ of M such that the knot k is equivalent to a component of the loop system $k(\gamma)$ of a spine γ of V in M.

Proof of Lemma 4.1. By considering k as a polygonal loop in M, there is a triangulation \mathcal{T} of M whose 1-skeleton $\mathcal{T}^{(1)}$ contains the knot k. The graph $\mathcal{T}^{(1)}$ is deformed into a legged loop system γ in M so that k is a component of the loop system $k(\gamma)$. Let V be a regular neighborhood of γ in M which is a handlebody. The closed complement $V^{\prime}=\operatorname{cl}(M \backslash V)$ is also a handlebody, so that we have a Heegaard splitting $V \cup V^{\prime}$ of M. The legged loop system γ is deformed into a spine of the handlebody V.

By combining Lemmas 2.3, 3.4 with Lemma 4.1, the following corollary is obtained, because any component of a ribbon S^{2}-link in S^{4} is a ribbon S^{2}-knot in S^{4}.

Corollary 4.2. For any knot k in any homotopy 3 -sphere M, the spun- S^{2}-knot $S(k)$ of k in $X(M)=S^{4}$ is a ribbon S^{2}-knot in S^{4}.

A chord diagram is a diagram C in S^{2} consisting of a based loop system o (i.e., a trivial oriented link diagram) and a chord system α joining the based loops where intersections among the chords are permitted (see $[8,9,10,11,12]$ for the detailed arguments). For a disk δ in S^{2}, a chord diagram in the delta δ is the intersection $C \cap \delta$ for a chord diagram $C=C(o, \alpha)$ in S^{2} such that the circle $\partial \delta$ does not meet the based loop system o and meets the chord system α transversely. From a chord diagram $C=C(o, \alpha)$ in S^{2}, a ribbon surface-link $R(C)$ in the 4 -sphere S^{4} is constructed in a unique way. In fact, the ribbon surface-link $R(C)$ is obtained from a trivial oriented S^{2}-link L^{0} in S^{4} constructed from the based loop system o by surgery along an embedded 1-handle system $h(\alpha)$ on L^{0} thickening the chord system α. The ribbon surface-link $R(C)$ in S^{4} is uniquely constructed from the chord diagram C by using the Horibe-Yanagawa's lemma in [18] for uniqueness of the trivial S^{2}-link L^{0} constructed from the based loop system o and an argument in [6] for uniqueness of the embedded 1-handle system $h(\alpha)$ constructed from the chord system α.

Lemma 4.3. Let a_{*} be a proper oriented arc system in a compact once-punctured manifold $M^{(o)}=\operatorname{cl}(M \backslash B)$ of a homotopy 3 -sphere M which is obtained from an oriented proper arc diagram D in a disk δ contained in the boundary 2-sphere S of $M^{(o)}$ by pushing the interior of an upper-arc around every crossing point of D into the interior of $M^{(o)}$. Then the S^{2}-link $S\left(a_{*}\right)$ in $X(M)$ is a ribbon S^{2}-link in $X(M)$ with a chord diagram C in δ obtained from the arc diagram D by changing every
crossing point as in Fig. 2.

Figure 2: Changing a crossing point into a based loop with chords

Proof of Lemma 4.3. This fact is observed in [12, Theorem 2.3 (3)] for an inbound arc diagram whose closure is a knot chord diagram. The present claim is similarly shown for any oriented arc diagram.

In Lemma 4.3, note that the arc diagram D is recovered from the chord diagram C by taking the upper-arc of every based loop. The proof of Lemma 1.2 is given as follows.
4.4: Proof of Lemma 1.2. Let k be a non-trivial knot in a homotopy 3 -sphere M. By Corollary 4.2 , the spun S^{2}-knot $S(k)$ in the 4 -sphere $X(M)=S^{4}$ is a ribbon S^{2}-knot. The spun torus-knot of k in the 4 -sphere $X(M)$ is given by the inclusion

$$
T(k)=k \times S^{1} \subset M^{(o)} \times S^{1} \subset M^{(o)} \times S^{1} \cup S \times D^{2}=X(M)
$$

The spun S^{2}-knot $S(k)$ in $X(M)$ is obtained from $T(k)$ by a 2-handle surgery and conversely the spun torus-knot $T(k)$ is obtained from the spun S^{2}-knot $S(k)$ by 1handle surgery. By definition, the spun torus-knot $T(k)$ is a ribbon torus-knot and hence bounds a ribbon solid torus V_{R} in $X(M)$. Let

$$
V_{R}=\cup_{i=1}^{n} B_{i} \cup h_{i}
$$

for a disjoint 3-ball system $B_{i}(i=1,2, \ldots, n)$ in $X(M)$ and an embedded disjoint 1 -handle system $h_{i}(i=1,2, \ldots, n)$ on the 2 -sphere system $\partial B_{i}(i=1,2, \ldots, n)$ in $X(M)$ so that the 1-handle h_{i} spans ∂B_{i} and ∂B_{i+1} for every i with $B_{n+1}=B_{1}$ and every 3-ball B_{i} meets just one 1-handle $h_{j_{i}}$ for some $j_{i}\left(1 \leq j_{i} \leq n\right)$ with a transverse disk $d_{j_{i}}$ in the interior of B_{i}. Since the knot k is non-trivial in $M^{(o)}$ and there is a
canonical isomorphism

$$
\pi_{1}\left(M^{(o)} \backslash k, v\right) \rightarrow \pi_{1}(X(M) \backslash T(k), v)
$$

by the van Kampen theorem, the longitude of k in $M^{(o)}$ represents an infinite order element in the fundamental group $\pi_{1}(X(M) \backslash T(k), v)$, which implies that the meridian loop of V_{R} (i.e., the simple loop of $T(k)$ bounding a meridian disk of V_{R}) is a uniquely specified loop in $T(k)$ up to isotopies of $T(k)$. Fix an orientation of knot k. Then by the construction of $T(k)$, the meridian disk orientation of the ribbon solid torus V_{R} is uniquely specified and the ribbon solid torus V_{R} specifies uniquely a disjoint oriented deformed meridian disk system $d_{i}(i=1,2, \ldots, n)$ in V_{R} so that the knot k meets the disk d_{i} with just one boundary arc orientation-coherently and just one interior point transversely and the union $k \cup_{i=1}^{n} d_{i}$ (called a chord-disk system) recovers V_{R} uniquely by thickening k and $d_{i}(i=1,2, \ldots, n)$ (see the left figure of Fig. 3). The disk system $d_{i}(i=1,2, \ldots, n)$ is isotopically deformed into $M^{(o)}$ by an isotopy of $X(M)$ keeping k fixed, so that the chord-disk system $k \cup_{i=1}^{n} d_{i}$ is in $M^{(o)}$. To show this claim, let α_{i} be a simple arc in d_{i} joining the point $k \cap \operatorname{Int} d_{i}$ with a point in the $\operatorname{arc} k \cap \partial d_{i}$ for all i. The arc system $\alpha_{i}(i=1,2, \ldots, n)$ is deformed into a bi-collar neighborhood $M^{o)} \times[-1,1]$ of $M^{(o)}$ with $M^{(o)} \times 0=M^{(o)}$ in $X(M)$ by an isotopy keeping $M^{(o)}$ fixed. Then the arc system $\alpha_{i}(i=1,2, \ldots, n)$ is projected into $M^{(o)}$ by a general position argument. A deformed disk system $d_{i}(i=1,2, \ldots, n)$ in $M^{(o)}$ is obtained from the arc system $\alpha_{i}(i=1,2, \ldots, n)$ in $M^{(o)}$ by extending them as a small disk system, completing the proof of the claim. Let k^{\times}be the graph in $M^{(o)}$ obtained from the chord-disk system $k \cup_{i=1}^{n} d_{i}$ by shrinking every disk d_{i} into a 4-degree vertex for every i. By taking a maximal tree $\tau\left(k^{\times}\right)$of k^{\times}, one finds a disk δ in $M^{(o)}$ containing the maximal tree $\tau\left(k^{\times}\right)$. Let $e_{i}(i=1,2, \ldots, n+1)$ be the arc system $\operatorname{cl}\left(k^{\times} \backslash \tau\left(k^{\times}\right)\right)$where the number $n+1$ is uniquely determined by the Euler characteristic $\chi\left(K^{\times}\right)=-n$. Then the chord-disk system

$$
k^{\times \times}=\operatorname{cl}\left(\left(k \cup_{i=1}^{n} d_{i}\right) \backslash\left(\cup_{i=1}^{n+1} e_{i}\right)\right)
$$

can be drawn as a chord diagram C in the disk δ with the based loop system $o_{i}=$ $\partial d_{i}(i=1,2, \ldots, n)$ so that the chord diagram of the two arcs of k on the disk d_{i} for every i are drawn with the two arcs as bold lines transversely meeting as in the right figure of Fig. 3. Let $a_{i}(i=1,2, \ldots, n+1)$ be the arc system $\operatorname{cl}\left(k \backslash \cup_{i=1}^{n+1} e_{i}\right)$. By replacing the chord diagram of the two arcs of k on the disk d_{i} for every i with an arc diagram, that is, by replacing the right diagram of Fig. 2 with the left diagram of Fig. 2, the diagram C changes into an arc diagram D of the arc system $a_{i}(i=1,2, \ldots, n)$ in the disk δ. Deform the disk δ into the 2 -sphere $S=\partial M^{(o)}$ so that a collar $\delta \times[0,1]$ of δ in $M^{(o)}$ with $\delta \times 0=\delta$ belongs to a boundary collar $S \times[0,1]$ of S in $M^{(o)}$ with $S \times 0=S$. The arc system $a_{i}(i=1,2, \ldots, n)$ is realized in the collar $\delta \times[0,1]$
from the arc diagram D by pushing the interiors of the upper-arcs of D into the interior of $\delta \times[0,1]$. By Lemma 4.3, the spun S^{2}-link $\cup_{i=1}^{n} S\left(a_{i}\right)$ in $X(M)$ with the chord system C in δ is obtained as in Fig. 2. This means that the spun S^{2}-link $\cup_{i=1}^{n} S\left(a_{i}\right)$ bounds a part V_{R}^{\prime} of the ribbon solid torus V_{R} belonging to the 4-ball $A=(\delta \times[0,1]) \times S^{1} \cup \delta \times D^{2}$ in $X(M)$. Since the spun torus-knot $T(k)$ is the union of the spun S^{2}-link $\cup_{i=1}^{n} S\left(e_{i}\right)$ and the spun S^{2}-link $\cup_{i=1}^{n} S\left(a_{i}\right)$ by deleting the common disk interiors, the spun S^{2}-link $\cup_{i=1}^{n} S\left(e_{i}\right)$ in $X(M)$ bounds disjoint 3-balls $\operatorname{cl}\left(V_{R} \backslash V_{R}^{\prime}\right)$ in the 4 -ball $A^{\prime}=\operatorname{cl}(X(M) \backslash A)$. Let $X^{\prime}(M)$ be the spun 4-sphere of M on the once-punctured manifold $M_{\delta}^{(o)}=\operatorname{cl}\left(M^{(o)} \backslash \delta \times[0,1]\right)$ of M, and $S^{\prime}=\partial M_{\delta}^{(o)}$ the boundary 2-sphere. The spun S^{2}-link $\cup_{i=1}^{n} S\left(e_{i}\right)$ is a trivial S^{2}-link in the 4 -sphere $X^{\prime}(M)$. By Lemma 2.5, the proper arc system $e_{i}(i=1,2, \ldots, n)$ is in a boundarycollar $S^{\prime} \times[0,1]$ of the once-punctured manifold $M_{\delta}^{(o)}$. This means that there is a 3 -ball in $M^{(o)}$ containing the knot k. This completes the proof of Lemma 1.2.

Figure 3: A diagram of the two arcs of k on the disk d_{i}

This completes the proof of Theorem 1.1.

Acknowledgments. This work was partly supported by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849).

References

[1] E. Artin, Zur Isotopie zweidimensionalen Flächen im \mathbf{R}^{4}, Abh. Math. Sem. Univ. Hamburg. 4 (1925), 174-177.
[2] R. H. Bing, Necessary and sufficient conditions that a 3-manifold be S^{3}, Ann. of Math. 68 (1958), 17-37.
[3] R. H. Bing, Some aspects of the topology of 3-manifolds related to the Poincaré conjecture, in Lectures on Modern Mathematics II (T. L. Saaty ed.), Wiley, 1964.
[4] H. Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962), 308-333.
[5] J. Hempel, 3-manifolds, Ann. Math. Studies 86 (1976), Princeton Univ. Press.
[6] F. Hosokawa and A. Kawauchi, Proposals for unknotted surfaces in four-space, Osaka J. Math. 16(1979), 233-248.
[7] A. Kawauchi, A survey of knot theory, Birkhäuser (1996).
[8] A. Kawauchi, A chord diagram of a ribbon surface-link, J. Knot Theory Ramifications 24 (2015), 1540002 (24pp.).
[9] A. Kawauchi, Supplement to a chord diagram of a ribbon surface-link, J. Knot Theory Ramifications 26 (2017), 1750033 (5pp.).
[10] A. Kawauchi, A chord graph constructed from a ribbon surface-link, Contemporary Mathematics 689 (2017), 125-136.
[11] A. Kawauchi, Faithful equivalence of equivalent ribbon surface-links, J. Knot Theory Ramifications 27 (2018), 1843003 (23 pages).
[12] A. Kawauchi, Knotting probability of an arc diagram, Journal of Knot Theory and Its Ramifications 29 (10) (2020) 2042004 (22 pages).
[13] A. Kawauchi, Ribbonness of a stable-ribbon surface-link, I. A stably trivial surface-link, Topology and its Applications 301 (2021), 107522 (16 pages). arXiv:1804.02654
[14] A. Kawauchi, Uniqueness of an orthogonal 2-handle pair on a surface-link. (Supplement to Section 3 of Ribbonness of a stable-ribbon surface-link, I). arxiv:1804.02654
[15] A. Kawauchi, Triviality of a surface-link with meridian-based free fundamental group. arXiv:1804.04269
[16] A. Kawauchi, Smooth homotopy 4-sphere (research announcement), 2191 Intelligence of Low Dimensional Topology, RIMS Kokyuroku 2191 (July 2021), 1-13.
[17] A. Kawauchi, Smooth homotopy 4-sphere. arXiv:1911.11904.
[18] A. Kawauchi, T. Shibuya and S. Suzuki, Descriptions on surfaces in four-space, I : Normal forms, Math. Sem. Notes, Kobe Univ. 10(1982), 75-125; II: Singularities and cross-sectional links, Math. Sem. Notes, Kobe Univ. 11(1983), 31-69.
[19] J. Milnor, Towards the Poincaré conjecture and the classification of 3-manifolds, Notices AMS 50 (2003), 1226-1233.
[20] G. Perelman, The entropy formula for the Ricci flow and its geometric applications. arXiv: math. DG/0211159v1, 11 Nov 2002.
[21] G. Perelman, Ricci flow with surgery on three-manifolds. arXiv: math. DG/0303109 v1, 10 Mar 2003.
[22] H. Poincaré, Second complément à l'Analysis Sitis, Proc. London Math. Soc. 32 (1900), 277-308.
[23] H. Poincaré, Cinquième complément à l'Analysis Sitis, Rend. Circ. Mat. Palermo 18 (1904), 45-110.
[24] W. P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.

