Uniqueness of an orthogonal 2-handle pair on a surface-link

Akio Kawauchi

Citation	OCAMI Preprint Series. 2022. 22-3.
Issue date	$2022-06-02$
Type	Preprint
Textversion	Author
Relation	INTERNATIONAL CONFERENCE: Knot theory and applications. JUNE 30, 2022. TOMSK, RUSSIA.

From: OCAMI
http://www.sci.osaka-cu.ac.jp/OCAMI/publication/preprint/preprint.html

Uniqueness of an orthogonal 2-handle pair on a surface-link

Akio Kawauchi
Osaka Central Advanced Mathematical Institute, Osaka Metropolitan University
Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
kawauchi@osaka-cu.ac.jp

Keywords: Surface-link, Orthogonal 2-handle pair. Mathematics Subject Classification 2010: Primary 57Q45; Secondary 57N13

Abstract

The proof of uniqueness of an orthogonal 2-handle pair on a surface-link is given from the viewpoint of a normal form of 2-handle core disks. A version to an immersed orthogonal 2-handle pair on a surface-link is also observed.

1. Introduction

A surface-link is a closed oriented (possibly disconnected) surface F embedded in the 4 -space \mathbf{R}^{4} by a smooth (or a piecewise-linear locally flat) embedding. When \mathbf{F} is connected, it is also called a surface-knot. Two surface-links F and F^{\prime} are equivalent by an equivalence f if F is sent to F^{\prime} orientation-preservingly by an orientationpreserving diffeomorphism (or piecewise-linear homeomorphism) $f: \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$. A trivial surface-link is a surface-link F which is the boundary of disjoint handlebodies smoothly embedded in \mathbf{R}^{4}, where a handlebody is a 3 -manifold which is a 3-ball, a solid torus or a boundary-disk sum of some number of solid tori. A trivial surface-knot is also called an unknotted surface-knot and a trivial disconnected surface-link is also called an unknotted and unlinked surface-link. A trivial surface-link is unique up to
equivalences (see [1]). A 2-handle on a surface-link F in \mathbf{R}^{4} is an embedded 2-handle $D \times I$ on F with D a core disk such that $D \times I \cap F=\partial D \times I$, where I denotes a closed interval containing 0 and $D \times 0$ is identified with D. If D is an immersed disk, then call it an immersed 2-handle. Two (possibly immersed) 2-handles $D \times I$ and $E \times I$ on F are equivalent if there is an equivalence $f: \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ from F to itself such that the restriction $\left.f\right|_{F}: F \rightarrow F$ is the identity map and $f(D \times I)=E \times I$. An orthogonal 2-handle pair (or simply, an O2-handle pair) on F is a pair ($D \times I, D^{\prime} \times I$) of 2-handles $D \times I, D^{\prime} \times I$ on F such that

$$
D \times I \cap D^{\prime} \times I=\partial D \times I \cap \partial D^{\prime} \times I
$$

and $\partial D \times I$ and $\partial D^{\prime} \times I$ meet orthogonally on F, that is, the boundary circles ∂D and ∂D^{\prime} meet transversely at one point q and the intersection $\partial D \times I \cap \partial D^{\prime} \times I$ is homeomorphic to the square $Q=q \times I \times I$ (see [2, Fig.1]). An important property of an O2-handle pair $\left(D \times I, D^{\prime} \times I\right)$ on a surface-link F is the following property (see [2] for the proof):

Common 2-handle property Let F be a surface-link in \mathbf{R}^{4}, and $\left(D \times I, D^{\prime} \times I\right)$ and $\left(E \times I, E^{\prime} \times I\right)$ O2-handle pairs on F in \mathbf{R}^{4} with $\partial D \times I=\partial E \times I$ and $\partial D^{\prime} \times I=\partial E^{\prime} \times I$. If $D \times I=E \times I$ or $E^{\prime} \times I=D^{\prime} \times I$, then the O2-handle pairs $\left(D \times I, D^{\prime} \times I\right)$ and $\left(E \times I, E^{\prime} \times I\right)$ on F are equivalent by an equivalence obtained by 3-cell moves on the unions $D \times I \cup D^{\prime} \times I$ and $E \times I \cup E^{\prime} \times I$ which are 3-balls.

In this paper, the following uniqueness theorem of an O2-handle pair on a surfacelink is shown by using a normal form of 2-handle core disks discussed in [4] and Common 2-handle property stated above repeatedly which is announced in [2, Section 3] with incomplete proof although the tools of the present proof appear there.

Theorem 1.1. Let F be a surface-link in \mathbf{R}^{4}, and $\left(D \times I, D^{\prime} \times I\right)$ and $\left(E \times I, E^{\prime} \times I\right)$ O2-handle pairs on F in \mathbf{R}^{4} with $\partial D \times I=\partial E \times I$ and $\partial D^{\prime} \times I=\partial E^{\prime} \times I$. Then the O2-handle pairs $\left(D \times I, D^{\prime} \times I\right)$ and $\left(E \times I, E^{\prime} \times I\right)$ on F are equivalent.

This theorem for a trivial surface-link is heavily used for confirming the smooth unknotting conjecture of a surface-knot in [2] and the smooth unknotting-unlinking conjecture for a surface-link in [3]. For an immersed O2-handle pair, the following proposition is provided:

Proposition 1.2. If ($D \times I, D^{\prime} \times I$) is an immersed O2-pair on a surface-link F in \mathbf{R}^{4} with $D \times I$ immersed and $D^{\prime} \times I$ embedded, then there is an embedded 2-handle $D_{*} \times I$ with $\partial D_{*} \times I=\partial D \times I$ such that $\left(D_{*} \times I, D^{\prime} \times I\right)$ is an O2-handle pair on F.

For the proof of Proposition 1.2, Finger move canceling operation is used to cancel a double point of an immersed core disk D of the immersed 2-handle $D \times I$ on F, which is explained in Section 3. By Theorem 1.1 and Proposition 1.2, we have the following corollary.

Corollary 1.3. Let F be a surface-link in \mathbf{R}^{4}, and $\left(D \times I, D^{\prime} \times I\right)$ and $\left(E \times I, E^{\prime} \times I\right)$ immersed O2-handle pairs on F in \mathbf{R}^{4} with $\partial D \times I=\partial E \times I$ and $\partial D^{\prime} \times I=\partial E^{\prime} \times I$.
(1) If $D^{\prime} \times I$ and $E^{\prime} \times I$ are embedded, then there are embedded 2-handles $D_{*} \times I$ and $E_{*} \times I$ on F with $\partial D_{*} \times I=\partial D \times I$ and $\partial E_{*} \times I=\partial E \times I$ such that $\left(D_{*} \times I, D^{\prime} \times I\right)$ and $\left(E_{*} \times I, E^{\prime} \times I\right)$ are equivalent O2-handle pairs on F, so that the surface-links $F\left(D^{\prime} \times I\right)$ and $F\left(E^{\prime} \times I\right)$ are equivalent.
(2) If $D^{\prime} \times I$ and $E \times I$ are embedded, then there are embedded 2-handles $D_{*} \times I$ and $E_{*}^{\prime} \times I$ on F with $\partial D_{*} \times I=\partial D \times I$ and $\partial E_{*}^{\prime} \times I=\partial E^{\prime} \times I$ such that $\left(D_{*} \times I, D^{\prime} \times I\right)$ and $\left(E \times I, E_{*}^{\prime} \times I\right)$ are equivalent O2-handle pairs on F, so that the surface-links $F\left(D^{\prime} \times I\right)$ and $F(E \times I)$ are equivalent.

The proof of Theorem 1.1 is done in Section 2 and and the proof of Proposition 1.2 is done in Section 3. Throughout the paper, the notation

$$
X J=\left\{(x, t) \in \mathbf{R}^{4} \mid x \in X, t \in J\right\}
$$

is used for a subspace X of \mathbf{R}^{3} and a subinterval J of \mathbf{R}.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 is divided into the proof of the case of a trivial surfaceknot F and the proof of the case of a general surface-link F. In the argument, the O2-handle pair ($D \times I, D^{\prime} \times I$) is fixed in the 3 -space $\mathbf{R}[0]$ and consider normal forms of the core disks E, E^{\prime} of the 2-handles $E \times I, E^{\prime} \times I$ in \mathbf{R}^{4}. To avoid the complexity of handling the intersection point $q=E \cap E^{\prime}$, a sufficiently small boundary-collar $n\left(\partial E^{\prime}\right)$ of E^{\prime} is fixed in $\mathbf{R}^{3}[0]$ and consider a normal form of the disk $E_{n}^{\prime}=\operatorname{cl}\left(E^{\prime} \backslash n\left(\partial E^{\prime}\right)\right)$ in \mathbf{R}^{4} together with a normal form of E.

Proof of Theorem 1.1 in the case of a trivial surface-link F. Assume that the trivial surface-knot F is embedded standardly in $\mathbf{R}^{3}[0]$ with a standard O2-handle pair $\left(D \times I, D^{\prime} \times I\right)$ on F. By [4], the disk union $G=E \cup E_{n}^{\prime}$ is deformed into a disk union G_{1} in the following form by an isotopy of \mathbf{R}^{4} keeping the boundary
$\partial G=\partial E \cup \partial E_{n}^{\prime}$ (which is a trivial link in $\left.\mathbf{R}^{3}[0]\right), n\left(\partial E^{\prime}\right)$ and F fixed:

$$
G_{1} \cap \mathbf{R}^{3}[t]=\left\{\begin{aligned}
\emptyset, & \text { for } t>2, \\
\mathbf{d}^{\prime}[t], & \text { for } t=2, \\
o^{\prime}[t], & \text { for } 1<t<2, \\
\left(\partial G \cup \ell \cup \mathbf{b}^{\prime}\right)[t], & \text { for } t=1, \\
(\partial G \cup \ell)[t], & \text { for } 0 \leq t<1, \\
\ell[t], & \text { for }-1<t<0, \\
(o \cup \mathbf{b})[t], & \text { for } t=-1, \\
o[t], & \text { for }-2<t<-1, \\
\mathbf{d}[t], & \text { for } t=-2, \\
\emptyset, & \text { for } t<-2,
\end{aligned}\right.
$$

where the notations o, o^{\prime} denote trivial links in \mathbf{R}^{3}, the notations \mathbf{d}, \mathbf{d}^{\prime} denote disjoint disk systems in \mathbf{R}^{3} bounded by o, o^{\prime}, respectively, the notations $\mathbf{b}, \mathbf{b}^{\prime}$ denote disjoint band systems in \mathbf{R}^{3} spanning o, o^{\prime}, respectively, and the notation ℓ denotes a link in \mathbf{R}^{3}. To obtain this disk union G_{1}, start the argument of [4] with the assumption that the intersection $G \cap \mathbf{R}^{3}[0]$ is a link $\ell[0] \cup \partial G$ in $\mathbf{R}^{3}[0]$ and a boundary-collar $n(\partial G)$ of ∂G in G is in $\mathbf{R}^{3}[0, c]$ so that

$$
n(\partial G) \cap \mathbf{R}^{3}[t]=\partial G[t], \quad t \in[0, c]
$$

for a small number $c>0$, where ∂G is regarded to be in \mathbf{R}^{3} under the canonical identification $\mathbf{R}^{3}[0]=\mathbf{R}^{3}$. Then pull down a minimal point of G in $\mathbf{R}^{3}(0, \infty)$ to $\mathbf{R}^{3}(-\infty, 0)$ and pull up a maximal point of G in $\mathbf{R}^{3}(-\infty, 0)$ to $\mathbf{R}^{3}(0, \infty)$. In these deformations, trivial components are increased in the intersection link $G \cap \mathbf{R}^{3}[0]$. After these preparations, do normalizations of $G \cap \mathbf{R}^{3}[0, \infty)$ and $G \cap \mathbf{R}^{3}(-\infty, 0]$ keeping $G \cap \mathbf{R}^{3}[0]$ fixed. The band systems $\mathbf{b}, \mathbf{b}^{\prime}$ are made disjoint by band slide and band thinning and disjoint from ∂G by band deformation. Let $G_{1}=E \cup E_{n}^{\prime}$. The following notation is used.

Notation. The disk subsystems of the disk system \mathbf{d} belonging to E or E_{n}^{\prime} are denoted by $\mathbf{d}(E)$ or $\mathbf{d}\left(E_{n}^{\prime}\right)$, respectively. The band subsystems of the band system \mathbf{b} belonging to E or E_{n}^{\prime} are denoted by $\mathbf{b}(E)$ or $\mathbf{b}\left(E_{n}^{\prime}\right)$, respectively.

A next deformation of G_{1} is to change the level of the band system $\mathbf{b}(E)[-1]$ into $\mathbf{b}(E)[1]$ and the level of the disk system $\mathbf{d}(E)[-2]$ into $\mathbf{d}(E)[0.5]$. To do so, it is observed that in \mathbf{R}^{3}, the boundary ∂G and the band system $\mathbf{b}\left(E_{n}^{\prime}\right)$ meet the disk system $\mathbf{d}(E)$ in finite interior points and in finite interior simple arcs, respectively. For a point $x \in \mathbf{d}(E) \cap \partial G$, find a point $y \in \partial \mathbf{d}(E) \backslash \partial E$ and a simple arc α from x to y in $\mathbf{d}(E)$ which does not meet the band systems $\mathbf{b}, \mathbf{b}^{\prime}$ by band slide and band
thinning. Let $n(\alpha)$ be a disk neighborhood of α in $\mathbf{d}(E)$. Deform the disk system $\mathbf{d}^{\prime}(E)$ so that $n(\alpha) \subset \mathbf{d}^{\prime}(E)$. Then the intersection $e(\alpha)=n(\alpha)[-2,2] \cap G_{1}$ is a disk in the interior of G_{1}. Let $\tilde{e}(\alpha)=\operatorname{cl}((\partial(n(\alpha)[-2,2])) \backslash e(\alpha))$ be the complementary disk of the disk $e(\alpha)$ in the 2 -sphere $\partial(n(\alpha)[-2,2])$. The disk union

$$
{ }^{\sim} G_{1}=\operatorname{cl}\left(G_{1} \backslash e(\alpha)\right) \cup \tilde{e}(\alpha)
$$

induces a normal form of the union of a deformed disk ${ }^{\sim} E$ of E and the disk E_{n}^{\prime} with $\partial G_{1}=\partial G_{1}$. Note that the disk ${ }^{\sim} E$ may meet with the surface F and the topological position of ${ }^{\sim} E$ in \mathcal{G}_{1} may be changed from G_{1}, although the disk $E^{\prime}=E_{n}^{\prime} \cup n\left(\partial E^{\prime}\right)$ is unchanged and the configuration of ${ }^{\sim} G_{1}$ is the same as G_{1}. Do this deformation for all points of the finite set $\mathbf{d}(E) \cap \partial G$. Further, for an arc β in the finite arc set $\mathbf{d}(E) \cap \mathbf{b}\left(E_{n}^{\prime}\right)$, find a simple arc α in $\mathbf{d}(E)$ extending this arc β to a point $y \in$ $\partial \mathbf{d}(E) \backslash \partial E$ which does not meet the band systems $\mathbf{b}, \mathbf{b}^{\prime}$ by band slide and band thinning. For a disk neighborhood $n(\alpha)$ in $\mathbf{d}(E)$, do the same deformation as above. Do this deformation for all $\operatorname{arcs} \beta$ in the finite $\operatorname{arcset} \mathbf{d}(E) \cap \mathbf{b}\left(E_{n}^{\prime}\right)$. Let $\tilde{G}_{1}=\tilde{E} \cup E_{n}^{\prime}$ be the disk union obtained from $G_{1}=E \cup E_{n}^{\prime}$ by all these deformations, which is in a normal form with the same configuration as G_{1} and we have

$$
\mathbf{d}(\tilde{E}) \cap\left(\partial E \cup n\left(\partial E^{\prime}\right)\right)=\mathbf{d}(\tilde{E}) \cap \mathbf{b}\left(E_{n}^{\prime}\right)=\emptyset
$$

although the disk \tilde{E} may meet F. Now change the level of $\mathbf{b}(\tilde{E})[-1]$ into $\mathbf{b}(\tilde{E})[1]$ and the level of $\mathbf{d}(\tilde{E})[-2]$ into $\mathbf{d}(\tilde{E})[0.5]$. The resulting disk union $G_{2}=\tilde{E} \cup E_{n}^{\prime}$ is in the following form:

$$
G_{2} \cap \mathbf{R}^{3}[t]=\left\{\begin{aligned}
\emptyset, & \text { for } t>2, \\
\mathbf{d}^{\prime}[t], & \text { for } t=2, \\
o^{\prime}[t], & \text { for } 1<t<2, \\
\left(\partial G \cup \cup o(\tilde{E}) \cup \mathbf{b}(\tilde{E}) \cup \ell\left(E_{n}^{\prime}\right) \cup \mathbf{b}^{\prime}\right)[t], & \text { for } t=1, \\
\left(\partial G \cup o(\tilde{E}) \cup \ell\left(E_{n}^{\prime}\right)\right)[t], & \text { for } 0.5<t<1, \\
\left(\partial G \cup \mathbf{d}(\tilde{E}) \cup \ell\left(E_{n}^{\prime}\right)\right)[t], & \text { for } t=0.5, \\
\left(\partial G \cup \ell\left(E_{n}^{\prime}\right)\right)[t], & \text { for } 0 \leq t<0.5, \\
\ell\left(E_{n}^{\prime}\right)[t], & \text { for }-1<t<0, \\
\left(o\left(E_{n}^{\prime}\right) \cup \mathbf{b}\left(E_{n}^{\prime}\right)\right)[t], & \text { for } t=-1, \\
o\left(E_{n}^{\prime}\right)[t], & \text { for }-2<t<-1, \\
\mathbf{d}\left(E_{n}^{\prime}\right)[t], & \text { for } t=-2, \\
\emptyset, & \text { for } t<-2 .
\end{aligned}\right.
$$

In the configuration of the disk union G_{2}, the pair $\left(\tilde{E} \times I, E^{\prime} \times I\right)$ is an O2-handle pair on F and hence is equivalent to the original O2-handle pair $\left(E \times I, E^{\prime} \times I\right)$ on F by Common 2-handle property. Let $G_{2}=E \cup E_{n}^{\prime}$. A next deformation of G_{2} is to
change the level of the band system $\mathbf{b}\left(E_{n}^{\prime}\right)[-1]$ into $\mathbf{b}\left(E_{n}^{\prime}\right)[1]$ and the level of the disk system $\mathbf{d}\left(E_{n}^{\prime}\right)[-2]$ into $\mathbf{d}\left(E_{n}^{\prime}\right)[0.5]$. To do so, for a point $x \in \mathbf{d}\left(E_{n}^{\prime}\right) \cap \partial G$, find a point $y \in \partial \mathbf{d}\left(E_{n}^{\prime}\right) \backslash \partial E_{n}^{\prime}$ and a simple arc α from x to y in $\mathbf{d}\left(E_{n}^{\prime}\right)$ which does not meet the band systems $\mathbf{b}, \mathbf{b}^{\prime}$ by band slide and band thinning. For a disk neighborhood $n(\alpha)$ of α in $\mathbf{d}\left(E_{n}^{\prime}\right)$, do a similar deformation on the disk E_{n}^{\prime} as above. Namely, deform the disk system $\mathbf{d}^{\prime}\left(E_{n}^{\prime}\right)$ so that $n(\alpha) \subset \mathbf{d}^{\prime}\left(E_{n}^{\prime}\right)$. Since the intersection $e(\alpha)=n(\alpha)[-2,2] \cap G_{2}$ is a disk in the interior of G_{2}, let $\tilde{e}(\alpha)=\operatorname{cl}((\partial(n(\alpha)[-2,2])) \backslash e(\alpha))$ be the complementary disk of the disk $e(\alpha)$ in the 2 -sphere $\partial(n(\alpha)[-2,2])$. The disk union

$$
\tilde{\sigma}_{2}=\operatorname{cl}\left(G_{2} \backslash e(\alpha)\right) \cup \tilde{e}(\alpha)
$$

induces a normal form of the union of the disk E and a deformed $\operatorname{disk}^{\sim} E_{n}^{\prime}$ of E_{n}^{\prime} with $\partial G_{2}=\partial G_{2}$. Note that the disk E_{n}^{\prime} may meet F and the topological position of \tilde{E}_{n}^{\prime} in ${ }^{\sim} G_{1}$ may be changed from G_{1}, although the disk E is unchanged and the configuration ${ }^{\circ}{ }^{\sim} G_{2}$ is the same as G_{2}. Do this operation for all points of the finite set $\mathbf{d}\left(E_{n}^{\prime}\right) \cap \partial G$. Let $\tilde{G}_{2}=E \cup \tilde{E}_{n}^{\prime}$ be the disk union obtained from G_{2} by all these deformations. The disk union $\tilde{G}_{2}=E \cup \tilde{E}_{n}^{\prime}$ is in a normal form with the same configuration as G_{2} and has

$$
\mathbf{d}\left(\tilde{E}_{n}^{\prime}\right) \cap\left(\partial E \cup n\left(\partial E^{\prime}\right)\right)=\emptyset,
$$

although \tilde{E}_{n}^{\prime} may meet F. Now change the level of the band system $\mathbf{b}\left(\tilde{E}_{n}^{\prime}\right)[-1]$ into $\mathbf{b}\left(\tilde{E}_{n}^{\prime}\right)[1]$ and the level of the disk system $\mathbf{d}\left(\tilde{E}_{n}^{\prime}\right)[-2]$ into $\mathbf{d}\left(\tilde{E}_{n}^{\prime}\right)[0.5]$. The resulting disk union $G_{3}=E \cup \tilde{E}_{n}^{\prime}$ is as follows:

$$
G_{3} \cap \mathbf{R}^{3}[t]=\left\{\begin{aligned}
\emptyset, & \text { for } t>2, \\
\mathbf{d}^{\prime}[t], & \text { for } t=2, \\
o^{\prime}[t], & \text { for } 1<t<2, \\
\left(\partial G \cup o \cup \mathbf{b} \cup \mathbf{b}^{\prime}\right)[t], & \text { for } t=1, \\
(\partial G \cup o)[t], & \text { for } 0.5<t<1, \\
(\partial G \cup \mathbf{d})[t], & \text { for } t=0.5, \\
(\partial G)[t], & \text { for } 0 \leq t<0.5, \\
\emptyset, & \text { for } t<0 .
\end{aligned}\right.
$$

In the disk union G_{3}, the pair $\left(E \times I, \tilde{E}^{\prime} \times I\right)$ with $\tilde{E}^{\prime}=\tilde{E}_{n}^{\prime} \cup n\left(\partial E^{\prime}\right)$ is an O2-handle pair on F and hence equivalent to the original O2-handle pair $\left(E \times I, E^{\prime} \times I\right)$ by Common 2-handle property. Let $G_{3}=E \cup E_{n}^{\prime}$. In the configuration of G_{3}, the pairs $\left(D \times I, E^{\prime} \times I\right)$ and $\left(E \times I, D^{\prime} \times I\right)$ are O2-handle pairs on F. Thus, by Common 2-handle property, the O2-handle pairs $\left(D \times I, D^{\prime} \times I\right)$ and $\left(E \times I, E^{\prime} \times I\right)$ on F are equivalent. This completes the proof of Theorem 1.1 in the case of a trivial surface-link F.

Proof of Theorem 1.1 in the case of a general surface-link F. For a general surface-link F in \mathbf{R}^{4} and O2-handle pairs $\left(D \times I, D^{\prime} \times I\right)$ and $\left(E \times I, E^{\prime} \times I\right)$, let $F\left(D \times I, D^{\prime} \times I\right)$ be the surface-link obtained by surgery along $\left(D \times I, D^{\prime} \times I\right)$ (see [2]). Let F^{\prime} be a trivial surface-knot in \mathbf{R}^{4} obtained from the surface-link $F(D \times$ $\left.I, D^{\prime} \times I\right)$ obtained by surgery along 1-handles $h_{j}(j=1,2, \ldots, s)$ embedded in a connected Seifert hypersurface W for $F\left(D \times I, D^{\prime} \times I\right)$ avoiding the intersection loops $E \cap W, E^{\prime} \cap W$ (cf. [1]). Then there is a trivial torus-knot T in \mathbf{R}^{4} such that the connected sum $F^{\prime} \# T$ is a trivial surface-knot in \mathbf{R}^{4} obtained from F by surgery along the 1-handles $h_{j}(j=1,2, \ldots, s)$ and $\left(D \times I, D^{\prime} \times I\right)$ is a standard O2-handle pair on $F^{\prime} \# T$ attached to the connected summand T. By construction, the pairs $\left(D \times I, D^{\prime} \times I\right)$ and $\left(E \times I, E^{\prime} \times I\right)$ are O2-handles on the connected sum $F^{\prime} \# T$ attached to the connected summand T whose defining 4-ball is disjoint from the "2-handles" $h_{j}(j=1,2, \ldots, s)$ on $F^{\prime} \# T$ attached to F^{\prime}. Let \mathbf{h} be the core disk system $D\left(h_{j}\right),(j=1,2, \ldots, s)$ of the 2 -handle system $h_{j}(j=1,2, \ldots, s)$ on $F^{\prime} \# T$ attached to F^{\prime}. By the proof for the case of a trivial surface-link F, the O2-handle pair $\left(E \times I, E^{\prime} \times I\right)$ is equivalent to $\left(D \times I, D^{\prime} \times I\right)$ on $F^{\prime} \# T$. To obtain such an equivalence without crossing the core disk system \mathbf{h}, the proof is revised as follows: A normal form of the disk union $\bar{G}=G \cup \mathbf{h}=E \cup E_{n}^{\prime} \cup \mathbf{h}$ can be thought of as the following disk union \bar{G}_{1} :

$$
\bar{G}_{1} \cap \mathbf{R}^{3}[t]=\left\{\begin{aligned}
\emptyset, & \text { for } t>2, \\
\left(d^{\prime}(\mathbf{h}) \cup \mathbf{d}^{\prime}\right)[t], & \text { for } t=2, \\
\left(o^{\prime}(\mathbf{h}) \cup o^{\prime}\right)[t], & \text { for } 1<t<2, \\
\left(\partial \bar{G} \cup \ell(\mathbf{h}) \cup b^{\prime}(\mathbf{h}) \cup \ell \cup \mathbf{b}^{\prime}\right)[t] & \text { for } t=1, \\
(\partial \bar{G} \cup \ell(\mathbf{h}) \cup \ell)[t], & \text { for } 0 \leq t<1, \\
(\ell(\mathbf{h}) \cup \ell)[t], & \text { for }-1<t<0, \\
(o(\mathbf{h}) \cup b(\mathbf{h}) \cup o \cup \mathbf{b})[t], & \text { for } t=-1, \\
(o(\mathbf{h}) \cup o)[t], & \text { for }-2<t<-1, \\
(d(\mathbf{h}) \cup \mathbf{d})[t], & \text { for } t=-2, \\
\emptyset, & \text { for } t<-2,
\end{aligned}\right.
$$

where in addition to the notations on G_{1}, the following notations are also added. Namely, the notations $o(\mathbf{h}), o^{\prime}(\mathbf{h})$ denote trivial links in \mathbf{R}^{3} coming from \mathbf{h}, the notations $d(\mathbf{h}), d^{\prime}(\mathbf{h})$ denote disjoint disk systems in \mathbf{R}^{3} bounded by $o(\mathbf{h}), o^{\prime}(\mathbf{h})$, respectively, coming from \mathbf{h}, the notations $b(\mathbf{h}), b^{\prime}(\mathbf{h})$ denote disjoint band systems in \mathbf{R}^{3} spanning $o(\mathbf{h}), o^{\prime}(\mathbf{h})$, respectively, and the notation $\ell(\mathbf{h})$ denotes a link in \mathbf{R}^{3} coming from \mathbf{h}. The band systems $\mathbf{b}, \mathbf{b}^{\prime}, b(\mathbf{h}), b^{\prime}(\mathbf{h})$ are made disjoint by band slide and band thinning. In this normal form \bar{G}_{1}, the disk system \mathbf{h} can be taken as

$$
\mathbf{h} \cap D \times I=\mathbf{h} \cap D^{\prime} \times I=\emptyset
$$

because the defining 4-ball of the connected summand T in the connected sum $F^{\prime} \# T$
contains the union $D \times I \cup D^{\prime} \times I$ and is disjoint from the 2-handles $h_{j}(j=1,2, \ldots, s)$. By a method similar to the process from G_{1} to G_{2}, we have a deformation $\widetilde{\bar{G}}_{1}=$ $\tilde{E} \cup E_{n}^{\prime} \cup \mathbf{h}$ of \bar{G}_{1} with the same configuration as \bar{G}_{1} such that

$$
\mathbf{d}(\tilde{E}) \cap\left(\partial E \cup n\left(\partial E^{\prime}\right)\right)=\mathbf{d}(\tilde{E}) \cap \mathbf{b}\left(E_{n}^{\prime}\right)=\mathbf{d}(\tilde{E}) \cap b(\mathbf{h})=\emptyset
$$

although \tilde{E} may meet $F^{\prime} \# T$. Now change the level of $\mathbf{b}(\tilde{E})[-1]$ into $\mathbf{b}(\tilde{E})[1]$ and the level of $\mathbf{d}(\tilde{E})[-2]$ into $\mathbf{d}(\tilde{E})[0.5]$. Then the disk union $\bar{G}_{2}=\tilde{E} \cup E_{n}^{\prime} \cup \mathbf{h}$ obtained from \bar{G}_{1} is as follows:

$$
\bar{G}_{2} \cap \mathbf{R}^{3}[t]=\left\{\begin{aligned}
\emptyset, & \text { for } t>2, \\
\left(d^{\prime}(\mathbf{h}) \cup \mathbf{d}^{\prime}\right)[t], & \text { for } t=2, \\
\left(o^{\prime}(\mathbf{h}) \cup o^{\prime}\right)[t], & \text { for } 1<t<2, \\
\left(\partial \bar{G} \cup \ell(\mathbf{h}) \cup b^{\prime}(\mathbf{h}) \cup o(\tilde{E}) \cup \mathbf{b}(\tilde{E}) \cup \ell\left(E^{\prime}\right) \cup \mathbf{b}^{\prime}\right)[t], & \text { for } t=1, \\
\left(\partial \bar{G} \cup \ell(\mathbf{h}) \cup o(\tilde{E}) \cup \ell\left(E_{n}^{\prime}\right)\right)[t], & \text { for } 0.5<t<1, \\
\left(\partial \bar{G} \cup \ell(\mathbf{h}) \cup \mathbf{d}(\tilde{E}) \cup \ell\left(E_{n}^{\prime}\right)\right)[t], & \text { for } t=0.5, \\
\left(\partial \bar{G} \cup \ell(\mathbf{h}) \cup \ell\left(E_{n}^{\prime}\right)\right)[t], & \text { for } 0 \leq t<0.5, \\
\left(\ell(\mathbf{h}) \cup \ell\left(E_{n}^{\prime}\right)\right)[t], & \text { for }-1<t<0, \\
\left(o(\mathbf{h}) \cup b(\mathbf{h}) \cup o\left(E_{n}^{\prime}\right) \cup \mathbf{b}\left(E_{n}^{\prime}\right)\right)[t], & \text { for } t=-1, \\
\left(o(\mathbf{h}) \cup o\left(E_{n}^{\prime}\right)\right)[t], & \text { for }-2<t<-1, \\
\left(d(\mathbf{h}) \cup \mathbf{d}\left(E_{n}^{\prime}\right)\right)[t], & \text { for } t=-2, \\
\emptyset, & \text { for } t<-2 .
\end{aligned}\right.
$$

In the configuration of \bar{G}_{2}, the pair $\left(\tilde{E} \times I, E^{\prime} \times I\right)$ is an O2-handle pair on $F^{\prime} \# T$ and hence equivalent to the O2-handle pair $\left(E \times I, E^{\prime} \times I\right)$ on $F^{\prime} \# T$ by Common 2-handle property. Let $\bar{G}_{2}=E \cup E_{n}^{\prime} \cup \mathbf{h}$. By a similar consideration from G_{2} to G_{3}, we have a deformation $\tilde{G}_{2}=E \cup \tilde{E}_{n}^{\prime} \cup \mathbf{h}$ of \bar{G}_{2} with the same configuration as \bar{G}_{2} such that

$$
\mathbf{d}\left(\tilde{E}_{n}^{\prime}\right) \cap\left(\partial E \cup n\left(\partial E^{\prime}\right)\right)=\mathbf{d}\left(\tilde{E}_{n}^{\prime}\right) \cap b(\mathbf{h})=\emptyset
$$

although the disk \tilde{E}_{n}^{\prime} may meet $F^{\prime} \# T$. Now change the level of $\mathbf{b}\left(\tilde{E}_{n}^{\prime}\right)[-1]$ into $\mathbf{b}\left(\tilde{E}_{n}^{\prime}\right)[1]$ and the level of $\mathbf{d}\left(\tilde{E}_{n}^{\prime}\right)[-2]$ into $\mathbf{d}\left(\tilde{E}_{n}^{\prime}\right)[0.5]$. Then the disk union $\bar{G}_{3}=$
$E \cup \tilde{E}_{n}^{\prime} \cup \mathbf{h}$ obtained from $\tilde{\bar{G}}_{2}$ is as follows:

$$
\bar{G}_{3} \cap \mathbf{R}^{3}[t]=\left\{\begin{aligned}
\emptyset, & \text { for } t>2, \\
\left(d^{\prime}(\mathbf{h}) \cup \mathbf{d}^{\prime}\right)[t], & \text { for } t=2, \\
\left(o^{\prime}(\mathbf{h}) \cup o^{\prime}\right)[t], & \text { for } 1<t<2, \\
\left(\partial \bar{G} \cup \ell(\mathbf{h}) \cup b^{\prime}(\mathbf{h}) \cup o \cup \mathbf{b}^{\prime} \cup \mathbf{b}\right)[t], & \text { for } t=1, \\
(\partial \bar{G} \cup \ell(\mathbf{h}) \cup o)[t], & \text { for } 0.5<t<1, \\
(\partial \bar{G} \cup \ell(\mathbf{h}) \cup \mathbf{d})[t], & \text { for } t=0.5, \\
(\partial \bar{G} \cup \ell(\mathbf{h}))[t], & \text { for } 0 \leq t<0.5, \\
\ell(\mathbf{h})[t], & \text { for }-1<t<0, \\
(o(\mathbf{h}) \cup b(\mathbf{h}))[t], & \text { for } t=-1, \\
o(\mathbf{h})[t], & \text { for }-2<t<-1, \\
d(\mathbf{h})[t], & \text { for } t=-2, \\
\emptyset, & \text { for } t<0 .
\end{aligned}\right.
$$

In the configuration of G_{3}, the pair $\left(E \times I, \tilde{E}^{\prime} \times I\right)$ with $\tilde{E}^{\prime}=\tilde{E}_{n}^{\prime} \cup n\left(\partial E^{\prime}\right)$ is an O2-handle pair on $F^{\prime} \# T$ and hence equivalent to the O2-handle pair $\left(E \times I, E^{\prime} \times I\right)$ on $F^{\prime} \# T$ by Common 2-handle property. Let $G_{3}=E \cup E_{n}^{\prime} \cup \mathbf{h}$. Since $\left(D \times I, D^{\prime} \times I\right)$ is in $\mathbf{R}^{3}[0]$, the disk system \mathbf{h} is disjoint from the O2-handle pair $\left(D \times I, D^{\prime} \times I\right)$, although the disk system $d^{\prime}(\mathbf{h})[2]$ is isotopically deformed in $\mathbf{R}^{3}[2]$ in \bar{G}_{3}. Thus, in the configuration of G_{3}, the pairs $\left(D \times I, E^{\prime} \times I\right)$ and $\left(E \times I, D^{\prime} \times I\right)$ are O2-handle pairs on $F^{\prime} \# T$ and disjoint from \mathbf{h}. This means that the O2-handle pairs $\left(D \times I, D^{\prime} \times I\right)$ and $\left(E \times I, E^{\prime} \times I\right)$ on $F^{\prime} \# T$ are equivalent under 3 -cell moves disjoint from the 2-handles $h_{j}(j=1,2, \ldots, s)$ by Common 2-handle property. By the back surgery from $F^{\prime} \# T$ to F on the 2-handles $h_{j}(j=1,2, \ldots, s)$ on $F^{\prime} \# T$, this means that the O2-handle pairs $\left(D \times I, D^{\prime} \times I\right)$ and $\left(E \times I, E^{\prime} \times I\right)$ on F are equivalent under 3-cell moves disjoint from the 1-handles $h_{j}(j=1,2, \ldots, s)$ on F. This completes the proof of Theorem 1.1 in the case of a general surface-link F.

This completes the proof of Theorem 1.1.

3. Proof of Proposition 1.2

The Finger move canceling is the following operation to cancel a double point of an immersed disk D in \mathbf{R}^{4}.

Finger Move Canceling. Let D be an immersed disk in \mathbf{R}^{4} with ∂D embedded, and S a trivial S^{2}-knot in \mathbf{R}^{4} meeting the immersed disk D at just one point x different from the double points of D. Let y be a double point of D, and α a simple arc in the disk D joining x and y not meeting the other double points of D. Let d_{x} be a disk neighborhood of x in D, and d_{y} a disk neighborhood d_{y} of y in the 2 -sphere
S, regarding the disks d_{x} and d_{y} as disk fibers of a normal disk bundle over D in \mathbf{R}^{4}. Let V_{α} be a disk bundle over the arc α in \mathbf{R}^{4} such that $(D \cup S) \cap V_{\alpha}=d_{x} \cup \alpha \cup d_{y}$. Then the immersed disk D_{1} with $\partial D_{1}=\partial D$ is constructed from the immersed disk D so that

$$
D_{1}=\operatorname{cl}\left(D \backslash d_{x}\right) \cup \operatorname{cl}\left(\partial V_{\alpha} \backslash\left(d_{x} \cup d_{y}\right)\right) \cup \operatorname{cl}\left(S \backslash d_{y}\right) .
$$

The number of the double points of D_{1} is smaller than the number of the double points of D by 1 .

The 2-sphere S in Finger Move Canceling is called a canceling sphere. If there is a canceling sphere S, then the immersed disk D is changed into an embedded disk D_{*} by Finger Move Canceling operations of parallel canceling spheres of S. By using Finger Move Canceling, the proof of Proposition 1.2 is done as follows:

Proof of Proposition 1.2. By assumption, the immersed O2-pair ($D \times I, D^{\prime} \times I$) on a surface-link F in \mathbf{R}^{4} has $D \times I$ as an immersed 2-handle on F and $D^{\prime} \times I$ as an embedded 2-handle on F. Let d^{\prime} be a small disk neighborhood of a point $p^{\prime} \in D^{\prime}$ in D^{\prime}. By shrinking $D^{\prime} \times I$ as $d^{\prime} \times I$, one finds a trivial S^{2}-knot S in in \mathbf{R}^{4} such that S meets the immersed core disk D of $D \times I$ at just one point x different from the double points of D and is disjoint from F and $D^{\prime} \times I$. This 2-sphere S is used for a canceling sphere for the immersed disk D. By Finger Move Canceling, the immersed disk D is changed into an embedded disk D_{*}, meaning that the pair $\left(D_{*} \times I, D^{\prime} \times I\right)$ is an O2-handle pair on F. This completes the proof of Proposition 1.2.

Acknowledgements. This work was partly supported by Osaka Central Advanced Mathematical Institute, Osaka Metropolitan University (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849). The author thanks Junpei Yasuda (a graduate student at Osaka University under the adviser Seiichi Kamada) for asking a question on [2, Claim 3.2.1] that motivated to write this paper.

references

[1] F. Hosokawa and A. Kawauchi, Proposals for unknotted surfaces in four-space, Osaka J. Math. 16(1979), 233-248.
[2] A. Kawauchi, Ribbonness of a stable-ribbon surface-link, I. A stably trivial surface-link, Topology and its Applications 301(2021), 107522 (16pages). arXiv:1804.02654
[3] A. Kawauchi, Triviality of a surface-link with meridian-based free fundamental group. arXiv:1804.04269
[4] A. Kawauchi, T. Shibuya and S. Suzuki, Descriptions on surfaces in four-space, I : Normal forms, Math. Sem. Notes, Kobe Univ. 10(1982), 75-125; II: Singularities and cross-sectional links, Math. Sem. Notes, Kobe Univ. 11(1983), 31-69.

