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Preface

This is a proceedings of the international workshop “Mathematical optimization and
statistical theories using geometric methods” held from October 20th to October 21st in
2022. This workshop aimed to connect researchers in several fields, in particular Statistics,
Machine Learning and Mathematics, and to share problems and researches in these fields
interdisciplinary.

This workshop was supported by Osaka Metropolitan University, Advanced Mathe-
matical Institute MEXT Joint Usage/Research Center on Mathematics and Theoretical
Physics, and also supported by Japan Science and Technology Agency, CREST: “Inno-
vation of Deep Structured Models with Representation of Mathematical Intelligence” in
“Creating information utilization platform by integrating mathematical and information
sciences, and development to society.”

This workshop was held in a hybrid format. Domestic speakers are gathered in Aca-
demic Extension Center (Osaka Metropolitan University), Foreign speakers participated
by Zoom. We had 10 talks, 6 of which were from Japan and the others were from abroad,
and 26 people had been registered in this workshop.
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Invariance Learning based on Label Hierarchy

Shoji Toyota
The Graduate University for Advanced Studies (SOKENDAI)

Training data used in machine learning may contain features that are spuriously cor-
related to the labels of data. Deep Neural Networks (DNNs) often learn such biased
correlations embedded in training data and hence may fail to predict desired labels of test
data generated by a different distribution from one to provide training data. To solve the
problem, Invariance Learning (IL) is a rapidly developed approach to overcome the issue
of biased correlation, which is caused by some bias in the distribution of a training dataset
(e.g., [1]). IL estimates a predictor invariant to the change of distributions, aiming at
keeping good performance in unseen distributions as well as in the training distributions.

While the IL approach has attracted much attention, requiring training data from
multiple distributions may hinder wide applications in practice; preparing training data
in many distributions often involves expensive data annotation.

To mitigate the problem of annotation cost, we propose a novel IL framework for the
situation where the training data of target classification is given in only one distribution,
while the task of higher label hierarchy, which needs lower annotation cost, has data
from multiple distributions. The new IL framework significantly reduces the annotation
cost in comparison with previous IL methods; we need exhausting annotation of original
classes only for one distribution and just causaer labels for other distributions. Numerical

simulations and theoretical analysis verify the effectiveness of our framework.

References

[1] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant Risk Minimization.
arXiv:1907.02893, 2019.
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Invariance Learning
based on Label Hierarchy

Shoji Toyota
The Graduate University for Advanced Studies

(Joint work with Prof. Kenji Fukumizu )

OCAMI workshop, 20 ~ 21, October, 2022

% The presentation is based on https://arxiv.org/abs/2203.15549. To appear in Neurips 2022.

Agenda

Background
Mathemathical Formulation

Method
Theory

Experiment




Mathematical Optimization and Statistical Theories using Geometric Methods 3

Recent Problem in Machine Learning:
Estimators inherit spurious correlation in training data

[S. Beery et al. 2018]

Teacherlabel II

There are no cows !
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Statistical Invariance [Arjovsky et al. 2019, Peters et al. 2016]

Notations iﬁ "!25"

X € X :lmage, Y € Y :label, P :Trainingdist,  P€test: Testdist.

0-0-0

Random variable designating dist.s Featured Images Labels

(E = €train; Ctest )

Estimating a feature nap ® by traing data from multiple training dist.s ey, ..., e,

Annotation cost problem in Invariance Estimation

Teacher labels are not often attached in images.

Pel P62 Pen

2 ¢ ¢
® = = &
—
dh «—ﬂ
User E i Annotation Vendor

|Th|b\ |Th\blu.| Thlb\

Bird 1 Bird m Turtle 1 Turtle n

Cost is high especially when
the number of class is large.

X Images are Cited from [Wah et al., 2011].
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Invariance Estimation Based on Label Hierarchy

Proposed Framework: Invariance estimation with the following two data

o P~ = =I
ﬁ Teacher label
€2 I N 5 II =‘
e B A @ Label in higher level ct e P ~ Label in higher level
L)

Bird 1

Turtlen

Invariance Learning Based on Label Hierarchy

Pel Pez Pen
2

o W= &
- == &

User

Annotation Vendor

r‘:\
| Teacher label H Label in higher level H'I | Labe\ in higher level

\ J
Y

lower cost !

Labels in higher level

> Note that 7 = g(Y) holds for some surjective function g.

Original label | 3 The relation gives effective estimation method. |
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Mathemathical Formulation

e € £ Indexdesignatingadist. (X¢ Y¢) € X x Y : Imageand label on e. (X4, Y°) ~ P°
De1 — X?l Y'_el i~ PE1
Available c i SN o €1 € £
samples
@®@ D°:={(X7, 7))}~ P for Ve € Epign(C E)

(=g(Y:®) ): labels in higher hierarchy
Goal: out-of-distribution (0.0.d.) risk Minimization

fo.o.d. = argminf;)c’_ﬂ) Igleag( Re(f)

Out-of-distribution (0.0.d.) risk
RE(f) := [U(Y, f(X))dP*(X,Y) : Riskon e € &

Assumption: Assume that 3@ : X — H,s.t. P(Y1|® (X)) = P(Y°|®(X°))(Ver, ez € E).
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Background

Mathemathical Formulation

.

Estimation

Esrimaiton object: 1. Feature map ® which satisfies E = ®(X) = Y

@ We can not estimate it by data on a single domain...

2. classifier w predicting a label Y from ®(X)
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Esrimaiton object: 1. Feature map ® which satisfies E = ®(X) Q\Y
4

Labels in higher level

2. classifier w predicting a label Y from ®(X)

Method: We estimate ® and w stemiously,
by minimizing the following objective function.

. 1
OA(w,®):=—— > I(y,wo®(z)) +A (Dependence measure of E = ®(X) = 7)

|Der|
(z,y)€D1

estimating w : evaluated by original label data estimating ®: evaluated by higher label data

1 .
2% second term: Z IIEVm:wl(g(y), w o ®(x))|)? [M. Arjovsky et al. 2019].
e€€ad

Difficulty of Hyperparameter selection

[Galrajanietal. 20211 |f we select A by a naive CV method using training data,
® famous methods result in random guess classifiers....

T

e Cross-Validation (CV) for minimizing an 0.0.d. risk max, R(f)

Dy, Dy :Training and Validation, ~ f, < f,

Goal:  argmin, max, Re (f,)
Drg A

D N\
i — f (O maxR()—= maxRe(f) X

Difficulity: 0.0.d. risk estimation from validation data
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Proposed CV methods

Goalr max RS
0% (e} U Enign (f)

How can we estimate ariskon e € gh'igh 2(XxDe={{(x,)})

Y
o
Method 1:Using a risk w.rt. higher label data Z alternatively.
Deyp=1{(x, 2) }

RO (= [Urmar@w)  —  REZ9)(f)

=~
A~

Proposed CV methods

a How can we estimate risk on € € Epigh ?

[
a9
-
Method 1:Using a risk w.r.t. higher IabeIDdata Z alternatively.
e[k]

RETNp) e ROEEf

Method 2:Risk correction  (output: probability, loss: cross-entropy)

Thm. (Decomposition formula of risk)
[ RE(f) - RE“2)(f) = 37 PE(2) - R (1)

/—logpe (Y°|X°,g(Y®) = 2)dP(xe,ye)|g(ye)==
={(x, )}

Del[k] "

RE(S) == RO

00
P22
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Background

Mathemathical Formulation

Method

Experiment

Thoretical analysis of CV methods

AN
fy g fy (3% There are some open problems. )

Rl (f) ; 7?,2 (f) : Approximations of an o0.0.d. risk by Method | and Il (ignoring estimation).
(R!(f) := max{R%*(f), max ROEZ(f)}
TR = max{Re(f), max (ROEVEI(f) + P() ROF(}) )

e€EEhigh
—

argmin, R (fy) C argmin, max RE(fx)
e€

Hyperparameter Optimal hyperparameter The inclusions represent
selected by method | - . the succ.ess qf CVs
7 (with ignoring estimations ).
argmin, R*(f\) C argmin, maxR®(f»)
eeé

Hyperparameter Optimal hyperparameter
selected by method |l —
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Thoretical analysis of CV methods

{fo}oco : all m'ble funct.
{(X,Y)}eee :=={(X,Y)|Px,y = Pxzr yr} : [Rojas-Carulla et al. 2018 ]

— Correctness of Method 1 (Simplified)
(C1) for any X\ with Im®) # (), there is ey € £,q4 such that

(2, 2) ~ Pxex g(ver) satisfies p¢ (2|®*(z)) g— € holds with probability 1.
argmin, R'(f)) C argmin, max Re(fr)
e€

Bi= H(Y*|X7)

— Correctness of Method 1 (Simplified)
(C2) for any A with Im®3 # (, there is ey € £y such that

(%, 2) ~ Pxex g(yen) satisfies p° (2| @ (2)) S— € holds with probability 1.

argmin, R*(f\) C argmin, magcRe (fr)
ec

B = HY|Xp) = 0 Po() - RO

5)\ < ﬂ : Method Il is more applicable !

Background

Mathemathical Formulation
Method

Theory
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Experiment: Image Recognition with 17 class labels

Modified dataset of BREEDS [S. Santurkar et al. 2021]
0.0.d. benchmark constructed by TmageNet[J. Deng et al. 2009]

{/ Dataset 1 S Dataset e2 ~

o

@ 1= {(xp Y1)}~ P

L Animals

17 class

L
(

Structures

k\x._g;a

J\

@ D = {(X, Z)}: ~ P

ﬁ L Nemearfirgls 2 class (Animals or Non-animals)

7 A € {0,1,10,100, 1000}

Our method is validated by the worst acc. among el and e2

Result (5 runs)

Proposed Methods v.s. Competitors

0.71

06 056 0.56 |
05 052 |

Min{Test Acc on el,
Test Accon e2 }

ERM  Transfer | Transfer |l DA Ours + CVIOurs + CVII CV comp.| CV comp.| Oracle
\ ]
Y

Competitors
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Ridgelet Transforms for Neural Networks on
Manifolds and Hilbert Spaces

Sho Sonoda
RIKEN AIP, Tokyo 103-0027 Japan
sho.sonoda@riken. jp

Abstract

To investigate how neural network parameters are organized and arranged, it is
easier to study the distribution of parameters than to study the parameters in each
neuron. The ridgelet transform is a pseudo-inverse operator (or an analysis operator)
that maps a given function f to the parameter distribution ~ so that a network

SH)(x) = /Rme v(a,b)o(a - x —b)dadb, =z R™

represents f, i.e., S[y] = f. For depth-2 fully-connected networks on Euclidean space,
the ridgelet transform has been discovered up to the closed-form expression, thus we
could describe how the parameters are organized. However, for a variety of modern
neural network architectures, the closed-form expression has not been known . Recently,
our research group has developed a systematic scheme to derive ridgelet transforms
for fully-connected layers on manifolds (noncompact symmetric spaces G/K) (Sonoda
et al., 2022b) and for group convolution layers on abstract Hilbert spaces H (Sonoda
et al., 2022a). In this talk, the speaker will explain a natural way to derive those ridgelet
transforms.

References

S. Sonoda, I. Ishikawa, and M. Ikeda. Universality of Group Convolutional Neural Networks Based
on Ridgelet Analysis on Groups. In Advances in Neural Information Processing Systems 35, 2022a.

S. Sonoda, I. Ishikawa, and M. Ikeda. Fully-Connected Network on Noncompact Symmetric Space and
Ridgelet Transform based on Helgason-Fourier Analysis. In Proceedings of the 39th International
Conference on Machine Learning, volume 162, 2022b.
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The Ridgelet Transforms of Neural Networks on
Manifolds and Hilbert Spaces

Sho Sonoda

Research Scientist
RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan

Mathematical Optimization and Statistical Theories Using Geometric Methods
Osaka Metropolitan University
October 20-21, 2022

Q. What is a typical solution obtained by deep learning?

RGB values — label prob.
r € R™ information processing

y € RF

@ Want to identify what solution is typically acquired via deep learning
@ Want to know why (and when) deep learning performs better (than shallow networks)
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Reparametrization
Finite-width (Discrete, or “Ordinary”) NN

o d
7 ~.\ @ SNN(z;04) = Zcia(ai ~x —b;)
2 i=1
< './ o nonlinear parameters: 0g = {(a;,b;,c;)}¢_, € Rm+2)d
m
continuum limit discretization

d
Yd = Zi:l cié(ai,bi)
Infinite-width (Continuous, or Integral Representation of) NN

g
/ \ o S[y|(x) = / v(a,b)o(a - x — b)dadd
Y R™ xR
\ / @ linear parameter: v € Map(R™ x R — C)

Definition (Ridgelet Transform)
For any function f: R™ — C and p: R — C, put

R[f;pl(a,b) = L f@)p(a-x—>b)de, (a,b)€R™ xR.

Theorem (Reconstruction Formula)
For any o € S'(R),p € S(R) and f € L?(R™), we have

S(RIf: (@) = [ Rlfisl(ab)ola: @~ b)dads = (0,)f (@),

where (o, p)) = (2m)™ ! [ 0f (w)pf (w)|w|~™dw and § denotes the Fourier transform

@ Meaning 1: Continuous NN is a universal approximator
@ Meaning 2: R and S play the same role as Fourier F' and inverse Fourier F'~! transforms:

FF(f)) () = (20) ™ / FIA)(€)e=¢de = f()

m

@ Independently “discovered” by Murata (1996), Candés (1998), and Rubin (1998)

4/20
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Numerical example of ridgelet transform R|[f; p|(a,b)
o f(x )_s1n(27rx)1[ 11]( )

° R [f;p] = [z f(@)p(az — b)dz =~ 3, sin(27x;) plaz; — b)Ax
o(b) = tanh( )
p(b) = H[p$](b) with po(b) := exp(—b?/2), Hilbert transform H
o] 6 2
) 4
s 2 \ .
© 0 - 0
~g B /
N
| -6 -1
data f(z) image R[f: p](a,b)

Visualization results of reconstruction formula S|R[f; p]] = (o, p)) f

1 2 4
Hpy" ps = Hpfy) P3—HP() ps = Hpf"
(o, p1)) (0,p2)) #0 (0, p3) (0,p4) #0
6 — —— 1 R — - e 1
4 I I . /| l I
z\‘ / I\ UL BN 2 LY
0 0 0 © 0 0 - 0
2/\\ AN AN i AN
0 -2.5 oo 2.5 5.0 C 0 5 - 5.0 -2.5 oo 2.5 5. - 0 5 -
b
10 2 ’\. /\ 10 :"”\\ 0 //w\ I"'C\\'
0.5 \ ! /\\\\ N 0 ' /A / \
4 W //\\ \ 0.5 ‘\ ,,: \
B 0.0 > ‘\ [ \"\b > 0.0 = 0.0 L /v" \‘\
/ \ \‘“‘ i \ g \
0.5 \ / \ 0 / 0.5 /
L f " v \ \
1.0 v \/ ' - \/ 1.0 “ AV 1.0 v \//
1.0 0.5 0.0 0.5 0 1.0 0.5 0 0.5 1.0 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 5 1.0
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How the parameter distribution looks like?
We will train many (n = 1,000) neural networks SNN(x;04) = Z;‘i=1 cjo(aj - —bj) with d =10
hidden units, and see the distribution of trained parameters (a;, b;, c;).

e Data generating function: f(z) = sin(27z) 11—y 1j(7)

@ o(z) = tanh(z)

@ SGD w. weight decay

1.0

0.5

-0.5

-1.0

2 -1 0 i 2

A scatter plot of d x n = 10 hidden parameters (a;,b;, c;) obtained from n = 1 neural network
>, cjo(aj - —by) with d = 10 hidden units.
6
4 . 2
2 - 1
o] 0~ 0
_2 _1
44 | . ®
-2
-6
-5 0 5
b
arg min En(ed) 7/20
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A scatter plot of d x n = 20 hidden parameters (a;,b;, c;) obtained from n = 2 neural networks with
d = 10 hidden units.

6
4 t. 2
L ]

2 1
@ 0 0
ent’

Y
| .
-2
-6
-5 0 5
b
argmin L, (6,)

A scatter plot of d x n = 50 hidden parameters (a;,b;, c;) obtained from n = 5 neural networks with
d = 10 hidden units.

6
4 <ty :
. o [ ]
2 e
o @0’ 0
o 0
-2 -
-2
.
_4 .
-6
-5 0 5
b

argmin Ly, (6a)
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A scatter plot of d x n = 100 hidden parameters (a;,b;, c;) obtained from n = 10 neural networks with
d = 10 hidden units.

0
4 & hd [ ] 2
e o &
2 Qe
.’o‘-. 0
o 0
' 4 ‘Ul
-2 whe .
L ] [ ] [y
-4 . “ .
)
-6
-5 0 5
b
arg min L, (6,)

7/20

A scatter plot of d x n = 500 hidden parameters (a;,b;, c;) obtained from n = 50 neural networks with
d = 10 hidden units.

< AN ;

-5 0 5
b

@s’ G @ﬂ G 4 \.:i.‘/ 2
@ @ © 0 PE 0

an
\f
an

\!

.@n

)
/
4
/

argmin L, (6a)

7/20
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A scatter plot of d x n = 1,000 hidden parameters (a;,b;, c;) obtained from n = 100 neural networks

with d = 10 hidden units.
‘ / )
»

N
i"
.3
¢

-

’
>

)
7

"s.‘ -2

\
\, \
| o

%100 -5 0 5

o

argmin L, (6,)

A scatter plot of d x n = 5,000 hidden parameters (a;,b;, c;) obtained from n = 500 neural networks
with d = 10 hidden units.

6 .
7 \é‘/ 2
2 -.w : P

o 0 ‘ 0
5 TN

x 500 -5 0 5

argmin Ly, (04)
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A scatter plot of d x n = 10,000 hidden parameters (a;,b;, c;) obtained from n = 1,000 neural

networks with d = 10 hidden units.

scatter plot arg min En(ﬁd)

6
4 A
H e 2
2 -
g 0 0
,’:‘N
-2 o ‘.‘1_.
-2
—4
-6
x 1000 -3 0 2
b
argmin L, (6,) ’
@ appears to be the image R|[f;p| of data f.
o (formal) HC(ZOO) = SGD(G;O),Zn) ~ R[f; p] (including sign!)
6 6 1
4 }l 4
\« 2
: & 4 O\
© 0 0 © 0 a 0
PN
-2 Py Y -2
\ -2
-4 -4
-6 : -6 -1
-5 0 5 -5 0 5
b b

image R[f](a,b)
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Q. How to Find R?—A. Solve S[y] = f

Appendix A.3, in Sonoda-Ishikawa-lkeda, arXiv:2106.04770
Step 1. Turn the network into a Fourier expression

Sh(x) = /m [/Rfy(a,b)a(a . mb)db} da

27

- / [ : /M(“’”)"ﬁ(‘“)emmd”} da, . 52 [z 74 (a,w)of(w)e dw = ((a, ) + 7)(0)

1
_QWR

{/m ’Yﬁ(ﬁ/w,w)eiemdg] Wt (W)dw, by (a,w) = (£/w,w)

where -f is the Fourier transform in b
Step 2. Assume a separation-of-variables form

~

V5 (&Jw,w) = F(€)pF(w)

Then, (1) 7y, is a particular solution

Stipal = 5 | [ @Rl 0] | [ Feeteae| = (@.os

(2) and vy,p(a,b) = R[f; pl(a,b).

Further Results
Theorem (S-Ishikawa-lkeda, AISTATS2021)

The empirical regularized least squares parameters in the finite NNs converges to the ridgelet transform:

argmin 3 |f(@) — Spal(m)? + Blef? ZE=EH 5[] = Rifso)

Ya=2¢ 1 Cib(ayby) - im1

o Ridgelet transform can characterize the parameters obtained by learning (loss minimization)

Theorem (S-Ishikawa-lkeda, arXiv:2106.04770)

The general solution of S[y] = f is given by a sum of ridgelet transforms

v=S*[f]+ ) _ ciRlei; pj]
i

where e; and p; are ONSs in L>(R™) and L*(R, ((-,-))) resp. satisfying (o, p;)) =0

@ Ridgelet transform is not only sufficient but also necessary
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Extensions to modern network architectures

Based on the Fourier expression technique, we have developed new ridgelet transforms for

@ Group convolutional NNs on Hilbert space ‘H
in S-Ishikawa-lkeda (NeurlPS$2022) and

@ Fully-connected NNs on manifold (noncompact symmetric space) G/K
in S-Ishikawa-lkeda (ICML2022)

10/20

Group Convolutional NNs on Hilbert Space !

1S-Ishikawa-lkeda, NeurlPS2022

11/20
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Definition (Group CNN)

Let G be a group, H be a Hilbert space, and T : G — GL(H) be a group representation. Let H,, C H
be an m-dimensional subspace equipped with the Lebesgue measure . Put

SPH()(g) = /H XRW(% bo((axz)(g) —b)dM(a)db, zeH,ge G

where the (G, T')-convolution is given by

(axx)(g) == (Ty-1[x],a)n.

Example (Cyclic CNN for multichannel image)

n n )
CNN(x Z (Z Z a” Z+pj+q bé> , T = (a;f]) €ER™ X" (p,q) € (Z/mZ)*

k=114,5=1

ie., G = (Z/mZ)?,H=R™*" T, (x):= (z3_,._,)

In the following, e € G denotes the identity element.

Definition (Ridgelet Transform)
For any function f : H,, — C% and p: R — C, put

RIf: dl(ab) /f (@ )7 — D)dA(x).

Definition ((G,T)-Equivariance)
A (nonlinear) map f : H — C% is (G, T)-equivariant when

f(Tyla])(h) = f(z)(¢™'h), Vo €Hpm,g,heG

Theorem (Reconstruction Formula)
Suppose that f is (G, T)-equivariant and f(e)(e) € L*(H,,), then S[R[f; p]] = (o, p)) f.

@ Meaning: Universality of continuous GCNN
@ Corollary: cc-universality of finite GCNNs

13/20
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Sketch Proof

Step 1. Turn to Fourier expression:

Shl(z)(g) = / v(a,b)o({T,-1[x],a)3 — b)dadb

HmXR
1 ; ;
= — v (a, w)ot (w)e™ To=1 [T gqdw
27 JH xR
1 i "
=L [ )t @) T O o g,
T JHm xR

Step 2. Put separation-of-variables form:

~

V5 (& /w,w) = F(&)(e)pH(w).
By the construction it is a particular solution:
Strd@e) =52 [ FEO@ETA9 NG [ o)l
T JH
P))

R
= ((07

m

f(@)(9)-

and v¢, = R[f;p].

Fully-Connected NNs on Noncompact Symmetric Space?

25 |shikawa-lkeda, ICML2022
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Definition (Fully-Connected NNs on Noncompact Symmetric Space G/ K)

Let G be a connected semisimple real Lie group, let G = K AN be the lwasawa decomposition, and let
X := G/K be the noncompact symmetric space. Put

ShH(=) 1:/ oy R’y(a,wb)a(a(x,w — b)et @ dadudb, z€ X =G/K
a*x X

where a* is the dual of Lie algebra of A, 0X is the boundary, and (z, u) is an X-counter of the
Euclidean inner product z - u for (z,u) € R™ x S™~1,

Example (Continuous Horospherical Hyperbolic NN)
On the Poincaré ball model B™ := {x € R™ | |x| < 1} equipped with the Riemannian metric

g=401—|z|)2 X2, dz; @ dz,
Syl(z) = / v(a,u,b)o(alx, u) — b)e?®® dadudb, = € B™
RxOB™ xR

1—|z|f

o=(m-1)/2, (w,u)zlog( ), (x,u) € B™ x OB™

@ — ulf,

16 /20

Definition (Ridgelet Transform)
For any function f : X — C and an auxiliary function p : R — C, put

Rif: o) = [ clfl@afe,a —Dert=ar

X

where ¢[f] is a Helgason-Fourier multiplier.

Theorem (Reconstruction Formula)
For any o € S'(R),p € S(R), and f € L*(X), we have

S[R[f; Pl = / R[f; pl(a,u, b)o(alz, u) — b)e? ™™ dadudb = (o, p)) .

a*x0X xR

where (o, p)) is a certain scalar product.

@ Meaning: Universality of continuous Fully-Connected NN on X
@ Corollary: cc-universality of finite Fully-Connected NNs on X

17 /20
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Fourier Analysis on X = G/K

Helgason, GGA (1984, Introduction); GASS (2008, Chapter III)
Definition (Helgason-Fourier Transform)
For any function f: X — C,

FOnu) ::/ f@)elmMa@w gz (X u) € a* x 0X
p's

with a certain constant vector p € a*.

Theorem (Inversion Formula)
For any f € L*(X) (or f € C(X)),

fa) =W [ F e o) Faxdu, @ X
a*xo0X

where ¢ is the Harish-Chandra c-function, and |W| is a constant.

This is a “Fourier transform” because e(~iA+0)(:4) is the eigenfunction e(~iAT@)(*:u) of the
Laplace-Beltrami operator Ax on X 18/20

Sketch Proof

o Given a function f: G/K — C, consider solving an integral equation S[y] = f of unknown ~.
@ Step 1: Change the frame of S[y] from neurons to a Fourier expression:

S(x) :z/ ox Rw(a,u,b)a(a(x,w — b)e?® W dadudb
a* X X

1 / g 2 (ir+o) () AU |
= V(A w, u,w)|e(A)["et TR —=a | w] T ot (w) dw,
2 R[ a* xOX [e(M)]?
where f denotes the Euclidean-Fourier transform in b.
@ Step 2: Since inside [-- -] is the inverse Helgason-Fourier transform, put a separation-of-variables
form:

v, (Mw, u,w) = FOLu)pF(w)e(N)] 2.
Then, by the construction, it is a particular solution:
Slvp.el = (o.0) f,

where ((a,p)) := WL [ ot (w) o (w) |w| ™ dw.
@ In the end, we can verify that ¢ , is the ridgelet transform R[f; p].

19/20




Mathematical Optimization and Statistical Theories using Geometric Methods 29

Conclusion

o Ultimate goal:
» Characterize deep solutions

@ We have seen:
» Shallow solutions are characterized by ridgelet transform

@ Take home message:

> If there is a Fourier transform, then so is the ridgelet transform

o We will see:
> A ridgelet transform for depth

20/20
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Stein-type distributions on Riemannian manifolds

Tomonari Sei  (The University of Tokyo)*!
Ushio Tanaka (Osaka Metropolitan University)*?

1. Stein-type distributions on the Euclidean space

Let P? be the set of probability distributions ;1 on R? with mean zero and finite second
moments such that each marginal distribution y; (i = 1, ..., d) is absolutely continuous
with respect to the Lebesgue measure dx; on R. We say that a probability distribution
p € P? is Stein-type if it satisfies

[t (S )= [ o i1

for any absolutely continuous function f : R — R with bounded derivative f’.

Let Tew be the set of coordinate-wise transformations T'(x) = (T1(x1), ..., Ta(zq))
such that each Tj is non-decreasing. In [2], it is shown that for any given g € P2,
there exists 1" € 7Ty such that Ty is Stein-type. The transformation is characterized
by a minimizer of a functional

d d 2
dy; 1
F(p) = E /logdg‘duﬂr/é <§ x) dp,
i=1 ¢ i=1

over a fiber {Tyuo | T € Tew}. The fiber is totally geodesic in the L2-Wasserstein space
and F' is convex with respect to displacement interpolation. The optimal map 7' is
applied to the problem of determining a general index in [2].

2. Generalization to manifolds

We generalize the Stein-type distributions to those on Riemannian manifolds. The
space R? is replaced with a product space M = Hle M;, where each M; is a Rie-
mannian manifold. The space P? of distributions is defined as well. Let 7., be the
set of coordinate-wise transformations T'(x) = (T1(z1),...,Tu(xq)) such that each
T, : M; — M, is monotone. Here, T; is said to be monotone if it is written as
Ti(z;) = exp,, V¢;(x;) with a cost convex function ¢; : M; — R (see [1]). The Stein-
type distribution is defined by a minimizer of a functional

d
an,
P =Y [tos Piap+ [ Vie)dn
i=1 !

over a fiber {Tyuo | T € Tew}, where V @ M — R is a given function.
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Introduction
[ JeJele]

The Stein identity

We begin with the following fact.

Proposition (Stein identity)
A random variable X follows N(0,1) if and only if

E[XfF(X)] = E[f'(X)]

for any differentiable function f with bounded f’.

Proof: (=) For the density function ¢(x) = (2rr)~}/2e>*/2,

[ 0tx)ex = [ FG0L-o00) e = [ FE00(x)ax

(<) If E[Xf(X)] = E[f'(X)], it is shown that X has density p(x).
Then the identity is equivalent to

p'(x) + xp(x) = 0.
The unique solution is p(x) = ¢(x). O

2 /3%
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Introduction
(o] Jele]

Application of the Stein identity

Why is the Stein identity important?
@ Stein’s unbiased risk estimator (statistics)
@ Central limit theorem (probability theory)
@ Stein discrepancy (machine learning)

Application: Stein’s unbiased risk estimator

o Let X ~ Ny(0, Iy), where 6 € RY is unknown parameter.
o Consider an estimator X + f(X) of §. The risk is

E[IIX + f(x) = 0]°]

= E[IIX = 011°] + 2E[F(X) " (X — 0)] + E[lIF(X)]*]
= d 4+ 2E[VTF(X)]+ E[||f(X)||?)] (Stein identity)
= E[gf+2VTf(X) + || F(X)|°]

risk estimator

3/3k

Introduction
(e]e] le]

Another application of Stein identity

Application: Poincaré inequality (Chernoff 1981, Chen 1982)
o If X ~ N(0,1), then

Vig(X)] < Elg’(X)4,

with equality if and only if g(x) = ax + b.

@ Indeed,

V[g(X)] < E[(g(X) — g(0))°]
= E[(Js' &'(x)ax)?]
< E[X [ g'(x)%dx] (Cauchy-Schwarz*)
= E[g'(X)?] (Stein identity).

(* valid even for X < 0.)

4/35%
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Introduction
oooe

Outline of this talk

In this talk, we generalize the Stein identity in the following
manner.

@ Define Stein-type distributions on R? by an identity
E[(X1 + -+ Xg)f(Xi)] = E[f'(Xi)]-

@ Define Stein-type distributions on the direct product of
Riemaniann manifolds (on-going work).

We first see the background of the problem in a couple of slides.

5 /3%

OGlI
€000

Background: Objective general index (OGlI)

S. (2016) pointed out that the Stein identity is related to a scaling
problem, which is a motivation of this work.

o First, consider d random variables Xi, ..., Xy.

@ For example, X is academic score of students on i-th subject.

Proposition (S. 2016)

There exist unique wy, ..., wy > 0 such that
Cov(Y,wXj))=1 (i=1,...,d),

where Y = wy X1 + - - - + wyg Xy, under a mild condition.

@ The proof is based on matrix scaling (Marshall-Olkin 1968).
@ We call Y the objective general index (OGI).

@ The Stein identity appears in a functional version of this fact.

6 /35
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OGlI
0000

[llustration

A numerical example

Suppose that the covariance matrix of X1, Xo, X3 is

1 —-05 -0.5
(Cov(Xi, Xj))ije1=| —05 1 0
—-0.5 0 1
In this case,
COV(Xl + Xo + X3,X1) =1-05-05=0.
But, a weight (wy, wa, w3) = (2.135779,1.667566, 1.667566) gives

COV(l/V1X1 + wo Xo + W3X§, W,'X,') =1, =123
oGl

7 /3%

OGlI
00®0

Functional OGI

@ Next, consider a random variable X with density p(x).
@ Define an infinite number of variables by Heaviside function:

he(X) = lixzey — Ellix=gl, €€ R.
e What is OGI of {h(X)}eer?
Proposition (S. 2016)
There exists a unique positive function w(&) such that
Cov(Y,w(§)he(X)) =1 (£ €R), (%)

where Y = [ w(&)he(X)p(£)dE. In fact, Y ~ N(0,1).

@ We call Y the functional OGI of X.
@ The identity (x) is considered as a version of the Stein identity.
@ Let us check it.

8 /3R
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OGlI
foYeleY }

Functional OGI and Stein identity

@ It is shown that the condition of the functional OGI
Cov(Y,w(&)he(X)) =1
is equivalent to the Stein identity
E[Yfe(Y)] = E[fg'(Y)]

for fe(y) = he(T(y)) and T(x) = [ w( )p(§)d¢.
@ In other words, the functional OGI is characterlzed by an
increasing function T that attains the Stein identity.

@ The Stein-type distribution we now discuss is a generalization
of N(0,1) based on this fact.

9 /3%

Stein-type distribution

900000000

Variational characterization

Before proceeding, we recall a variational characterization of
N(0,1).

Proposition

F(p) = /R p(x) log p(x)dx + /R X?p(X)dX

has a unique minimizer p(x) = ¢(x) = (2r)~/2e=*"/2,

e Proof 1: F(p) = [ p(x)log(p(x)/¢(x))dx + const
@ Proof 2: Let py be a minimizer of F. Let T(x) = x + f(x)
be an increasing function. Then,

F(Tipo)—F(po) = & (= [ po(x)f'(x)dx + [ F(x)po(x)dx)+o(e).

The stationary condition is the Stein identity. So pg = ¢.

10 /3R
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Stein-type distribution
OCe0000000

Now let us go on to the RY case.

o Let P? be the set of probability distributions 1 on RY such
that the marginal distribution p; satisfies

Jg xidui =0, Rx,?d,u,- <00, i< Leb.
e We call T:RY — R a coordinate-wise transformation if
T(x)=(T1i(x),-.., Ta(xq)), T!(x;)>0.
@ For each i € P2, define the p-fiber
F, = {Tyu € P?| T is coordinate-wise},

where Ty denotes the push forward.

11/35

Stein-type distribution
O0@000000

Picture

@ The space P? is decomposed into the set of fibers.
@ We define a Stein-type distribution in each fiber.

.

______________ Stein-type

copulas
fiber

e F, is totally geodesic in the Wasserstein space.

@ F, has a unique copula (Sklar's theorem). A copula refers to
a distribution with uniform marginals on [0, 1].

12 /3R
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Stein-type distribution
O00@e00000

A free-energy functional

o Define a functional F : P> — R by
d du; 1 d 2
F(u) = log —dui + = Xi | du,
(1) ;/Rogdxiuﬂszle(; ) H

@ We can further consider

d
dui
Fp) = Z/Rlog d_Xl_d,Ui"'/Rd V(x)du,
i=1

with some smooth function V(x) (S. 2017).

@ This appears in the optimal transport theory (McCann 1997)
except that the entropy term is replaced with [ log %d,u.

13 /35

Stein-type distribution
O000e0000

Minimization over the fiber

e F is not bounded from below on the whole space P?.

e But F may be bounded from below on each fiber F,.

14 /3R
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Stein-type distribution
000008000

Stein-type distribution

@ To minimize F over the fiber, consider a perturbation of the
transformation around the identity:

T. =Id +¢f, f(X) = (fl(Xl), ceny fd(Xd)), e € R.

@ Then we have, as ¢ — 0, the first variation

FUT) = F()+e 3 [ {~00) Al +x0) .

Definition (Stein-type distribution)

A distribution p is called a Stein-type distribution if it satisfies

/ (Xl + .-+ Xd)fi(Xi)dM = / ]‘;-/(X,')dlu,7 VI, Vf; € Cl(R)
Rd R4

15 /35

Stein-type distribution
O00000e00

Examples

Example 1 (independent case)

If X1,...,Xy are independent and have zero mean, then the

equation
E[(X1 + -+ -+ Xa)f(X))] = E[f'(Xi)]

forces
E[Xif(Xi)] = E[f'(X;)]-

Thus, only the independent Stein-type distribution is the standard
normal distribution.

16 /3%
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Stein-type distribution
000000080

Examples

Example 2 (Gaussian)

Let (X1,...,Xq) ~ Ng(0,S). Then the distribution is Stein-type if
and only if
d

ZSU:COV X;,ZXJ =1

Jj=1 J

fori=1,...,d. This is the same as the OGI property.

Example 3 (non-Gaussian)

Let Z ~ N(0,1) and U be any distribution with E[U] = 0 and
E[U?] < co. Then the random vector (X1, X>) with

_Z+U
=

Z-U
V2

X1 Xo

is Stein-type.

v

17 /35

Stein-type distribution
O0000000e

Functional OGlI (revisited)

We briefly discuss an application of our results.

Problem

@ Let Xi,..., Xy be random variables with joint density p(x),
which represent students’ scores on d academic subjects.

@ How to define the overall score?

o Let Y = 27:1 T;(X;), where T(X) is the Stein-type.
@ Then the Heaviside function f(x;) = he(x;) yields

E[Y | Xi>& > E[Y|Xi<&], VEER, Vi

@ Interpretation: students with higher score on each subject i
has higher overall score in mean.

18 /3R
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Known results
@000000

Assumption on p: copositivity

S. (2022) established an existence and uniqueness theorem. We
suppose some conditions.

@ For each 11 € P?, denote the product measure of marginal

distributions by

d
pt =TT i

Definition (Copositivity)
We say that u is copositive if

- S Tilxi)}2du 0

U0 = 58 T, T2~

o Trivially, if 4 is independent (p = pt), then B(u) = 1.

e Sufficient conditions for copositivity are discussed later.

19 /35

Known results
[e] lelele]e]e]

Assumption on u: regular support

Definition (Regularity)

We say that u has a regular support if the support of p is the
direct product of the supports of p;’s.

A A

regular non-regular

20 /35




Mathematical Optimization and Statistical Theories using Geometric Methods 41

Known results
[e]e] lelele]e]

Existence and uniqueness theorem

Theorem (Existence and uniqueness)

Suppose that p is copositive and has a regular support. Then there
exists a unique Stein-type distribution in the u-fiber.

21 /3%

Known results
Proof sketch.

@ Uniqueness follows from the displacement convexity

FII(M =) To + ATalgp) > (1 = A)F((To)su) + AF((T1)sm),

where strict inequality follows from the regular support
condition.

@ For existence, we use the copositivity to obtain

n 2
F(M)Z/log%du“rg/(zxo dp.

Then the problem is essentially reduced to the independent
case [t = .

22 /3R
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Known results
O0000e00

Sufficient conditions for copositivity

@ We establish sufficient conditions for copositivity

o JOSi Tix) Y du
P00 = 308 TISS, 7o) 12t

@ The notion of positive dependence plays a significant role.

> 0.

Definition (e.g. Riischendorf 2013)

@ p(x) is called MTP, (multivariate totally positive of order 2)
if p(x vV y)p(x Ay) > p(x)p(y) for all x,y € RY.

@ p(x) is said to be associated if [ ¢pyppdx > [ dppdx [ 1ppdx
for all increasing ¢, : R — R.

@ p(x) is called PSMD (positive super-modular dependent) if
[ d(x)p(x)dx > [ ¢(x)pt(x)dx for any super-modular
function ¢.

23 /3%

Known results
000000

Sufficient conditions

Theorem (FKG 1971, Christofides 2004, S. 2017)
MTP, = associated = PSMD = copositive.

@ MTP; is relatively easy to confrim.

24 /3K
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Known results
O00000e

Open problems

There are some open problems.

@ The marginal support of any Stein-type density is R.
@ Existence implies uniqueness.

© A Gaussian distribution is copositive if the covariance matrix
is strictly copositive.

For the rest of talk, we generalize the Stein-type distributions on
RY to the direct space of Riemannian maniolds.

25 /35

Generalization to manifolds
@000000

Optimal transport on Riemannian manifolds

We recall the optimal transport theory on Riemannian manifolds
according to McCann (2001).

o Let (M, g) be a Riemannian manifold that is C3, compact
and connected without boundaries.

@ An example in mind is M = St (circle).
@ Let d(x,y) be the geodesic distance between x,y € M.
@ A cost is defined by c(x,y) = d(x,y)?/2.

@ A function ¢ : M — R is called cost-convex if there exists
¢* : M — R such that

¢(x) = sup{—c(x,y) — ¢"(y)}-

yeM

o If ¢ is cost-convex, it is Lipschitz and therefore is differentiable
vol-a.e. (Rademacher’s differentiability theorem).

26 /35
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Generalization to manifolds
(o] lelelelele}

McCann's theorem

For cost-convex ¢, a map T : M — M defined by

T(x) = exp(Vo(x))
is considered as a generalization of increasing functions on R.

Theorem (McCann 2001)

Let 1 < vol and v be probability measures on M. Then there

exists a unique cost-convex function ¢ (up to additive constants)
such that T(x) = exp,(V®(x)) pushes p forward to . This map
is a unique minimizer of the transportation cost [ c(x, T(x))dp.

27 /35

Generalization to manifolds
(e]e] lelelele]

Let My, ..., My be C3 compact Riemannian manifolds.
Consider the product space M = ch_/:1 M;.

Let P be the set of probability distributions ;1 on M such that
the marginal distribution p; satisfies u; < vol;.

@ Wecall T: M — M a coordinate-wise transformation if
T(X) = (Tl(Xl), ceey Td(Xd)), T,' = eprl_(V¢,-(x,-)),

where ¢; is cost-convex.

@ For each p € P, define the p-fiber
Fu={Tyu € P| T is coordinate-wise},
where Ty denotes the push forward.

28 /3K
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Generalization to manifolds
0008000

Picture

@ The space P is decomposed into the set of fibers.
@ We define a Stein-type distribution in each fiber.

.

Stein-type

copulas

fiber

Remark: Sklar's theorem on manifolds
F,, has a unique “copula”, which refers to a distribution with
uniform marginals on M;. (cf. circula; Jones et al. (2015))

29 /35

Generalization to manifolds
O000e00

Stein-type distribution on M

o Let V/(x) be a smooth function on M = ]2, M.
@ Define a functional F : P — R by

du;
d,u,-—l—/ V(x)dpu.
X M

Definition
A Stein-type distribution on M is defined by a minimizer of F(u)
over a fiber.

Problem: Existence and uniqueness? — future work..
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Generalization to manifolds
0000080

Stationary condition

@ To minimize F over the fiber, consider a perturbation of the
transformation around the identity:

Te(x) = expy(ef (X)), f(x) = (Alx), .. falxa)), €€R.

@ Then we have the first variation

F((To)om) = F(n) + Y / (V) + F(6) ViV (x)

If 1 is Stein-type, then

/ f,-(x,-)V,-V(x)du:/ Vifi(xi)du, Vi, Yf € CY(M;).
M M

31 /35

Generalization to manifolds
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Example
o Let Mlz---:/\/ldzsl.

@ We use the coordinate x; = (cos6;,sin6;) € M;.

@ Consider a function
V(x) = S{(5;cos )2 + (;sin )2},

The derivative is 9y, V(x) = —A(0)sin(6; — 0), where A(6)
and 6 are defined appropriately.
@ Then the Stein-type distribution has to satisfy

— [ £(0)A0) sin(0; — O)dp = [,, f/(0;)dp.

@ Any application? — future work...

32 /3K
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Summary
[ JeJe}

Summary and future work

Summary

@ We defined the Stein-type distributions on Euclidean space
and established the existence and uniqueness theorem.

@ We generalized it to distributions on Riemannian manifolds.
Future works

@ Existence seems OK due to the compactness. Uniqueness may
be non-trivial.

@ Any analogue of Poincaré inequality?

@ We are seeking applications.

Thank you for your attention!
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On LASSO and SLOPE estimators and their

pattern recovery

Tomasz Skalskil?

YWroctaw University of Science and Technology, Poland
2LAREMA, University of Angers, France

Least Absolute Shrinkage and Selection Operator (LASSO) and Sorted ¢; Pe-
nalized Estimator (SLOPE) are the regularization methods used for fitting
high-dimensional regression models. They allow to reduce the model dimen-
sion by nullifying some of the regression coefficients. Moreover, SLOPE al-
lows the further reduction by equalizing some of nonzero coefficients, which
allows to identify situations where some of true regression coefficients are
equal.

We shall introduce the notion of the pattern for LASSO and SLOPE and its
subdifferential-induced generalization to other convex penalized estimators,
which will be illustrated carefully in the case of the orthogonal design matrix.
This talk will present new results on the strong consistency of SLOPE esti-
mators and on the strong consistency of pattern recovery by SLOPE when
the design matrix is orthogonal. We shall also present the relations of LASSO
and SLOPE with root system induced convex hulls.

The research was supported by a French Government Scholarship and by
Centre Henri Lebesgue, program ANR-11-LABX-0020-0.
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Linear regression model

Linear regression model: Y = X + e:
@ Y € R": response vector
e X € R"*P: design matrix
@ 3 € RP: unknown parameter vector

@ ¢ € IR™: random noise term

Noiseless case: € = 0.
Noisy case: ¢ has continuous and symmetric distribution.
Goal: to estimate (.

2/25
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Ordinary Least Squares estimator

@ Ordinary Least Squares (Legendre, 1805, Gauss, 1809)
o BOLS .= arg m|n Y — Xb||3

° BOLS — (X/X) lle
Not defined when n < p.
In noisy case: with probability 1 has p pairwise different coordinates.

3/25
Penalized estimator

Consider the following penalized estimator

A 1
B :=argmin Z||Y — Xb||3 + AJ(b), where J is a norm.
beRP 2

o (3 is well defined when n > p as well as when n < p.

o The pattern of 3 is characterized by its subdifferential 9.
@ The dual norm J* is given by J*(x) = sup{z'x : J(z) < 1}.
e A=0if and only if J*(X'Y) < 1.

4/25
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Examples of penalized estimators

o Ridge regression (Hoerl & Kennard, 1970)
2. o1 . 2
e B:=arg min 3 |Y — Xb|l5 + A|bll,, A>0
@ LASSO (Chen & Donoho, 1994, Tibshirani, 1996)
N . 2
o [LASSO — arg brg]llgp% |Y = Xb||5 + A|[bll;, A>0
e SLOPE (Bogdan, van den Berg, Sabatti, Su, Candes, 2015)
p
ASLOPE ._ 1 2 _
o f3 = argbr2I|Rnp5||Y—XbH2 + I;)\,\b](,-), A1 >0,
AL > A 20, [blgy = ... > [b(p)

5/25

Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO estimator (Chen & Donoho, 1994, Tibshirani, 1996) minimizes the
¢1-penalized Euclidean distance between Y and Xb:

A 1
LASSO ._ L 2
6} = arg min |Y — Xbll5 +X[bl;, A>0.

o [3LASSO is well defined both for n > p and n < p.

® J).,(b) = sign(b).

6/25
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LASSO dual ball = hypercube

o J*(b) = ||blls
o B* = Boo(0,\) = [~ )]

7/25

Sorted ¢! Penalized Estimator (SLOPE)

SLOPE (Bogdan, van den Berg, Sabatti, Su, Candés, 2015) minimizes the
sorted ¢! penalized Euclidean distance between Y and Xb:

~ 1

SLOPE : 2

B3 = arg min =[|Y — Xb||3 + Jr(b).
arg min | 12 + Ja(b)

e Sorted ¢! norm: Jy(b) := Z Ail bl (i), where

A1 >0\ > )\ >0 and ‘b‘(l) > ... > |b|(p).

o [(SLOPE is \well defined both for n > p and for n < p.

SLOPE generalizes the previous approaches:
0\ =...= )\, =0= BLOPE = BOLS
0 AL =...=Ap> 0= (SLOPE _ jLASSO

8/25
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SLOPE dual ball = Signed permutahedron P=(A)
The dual of sorted /% norm is:

Ji(b) = ImaX{|b|(1) b1y + [bl(2) b1y + -+ [blp) } |

AT M T M+,
The unit ball of J5 is the signed permutahedron P=(A) :

PE(N) = Conv{(ETAr1);- - TAx(p)) : ™ E Sp}-

r 4
£

»
i mem

-.l-“--o..

. ,t‘n"

P£(A) in R2
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Root systems and statistics

¢
g

*
» »
'-—-q-.-

- P =y
.

~ ,ﬁ."

LASSO: A

SLOPE: B,

10/25
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SLOPE pattern

@ The SLOPE pattern is a function patt: RP — ZP defined by
patt(b); = sign(b;)rank(|b;|), i=1,...,p,
where rank(|b;|) € {1,2,..., k} is the rank of |b;| in a set of nonzero
distinct values of {|b1],...,|by|} (and sign(0) = 0).
@ Properties of patt(x):

e sign(patt(x)) = sign(x) (sign preservation),
o |xi| = |xj| = |patt(x);| = |patt(x);| (clusters preservation),
o |xi| > |xj| = |patt(x);| > |patt(x);| (hierarchy preservation).

x=(12, 12,5 -5 0,3) = patt(x)=(1, 1, 3, =3, 0, 2).

11/25

SLOPE vs. OLS

Theorem (Schneider & Tardivel, 2021)

For n > p and ker(X) = {0} we have:

BOLS _ 5SLOPE — Proj(ﬁOLS) on (X'X)_lpi(/\).

For p > n:

Y — X(BOLS — BSLOPEY = Proj(39L°) on (X'X)trow(X) N PE(A).

Theorem (Orthogonal design, n > p)

The orthogonal projection of B°S on P~(N) is equal to BOLS _ BSLOPE,

For LASSO: proven by Ewald and Schneider (2018).

12/25
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SLOPE vs. OLS

f2
2 L
J (B (12 ey @) e
oLs
(-2,1) SLOP E\ 2/1)
SLOPE bOLS
4 B
(-1,0) (0,0) (1,0)

- H L) (0;r1) (1:-2) (1)
oLs

Figure: B5LOPE and 5O in orthogonal design: X'X = I, for A = (2,1)’.

Simpler expression for SLOPE in orthogonal design: Tardivel, Servien and
Concordet (2020).

13/25

y() — x(g 1 o)

Consider the sequence of regression models: Y(" = X(Mg 4 ()
with (" ~ N(0, 021,).
No assumptions on relations between (" and ("™ for n # m.

Assume that

lim n=3(X(MY X" = ¢ > 0.

Let E;?LOP E n> 1, be the SLOPE estimator corresponding to the tuning
vector AW = (A A Ay

(n)

o If lim 21— =0, then BSLOPE 22 g
n—00 n

o If Xo||Blloe > B'CB/2 and X" /n — 0,
then B>LOPE does not converge to 3. Hence, 3°LOPF is not strongly
consistent for 3.

14/25
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y(n) — x(ng 4 0

Assume that

(n)
[im )\L =0
n—oco n

and that there exists 6 > 0 such that
Al _ 5(n)

lim inf ! i+l
P 7 log(m) /27

Then we have

=m>0 for i=1,...,p—1.

patt(8;-9FF) 25 patt(B).

15/25

Application of SLOPE: signal denoising

oLs
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Application of SLOPE: signal denoising

LASSO
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Application of SLOPE: signal denoising

DEBIASED LASSO
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Application of SLOPE: signal denoising

DEBIASED SLOPE

260 280 300
1 1 1

240
1
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1

120 121 122 123 124 125
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Application of SLOPE: signal denoising

DEBIASED SLOPE

0 50 100 150 200 250 300
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Application of SLOPE: signal denoising

OLS LASSO-CV | LASSO-LS | SLOPE-LS
MSE(,-) | 613.6797 | 426.3705 171.7957 20.74967

Comparison of MSE between different regression methods

21/25

Application of SLOPE: pattern recovery
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Domo arigato gozaimasul
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Appendix: Pictures from the Title Page

Meeting point of scaled B and scaled unit ball in £2 of (Y — Xb) is equal
to (.

sign(514550) = (0, +) patt(350PF) = (1,1)

26 /25
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Appendix: Subdifferential

Definition (Subgradient)

Let f : RP — RR. Then g is a subgradient of f at b if

Vhe RP f(b+ h)>f(b)+g'h

Definition (Subdifferential)

The subdifferential 9f(b) of f at b is the set of all subgradients of f at b.

27 /25

Appendix: Thresholded estimator

Definition (Thresholded penalized least squares estimator)

Let pen be a penalizer, X € R™P, y € R" and A > 0. Given
B € Sx apen(y), we say that & is a thresholded estimator of /5 if

Apen(B) C Dpen ().

Definition (Thresholded LASSO)

B%ASSO, if’ﬁ%ASSO|>>T,

ALASSO
B; ’T_{

0, otherwise.

28 /25
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Appendix: LASSO and SLOPE in orthogonal design

Theorem (Tibshirani, 1996)
Exact formula for LASSO in orthogonal (X'X = 1) design:

BiA%%0 = sign(BP"°) max{| 5P| — A, 0}.

Theorem (Tardivel, Servien, Concordet (2020))

A o N ko,
Let ]BOLS\(l) > ... > |BOL5\(p). Let Sy = Z(|BOL5](,-) — A;). Denote a
i=1
partition (ki, ko, ..., ks = p) of {1,2,..., p} such that

Si—Si_ . A
ki == max{arg maxy>k._, /ﬁ—k,-k_ll}} with kg = Sg = 0. Then
3ok BI-SIOPe > 0 and |(5°P¢| is given by

Sk Sk — Sk,
k - vy (ks — ks = 51 .
<1terms(k1>+, , (ks — ks 1)telrms<kskSl )
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Likelihood Geometry of Correlation Models

Carlos Améndola

Technical University of Berlin

We present a problem where algebra appears naturally when estimating
correlation matrices, that is, standardized covariance matrices. Concretely,
we study the geometry of maximum likelihood estimation for correlation
matrices, which form an affine space of symmetric matrices defined by setting
the diagonal entries to one.

We study the likelihood geometry for this model and linear submodels
that encode additional symmetries. We also consider the problem of min-
imizing two closely related functions of the covariance matrix: the Stein’s
loss and the symmetrized Stein’s loss. Unlike the Gaussian log-likelihood,
these two functions are convex and hence admit a unique positive definite
optimum.

Studying the critical points in all three settings leads to systems of non-
linear equations, and we compute some of the algebraic degree invariants
that measure the algebraic complexity of each optimization problem.

This is joint work with Piotr Zwiernik (University of Toronto, Canada).
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Likelihood Geometry of Correlation Models

Carlos Enrique Améndola Cerén
(Technical University of Berlin)

OCAMI: Mathematical optimization and statistical theories using geometric methods

October 20, 2022

Setup / Introduction

S? real symmetric positive definite n x n matrices

°
@ Model: M c S, and Data: S €S

@ What is the ‘best’ point ¥* € M that explains 57
°

Gaussian ML estimation:

5 = argmax logdet(X 1) —tr(X71S)
YeM

Can be seen as minimizing the divergence Z(S||X), where

T(X1,%5) =tr(X155%) — logdet(X155) - n

# complex critical points for generic S: ML degree

In this talk: M consists of correlation matrices, i.e. X; =1 Vi

Carlos Améndola Likelihood Geometry of Correlation Models
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Motivating Example: Bivariate Correlations

o Let M c S? consist of 2 x 2 correlation matrices:

5 _ 1 p Kos1_ 1 1 -p s[5 s
p 1 1-p?2\-p 1 S12 S22

where -1 < p< 1.

@ Finding the MLE corresponding to p reduces to solving a cubic
equation [Kendall, Stuart, 1961 “Advanced Theory of Statistics”|:

p> —s1p” + (s11+ 52— 1)p—s12 = 0

@ ML degree is 3. There could potentially be three positive definite
solutions with a multimodal likelihood function ¢(X).

@ How often does this happen? How bad can it be?

Carlos Améndola Likelihood Geometry of Correlation Models

A statistical perspective

The density of the distance from the truth
LO —
Sample size
<
—
— 10
> @ = 50
7
c
[}
0 «
i
° —
| | | | |
0.0 0.5 1.0 15 2.0

Carlos Améndola Likelihood Geometry of Correlation Models
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Probability of one real critical point

n=2

~ 5 0.907 | 0.883 | 0.881 | 0.847 | 0.815

© 0.974

10

0.999

sample size

14

0.999 0.999 1.000

18

0.999 1.000 0.999 1.000 1.000

0 0.2 0.5 0.8 0.99

rho

Carlos Améndola

Likelihood Geometry of Correlation Models

Case Study: Bivariate Correlations

Let a= 2322 and b = 1.

Note that if S €S2 then a> 0 and |a| > |b|.

It holds that LZ(S||T) = ﬁf(p), where

f(p) =p> - bp® - (1-2a)p—b.

f(-1)=-2(a+b)<0and f(1) =2(a—b) >0 = at least one real
root in (-1,1).

@ The discriminant of f is

Af(a,b) = —4[b* - (a* +8a—-11)b* + (2a-1)°].

f has a single real zero < Af(a,b) <0.

However, we are more interested in:

when does f have a single critical point in (-1,1)7

Carlos Améndola Likelihood Geometry of Correlation Models



Mathematical Optimization and Statistical Theories using Geometric Methods

69

Likelihood Geometry for Bivariate Correlations

Three real

Three positive
definite solutions

a
solutions
)\
a=1 Q° &
. S
r 4

Carlos Améndola

Likelihood Geometry of Correlation Models

Case Study: Bivariate Correlations

Data matrix

8

where a > |b| > 0.

2
It holds that /5Z(S|IT) = gy

a b
b a

g(p), where

g(p) = p* —2bp> +6ap® —6bp+2a—-1.
g(-1)=8(a+b)>0and g(1)=8(a-b) >0.

The discriminant of g is

Ag = —256(27b6 —27(2a% + 6a—5)b* + 9(3a* + 362> — 32a° + 8a + 1) b?

-(2a-1)(92* - 2a+1)?)

If g(p) >0 for all peR (globally convex) = Ag(a, b) > 0.
However, we are more interested in:

when is g nonnegative in (-1,1)7

Carlos Améndola

Likelihood Geometry of Correlation Models
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Convexity Analysis

Doubils
in (-1

Atripleroot ‘s [ ,-*  Atriple root

Carlos Améndola

Likelihood Geometry of Correlation Models

Alternative Loss Functions

From the divergence
T(X1,%5) =tr(X155%) — logdet(X1351) - n

@ 7(X1,Y5) >0 and is zero if and only if X1 = ¥».
e strictly convex in £ and in X5}
Fix S eSI:
@ entropy loss: Z(S||X) (minimizer ¥ is MLE)
@ Stein’s loss: Z(X||S) (minimizer ¥ is dual MLE)
© symmetrized Stein’s loss:

L(Z,5) = 2 (Z(SIIF) + Z(=]|S))

(2) and (3) are strictly convex in ¥ and optimizers are uniquely defined

Carlos Améndola Likelihood Geometry of Correlation Models
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Full correlation model

Let M c S be the space of all correlation matrices: ¥;; =1 forall 1 <i<n.
First order optimality conditions give that the optimum is a correlation
matrix ¥ = K1 satisfying for each i # j:

© entropy loss (MLE):
Kij = (KSK)j;

@ Stein’s loss (dual MLE):
Kij= (5™
© symmetrized Stein's loss:

(KSK)j = (571

Carlos Améndola Likelihood Geometry of Correlation Models

Algebraic Degrees

For the bivariate correlation model n = 2, [Brownlees, Llorens-Terrazas
(2020)] observed that the dual MLE can be given in closed form (solving a
quadratic equation!).

From our computations, for n > 1 one has

dMLdeg(n) < MLdeg(n) < SSLdeg(n)

n 1 2 3 4 5 6 7 8 9
SSL degree |1 4 28 292 7 ? ? 7 ?
ML degree |1 3 15 109 1077 13695 ? 7?7 ?

dual ML degree | 1 2 5 14 43 144 522 2028 8357

For n >4, computed with the package LinearCovarianceModels. jl

how are these numbers growing?

Carlos Améndola Likelihood Geometry of Correlation Models
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Equicorrelation Model

The model M now consists of all X € S” such that

>i=1 Z,-j:pforiij.

This means that p is restricted to n‘—_ll <p<l.

Let W = S~1. We can exploit the symmetry and set:
— 1
W=— % Pwp’
N pes,

Theorem (Am., Zwiernik (2021))

For the equicorrelation model, the dual ML degree is always 2 for every
n>1. The dual MLE ¥ admits the explicit form

. L+(n-2)wx\/(nw+1)2-4w
- 2(n-1)w '

where W is the off-diagonal entry of W

Carlos Améndola Likelihood Geometry of Correlation Models

| |

Equicorrelation Model

The model M now consists of all ¥ € ST such that
>;=1 Z,-j:pforiqtj.

This means that p is restricted to n‘—_ll <p<l.
We can exploit the symmetry and set:

5- 1 S PSP
n! PeS,

Theorem (Am., Zwiernik (2021))

For the equicorrelation model, the ML degree is always 3 for every n> 1.
The MLE ¥ satisfies

(n-1)p*+((n-2)(a-1)-(n-1)b)p* + (2a-1)p-b = 0.

where a, b are the diagonal and off-diagonal entries of S, respectively.
The SSL degree is always 4 for every n> 1.

Carlos Améndola Likelihood Geometry of Correlation Models
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Equicorrelation for n > 2

Three positive
definite solutions

Carlos Améndola Likelihood Geometry of Correlation Models

A statistical perspective

Density

<

The density of the distance from the truth
Sample size
—
— 10
= 50
| | | | |
0.0 0.5 1.0 15 2.0
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A statistical perspective

n=2 n=10

~ 40.907 | 0.883 | 0.881 | 0.847 | 0.815 0.950 | 0.871

© 0.974

0.999 0.999 1.000 1.000 1.000

10

0.999 1.000 1.000

sample size

14

18

0.999 1.000 0.999 1.000 1.000 1.000 1.000

Carlos Améndola Likelihood Geometry of Correlation Models

@ Rich likelihood geometry behind correlation models.

High ML degree may hint to problematic optimization, but careful
analysis shows likelihood function is well-behaved over large regions.

Introduction of another algebraic complexity measure: SSL degree.
Dual MLE appears to behave best algebraically, how do degrees grow?

Plenty of relevant submodels (e.g. symmetries) still to be explored.

Main Reference:
Améndola, C., & Zwiernik, P., Likelihood Geometry of Correlation
Models. (2021) Le Matematiche, 76(2), pp. 559 - 583.

HNhe ) TINWELE!

Carlos Améndola Likelihood Geometry of Correlation Models
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Mixed convex exponential families and locally
associated graphical models

Piotr Zwiernik (University of Toronto)

Abstract

In statistical exponential families the log-likelihood forms a concave func-
tion in the canonical parameters. Therefore, any model given by convex
constraints in these canonical parameters admits a unique maximum likeli-
hood estimator (MLE). Such models are called convex exponential families.
For models that are convex in the mean parameters (e.g. Gaussian covariance
graph models) the maximum likelihood estimation is much more complicated
and the likelihood function typically has many local optima. One solution is
to replace the MLE with so called dual likelihood estimator, which is uniquely
defined and asymptotically has the same distribution as the MLE. In this talk
I will consider a much more general setting, where the model is given by con-
vex constraints on some canonical parameters and convex constraints on the
remaining mean parameters. We call such models mixed convex exponential
families. We propose for these models a 2-step optimization procedure which
relies on solving two convex problems. We show that the resulting estimator
has asymptotically the same distribution as the MLE. Our work was moti-
vated by locally associated Gaussian graphical models that form a suitable
relaxation of Gaussian totally positive distributions.
(Joint work with Steffen Lauritzen, University of Copenhagen)
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Mixed convex exponential families and
locally associated graphical models

Piotr Zwiernik

University of Toronto

This story is part of the following paper:

Lauritzen S., & Zwiernik, P., Locally associated graphical models and mixed
convex exponential families. arXiv:2008.04688.

OCAMI Meeting
21(20) October 2022

Modelling with positive
dependence
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Example: S&P 500

graphical lasso estimate of the graph:

Note: All edges green (positive partial correlations).
1

Gaussian totally positive distributions

The zero-mean Gaussian distribution

f(x) = Vdet Kexp(—x"K x/2)

(27)d/2

Totally positive: K = ¥ 1 satisfies K;; < 0 for all i # j.
(K is an M-matrix)

e K;j < 0 if and only if corr(X;, Xj| Xy sj) = 0.
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A success story

In some applications it works incredibly well.

Rossell&Zwiernik describe a S&P500 dataset:

e Our MLE gives a sparser graph and higher likelihood

than the best GLASSO estimate!

see also: Agrawal, Roy, Uhler. Covariance Matrix Estimation under

Total Positivity for Portfolio Selection, 2019.

However: Gene expression data

Partial correlations with negative signs additionally

penalized.
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Motivation: Locally associated GGMs

X is associated if cov(f(X),g(X)) = 0 for any
f,g : RY — R nondecreasing.

Pitt: A Gaussian X is associated if and only if £ > 0.

Gaussian graphical model: X ~ Ng4(0, X):
M(G) = {XePDqg: (X 1); =0 forij ¢ G}.
With additional positivity:

P(G> = {Z S PDd : Z;j > 0 for Ij S G}

Estimation in [aGGMs

The log-likelihood (S sample covariance matrix)
log det(X 1) — tr(SX1)

is concave in K = X! but not in X.
Alternative: mixed dual estimate (MDE).

e MDE for mixed convex exponential families is easier to
obtain and has the same asymptotics as the MLE.
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2-stage estimation procedure

Information divergence (convex in X; and in K3):

1 1
|<21HK2> = 5t1”<21K2 — |) 3 log det<21K2>.

N

. 1 ) &
S sample covariance, S — K = 1

1. K minimizer of 1(S||K) subject to K € M(G).
2. 3 minimizer of I(XZ||K) subject to X € P(G).

Note: > € M(G) and it is a reasonable estimator.

7

Mixed convex exponential
families
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Regular exponential families
Exponential family £ over X wrt measure v
p(x;0) = exp{(0,t(x))— A(0)} for @ € © < R,

The set of canonical parameters

© = int {9 e R¥ : L( exp {{0, t(x))} v(dx) < oo} :

In steep exponential families :
e O convex subset of R¥,

e A(0) strictly convex, smooth over ©,
e |VA(#)| — oo at the boundary.

8

Mixed parametrizations

The split t(x) = (u(x), v(x)) € R¥ induces splits
0= (0,0, €0, p= (b, ) € M.
(© canonical parameters, M mean parameters)

M, = projection of M on p,
©®, = projection of © on 6,

Theorem (Barndorff-Nielsen, Mixed Parametrization):
e (p,.60,) forms an alternative parametrization.
e (u,,0,) €M, x O, (variational independence)
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Mixed convex exponential family

Fix mixed parametrization (., 6,) € M, x @, of £.

Mixed convex exponential family:
e M, x @, <M, x 0O,
e M, c M, O < O, rel. closed convex subsets.

Example: Locally associated Gaussian distributions form
a mixed convex exponential family.

10

Example: The Gaussian case

Sufficient statistics: t(x) = —2xx,
- Lo — _ 1
Canonical/mean parameters: 0 = K, = —5%

Gradient map: A(K) = —1logdet K, VA(K) = —1K .

e.g. in locally associated Gaussian graphical models:
e Kj=0;=(X1),;=0forij¢ G, and
o >;=—2u;=0forijegG.

So this is a mixed convex exponential family.

see also Gaussian Double Markovian Distributions by Boege,
Kahle, Kretschmer, Rotger (arXiv:2107.00134)

11
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This leads to an interesting observation:

Fix positive definite d x d matrices A, B.

For any set 7 of indices there exists a unique positive
definite matrix X such that:

° Zij = Aij for (I.,j) (S I;
° (Z_l)ij = Bij for (I,_j) ¢I

12

Kullback-Leibler divergence
Fenchel conjugate: A*(u) = sup{l(0;p) : 0 € R¥}.

Two distributions in £: one with mean parameter
u(l) e M, the other with canonical parameter 0% c O,

K(p®,0%) = —(uM,6%) + A*(uM) + A(0?)
Note: K is strictly convex both in ™ and in 6.

13
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Mixed dual estimator
Mixed exponential family: (u,,,60,) € M}, x @),.
Sufficient statistics t = = > | £(X©) = (u, v).

Two-step procedure:

(S1)

6 := arg min K(t,0) over 0 s.t. 6, € O
(S2) fv:

N

arg min K(u, @) over p s.t. pu, € M.

Some properties:
e Theorem: [ lies in the mixed convex family.
e /1 exists if and only if @ exists,

e if exists, it is unique (convexity),
14

Summary + bibliography + thank you!

We study submodels of exponential families where the
model constraints are convex in the mixed parameters.

Our main motivation is in local association.

The likelihood function is not concave so the MLE may
be complicated to compute.

We propose a simple and sensible alternative.

This story is part of the following paper:

Lauritzen S., & Zwiernik, P., Locally associated graphical models and mixed
convex exponential families. To appear in Annals of Statistics.

15
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Classification problem of invariant
q-exponential families on homogeneous spaces

Koichi Tojo
RIKEN Center for Advanced Intelligence Project

Abstract

@-exponential family is a natural generalization of exponential family and
is an important subject in the fields of information geometry and statistics.
Widely used g-exponential families such as normal distributions and Cauchy
distributions have a symmetry. More precisely, the sample space can be
regarded as a homogeneous space G/H and the family of distributions on it
is G-invariant with respect to the induced G-action by pushforward. Then
the following problem naturally arises:

Classify G-invariant g-exponential families on G/H.

I would like to talk about a strategy to solve this problem using “g-
deformation” of an exponential family. Moreover, we give a new SL(2,R)-
invariant g-exponential family on the upper half plane.

This is a joint work with Taro Yoshino.
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Classification problem of invariant g-exponential

families on homogeneous spaces

Koichi Tojo!, joint work with Taro Yoshino?

IRIKEN Center for Advanced Intelligence Project, Tokyo, Japan,

2Graduate School of Mathematical Science, The University of Tokyo

Octorber 21, 2022
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Introduction

Problem

Exponential family and g-exponential family
Background

Problem

Aim(rough)

We want to know all the “good” families of distributions on
important spaces.

Mathematically, let G be a Lie group, H a closed subgroup of G
and G/H the homogeneous space of G. Take g € R.

Problem 1.1.

Classify G-invariant q-exponential families on G/H.

3/36

Introduction

Problem

Exponential family and g-exponential family
Background

A family of probability measures and machine learning

Learning by using a family of probability measures is one of
important methods in the field of machine learning.

Learning=to optimize the parameters in the family of
probability measures

Families of probability measures

Exponential families

4/36
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Introduction

Problem
Exponential family and g-exponential family

Background

Exponential family

SOLIENIAEIRETTY

o Exponential families are important subject in the field of
information geometry.

o Exponential families are useful for Bayesian inference.

o Exponential families include many widely used families.

Families of probability measures

Exponential families

5/36

Introducti
ntroduction Problem

Exponential family and g-exponential family
Background

Examples (exponential families)

Table: Examples of exponential families

distributions sample sp. X
Normal R
Multivariate normal R"
Bernoulli {£1}
Categorical {1,--- ,n}
Gamma R<o
Inverse gamma R<o
Wishart Sym™(n,R)
Von Mises st
Poincaré H

6/36
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Introduction
Problem

Exponential family and g-exponential family
Background

g-exponential family

g-exponential family (¢ € R)
g-exponential family
o is a generalization of exponential family (¢ = 1).

@ is also important subject in the field of information geometry.
@ is useful for Tsallis statistics.

Families of probability measures

g-exponential families

Exponential families

x Cauchy dists
x(-Gaussian dist

7/36

Introducti
ntroduction Problem

Exponential family and g-exponential family
Background

Relation

exponential family g-exponential family

Amari's

a-family a=1

a=2q-—1

e Shannon entropy
Entropy ® maximization with
expected value constraint

e Tsallis entropy
® extremization with

g-expected value constraint

8/36
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Introduction

Problem

Exponential family and g-exponential family
Background

Definition of g-exponential family

X: manifold, R(X): the set of all Radon measures on X.

Definition 1.2 (g-exponential family).

P C R(X) is an g-exponential family on X if there exists a triple
(i, V, T) such that

@ u e R(X),

@ V is a finite dimensional vector space over R,

@ T:X—V,x— T(x)is a continuous map,
@ For any p € P, there exists § € V'V such that

dp(x) = ¢ expy(—(0, T(x)))dpu(x),

where ¢y = [,y exp,(—(0, T(x)))du(x) (normalizing
constant).

We call the triple (u, V, T) a realization of P.

“<9/36

Introduction

Problem
Exponential family and g-exponential family
Background

Definition of exp,

Forge R, weput lp ={xeR|(1-qg)x+1>0}.

Definition 1.3.
The map exp,: Ig = R is defined by

. {ex (g=1),
eXpgy X 1=

(1—g)x+1)Ta (q#1).

Remark 1.4.

exp, is defined as the inverse map of the g-logarithm function
Ing: Ryo = R

B Xi ~ JInx (g=1)
lan._/l tth_{L(xlql) (g #1).

1-q

A

10/36
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Introduction
Problem

Exponential family and g-exponential family
Background

Graph of exp,

e” (g =1),
equx = 1
{((1—<7)><+1)1‘7 (¢ #1).

qg<o0 qg=0 0<g<1

*‘7“‘?”ffﬂzzf//j e 11/36

Introducti
ntroduction Problem

Exponential family and g-exponential family
Background

Example: a family of normal distributions

Example 1.5.

The following family of normal distributions is an exponential
family on R (g = 1):

. 2
P on (-2 6l
2w o2 20 (o,m)ER<oxR

@ 1 =Lebesgue measure,
@ V=R

X

2
e T:Xz]R%]R%XI—)(X).

(i, V, T) is a realization of P.

12/36
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Introduction
Problem
Exponential family and g-exponential family

92
Background

Example: a family of Cauchy distributions

Example 1.6.
The following family of Cauchy distributions is a 2-exponential

family on R:

_J1 gl
= ;(X—X)Q—f— 2
0 v (v,%0)ERS0 xR

@ 1 =Lebesgue measure,

@ V =R?
X2
&) T:XzR—)R2,Xl—><X>.

(i, V, T) is a realization of P.

13/36

Introduction
Problem
Exponential family and g-exponential family

Background

Background

o By definition, there are too many g-exponential families.

@ Only a small part of them are widely used.

Normal dists
Gamma dists
von Mises dists

Bernoulli dists
g-Gaussian dists

L
L]
L J
]
]
[]

L)
.
.
.

Widely used exp. families

14/36




Mathematical Optimization and Statistical Theories using Geometric Methods 93

Introduction

Problem
Exponential family and g-exponential family

Background

We can expect there exist “good” g-exponential families.
We want a framework to understand “good” g-exponential families
systematically.

g-exponential families

good
)

Gauss dists
Gamma dists
von Mises dists
Bernoulli dists

Cauchy dists
Widely used g-exp. families

15/36

Introducti
ntroduction Problem

Exponential family and g-exponential family

Background

Observation 1.8.

Useful g-exp. families have the same symmetry as the sample
spaces.
o Sample space : homogeneous space G/H

@ Family : invariant under the induced G-action

R* x R-action
(scaling
and
translation)

—

normal dist normal dist

G/H = (R* x R)/RX ~ R

16 /36
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Introduction
Problem

Exponential family and g-exponential family
Background

Strategy

Problem 1.1 (again)

Classify G-invariant g-exponential families on G/H.

Step 1 Classify G-invariant exponential families on G/H by using
G /H-method.

Step 2 Classify G-invariant g-exponential families on G/H by
g-deformation of G-invariant exponential families on G/H.

17/36

Method to construct families
G-invariance of our family
Classification of G-invariant families

Step 1: G/H-method

We proposed a method to construct exponential families.

@ The method generate many well-known families.

@ Families obtained by the method can be classified.

Exponential families

Our method

Normal dists
Gamma dists

von Mises dists
Bernoulli dists

Poisson dist

Widely used exp. families

18/36
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Method to construct families
G-invariance of our family
Classification of G-invariant families

Step 1: G/H-method

G /H-method: overview

G /H-method = a method to construct a family of
probability measures on G/H from

« a finite dim. real representation p : G — GL(V),

« a nonzero H-fixed vector vy € V.

See [TY18, TY19, TY20] for the details.

19/36

Method to construct families
G-invariance of our family
Classification of G-invariant families

Step 1: G/H-method

Examples obtained by our method

Table: Examples and inputs (G, H, V, vy) for them

distributions sample sp. X] G H 74 Vo
Normal R R*xR | R* |Sym(2,R)| Ex
Multi. normal R" GL(n,R) x R"GL(n,R)Sym(n+ 1,R)Ent1,n+1
Bernoulli {£1} {£1} {1} Rsgn 1
Categorical | {1,---,n} S, Sh1 w w
Gamma R0 R<o {1} R 1
Inverse gamma R<o R<o {1} R_4 1
Wishart | Sym*(n,R)| GL(n,R) | O(n) | Sym(n,R)| I,
Von Mises st S50(2) {h} R? e1
Poincaré H SL(2,R) | SO(2) | Sym(2,R) I

Here W = {(x1,- - ) € R"| 27 x; = 0},
w=(—(n-1),1,---,1) e W.

20/36




96 OCAMI Reports Vol. 8 (2022)

Method to construct families
G-invariance of our family
Classification of G-invariant families

Step 1: G/H-method

Example: Poincaré dists on the upper half plane

Upper half plane H .= {z=x+iy € C| y > 0} admits the linear
fractional transformation of SL(2,R).
~»G = SL(2,R), H=50(2), X := G/H ~H.

. . . geodesics
@ Low dimensional representation:

p: SL(2,R) — GL(Sym(2,R)),

p(g)S =gS%g (S €Sym(2,R)).
Vo - — 12.

{De2D exp ( a(x?® + y?) + 2bx + c> dxdy}
o d X —
” (

y y?
Here D = ac — b2.
o Higher dimensional cases:
We obtain new families by G/H-method.

a b 4
b C)GSym (2,R)

21/36

Method to construct families
G-invariance of our family
Classification of G-invariant families

Step 1: G/H-method

P is a G-invariant exponential family

Any family obtained by our method is a G-invariant exponential
family on G/H.

R* x R-action
(scaling
and
translation)

—

normal dist normal dist

We obtain a family with the symmetry of G/H !

22/36
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Method to construct families
G-invariance of our family
Classification of G-invariant families

Step 1: G/H-method

Question

Conversely,

Question 2.2.

Are any G-invariant exponential families on G/H obtained by our
method?

~> Yes, under a mild assumption.
~+ Roughly speaking,

{G-invariant exponential family on G/H}
“="{family on G/H obtained by G/H-method}

23/36

Method to construct families
G-invariance of our family
Classification of G-invariant families

Step 1: G/H-method

Answer to the question

Setting 2.3.

P = {py}oco is a G-invariant exponential family on G/H. Here ©
is the parameter space.

Theorem 2.4.

| N

Assume
@ G/H admits a nonzero relatively G-invariant measure,
@ O is open.

Then, P is a subfamily of a certain family obtained by
G /H-method.

N

For the details, see our paper [TY20].

24/36
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Method to construct families
G-invariance of our family
Classification of G-invariant families

Step 1: G/H-method

Classification of G-invariant exponential families

Let us consider an important homogeneous space G/H such as a
sphere and a hyperbolic space, more generally symmetric spaces.

Classify G-invariant exponential families on G/H.

By Theorem 2.4, this problem above is reduced to the following:

Question 2.5.
Classify families obtained by G/H-method on G/H.

25/36

Definition
Step 2: g-deformation Property

g-deformation of exponential family

g-deformation is a method to construct a g-exponential family
from an exponential family with its realization.

Definition 3.1.

Let P be an exponential family on X and (i, V/, T) realization of
P. Put

ddig(x) = expy(—(0, T(x)))du(x) (0 € V¥, x € X)

©:={0¢ vV | — (8, T(x)) €, forannyX,/ dgp < oo}
X
Qo ‘= C9_1C~]9, Cp := / dge (9 € @)
X

Pq = {q0}oco

Then P, is a g-exponential family on X. We call P, a
g-deformation of exponential family (P, (i, V, T)). 26 /36
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Definition
Step 2: g-deformation Property

Example

The family of Cauchy distributions is obtained by 2-deformation of
the family of normal distributions.

@ P: family of normal distribution

@ i Lebesgue measure,
o V=R?

2
o T: X =R R x s (i)

~ Py the family of Cauchy distributions.

27/36

Definition
Step 2: g-deformation Property

Property of g-deformation

Let X := G/H be a homogeneous space admitting nonzero
relatively G-invariant measure and g € R.

Proposition 3.3.

Let P be a G-invariant exponential family on X. Then, there
exists a realization (i, V/, T) of P such that p is a relatively
G-invariant measure on X. Moreover, If ¢ > 1 and P is full , then
the g-deformation Pg of (P, (u, V, T)) is G-invariant
g-exponential family on X.

28/36
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Definition
Step 2: g-deformation Property

Question

Conversely,

Question 3.4.

Are any G-invariant g-exponential families on G/H obtained by
g-deformation of some exponential family?

~> Yes if g > 1 under a mild assumption.
~+ Roughly speaking,

{G-invariant g-exponential family on G/H}

“="{g-deformation of G-invariant exponential family on G/H}

29/36

Definition
Step 2: g-deformation Property

Answer to the question

{po}oco is a G-invariant g-exponential family on G/H

Py =
(g >1).

Theorem 3.6.

Assume
@ G/H admits a nonzero relatively G-invariant measure,
@ O is open.

Then, Pq is a subfamily of a q-deformation of a certain G-invariant
exponential family with a relatively G-invariant base measure.

v

30/36
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Definition
Step 2: g-deformation Property

Classification of G-invariant g-exponential families

G/H: important space

Classify G-invariant g-exponential families on G/H by using
g-deformation.

By Theorem 3.6, this problem above is reduce to the following:

Question 3.7.

Classify families obtained by g-deformation of G-invariant
exponential families.

31/36

Definition
Step 2: g-deformation Property

New family of distributions on the upper half plane

Theorem 3.8 (g-deformation of the family of Poincaré
distributions).

Let g € [1,2). The following family of distributions is
SL(2,R)-invariant g-exponential family on the upper half plane.

1 a(x?® 4 y?) + 2bx + ¢\ dxdy
Cp expy | — 5 2 b
4 Yo Jo= eSym*(2,R)
b ¢

—2D))2—4
Co = m(expq ) ,D :=+/ac — b2.

(2—q)D

32/36
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Questions
Example

Another topic: natural projection

Family on a group and the natural projection

G: Lie group, H: closed subgroup of G,
m: G — G/H, g — gH natural projection
.. P(G) = P(G/H) pushforward

Question 4.1.
What kind of families can we obtain by the pushforward m, of
G-invariant exponential family on G?

@ Is pushforward of exponential family also exponential family?

@ Is pushforward of G-invariant family also G-invariant?

33/36

Questions
Example

Another topic: natural projection

Family on a group and the natural projection

G: Lie group, H: closed subgroup of G,
w: G — G/H, g — gH natural projection
7«: P(G) — P(G/H) pushforward

Question 4.1.
What kind of families can we obtain by the pushforward m, of
G-invariant exponential family on G?
@ Is pushforward of exponential family also exponential family?
~+No, in general.
o Is pushforward of G-invariant family also G-invariant?

~~Yes.
V.

33/36
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Questions
Example

Another topic: natural projection

Example: exp. family on affine transformation group

G =RyoxR, aeR,
0 0

pa: G — GL(3,R), po(a,b) := | b 1 0] diag(a®, a**t1, a%"2),
b 1

vo == %1,0,0).
Proposition 4.2.

If a # 0, by applying G/H-method to (pqa, v), we get a
R~ X R-invariant exponential family on R~y X R as follows:

{\‘/a—'Fg) (dezD> exp(—a“(s +th + ub2))a°‘(”+5)—1dadb}
T

(r,S)e€

t
Here, D := (f 5) (a,b) € G and © := R-g x Sym™ (2, R).
2

34/36

Questions
Example

Another topic: natural projection

Pushforward of the obtained family

._ lalv/u (detD\" _aa 2 a(r+i)-1
P = {ﬁr(r)( LD exp(—a®(s + tb + ub?))a*l"*2 dadb}(hs)Ee

G =RsoXR, H:=Rsg, m: G— G/H~R, m.: P(G) = P(R).

Proposition 4.3.

The family 7,P on R is given as follows:

Mz) [qg-11 (b— m)?
{ﬁr( )V 2 gequ<_T

2(q-1)

) }(q,m,a)€(1,3)xRxR>0 )

Remark 4.4.
o Each distribution is a g-Gaussian distribution.

@ The family does not depend on o € R*.
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Questions
Example
Another topic: natural projection
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Adaptive shrinkage of singular values for a low-rank matrix mean when a covariance
matrix is unknown

Yoshihiko Konno
Department of Mathematics, Osaka Metropolitan University

Assume that m, n, p are positive integers such that min{m, n} > p and that we observe

—
=)
e

+ E where E is an m X p
0n><p

a matrix X which is modeled as X =
Y Y

non-random matrix(unknown and its rank may be less than min{p, m}), E is an (m +
n) X p error matrix(unobservable) whose rows are identically distributed as N,(0,, X), a
p-variate real normal distribution with zero mean vector and covariance matrix 3. We
assume that X is a p X p positive-definite and unknown matrix.

We consider the problem of estimating =2 under a low-rank mean matrix condition, i.e.,

rankE =r < p; ris unknown

A~

under a loss function L(E, E|2) = tr {(E -~ E)"(E -~ E)T7'}, where E := E(X, Y) is

an estimator of 2. Here A" and trA stand for the transpose and the trace of a square

matrix A. The risk function of R(E, E| ) is given by the expected value of the loss

function where the expectation is taken with respect to the joint distribution of (X, Y).
We give Steins’s unbiased risk estimate for estimators of the form

= (Z: hj (fj)uj’UjT) (YY)

(LI

Here h; : [0, 00) — [0, 00), (j = 1,2, ..., p) are absolutely continuous functions and
ULV is the singular value decomposition of X (Y 'Y)~/2 where U = (uy, uy, ..., u,)
is an m x p matrix such that U U = I, (the p x p identity matrix), V = (vy, vg, ..., v,)

is a p X p orthogonal matrix, and L is a p X p diagonal matrix whose j-th diagonal
element is given by ¢;. Note that we may assume that ¢; > ¢, > --- > {, > 0 (almost
everywhere) with out loss of generality. Based on SURE formula, we propose an adaptive
soft-theshholding rule to the singular values ¢;, {5, ..., {,. Furthermore, the results above
are extended to the complex normal distribution setup.



106 OCAMI Reports Vol. 8 (2022)

Adaptive shrinkage of singular values of a low-rank
mean matrix when a covariance matrix is unknown

Yoshihiko KONNO

Osaka Metropolitan Univeristy/JWU

Workshop

Mathematical optimazaiton and statistical theories using geometric methods

20-21 Octorber 2022

1/31

Bl MANOVA model and its canonical mode

Bl Problem set-up
K} Mean matrix estimation when a covariance is known
E¥ Mean matrix estimation when a covarianc matrix is unknown

H Concluding remarks

2/31




Mathematical Optimization and Statistical Theories using Geometric Methods 107

El The reconstruction of a low-rank matrix from its noisy
observation is useful in many applications. This problem is
reformulated into a constrained nuclear norm minimization
problem (regularized problem).

H An important ingrident of this problem is how to choose a
regularization parameter based on data. Usually the data is
independently and identically distributed with unknown
variance.

HE (1) The discrepacy principle approach, (2) Stein’s Unbiased
risk estimator(SURE) approach.

B Inspired by approach(2) we consider the problem of
estimating a low-rank matrix mean in MANOVA(Mulitivariate
Analysis of Variance) setting 'when a positive-definite

____covariance matrix of error is unknown.

"We have data for unknown covariance matrix. The distribution of this data is
mean-zero.

3/31

MANOVA model and its canonical mode

MANOVA model and its canonical model

Let m, n, p € N such that min(m, p) > p. Consider a
multivariate regression model

w = A B + Err ,
N—— N N N

(m+n)xp (m+n)xm mxp (m+n)xp

where A is a known design matrix of full rank, B is an unknown
regression matrix of rank r (< min(m, p) and r is unknown), and
Err is an unobservable error matrix. Here rows of Err are
independently and identically distributed as Np(0p, X) where X is
a p X p positive-definite unknown matrix.

4/31
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MANOVA model and its canonical mode

Notation
1
- -
91 e1
e;' 2
Err = ; : (m+ n) xp, vec(Err):=
T
mtn | €m+n

where ej's are independently and identically distributed as
Np(op, Z) (] =12,..., (m + n))
B Write

COV(Err) = E[{vec(Err - IE[Err]}{vec(Err - E[Err]}T]
= Im+n ®Z,
Err ~ N(m+n)xp(0(m+n)xpa Im+n ® Z)-

5/31

MANOVA model and its canonical mode

E Let
P=(ATA)'2AT : mx (m+ n)

and take P+ : nx (m+ n) st.
P(P*)T = Omxn and PH(PH)T = I,,

Note that
P
| 5 e 1=

| Put=:=(A"A)*Band

Y

P =
= [ p- ] W~ N(m+n)xp([ Onxp " Imin ® Z).

6/31
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Problem set-up

Problem set-up

Assume that min{m, n} > p and that

11l=

<X T

> 3
—
~—
Il
—
o

)+E E =

«—>
—>

Y
matrix(unknown ) of rank r < p, E is an (m 4+ n) x p error
matrix(unobservable) whose rows are identically distributed as
Np(0, X). Here X is a p x p positive-definite and unknown matrix.

X |. . -
where is observation and = is an m x p non-random

7/31

Problem set-up

We consider the problem of estimating = under a low-rank mean
matrix condition, i.e.,

rank= = r < p; risunknown
under a loss fucntion and its risk

LG, S) =tr{E-S)'E-)) = IE- =12 5
and . _
Rs(Z, =) = E[Ls(S, 2)]

where £ is an estimator based on (X, S). Here
S =YY ~ Wy(Z, n), which is the Wishart distribution with the
degree of freedom n and the scale matrix X.

8/31
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Mean matrix estimation when a covariance is known

Mean matrix estimation when a covariance is known

m Assume that m, p are postive integers s.t. m > p.
m Let

be an m x p data matrix whose row vectors are independently
distributed as

zi: px1 ~NE&,d*lp), (i=1,2,...,m)

Here Z' := (&, ..., £x) is unknown but & > 0 are known.

9/31

Mean matrix estimation when a covariance is known

m We assume that low-rank mean matrix condition, i.e.,

rank (E) =r < p; risunknown.

m Consider the problem of estimating = under a loss fucntion
and its risk

LE 3 =u(E-SHE-H) = I1E-22

and N N
Ri(Z, =) = E[L1(Z, T)].

m Here = is an estimator based on Z.

m tr A and AT stand for the traace and the transpose of a
matrix A, respectively.

m ||A|lf := +ftr (ATA), the Frobenius norm of a matrix A.

10/31
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Mean matrix estimation when a covariance is known

Eckart-Young approximation theorem

m Singular Value Decomposition: We can assume that m > p
without loss of generality. Decompose Z as
Z = ULV"; U= (u1y..., Up), V=(V1,..., Vp)
L = diag(fy, €2, ..., tp) withé1 >l >-->6, >0

where uj e R™, v e RP (i =1, ..., p) s.t.
Uur U =vv=i,.
N——
mxp
m The total least squres (TLS) pseudo estimator is given by

)

r
= = . = 5
=1s = E f,-u,-v;r. & Znse€ argmin |=-Z|.
i=1 =: rank (E)Sr

Notaton a-,-(A) >0(j=1,2,..., r)are non-zero singular
values of a matrix A with r = rank (A).

11/31

Mean matrix estimation when a covariance is known

Regularization approach

m We consider an estimator which minimizes the penalized least
squares criterion

1
Mat(m, p; R) > = & -IIZ - ZI + peny(Z) € [0, )

where pen,l( ) (= 0) is a penality function of = and 2 (> 0) is
a tuning parameter.

12/31




112

OCAMI Reports Vol. 8 (2022)

Mean matrix estimation when a covariance is known

m Examples of penalities: For a positive 4 > 0,
* peny(Z) = Arank (=)

p
= a hard-theshholding rule, i.e.,SVHTA(2) = )" (¢ = Yuyv],
=1
1 if event is true,
0 otherwise

O'(E)l_l (a(s)l_: SV’s of E)
min(m, p)

is a system of singular values of =

where I{event} = {

P
* peny(Z) = A= == 1)
j=1

where {(a(E)j, uj, Vj)}i=1
—> a soft-thresholding rule, i.e.,

P
SVST,(2) = Z(f,- - )G = Bupv. 13/31

Mean matrix estimation when a covariance is known

A hard-shreshholding rule

m Assume that o2 is known.
m Solve

1
SVHT,(Z) = arglnin[EHE - lei + Arank (E)]

where A > 0 is a tuning scalar parameter.
m Then the solution is given by

p
1 (24
= E . s > YT i = I =

4
m The optimal shreshholding is — ypo when p = m.

3
(See Donoho and Garvish (2017, IEEE, Trans. Inform
Theory).

14/31
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Mean matrix estimation when a covariance is known

Steps to obtain an adaptive thresholding esitmator

El Solve regularized minimizaton problem

n

=), € argmin {lIZ - Ellf__ + penA(E).}.
=eMat(m,p; R)

A Calculate SURE if possible (a closed form of "E\A) :
Ri(Z Z) = E[SURE(%)‘

Note that SURE(EA) is a function of A and observable data.
E Solve minimization problem

)
1)

~)

Ae SURE(_ ) —

15/31

Mean matrix estimation when a covariance is known

El This method works for the soft-thresholding rule. See Candes
el al. (2013).

H SURE does not work for the hard-thresholding rule since
Stein’s identity, integration-by-parts formula with respect to
multivariate normal distribution, fails for the hard-thresholding
rule becuase of discontinuity of estimator.

16/31
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A soft-thersholding rule

Mean matrix estimation when a covariance is known

m Céndes et al. define an adaptive soft-shreshholding rule
based on SURE:

p P
SVST(2) = ) (6= A) & > BuyvT =: ) ( = A) yupvT
L. Z

j
(1)

which is obtained from
1 . P
min{=||IZ-Y A A Y = SVST,(2).
J {2|| 17 + ,-; ,} 1(2)

m The parameter A in (1) is selected by minimizieng SURE,
Stein’s unbiased risk estimate for (1).

17/31

Mean matrix estimation when a covariance is known

m Gaussian integration-by-parts (=Stein’s identity) and a bit of
algebraic calculation lead to

Ri(SVST,, =) = E[SURE(SVST,)(2)],
p
SURE(SVST,)(Z) = -mpo?+ )’ min{¢?, 4%)
j=1

J
+20-2div(SVST,(X)),

p p
div(SVSTy(2)) = (m-p) ), (1 - %) + >0 > 4
j=1 I+ j=1
& & Gl — D)+

whenever {1 > €p > --- > {p > 0.

18/31
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Mean matrix estimation when a covariance is known

m An adaptive estimator is given by

P
SVSTy(2) = D (Li-Diuv], 2)
j=1

P
A e argmin| ) min{2, A%} + 202div(SVST,(2)) .
120 1 !

1=

m Numerical evaluation of the risk of (2) was carried out by
Candés et. al.

m But it is not clear if R{(SVST(2), ) is close to
R1(Zris(2), =) for VZ st rank () < r < min(m, p).

19/31

Mean matrix estimation when a covarianc matrix is unknown

Mean matrxi estimation when a covarianc matrix is unknown

m Assume that min{m, n} > p and that

[1=

" |

m The m x p mean matrix = isof rank r < p

m The error E is an (m + n) x p error matrix(unobservable)
whose rows are identically distributed as Np(0, X).

m The covariance matrix X is a p X p positive-definite and
unknown.

20/31
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Mean matrix estimation when a covarianc matrix is unknown

m We consider the problem of estimating = under low-rank
mean matrix condition, i.e.,

rank = = r < min(m, p); r is unknown.
m A loss fucntion and its risk are given by

LG 3 =tr{E-S)x"'"E-2)} = IE - E||‘2:,z

and _ _
Rx (S, =) = E[Lx (5, =)]
where £ is an estimator based on (X, S).

mS=Y"Y ~ Wy(Z, n), which is the Wishart distribution with
the degree of freedom n and the scale matrix .

21/31

Mean matrix estimation when a covarianc matrix is unknown

m To derive a class of estimators, first assume that X is known.
m Then we have

X2 o Npwp(Z, In®1p), = ==x"2

which leads to an estimator of = given by
E-n_s € argmin IXE12 2|2 =
rank =<r

m Hence we consider a class of estimators of the form
p
Sy = [Z h,-(t’,-)u,-viT] s'2; xs12 = yLv™
i=1
where L = diag(¢1, ..., £p), H = diag(hy, ..., hp),

U= (u1, ..., up)and V = (vy, ..., Vvp) s.t.
Uu=VvTv =1,

22/31
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Mean matrix estimation when a covarianc matrix is unknown

Regularized minimization problem

m Known X case: For 4 > 0,
Mat(m, p; R) 3 =x /2
b IXZTV2 - ZEX7V2) 2 4 222272

—_—

m Unknonw X case: For A > 0, find a minimizer = of a
regularized minimization problem

Mat(m, p; R) 5 =
- IXS™12 - Z)1£2 + 24124

and

1)

g 31/2 = (Z fj(fj - /l)+UjVIT)S1/2
j=1

where {(¢;, uj, v;)} is a system of singular values of XS‘1/53/31

Mean matrix estimation when a covarianc matrix is unknown

c .

hj([i) = fl' - ? (.’ = 1’ 25 ey P).
j

¢ is a known positive constant,

then it results in the Efron-Morris estimator which is given by
Zh = XSVl - cf(XSTV?)T(XST2))1| 872
= X-cX{X"X)'s.

m On the other hand, Tsukuma and Kubokawa (2015)
considered estimators of the form

Sr=X-UTU™X
where T = diag(t (£2), ..., t,,(ff,)) and XS~12 = yLVvT
with m x min(m, p) matrix U s.t. UTU = Inin(m, p)-
24 /31
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Mean matrix estimation when a covarianc matrix is unknown

m Recall that
XS12 = ULV &< L'U™X = V7§,
From a simple calculation we get
=y = UHVTS'Y2 = UHL™'U™X = UL'HX.

m Ifwesetl, — T = L™'H(t}(x) = hi( ¥x)), then we have

i)
i)

H==T.

m From this we can see that

Ly (Zx, I) Lx (Z7, ).

25/31

Mean matrix estimation when a covarianc matrix is unknown

m Furthermore, using the result due to Tsukuma and
Kubokawa (2015), we have

Ry (Z1, =) = E[SURE(T)];
P
SURE(T) = Z\m + al’t? - 2bt; — AL4T; - 407,

p £4t2—t’4t2 p ft,—t’tk

_22 1’2—[2 _42 ];

k#j k#j
hi(¢; 1 h(¢)
ti = 1- ’(I); t = - (h(l’j)+ l]
{j ! 2[’2 ¢
a, b : known positive constants.

26 /31
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Mean matrix estimation when a covarianc matrix is unknown

m Then we have an adaptive soft-thresholding rule

=5 = :SVSTy(XS"?)s'2 = [Z(f, A)Jruv]s‘/2
j=1

where A = argmin 5 SURE(SVST,)(XS™"/2);

p
SURE(SVST,)(XS™"2) = Z[m + alt? - 2bt; - L4

p {4t2 54 t2 2t — 2t
~ag-2y Lt ey L
k2 b=t m G-t
G-+ .

ti=1‘—£ G=1,...,p)
j

~ (L — )+

t = —(26:)72| 1{6; > A} + ————|.

! (26) ({’ b+ ¢ ] 27 /31

Mean matrix estimation when a covarianc matrix is unknown

Special case

m ¥ = o?l, where o is postive but unknown.

m Lets? =tr(YTY)/p.

] Then an adaptive soft-thresholding rule for this case is given
== z"’ ( 7s2)+u,-v]T;, X = ULVT, with

A= argmlnSURE(SVST,l)(X) and
A=0

p p [41‘_2 - l’itﬁ
SURE(SVST,)(X) = [ms + at’2t2 — aft; — 2
Z i kz;; e

p £? tj — ik
+s (afztz - 4£2tltl -4 Z ﬁ)‘
k#j £ _[k

28 /31
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Mean matrix estimation when a covarianc matrix is unknown

(6= 25%)+ 1 )
h=1- == |G > A7) +

i

(6 - As?) 4
¢ )

29/31

Concluding remarks

Concluding remarks

El Derivation of an adaptive threshholding rule:
m For A > 0, solve a regularized minimizaton problem(random

one) = i _{1 - - =
=€ argmin € ={—||xs 2 _Z)12 + /1||=||1}.
EeMat(m, p; R) 2

= Wehave = _ Eg12 — (Z 6 - /l)+u,-vl.T)S‘/2.
j=1

wherer {(f,-, uj, v,-}
xs1/2,
= Obtain SURE  Rx(Z,, =) = E[SURE(Z))]
m Solve the minimization problem
1 € argmin SURE(S)) = =;.
120
H It is routine to convert this result to case for complex normal

distribution. 30/31

=12, m is a system of singular values of
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Abstract

Expected Euler characteristic (EC) heuristic is a method for approximating the tail
probability of the maximum of a Gaussian random field. In this talk, we provide an ex-
pected Euler characteristic formula for the approximate tail probability and its relative
approximation error when the index set M is a closed manifold and the mean and variance
of the marginal distribution are not necessarily constant. When the variance is constant,
[TTAO5] proved that the relative approximation error is exponentially small in a general
setting where the index set M is a stratified manifold. When the variance is not constant,
it is shown that only the subset Mg, of M, referred to as the supporting index set,
contributes to the maximum tail probability. The proposed tail probability formula is
an integral of the Euler characteristic density over Mgy,pp, and its relative approximation
error is proven to be exponentially small as in the case of constant variance. These results
are generalizations of [KTT22], who addressed a restricted case of finite Karhunen-Loeéve
expansion by the volume-of-tube method. As an example, the tail probability formula
for the largest eigenvalues of noncentral Wishart matrices W), (v, 3; ®) and its relative ap-
proximation error are obtained. Numerical experience supports the high accuracy of the
expected Fuler characteristic formulas regardless of whether the marginals are homoge-
neous or inhomogeneous.

Keywords: Borel’s inequality, Kac-Rice formula, noncentral Wishart distribution, volume-
of-tube method, Weyl’s tube formula.
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PATTERN RECOVERY BY SLOPE

PIOTR GRACZYK

ABSTRACT

I will present recent results obtained in [1] jointly with M. Bogdan,
X. Dupuis, B. Kotodziejek, T. Skalski, P. Tardivel and M. Wilczynski.

SLOPE is a popular method for dimensionality reduction in the high-
dimensional regression. Indeed, some regression coefficient estimates
of SLOPE can be null (sparsity) or can be equal in absolute value
(clustering). Consequently, SLOPE may eliminate irrelevant predictors
and may identify groups of predictors having the same influence on the
vector of responses.

The notion of SLOPE pattern allows to derive theoretical properties
on sparsity and clustering by SLOPE. Specifically, the SLOPE pattern
of a vector provides: the sign of its components (positive, negative or
null), the clusters (indices of components equal in absolute value) and
clusters ranking.

In this research we give a necessary and sufficient condition for
SLOPE pattern recovery of an unknown vector of regression coeffi-
cients.
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[1] M. Bogdan, X. Dupuis, P. Graczyk, B. Kotodziejek, T. Skalski,
P. Tardivel, M. Wilczynski, Pattern recovery by SLOPE (2022),
arXiv:2203.12086.

This paper is purely analytical, even if some intuitions and notions are
geometrical.

[2] P. Tardivel, T. Skalski, U. Schneider, P. Graczyk,

The Geometry of Model Recovery by Penalized and Thresholded
Estimators (2022), HAL preprint hal-03262087.

A geometrical approach to SLOPE was initiated in

[S-T] U. Schneider, P. Tardivel(2020). The Geometry of
Uniqueness, Sparsity and Clustering in Penalized Estimation. arXiv
preprint arXiv:2004.09106, to appear in 2022.

3/14] Piotr Graczyk Pattern Recovery by SLOPE

- Linear regression model

We dispose of n observations of p explicative variables (predictors)
Xi,...,X, and a response variable Y

Yi=0ixn+ -+ Bpxip+ei, i=1...,n.

e X = (Xjj)1<i<n1<j<p is the design n x p matrix.
@ The columns of X correspond to p variables
o = (b1,-..,08p) € RP unknown regression coefficients.

° ¢ =(e1,...,6p) € R” random noise.

Matrix notation: Y = X3 +¢

4/14] Piotr Graczyk Pattern Recovery by SLOPE
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Linear regression Y = X5 +¢, X € R"™*P,

Estimator of 37

Classical statistics case: p < n, rankX = p
Ordinary Least Squares estimator:
A0LS _ : 2
BE5 = argminpegs || Y — Xbl|3
5/14] Piotr Graczyk Pattern Recovery by SLOPE

Linear regression Y = X3 +¢, X € R"*P,

Estimator of 37

Classical statistics case: p < n, rankX = p

Ordinary Least Squares estimator:
BOLS = argminyege | Y — Xb||3 = (X' X)X Y

Chalenging case: |[p > n

BOLS is not uniquely determined, so no longer useful
Modern statistics resorts to the penalized least squares estimators:

B = argmin||Y — Xb|[3 + pen(b),
beRP

where pen is the penalty on the model complexity.

5/14] Piotr Graczyk Pattern Recovery by SLOPE
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Penalized estimators LASSO and SLOPE

LASSO (Tibshirani (1996)): pen(b) = \||b

|1,)\>O

6/14] Piotr Graczyk Pattern Recovery by SLOPE

Penalized estimators LASSO and SLOPE

LASSO (Tibshirani (1996)): pen(b) = A||b

SLOPE (Sorted L One Penalized Estimation)
(Bogdan et al. (2015)), defined as

|1,)\>0

R 1 P
BOLOPE — argmin Z||Y — Xb||2 + Nilbln
gmi 2H 15 ; |b](i)
N——

sorted ¢1 norm

where \{ >0, A\ > ... > )\p >0 and |b‘(1) > ... > ‘bl(p)

6/14] Piotr Graczyk Pattern Recovery by SLOPE
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Penalized estimators LASSO and SLOPE

LASSO (Tibshirani (1996)): pen(b) = A||b||1, A >0

SLOPE (Sorted L One Penalized Estimation)
(Bogdan et al. (2015)), defined as

. 1 il
BOLOPE — argmin Z||Y — Xb|| + Ailbliy
amin 511V = X613+ 3 bl
———

sorted ¢1 norm

where \1 >0, \1 > ... > )\p > 0 and |b‘(1) > ... > ’b|(p)

When A1 = ... = A, > 0 then SLOPE coincides with LASSO.
Our results for SLOPE give a new approach to LASSO.

6/14] Piotr Graczyk Pattern Recovery by SLOPE

| Polyhedral penalties and dimensionality reduction

In case when the penalty function pen is a polyhedral norm
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Polyhedral penalties and dimensionality reduction

In case when the penalty function pen is a polyhedral norm
(i.e. the unit ball Byen(0,1) C RP in the pen norm is a polyhedron)
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| Polyhedral penalties and dimensionality reduction

In case when the penalty function pen is a polyhedral norm

(i.e. the unit ball Bpen(0,1) C RP in the pen norm is a polyhedron)
penalized estimators usually possess the dimensionality reduction
properties.

7/14] Piotr Graczyk Pattern Recovery by SLOPE
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| Polyhedral penalties and dimensionality reduction

In case when the penalty function pen is a polyhedral norm

(i.e. the unit ball Byen(0,1) C RP in the pen norm is a polyhedron)
penalized estimators usually possess the dimensionality reduction
properties.

It is well known that LASSO estimator has many null components

ALASSO
Bi =0

Dimensionality reduction property of LASSO consists in
elimination of irrelevant predictors X;.

7/14] Piotr Graczyk Pattern Recovery by SLOPE

SLOPE: dimensionality reduction also by clustering

variables

Another important kind of dimensionality reduction consists in
clustering (merging, summing) variables with the same values of
regression coefficients:

B,’ :Bj — Y = ...+Bi(Xi+Xj)+...
LASSO does not have this property!

8/14] Piotr Graczyk Pattern Recovery by SLOPE



Mathematical Optimization and Statistical Theories using Geometric Methods

131

SLOPE: dimensionality reduction also by clustering

variables

Another important kind of dimensionality reduction consists in
clustering (merging, summing) variables with the same values of
regression coefficients:

B,’ :Bj = Y = ...+6A,'(X,'+)<j)—{—...
LASSO does not have this property!

Statisticians working with SLOPE observed that many coefficient
regression estimates of SLOPE can be:
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SLOPE: dimensionality reduction also by clustering

variables

Another important kind of dimensionality reduction consists in
clustering (merging, summing) variables with the same values of
regression coefficients:

Bi=D = Y =it Bi(Xi + X))+ ...
LASSO does not have this property!
Statisticians working with SLOPE observed that many coefficient
regression estimates of SLOPE can be:

e equal = clustering predictors
e null = eliminating irrelevant predictors like LASSO
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Simulations: n = 100, p = 200, LASSO and SLOPE on R

0/14

We simulated Y = X3 + ¢ where ¢ has iid N(0,5%) entries and
Br=...=P3=40, [B31=...= (200 =0.

The rows of the design matrix X are generated as independent binary Markov chains, with

Both LASSO and SLOPE properly estimate at 0 null components of 8 (not drawn)
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Main objective of our research

10/14

Why /when does SLOPE recover the clusters
and zeros (" SLOPE pattern”) of 37
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| Main objective of our research

Why /when does SLOPE recover the clusters
and zeros (" SLOPE pattern”) of 37
Explain this phenomenon strictly
mathematically.
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Main objective of our research

Why /when does SLOPE recover the clusters
and zeros (" SLOPE pattern”) of 37
Explain this phenomenon strictly

mathematically.
Give sufficient and necessary conditions for
SLOPE pattern recovery.
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Main objective of our research

Why /when does SLOPE recover the clusters
and zeros (" SLOPE pattern”) of 37
Explain this phenomenon strictly

mathematically.
Give sufficient and necessary conditions for
SLOPE pattern recovery.

A by-product: a new and simple mathematical approach to these
questions for LASSO (huge literature on LASSO is very technical)
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Figure 2.2 Estimation picture for the lasso {left) and ridge reqression (right). 1
solid blue areas are the constraint regions |f1|+|52| < t and 57 +533 < t°, respective
while the red ellipses are the contours of the residual-sum-of-squares function. 7
point 3 depicts the usual (unconstrained) least-squares estimate.
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Dimensionality reduction by SLOPE

Some coefficient regression estimates of SLOPE can be null or can
be equal in absolute value.

Ba

Ball of the sorted L1 norm

Figure: This figure intuitively illustrates that SLOPE can have some null
components or some components equal in absolute value.
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Dual penalty norm and dual ball

Suppose that pen is a polyhedral norm on RP.

14/14 Piotr Graczyk Pattern Recovery by SLOPE

Dual penalty norm and dual ball

Suppose that pen is a polyhedral norm on RP.

Our results show that the dual unit ball B* plays a crucial role in
studying penalized estimators rather than B itself.
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Dual penalty norm and dual ball

Suppose that pen is a polyhedral norm on RP.

Our results show that the dual unit ball B* plays a crucial role in
studying penalized estimators rather than B itself.

Given a norm || - || on RP, recall that the dual norm || - ||* is defined
by
1I[* = max{v'b: [[v]| < 1} = [|b7],

i.e. it is the norm of b considered as a linear functional b*.

14/14 Piotr Graczyk Pattern Recovery by SLOPE

Dual SLOPE norm and dual ball

Let/\:()\l,...,)\p)’where)\l>Oand A1>... > X >0

@ The sorted ¢1 norm is denoted

p
J/\(b) = Z)\,’b’(,) where ‘b‘(l) > .2 |b|(p)
i=1

@ The dual sorted ¢1 norm is equal to

b bl(1y + |b bl(ty+...+|b
J}’((b):max{’ l1) |blay + 1bl(2) b](1) | ‘(p)}.

D D VI Y DV I S
@ The dual SLOPE ball is defined by

B* = {v € RP| Ji(v) < 1}.

B* is a signed permutahedron in RP: its vertices are signed
permutations of A.
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. p =3, B* = signed permutahedron

Piotr Graczyk

Pattern Recovery by SLOPE

Approach of minimization by subdifferential

17/14

Let f : RP — R be a convex function.
The subdifferential Of is defined by

Of(b) = {v eRP: f(z) > f(b) + V/(z— b) Vz € RP}

Evidently, f attains its minimum at a point b if and only if

0 € 9f(b)

Piotr Graczyk

Pattern Recovery by SLOPE
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. Approach of minimization by subdifferential

Recall the SLOPE minimization problem:

minimize b — f(b) = || Y — Xb||3 + JA(b).
It is a particular case of pen—minimization problem
minimize b — f(b) = 5||Y — Xb||3 + pen(b).

Proposition (Solution of pen-min problem)

B is a solution of the pen minimization problem if and only if

X'(Y = X) € 8(pen)(B).

Proof. f attains its minimum at a point b if and only if 0 € 9f(b).

We have
Of (b) = 93||Y — Xb||3+0(pen)(b) = {—X'(Y — Xb)}+0(pen)(b).
The condition 0 € Of (b) gives the proposition. .

Thus we need to understand O(pen).

18/14 Piotr Graczyk Pattern Recovery by SLOPE

Subdifferential of a norm and the dual ball B*

Proposition (Subdifferential and the dual ball)

(a) The subdifferential of a norm || - || is the following subset of B*:
0|l - I(b) = {v € RP: |lv[|" < 1 and v'b = ||b||}

(b) If the norm || - || is polyhedral, then O|| - ||(b) is a face of B*
and all faces of B* are subdifferentials of || - ||.

\

Proof. (a) is an easy exercice. Both parts are in the book:
HIRIART-URRUTY, J.-B. and LEMARECHAL, C. (2004).
Fundamentals of convex analysis. Springer.
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Set Sx A(Y) of SLOPE solutions. Uniqueness.

We denote Sx A(Y) # 0 the set of SLOPE solutions. It is easy to
see that it is compact. It may be bigger than a singleton.
The unicity has the following geometrical characterization.

Theorem (Uniqueness, [S-T],[2])

The solution of the pen-minimization problem is unique for all
Y € R” if and only if row(X) does not intersect a face of the dual
ball B* whose codimension is greater than dim(col(X)).

e Cases in which Sx A(Y') is not a singleton are very rare.
Indeed, the set of matrices X € R"*P for which there exists a
Y € R” where Sx A(Y) is not a singleton has a null Lebesgue
measure on R™P ([S-T])

If ker(X) = {0}, then Sx A(Y’) consists of one element.

20/14] Piotr Graczyk Pattern Recovery by SLOPE

SLOPE pattern and related notions

The SLOPE pattern ( introduced by Schneider and Tardivel
(2020)) extracts from a given vector:

a) The sign of the components (positive, negative or null),
b) The clusters (indices of components equal in absolute value),

c) The hierarchy between the clusters.

Definition (SLOPE pattern)
Let b € RP. The SLOPE pattern of b, patt(b) € ZP, is defined by

patt(b); = sign(b;) rank(|b|);, i€ {1,...,p}

where rank(|b|); € {0,1,..., k}, k is the number of nonzero
distinct values in {|b1],...,|bp|}.
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22/14

b=(47,-4.7,0,1.8,4.7,—1.8) — patt(h) = (2,—-2,0,1,2, —1)'.

PSLOPE = patt(IRP) denotes the set of SLOPE patterns.

Piotr Graczyk Pattern Recovery by SLOPE

|dentification of patterns as subdifferentials

Theorem (SLOPE pattern= subdifferential(SLOPE pen))

23/14

Let A= (A1,...,Ap) where \y > ... >\, >0 and a,b € RP. We
have patt(a) = patt(b) if and only if 0Jr(a) = OJIr(b).

Proof. A first (involved) proof was given in [S-T]. In [1] we give a
simple proof as a corollary from the (coming below) Proposition on
affine characterization of 9(Jp) for SLOPE.

Piotr Graczyk Pattern Recovery by SLOPE
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|dentification of patterns as subdifferentials

Consequently,
for any polyhedral norm penalty pen, we define in [2]:

Definition (Pattern= subdifferential(pen), [2])

For a penalized estimator with pen equal to a polyhedral norm, we
say that patt(a) = patt(b) if a and b have the same
subdifferentials:  dpen(a) = Open(b).

Example. For LASSO, with pen = || - ||1, we get

patt(a) = sign(a).

Indeed, the subdifferentials of pen = || - |1 (=faces of the unit ball
in || - ||oo) are in bijection with the set {—1,0,1}”.
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Pattern recovery

Definition (Pattern recovery)

We say that SLOPE pattern is recovered by the SLOPE estimator
if there exists 5 € Sx A(Y') with

patt(3) = patt(8).

Example. Let the true 8 = (5,5,2, —5)" and the SLOPE estimator
By = (4,4,3,—4).

Then patt(B) = patt(3) = (2,2,1, —2) and we have the pattern
recovery.

If B> = (4.01,3.99,3, —4)' , then patt(5) = (4,2,1, —3) # patt()
and there is no pattern recovery.

However, it is natural to round up (threshold)

BQ = (401, 399, 3, _4)/ ~ (47 47 37 _4)/

The thresholded estimator Bﬁhmh recovers the pattern of 3.
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| Accessibility of a pattern

Not all the patterns can be realized by 3 when p > n.

Definition (Accessible pattern)

Let X € R"P and pen be a polyhedral norm. We say that g € RP
has an accessible pattern with respect to X and pen, if there exists
y € R" and 8 € Sx pen such that patt(/5) = patt(5).

26/14] Piotr Graczyk Pattern Recovery by SLOPE

Accessibility of a pattern

Proposition (Geometric characterization of accessible patterns, [2])

The pattern of 5 € RP is accessible with respect to X and pen if
and only if

row(X) N d(pen)(B) # 0.

Proof. ( = ) When the pattern of (3 is accessible with respect to
X and pen, there exists y € R" and 3 € Sx pen(y) such that
d(pen)(3) = A(pen)(B). Because j3 is a minimizer,

X'(y — XB3) € d(pen)(B) = d(pen)(B), so that, clearly,

col(X’) = row(X) intersects 9(pen)(53).

(<) If row(X) intersects the face J(pen)(3), then there exists
z € R" such that X’z € 9(pen)(B). For y = X + z, we have
X'(y — XpB) = X'z, so that 5 € Sx pen(y) and patt(5) is
accessible with respect to X and pen. L]
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n=2,p = 3: typically, 17 patterns accessible from 147

The Figure is from [S-T]

colour  type intersection # & face intersected isometric to  SLOPE models
segments  row(X) N F,(£(1,0,0)) {5.5} x P{ 15) +(1,0,0)

red segments  Tow(X) N (i(] L) Pssssis +(1,1,1)

black  segments row(X)N Fu(£(0,0.1))  {5.5) x Pisis +(0,0,1)
segments nm()\)ﬂ] (i( 1,0,1))  Pgsgs x [~1.5,1.5) +(-1,0,1)

purple  points  row(X) N F,(£(2,0,—1)) {5.5} x {3.5} x [-1.5,1.5]  £(2,0,—1)
points  row(X) N Fy(£(2,1,1))  {5.5} x Pigs1s o +(2,1,1)

blue points row(X) N F,(£(1,1,2)) {5.5} x Ps5,1.5 +(1,1,2)
points  row(X) N Fy(£(~1,0,2)) {55} x {3.5} x [ 15,15 +(-1,0,2)

Table 1: Accessible SLOPE models with respect to X = (135 ) and w = (5.5,3.5, 1.5)".

LR Sy S 2

7]

28/14] Piotr Graczyk Pattern Recovery by SLOPE

| SLOPE pattern matrix

In order to characterize the SLOPE pattern recovery, we will need
some more notions related to a pattern M.

Definition

Let 0 £ M = (My, ..., Mp) € PSEOPE with k = ||M||.

Pattern matrix: Uy € RP*X is defined as follows

(UM)’J - Sign(Mi)1(|Mi|:k+1—j)7 I € {17 20 -,P},f € {17 R k}

Example. Let M = (1,2,—-2,0,—1)". Then [M|; =(2,2,1,1,0)

1
0

Uu=1-1 0 U|M|¢ =
0

O OO KM
O = OO
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UuyRXT gives all vectors with pattern M

For k > 1 we denote by Rkt = {x ¢ RK: k1 > ... > Kk > 0}.
Definition of Uy implies that for 0 # M € P5OPE and
k = ||M||o, for b € RP we have

patt(b) = M <= there exists k € RKT such that b = Uys.

Example. Let M =(1,2,—-2,0,—1) and k = (k1,k2)". Then

0 1 K2
1 0 K1
Uy = | =1 0 (’“) — | —x;
0o o | \*? 0
0 -1 —K»
30/14 Piotr Graczyk Pattern Recovery by SLOPE

Clustered matrix Xy, and clustered parameter iy

Definition (Clustered matrix and A— parameter)

Let X € R™P, A= (A1,...,Ap) where Ay > --- > X\, > 0.
Clustered matrix: Xy = XUpy.

Clustered parameter: Ay = (Uimy, )N

Example. Let X = (X1|X2|X3|X4|X5), M =(1,2,—2,0,—1)" and
N\ = ()\1, A2, A3, A4, )\5)/ where A1 > Ao > A3 > Ay > A5 > 0.

o iy _ o (At A
X/\/] = (X2 X3‘X1 X5) and /\M = ()\3 + )\4> .

The clustered design matrix Xu; has only k = 2 columns instead of
p=>5.
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If patt(3) = M, then X8 = XUy = Xyk for & € RET. In
particular,

@ null components M; = 0 lead to discard the column X; from
the design matrix X,

@ acluster K C {1,...,p} of M (component of M equal in
absolute value) leads to replace the columns (X;);ck by one
column equal to the signed sum: > sign(M;)X;.

ieK
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| New characterization of 9(Jp) for SLOPE

The next Proposition provides a new and useful formula for the
subdifferential of the sorted 1 norm, via an optimal system of
affine equations. This representation is crucial for the paper [1].

Proposition (Affine characterization of 9(Jx) for SLOPE)
Let b € RP and M = patt(b). Then we have the following formula:

DIn(b) = {v €RP: J5(v) < 1 and Ujyv = /”\M}.

Moreover, the affine space generated by 0J\(b) equals
{v eRP | Uyv = /N\M}

.

Example. For M = (1,2,—2,0, —1)’ the condition Uy,v = Am
means

Vo — v3 = A1 + Ao, Vi — V5 = A3 + A\4.
This description is much more performant than the hyperplane
equation v'M = Jy(M) that we saw before!
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Let us prove the inclusion

dJn(b) D {v e RP: Ji(v) <1and Uyv = 7\M}

Assume that v € RP satisfies Ji(v) <1 and Uj,v = Ap.
To prove that v € 9Jp(b) it remains to establish that b'v = Jpr(b) .
Since b = Ups, where s € RFT, we have

b'v = (Uys)'v = s'Uyv = s'"Ay = Ja(b).

The proof of the other inclusion is also elementary but longer, we
omit it.
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Characterization of pattern recovery by SLOPE

The characterization of pattern recovery by SLOPE given in the
next Theorem is the main mathematical result of article.

The main statistical results of paper [1] are based thoroughly on
this characterization Theorem.
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Given a SLOPE minimizer 3 € Sx -, (Y) for which

~n

patt(5) = M # 0, we observe that the following two simple
properties occur:

Dual ball condition: for 7 = X’(y — X3), we have | Ji(7) < 1.
(Actually, we know more: m € 9(Jp)(M))
Positivity condition: Consider the vector
)?,’wXﬁA = )~<,’V,XUMS = )~<,’w)~<Ms, where s € Rkt
Thus we have | 3s € R¥t X! X3 = X! Xys.

Getting rid of 3 in the |two conditions | by some simple
algebraic operations, including:

e the Moore-Penrose pseudo-inverse AT of A

o Py = (X},)"Xi, = XmXy;, the projector onto the space col(Xy)
we derive the necessity of two conditions of the next Theorem.

It is next easy to show that these | two conditions | are also
sufficient for the recovery of the pattern M.

Piotr Graczyk Pattern Recovery by SLOPE

37/14

Theorem (Characterization of SLOPE pattern recovery by
positivity and dual ball conditions)

Let X e R™P,0#L€RP, Y =XB+¢ fore € R", A € RPF.
Let M = patt(B) € PSLOPE and k = ||M||o. Define

= X'(Xp)) Ay + X' (I, — Py)Y.

There exists 3 € Sx A(Y) with patt(3) = patt(B) if and only if
the two conditions below hold true:

there exists s € Rkt such  that )~<,’V,Y — Ay = )N(,’V,)?Ms
(positivity condition),
Ji(m) <1 (dual ball condition).

If the positivity and ball conditions are satisfied, then
B =Uus € Sxa(Y) and m = X' (Y — XP).

Piotr Graczyk Pattern Recovery by SLOPE
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. Proof of necessity of two conditions for model recovery.

Let B € Sx 4, (Y) with patt(3) = M, i.e. = Uys, s € Rkt

We have X'(Y — X3) € dJrA(M). We want to deduce X}, X from
this inclusion.

Multiplying it by U},, by the affine characterization of
subdifferential, we get

Xi (Y = XB) = Ay and X[, X5 = X1, Y — Ap.

The positivity condition is proven.

Apply (X;,)7 to the last equality X! XB X1, Y — Ap and use
the fact that Py = (X}, )+X,’V, is the projector onto col(Xp). We
have X3 = Xys € col(XM) so that Py X3 = X3. We get

(X)) "Xy XB = PuY — (Xp)"Am = XB = PuY — (X)) T Am
We insert this formula for XBA in

B* 5 X'(Y — XB) = X'(Xi,) Am + X' (I — Pu)Y.
We proved the dual ball condition.
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Necessary condition for model recovery: Ay € col(X],)

Observe that the positivity condition:
there exists s € RXT such that )~<,’WY — Ay = )N<,’V,)~<Ms

implies that the property

A € col(X},)

(or equivalently, the projector )~<//w()~<l/w)+/~\/\/l = Aw)

is necessary for the positivity condition.

The condition Ay € col(X},) automatically holds when n > k and
col(X},) = R¥.
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Essential term X'(X},)*Ay in the dual ball condition

The first term | X"(X},)TAp | in the expression
= X'(Xi)) T Am + X' (I, — Pm)Y
is essential for the dual ball condition. Actually, the second term

X' (Iy = Pm)Y = X'(I, — Bi)XB + X' (I, — Bry)e = X (I, — Py)e

will be shown neglectable, under natural conditions on the (strong)
signal 3 or when n — oo.

40/14] Piotr Graczyk Pattern Recovery by SLOPE

\ Noiseless case

The second term is null in the noiseless case ¢ = 0.

The dual ball condition becomes | J5(X'(X},)tAn) < 1

We check that the positivity condition holds for a/A with A

verifying the | necessary condition Ay € col()~<,’\/,)

and a > 0 small enough.

We prove the following characterization of SLOPE pattern recovery
in the noiseless case.
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SLOPE IR <= noiseless pattern recovery

Corollary (SLOPE IR <= pattern recovery for ¢ = 0)

Consider the noiseless case when € = Q.
There exists o > 0 such that SLOPE with tuning parameter a/\
recovers the pattern patt(8) = M if and only if

J(X'(X},)TAMm) < 1 and Ay € col(Xy).

Then Jag such that for all 0 < a < ag, SLOPE with tuning
parameter a\ recovers the pattern of 5.

By analogy to LASSO terminology (Zou, Wainwright, de Geer) we
say that the SLOPE Irrepresentability(IR) Condition holds if

JL(X(Xi))TAm) <1 and Ay € col(X},)
(‘or equivalently X' (Xt )P Am € DI (M))).
When ker(Xps) = {0} then the SLOPE IR condition reads:

JX(X/XM(XMXM)_lﬂm) <1.
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Example, p =2, n > 2

Let X = (X1|X2) € R™2 such that

(1 06
XX_(O.6 1)'

Let A = (4,2), = (5,3), M = patt(p) = (2,1)".
Xy = X and Ay = A
ker(Xps) = {0} and

(XX Am) = JH(XX(XIX)TIN) = Ji(N) =1 < 1.

The SLOPE irrepresentability condition holds true, so the noiseless
pattern recovery holds for for a.
Using R, we see that 0 < av < 0.4 garantees the pattern recovery.
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Noiseless pattern recovery holds for 5 = (5, 3)’, pattern

= /
= (2,1)
SLOPE solution path
m - i
5 — Firstcomp:fonent
S e Second camponent
c ' 5
=
g ©
E
o
o
TTRN
o
S
77 B
G —
| | T | | |
0.0 0.5 1.0 1.5 2.0 2.5
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IR does not hold for 8 = (5,0)’, pattern = (1,0)’

J(472)(X/)~<,/\j7\/\/]) = 64/4 |

SLOPE solution path

o i H
=== First component

w e Second component

% g H

=

g ©

E

o

L&

W o

5 |

= i

0 - m=(1,1) :m=(0,0)
S

0.0 0.5 1.0 1.5
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Geometrical meaning of 71 := X'(X},)" Ay

Proposition (1 := X'(X},)* A is a meeting point )

Suppose that Ay € col()?,’v,). )
Then {m} = aff(0JA(M)) N col(X'Xp).

Proof. We use the Proposition on Affine characterization to .
Since X},(X},)" is the projection on col(X},) we have

Uy = X0 (R Ry = R

Thus 7 € aff(aj/\(l\/l))

Moreover, since col((X},)") = col(Xu),

we deduce that m; € col(X'(X},)") = col(X'Xu).

We omit the (short) proof of unicity of the meeting point. O
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Back to the Example: 8 = (5,0)’, pattern = (1,0)’ Ja(m) > 1,
the meeting point 71 is not in the pattern face 9J\(M)

B2

col(X' Xu)
T

OIn(M)
A1
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Meeting point IR for any polyhedral pen

For SLOPE, the space col(X'Xp) = X'XcolUy = X' X1inCy
where Cpy = UyRKT is the "pattern set” of all x € RP with the
same pattern as M, i.e.

OIr(x) = 0In(M)

The " pattern set” can be defined for any penalty pen.
The meeting point w1 of affdpen(x) and XX'linCy, is well defined
for any penalty pen.

In [2] we conjecture that the condition | m; € Open(x) | is equivalent

to the Noiseless pattern recovery for any polyhedral pen.
(proof at finish)
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LASSO analogues of our SLOPE characterization Theorem

and our SLOPE IR condition

Consider the LASSO sign recovery (i.e. existence of estimator
BLASSO gch that sign(8Y“A950) =sign(8) = S € {—1,0,1}P)
The LASSO analogue of our characterization Theorem with
positivity and dual ball conditions | is new. In conclusion we get

Corollary (New LASSO Irrepresentability condition )

Consider the noiseless case when ¢ = Q.
There exists A > 0 such that LASSO with tuning parameter \
recovers sign(fB) = S if and only if

X' (XE) T 1gilloe <1 and 1gk € col(X5).

V.

Here )~<§ is the design matrix X signed and reduced according to S.
Example. If S =(1,0,-1,0)" and X = (X1|X2|X3|Xs), then
X_/g = (X17 _X3)
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New and old LASSO IR condition

The two conditions

X' (XE) T 1pulloo < 1 and Lgk € col(X%)
equivalent to noiseless LASSO sign recovery are new.

When ker(Xs) = {0} then 1, € col(X%) occurs and
| X/(XE) T 1k]loo < 1 is equivalent to

IX:Xi (X[ Xi) 1S oo <1

where | = supp(S), I ={1,...,p}\
( M, denotes the submatrix of M obtained by keeping columns
corresponding to indices in [ )

This latter expression is known in literature as the LASSO
irrepresentability condition (Fuchs, Zhao, Zou, Wainwright, de
Geer).
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Symmetric error. Necessity of the SLOPE IR Condition

Let Y = )N(B +e where € and —¢ havg the same distribution.
If JX(X'(X},)TAm) > 1 or Ay ¢ col(Xy,) then the probability of
pattern recovery by SLOPE is smaller than 1/2.

For LASSO, a similar result when ker Xs = {0}, was obtained by
Wainwright (2009).
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Asymptotic Pattern Recovery (Pattern Consistency) when

e # 0. Open IR Condition.

In order to give a sufficient condition for pattern recovery, we must
strengthen SLOPE /R condition to an Open SLOPE /R condition
(this also happens with LASSO)

Recall that our SLOPE IR condition is equivalent to
X'(X1) Ay € OIn(M)
The Open SLOPE IR condition is
X' (Xis)tRu € 1i(9In(M))

where ri(F) is the relative interior of F.
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| Open IR Condition is numerically effective

The Open IR Condition X'(X},)* A € 1i(0Ip(M))
is equivalent to the following computationally verifiable conditions:

JL(X (X)) TAm) < 1 and Ay € col(X,),
{iett ok S IX K  Rulg = Sjoa A | = 1Ml

We count the number of equalities in p inequalities equivalent to
Jx(b) < 1. Recall that

b bly+ |b b +...+1|b
J}'{(b):max{| l1) bl + bl(2) 1b](1) | ’(p)}.

VRS VIS AL D VINER S
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Asymptotic Pattern Recovery (Pattern Consistency) when

e # 0: Open IR, big tuning and strong signal are sufficient

1
Sx.on(Y) = argmin Z||Y — Xb||3 + aa(b).
beRr 2

Theorem (Pattern consistency with X fixed)

Let X € R™P, 0 # M € PSLOPE and A = (A1,..., \p) where
A1 > ... >\, > 0. (8(),>1 sequence with pattern M:

° ﬁ(r) = Uys(D  with s{r) > .. > s,((r) > 0 and k = [|M|| o,

o A, =minigick (57 = s{}) =% co.  STRONG SIGNAL

Let Y1) = Xﬁ(r) + €, where € is an arbitrary vector in R". If
ar — 00, a, /A, — 0 asr — oo | and

X'(Xi)FAm € 1i(8Ip(M)), OPEN IR

then 3rg >0 Vr>rg 33 € Sx.a,n(Y()) such that patt(3) = M.

V.
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Pattern consistency with p fixed and n — oo

We suppose:
X = X, random, satisfying a natural Lindeberg-Feller condition;
an incremental error £, = (€1,...,€,), where (¢;); are i.i.d.

centered with finite variance;
(Xn)n and (ep)n are independent.

Theorem (Pattern consistency with n — o)

Let X € R"*P such that %X’X — C almost surely when n — oo,
0 # B € RP and M = patt(3). Iflim,_ 2 =0,

limp—oeo 3—% — 00 and

CUm (U CUM) YA € ri(0Ipn(M))

then

patt(BSLOPE) — patt(s).
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Strong Pattern consistency with n — oo, for all w

Assume additionnally that the rows of X, are independent and that
each row of X, has the same law as &, where £ is a random vector
whose components are linearly independent a.s. and that

E[¢?] <oofori=1,...,p.

Theorem (Strong Pattern consistency with n — 00)

Let X € R" P such that %X’X — C almost surely when n — oo,
0 # B € RP and M = patt(3). Iflim,_ 52 =0,
lim,_y oo ——22—u = 00 and
nlog log(n)
CUm (U CUM) " Ay € ri(0Ipn(M))
then
patt(B5-OPF) % patt(6).
V.
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| Simulation study: example already seen

Consider Y = X3 + ¢ where ¢ has iid N(0,52) entries and
4 51 ~: ";:,,630 :~40 and 531 = ...= 6200 = 0.
] X,XM(X//V]XM)_I/\I\/I € I'l(a.//\(/\/l))
° HXT,X/(XI/X/)_lslgn(B/)HOO <1.

Cluster

® LASSO
® SLOPE

estimator
0
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Consider Y = X3 + ¢ where ¢ has iid N(0,52) entries and
® f1=...= Pioo=40and fio1 = ... = P20 = 0.
o Ji(X'Xm(X,Xn)"YAn) > 1.
o [IXIX (X[ X))~ sign(By) |0 > 1.

Cluster

® LASSO
® SLOPE

tim:
0 60
— O GIGRSaD MRS @b ¢ 0ant

Theorem [2]. Under the accessibility condition THRESHOLDED
SLOPE asymptotically recovers the SLOPE pattern_of 3
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. RESEARCH PROGRAM

RESEARCH PROGRAM (planned with H. Ishi, B.
Kotodziejek, H. Nakashima)

Study of Pattern recovery for Graphical SLOPE on
Graphical Gaussian Models

Pattern = clusters of equal terms and blocks of 0’s
<= Colored Graphical Models
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Mathematical optimization and statistical theories
using geometric methods

Date : October 20-21, 2022 (Japan Standard Time)
Venue : Academic Extension Center (Osaka Metropolitan University)
Contents : Workshop (Hybrid: physical /virtual)

e This workshop is held as a part of OCAMI Joint Usage/Research (JP-
MXP0619217849)
“MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics”

e This workshop is also supported by Japan Science and Technology Agency,
CREST
“Innovation of Deep Structured Models with Representation of Mathematical In-
telligence” in ”Creating information utilization platform by integrating mathe-
matical and information sciences, and development to society”

Organizers: Hideto Nakashima (ISM: hideto (at) ism.ac.jp), Yoshihiko Konno
(OMU), Hideyuki Ishi (OMU), Kenji Fukumizu (ISM)

Program
e October 20 (Thursday)

13:00-13:50 Shoji Toyota (SOKENDAI)
Invariance Learning based on Label Hierarchy

14:00-14:50 Sho Sonoda (RIKEN AIP)
Ridgelet Transforms for Neural Networks on Manifolds and
Hilbert Spaces

15:00-15:50 Tomonari Sei (The University of Tokyo)
Ushio Tanaka (Osaka Metropolitan University)
Stein-type distributions on Riemannian manifolds

16:10-17:00 Tomasz Skalski (Wroclaw University of Science and Technology:
LAREMA, University of Angers)
On LASSO and SLOPE estimators and their pattern recovery

17:10-18:00 Carlos Améndola (Technical University of Berlin)
Likelihood geometry of correlation models
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e October 21 (Friday)

9:00- 9:50

11:00-11:50

13:50-14:40

14:50-15:40

16:00-16:50

Piotr Zwiernik (University of Toronto)
Mixed convex exponential families and locally associated graphical
models

Koichi Tojo (RIKEN Center for Advanced Intelligence Project)
(Classification problem of invariant g-exponential families on ho-
mogeneous spaces

Yoshihiko Konno (Osaka Metropolitan University)
Adaptive shrinkage of singular values for a low-rank matrix mean
when a covariance matrix is unknown

Satoshi Kuriki (The Institute of Statistical Mathematics)
Expected Euler characteristic heuristic for smooth Gaussian ran-
dom fields with inhomogeneous marginals

Piotr Graczyk (LAREMA, University of Angers)
Pattern recovery by SLOPE



