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Preface

This is a proceedings of the international workshop “Mathematical optimization and
statistical theories using geometric methods” held from October 20th to October 21st in
2022. This workshop aimed to connect researchers in several fields, in particular Statistics,
Machine Learning and Mathematics, and to share problems and researches in these fields
interdisciplinary.

This workshop was supported by Osaka Metropolitan University, Advanced Mathe-
matical Institute MEXT Joint Usage/Research Center on Mathematics and Theoretical
Physics, and also supported by Japan Science and Technology Agency, CREST: “Inno-
vation of Deep Structured Models with Representation of Mathematical Intelligence” in
“Creating information utilization platform by integrating mathematical and information
sciences, and development to society.”

This workshop was held in a hybrid format. Domestic speakers are gathered in Aca-
demic Extension Center (Osaka Metropolitan University), Foreign speakers participated
by Zoom. We had 10 talks, 6 of which were from Japan and the others were from abroad,
and 26 people had been registered in this workshop.



Organizers

Hideto Nakashima

Research Center for Statistical Machine Learning, The Institute of Statistical Mathemat-
ics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan

Email address : hideto@ism.ac.jp

Yoshihiko Konno

Department of Mathematics, Osaka Metropolitan University, 1-1, Gakunen-cho, Naka-ku,
Sakai-shi, 599-8531

Email address : konno@omu.ac.jp

Hideyuki Ishi

Department of Mathematics, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-
ku, Osaka, 558-8585, Japan

Email address : hideyuki-ishi@omu.ac.jp

Kenji Fukumizu

Research Center for Statistical Machine Learning, The Institute of Statistical Mathemat-
ics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan

Email address : fukumizu@ism.ac.jp



Contents

Shoji Toyota
Invariance Learning based on Label Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Sho Sonoda
Ridgelet Transforms for Neural Networks on Manifolds and Hilbert Spaces . . . . . . 14

Tomonari Sei and Ushio Tanaka
Stein-type distributions on Riemannian manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Tomasz Skalski
On LASSO and SLOPE estimators and their pattern recovery . . . . . . . . . . . . . . . . . . 49

Carlos Améndola
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Invariance Learning based on Label Hierarchy

Shoji Toyota

The Graduate University for Advanced Studies (SOKENDAI)

Training data used in machine learning may contain features that are spuriously cor-

related to the labels of data. Deep Neural Networks (DNNs) often learn such biased

correlations embedded in training data and hence may fail to predict desired labels of test

data generated by a different distribution from one to provide training data. To solve the

problem, Invariance Learning (IL) is a rapidly developed approach to overcome the issue

of biased correlation, which is caused by some bias in the distribution of a training dataset

(e.g., [1]). IL estimates a predictor invariant to the change of distributions, aiming at

keeping good performance in unseen distributions as well as in the training distributions.

While the IL approach has attracted much attention, requiring training data from

multiple distributions may hinder wide applications in practice; preparing training data

in many distributions often involves expensive data annotation.

To mitigate the problem of annotation cost, we propose a novel IL framework for the

situation where the training data of target classification is given in only one distribution,

while the task of higher label hierarchy, which needs lower annotation cost, has data

from multiple distributions. The new IL framework significantly reduces the annotation

cost in comparison with previous IL methods; we need exhausting annotation of original

classes only for one distribution and just causaer labels for other distributions. Numerical

simulations and theoretical analysis verify the effectiveness of our framework.

References

[1] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant Risk Minimization.

arXiv:1907.02893, 2019.
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Invariance Learning
based on Label Hierarchy

Shoji Toyota
The Graduate University for Advanced Studies

(Joint work with Prof. Kenji Fukumizu )

OCAMI workshop, 20 ~ 21, October, 2022

※ The presentation is based on https://arxiv.org/abs/2203.15549. To appear in Neurips 2022.
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Method

Experiment

Agenda

Background

Mathemathical Formulation

Theory

Recent Problem in Machine Learning :

Estimators inherit spurious correlation in training data

＋

Train Test

There are no cows !

Teacher label

[S. Beery et al. 2018]
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Notations 

Statistical Invariance [Arjovsky et al. 2019, Peters et al. 2016]

Estimating a feature nap Φ by traing data from multiple training dist.s e1, ..., en

: Image, : Label, : Training dist., : Test dist.

LabelsRandom variable designating dist.s Featured Images

( ）

E Φ(X) Y

Annotation cost problem in Invariance Estimation

Teacher labels are not often attached in images.

User Annotation Vendor

・・・

Teacher label

・・・

Cost is high especially when

the number of class is large.

Bird mBird 1 Turtle nTurtle 1

※ Images are Cited from [Wah et al., 2011].

・・・

Teacher label Teacher label

4 OCAMI Reports Vol. 8 (2022)



Invariance Estimation Based on Label Hierarchy

Proposed Framework: Invariance estimation with the following two data

1

2

a

Teacher label

・・・
a

Label in higher level

Bird mBird 1 Turtle nTurtle 1

・・・ ・・・

Bird Turtle

a

Label in higher level

a

Teacher label

Invariance Learning Based on Label Hierarchy

User Annotation Vendor

・・・

・・・

lower cost !

※ Note that Z = g(Y) holds for some surjective function g.

Original label

Labels in higher level

as

※ The relation gives effective estimation method.

a

Label in higher level

a

Label in higher level

Mathematical Optimization and Statistical Theories using Geometric Methods 5



Method

Experiment

Agenda

Background

Mathemathical Formulation

Theory

: Index designating a dist.

: Risk on

Assumption:

Mathemathical Formulation

: Image and label on e.

1

2

Available

samples

Goal: out-of-distribution (o.o.d.) risk Minimization

Out-of-distribution (o.o.d.) risk

(=g(Yi
e) ): labels in higher hierarchy
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Method
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Mathemathical Formulation

Theory

Estimation

Esrimaiton object: 1. Feature map Φ which satisfies E → Φ(X) → Y

2. classifier w predicting a label Y from Φ(X)

We can not estimate it by data on a single domain...

Mathematical Optimization and Statistical Theories using Geometric Methods 7



Estimation

Esrimaiton object: 1. Feature map Φ which satisfies E → Φ(X) → Y

2. classifier w predicting a label Y from Φ(X)

Method: We estimate Φ and w stemiously,
by minimizing the following objective function.

[M. Arjovsky et al. 2019].※ second term:

estimating w : evaluated by original label data estimating Φ: evaluated by higher label data

(Dependence measure of E → Φ(X) → Z)

Z
Labels in higher level

・Cross-Validation (CV) for minimizing an o.o.d. risk maxe R(f)

Difficulity: o.o.d. risk estimation from validation data

Difficulty of Hyperparameter selection

If we select λ by a naive CV method using training data,

famous methods result in random guess classifiers....

[Galrajani et al. 2021]

D[-k] D[k] 
fλ maxeR

e(f) ❌

D[-k] , D[k] : Training and Validation, fλ ← fλ

^ ^
fλ maxeR

e(f)

^d

Goal: argminλ maxe Re (fλ)

8 OCAMI Reports Vol. 8 (2022)



Proposed CV methods

Method 1：Using a risk w.r.t. higher label data Z alternatively.

De
[k]= { (x, z) }

How can we estimate a risk on ? ( ※ De = { (x, z) } )

Goal:

Proposed CV Methods

Method 2：Risk correction

De
[k] 

Thm. (Decomposition formula of risk)

(output: probability, loss: cross-entropy)

De1
[k] ={(x, y)}

Proposed CV methods 

How can we estimate risk on ?

Method 1：Using a risk w.r.t. higher label data Z alternatively.

Mathematical Optimization and Statistical Theories using Geometric Methods 9
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Thoretical analysis of CV methods

: Approximations of an o.o.d. risk by Method I and II (ignoring estimation).

^

Optimal hyperparameterHyperparameter 

selected by method I
The inclusions represent 

the success of CVs

(with ignoring estimations ).

d
fλ ← fλ ( ※ There are some open problems. )

(

)

Optimal hyperparameterHyperparameter 

selected by method II

10 OCAMI Reports Vol. 8 (2022)



: all m'ble funct. 

: Method II is more applicable !

Correctness of Method 1 (Simplified)

Correctness of Method 1 (Simplified)

Thoretical analysis of CV methods

: [Rojas-Carulla et al. 2018 ] 

Method

Experiment

Agenda

Background

Mathemathical Formulation

Theory
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Modified dataset of BREEDS [S. Santurkar et al. 2021]
o.o.d. benchmark constructed by ImageNet [J. Deng et al. 2009]

Experiment: Image Recognition with 17 class labels

Our method is validated by the worst acc. among e1 and e2

1

2

17 class

2 class (Animals or Non-animals)

Birds

Dataset e1 Dataset e2

Turtles

・
・
・

Animals

Non-animals
Structures

Result (5 runs)

Proposed Methods v.s. Competitors

ERM Transfer I Transfer II DA Ours + CVI Ours + CVII CV comp. I CV comp. I

0.6

0.5

0.4

0.3

0.2

0.1

0

0.36

0.16

0.06

0.56

0.36

0.56

Min{Test Acc on e1,

Test Acc on e2 }

Competitors

0.71

|

|

|

|

|

|

|

Oracle

0.54
0.52
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Ridgelet Transforms for Neural Networks on
Manifolds and Hilbert Spaces

Sho Sonoda
RIKEN AIP, Tokyo 103–0027 Japan

sho.sonoda@riken.jp

Abstract

To investigate how neural network parameters are organized and arranged, it is
easier to study the distribution of parameters than to study the parameters in each
neuron. The ridgelet transform is a pseudo-inverse operator (or an analysis operator)
that maps a given function f to the parameter distribution γ so that a network

S[γ](x) :=

∫

Rm×R
γ(a, b)σ(a · x− b)dadb, x ∈ Rm

represents f , i.e., S[γ] = f . For depth-2 fully-connected networks on Euclidean space,
the ridgelet transform has been discovered up to the closed-form expression, thus we
could describe how the parameters are organized. However, for a variety of modern
neural network architectures, the closed-form expression has not been known . Recently,
our research group has developed a systematic scheme to derive ridgelet transforms
for fully-connected layers on manifolds (noncompact symmetric spaces G/K) (Sonoda
et al., 2022b) and for group convolution layers on abstract Hilbert spaces H (Sonoda
et al., 2022a). In this talk, the speaker will explain a natural way to derive those ridgelet
transforms.

References

S. Sonoda, I. Ishikawa, and M. Ikeda. Universality of Group Convolutional Neural Networks Based
on Ridgelet Analysis on Groups. In Advances in Neural Information Processing Systems 35, 2022a.

S. Sonoda, I. Ishikawa, and M. Ikeda. Fully-Connected Network on Noncompact Symmetric Space and
Ridgelet Transform based on Helgason-Fourier Analysis. In Proceedings of the 39th International
Conference on Machine Learning, volume 162, 2022b.

1
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The Ridgelet Transforms of Neural Networks on
Manifolds and Hilbert Spaces

Sho Sonoda

Research Scientist
RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan

Mathematical Optimization and Statistical Theories Using Geometric Methods
Osaka Metropolitan University

October 20-21, 2022
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Q. What is a typical solution obtained by deep learning?

X Z1 Z2 Z3 Z4 Z5 Y

“camel, 98%”

“rug, 88%”

RGB values

x ∈ Rm
label prob.

y ∈ Rk
information processing

Want to identify what solution is typically acquired via deep learning

Want to know why (and when) deep learning performs better (than shallow networks)

2 / 20
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Reparametrization
Finite-width (Discrete, or “Ordinary”) NN

SNN(x; θd) =

d∑

i=1

ciσ(ai · x− bi)

nonlinear parameters: θd = {(ai, bi, ci)}di=1 ∈ R(m+2)d

continuum limit discretization

γd =
∑d
i=1 ciδ(ai,bi)

Infinite-width (Continuous, or Integral Representation of) NN

S[γ](x) =

∫

Rm×R
γ(a, b)σ(a · x− b)dadb

linear parameter: γ ∈ Map(Rm × R→ C)

3 / 20

Definition (Ridgelet Transform)

For any function f : Rm → C and ρ : R→ C, put

R[f ; ρ](a, b) =

∫

Rm

f(x)ρ(a · x− b)dx, (a, b) ∈ Rm × R.

Theorem (Reconstruction Formula)

For any σ ∈ S ′(R), ρ ∈ S(R) and f ∈ L2(Rm), we have

S[R[f ; ρ]](x) =

∫
R[f ; ρ](a, b)σ(a · x− b)dadb = ((σ, ρ))f(x),

where ((σ, ρ)) = (2π)m−1
∫
R σ

](ω)ρ](ω)|ω|−mdω and ] denotes the Fourier transform

Meaning 1: Continuous NN is a universal approximator
Meaning 2: R and S play the same role as Fourier F and inverse Fourier F−1 transforms:

F−1[F [f ]](x) = (2π)−m
∫

Rm

F [f ](ξ)eix·ξdξ = f(x)

Independently “discovered” by Murata (1996), Candès (1998), and Rubin (1998)
4 / 20
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Numerical example of ridgelet transform R[f ; ρ](a, b)
f(x) = sin(2πx)1[−1,1](x)
R[f ; ρ](a, b) =

∫
R f(x)ρ(ax− b)dx ≈∑i sin(2πxi)ρ(axi − b)∆x

σ(b) = tanh(b)

ρ(b) = H[ρ
(2)
0 ](b) with ρ0(b) := exp(−b2/2), Hilbert transform H

−2 −1 0 1 2

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

x

y

data f(x) image R[f ; ρ](a, b)
5 / 20

Visualization results of reconstruction formula S[R[f ; ρ]] = ((σ, ρ))f

ρ1 = Hρ
(1)
0

((σ, ρ1)) = 0
ρ2 = Hρ

(2)
0

((σ, ρ2)) 6= 0
ρ3 = Hρ

(3)
0

((σ, ρ3)) = 0
ρ4 = Hρ

(4)
0

((σ, ρ4)) 6= 0

6 / 20
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How the parameter distribution looks like?
We will train many (n = 1, 000) neural networks SNN(x; θd) =

∑d
j=1 cjσ(aj · x− bj) with d = 10

hidden units, and see the distribution of trained parameters (aj , bj , cj).

Data generating function: f(x) = sin(2πx)1[−1,1](x)
σ(z) = tanh(z)
SGD w. weight decay

−2 −1 0 1 2

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

x

y

data f(x) 7 / 20

A scatter plot of d× n = 10 hidden parameters (aj , bj , cj) obtained from n = 1 neural network∑d
j=1 cjσ(aj · x− bj) with d = 10 hidden units.

arg min L̂n(θd) 7 / 20
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A scatter plot of d× n = 20 hidden parameters (aj , bj , cj) obtained from n = 2 neural networks with
d = 10 hidden units.

arg min L̂n(θd)
7 / 20

A scatter plot of d× n = 50 hidden parameters (aj , bj , cj) obtained from n = 5 neural networks with
d = 10 hidden units.

arg min L̂n(θd)
7 / 20
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A scatter plot of d× n = 100 hidden parameters (aj , bj , cj) obtained from n = 10 neural networks with
d = 10 hidden units.

arg min L̂n(θd)
7 / 20

A scatter plot of d× n = 500 hidden parameters (aj , bj , cj) obtained from n = 50 neural networks with
d = 10 hidden units.

arg min L̂n(θd)
7 / 20
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A scatter plot of d× n = 1, 000 hidden parameters (aj , bj , cj) obtained from n = 100 neural networks
with d = 10 hidden units.

×100

arg min L̂n(θd)
7 / 20

A scatter plot of d× n = 5, 000 hidden parameters (aj , bj , cj) obtained from n = 500 neural networks
with d = 10 hidden units.

×500

arg min L̂n(θd)
7 / 20
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A scatter plot of d× n = 10, 000 hidden parameters (aj , bj , cj) obtained from n = 1, 000 neural
networks with d = 10 hidden units.

×1000

arg min L̂n(θd)
7 / 20

appears to be the image R[f ; ρ] of data f .

(formal) θ
(∞)
d := SGD(θ

(0)
d , L̂n) ∼ R[f ; ρ] (including sign!)

scatter plot arg min L̂n(θd) image R[f ](a, b)

7 / 20
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Q. How to Find R?—A. Solve S[γ] = f
Appendix A.3, in Sonoda-Ishikawa-Ikeda, arXiv:2106.04770

Step 1. Turn the network into a Fourier expression

S[γ](x) =

∫

Rm

[∫

R
γ(a, b)σ(a · x−b)db

]
da

=

∫

Rm

[
1

2π

∫

R
γ](a, ω)σ](ω)eiωa·xdω

]
da, ∵ 1

2π

∫
R γ

](a, ω)σ](ω)eiωbdω = (γ(a, •) ∗ σ)(b)

=
1

2π

∫

R

[∫

Rm

γ](ξ/ω, ω)eiξ·xdξ

]
|ω|−mσ](ω)dω, by (a, ω) = (ξ/ω, ω)

where ·] is the Fourier transform in b
Step 2. Assume a separation-of-variables form

γ]f,ρ(ξ/ω, ω) := f̂(ξ)ρ](ω)

Then, (1) γf,ρ is a particular solution

S[γf,ρ] =
1

2π

[∫
σ](ω)ρ](ω)|ω|−mdω

] [∫
f̂(ξ)eiξ·xdξ

]
= ((σ, ρ))f

(2) and γf,ρ(a, b) = R[f ; ρ](a, b).
8 / 20

Further Results

Theorem (S-Ishikawa-Ikeda, AISTATS2021)

The empirical regularized least squares parameters in the finite NNs converges to the ridgelet transform:

arg min
γd=

∑d
i=1 ciδ(ai,bi)

1

n

n∑

i=1

|f(xi)− S[γd](xi)|2 + β|c|2 n,d→∞,β→+0−−−−−−−−−→ S∗[f ] = R[f ;σ∗]

Ridgelet transform can characterize the parameters obtained by learning (loss minimization)

Theorem (S-Ishikawa-Ikeda, arXiv:2106.04770)

The general solution of S[γ] = f is given by a sum of ridgelet transforms

γ = S∗[f ] +
∑

ij

cijR[ei; ρj ]

where ei and ρj are ONSs in L2(Rm) and L2(R, ((·, ·))) resp. satisfying ((σ, ρj)) = 0

Ridgelet transform is not only sufficient but also necessary
9 / 20
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Extensions to modern network architectures

Based on the Fourier expression technique, we have developed new ridgelet transforms for

1 Group convolutional NNs on Hilbert space H
in S-Ishikawa-Ikeda (NeurIPS2022) and

2 Fully-connected NNs on manifold (noncompact symmetric space) G/K

in S-Ishikawa-Ikeda (ICML2022)

10 / 20

Group Convolutional NNs on Hilbert Space H1

1S-Ishikawa-Ikeda, NeurIPS2022
11 / 20
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Definition (Group CNN)

Let G be a group, H be a Hilbert space, and T : G→ GL(H) be a group representation. Let Hm ⊂ H
be an m-dimensional subspace equipped with the Lebesgue measure λ. Put

S[γ](x)(g) :=

∫

Hm×R
γ(a, b)σ((a ∗ x)(g)− b)dλ(a)db, x ∈ H, g ∈ G

where the (G,T )-convolution is given by

(a ∗ x)(g) := 〈Tg−1 [x], a〉H.

Example (Cyclic CNN for multichannel image)

CNN(x)(p, q) =

n′∑

`=1

c`σ




n∑

k=1

m∑

i,j=1

ak`ij x
k
i+p,j+q − b`


 , x = (xkij) ∈ Rm

2×n, (p, q) ∈ (Z/mZ)2

i.e., G = (Z/mZ)2,H = Rm2×n, Tp,q(x) := (x••−p,•−q)

12 / 20

In the following, e ∈ G denotes the identity element.

Definition (Ridgelet Transform)

For any function f : Hm → CG and ρ : R→ C, put

R[f ; ρ](a, b) :=

∫

Hm

f(x)(e)ρ(〈a, x〉H − b)dλ(x).

Definition ((G, T )-Equivariance)

A (nonlinear) map f : H → CG is (G,T )-equivariant when

f(Tg[x])(h) = f(x)(g−1h), ∀x ∈ Hm, g, h ∈ G

Theorem (Reconstruction Formula)

Suppose that f is (G,T )-equivariant and f(•)(e) ∈ L2(Hm), then S[R[f ; ρ]] = ((σ, ρ))f .

Meaning: Universality of continuous GCNN

Corollary: cc-universality of finite GCNNs

13 / 20

Mathematical Optimization and Statistical Theories using Geometric Methods 25



Sketch Proof
Step 1. Turn to Fourier expression:

S[γ](x)(g) =

∫

Hm×R
γ(a, b)σ(〈Tg−1 [x], a〉H − b)dadb

=
1

2π

∫

Hm×R
γ](a, ω)σ](ω)eiω〈Tg−1 [x],a〉Hdadω

=
1

2π

∫

Hm×R
γ](ξ/ω, ω)σ](ω)ei〈Tg−1 [x],ξ〉H |ω|−mdξdω.

Step 2. Put separation-of-variables form:

γ]f,ρ(ξ/ω, ω) := f̂(ξ)(e)ρ](ω).

By the construction it is a particular solution:

S[γf,ρ](x)(g) =
1

2π

∫

Hm

f̂(ξ)(e)ei〈Tg−1 [x],ξ〉Hdλ(ξ)

∫

R
σ](ω)ρ](ω)|ω|−mdω

= ((σ, ρ))f(x)(g).

and γf,ρ = R[f ; ρ].
14 / 20

Fully-Connected NNs on Noncompact Symmetric Space2
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Definition (Fully-Connected NNs on Noncompact Symmetric Space G/K)

Let G be a connected semisimple real Lie group, let G = KAN be the Iwasawa decomposition, and let
X := G/K be the noncompact symmetric space. Put

S[γ](x) :=

∫

a∗×∂X×R
γ(a, u, b)σ(a〈x, u〉 − b)e%〈x,u〉dadudb, x ∈ X = G/K

where a∗ is the dual of Lie algebra of A, ∂X is the boundary, and 〈x, u〉 is an X-counter of the
Euclidean inner product x · u for (x,u) ∈ Rm × Sm−1.

Example (Continuous Horospherical Hyperbolic NN)

On the Poincaré ball model Bm := {x ∈ Rm | |x| < 1} equipped with the Riemannian metric
g = 4(1− |x|)−2∑m

i=1 dxi ⊗ dxi,

S[γ](x) :=

∫

R×∂Bm×R
γ(a,u, b)σ(a〈x,u〉 − b)e%〈x,u〉dadudb, x ∈ Bm

% = (m− 1)/2, 〈x,u〉 = log

(
1− |x|2E
|x− u|2E

)
, (x,u) ∈ Bm × ∂Bm

16 / 20

Definition (Ridgelet Transform)

For any function f : X → C and an auxiliary function ρ : R→ C, put

R[f ; ρ](a, u, b) :=

∫

X

c[f ](x)ρ(a〈x, u〉 − b)e%〈x,u〉dx

where c[f ] is a Helgason-Fourier multiplier.

Theorem (Reconstruction Formula)

For any σ ∈ S ′(R), ρ ∈ S(R), and f ∈ L2(X), we have

S[R[f ; ρ]] =

∫

a∗×∂X×R
R[f ; ρ](a, u, b)σ(a〈x, u〉 − b)e%〈x,u〉dadudb = ((σ, ρ))f.

where ((σ, ρ)) is a certain scalar product.

Meaning: Universality of continuous Fully-Connected NN on X

Corollary: cc-universality of finite Fully-Connected NNs on X

17 / 20
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Fourier Analysis on X = G/K
Helgason, GGA (1984, Introduction); GASS (2008, Chapter III)

Definition (Helgason-Fourier Transform)

For any function f : X → C,

f̂(λ, u) :=

∫

X

f(x)e(−iλ+%)〈x,u〉dx, (λ, u) ∈ a∗ × ∂X

with a certain constant vector % ∈ a∗.

Theorem (Inversion Formula)

For any f ∈ L2(X) (or f ∈ C∞c (X)),

f(x) = |W |−1
∫

a∗×∂X
f̂(λ, u)e(iλ+%)〈x,u〉|c(λ)|−2dλdu, x ∈ X

where c is the Harish-Chandra c-function, and |W | is a constant.

This is a “Fourier transform” because e(−iλ+%)〈x,u〉 is the eigenfunction e(−iλ+%)〈x,u〉 of the
Laplace-Beltrami operator ∆X on X 18 / 20

Sketch Proof
Given a function f : G/K → C, consider solving an integral equation S[γ] = f of unknown γ.

Step 1: Change the frame of S[γ] from neurons to a Fourier expression:

S[γ](x) :=

∫

a∗×∂X×R
γ(a, u, b)σ(a〈x, u〉 − b)e%〈x,u〉dadudb

=
1

2π

∫

R

[∫

a∗×∂X
γ](λ/ω, u, ω)|c(λ)|2e(iλ+%)〈x,u〉 dλdu

|c(λ)|2
]
|ω|−rσ](ω)dω,

where ] denotes the Euclidean-Fourier transform in b.

Step 2: Since inside [· · · ] is the inverse Helgason-Fourier transform, put a separation-of-variables
form:

γ]f,ρ(λ/ω,u, ω) = f̂(λ,u)ρ](ω)|c(λ)|−2.
Then, by the construction, it is a particular solution:

S[γf,ρ] = ((σ, ρ))f,

where ((σ, ρ)) := |W |
2π

∫
R σ

](ω)ρ](ω)|ω|−mdω.

In the end, we can verify that γf,ρ is the ridgelet transform R[f ; ρ].

19 / 20
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Conclusion

Ultimate goal:
I Characterize deep solutions

We have seen:
I Shallow solutions are characterized by ridgelet transform

Take home message:
I If there is a Fourier transform, then so is the ridgelet transform

We will see:
I A ridgelet transform for depth

20 / 20
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Stein-type distributions on Riemannian manifolds

Tomonari Sei (The University of Tokyo)∗1

Ushio Tanaka (Osaka Metropolitan University)∗2

1. Stein-type distributions on the Euclidean space
Let P2 be the set of probability distributions µ on Rd with mean zero and finite second
moments such that each marginal distribution µi (i = 1, . . . , d) is absolutely continuous
with respect to the Lebesgue measure dxi on R. We say that a probability distribution
µ ∈ P2 is Stein-type if it satisfies

∫
f(xi)

(
d∑

j=1

xj

)
dµ =

∫
f ′(xi)dµ, i = 1, . . . , d,

for any absolutely continuous function f : R → R with bounded derivative f ′.
Let Tcw be the set of coordinate-wise transformations T (x) = (T1(x1), . . . , Td(xd))

such that each Ti is non-decreasing. In [2], it is shown that for any given µ0 ∈ P2,
there exists T ∈ Tcw such that T♯µ0 is Stein-type. The transformation is characterized
by a minimizer of a functional

F (µ) =
d∑

i=1

∫
log

dµi

dxi

dµi +

∫
1

2

(
d∑

i=1

xi

)2

dµ,

over a fiber {T♯µ0 | T ∈ Tcw}. The fiber is totally geodesic in the L2-Wasserstein space
and F is convex with respect to displacement interpolation. The optimal map T is
applied to the problem of determining a general index in [2].

2. Generalization to manifolds
We generalize the Stein-type distributions to those on Riemannian manifolds. The
space Rd is replaced with a product space M =

∏d
i=1 Mi, where each Mi is a Rie-

mannian manifold. The space P2 of distributions is defined as well. Let Tcw be the
set of coordinate-wise transformations T (x) = (T1(x1), . . . , Td(xd)) such that each
Ti : Mi → Mi is monotone. Here, Ti is said to be monotone if it is written as
Ti(xi) = expxi

∇ϕi(xi) with a cost convex function ϕi : Mi → R (see [1]). The Stein-
type distribution is defined by a minimizer of a functional

F (µ) =
d∑

i=1

∫
log

dµi

dxi

dµi +

∫
V (x)dµ,

over a fiber {T♯µ0 | T ∈ Tcw}, where V : M → R is a given function.
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The Stein identity

We begin with the following fact.

Proposition (Stein identity)

A random variable X follows N(0, 1) if and only if

E [Xf (X )] = E [f ′(X )]

for any differentiable function f with bounded f ′.

Proof: (⇒) For the density function ϕ(x) = (2π)−1/2e−x2/2,
∫

xf (x)ϕ(x)dx =

∫
f (x){−ϕ(x)}′dx =

∫
f ′(x)ϕ(x)dx .

(⇐) If E [Xf (X )] = E [f ′(X )], it is shown that X has density p(x).
Then the identity is equivalent to

p′(x) + xp(x) = 0.

The unique solution is p(x) = ϕ(x).
2 / 35
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Application of the Stein identity

Why is the Stein identity important?

Stein’s unbiased risk estimator (statistics)

Central limit theorem (probability theory)

Stein discrepancy (machine learning)

Application: Stein’s unbiased risk estimator

Let X ∼ Nd(θ, Id), where θ ∈ Rd is unknown parameter.

Consider an estimator X + f (X ) of θ. The risk is

E [∥X + f (x) − θ∥2]
= E [∥X − θ∥2] + 2E [f (X )⊤(X − θ)] + E [∥f (X )∥2]
= d + 2E [∇⊤f (X )] + E [∥f (X )∥2] (Stein identity)

= E [d + 2∇⊤f (X ) + ∥f (X )∥2︸ ︷︷ ︸
risk estimator

]

3 / 35
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Another application of Stein identity

Application: Poincaré inequality (Chernoff 1981, Chen 1982)

If X ∼ N(0, 1), then

V [g(X )] ≤ E [g ′(X )2],

with equality if and only if g(x) = ax + b.

Indeed,

V [g(X )] ≤ E [(g(X ) − g(0))2]

= E [(
∫ X
0 g ′(x)dx)2]

≤ E [X
∫ X
0 g ′(x)2dx ] (Cauchy–Schwarz*)

= E [g ′(X )2] (Stein identity).

(* valid even for X < 0.)

4 / 35
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Outline of this talk

In this talk, we generalize the Stein identity in the following
manner.

1 Define Stein-type distributions on Rd by an identity

E [(X1 + · · · + Xd)f (Xi )] = E [f ′(Xi )].

2 Define Stein-type distributions on the direct product of
Riemaniann manifolds (on-going work).

We first see the background of the problem in a couple of slides.

5 / 35
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Background: Objective general index (OGI)

S. (2016) pointed out that the Stein identity is related to a scaling
problem, which is a motivation of this work.

First, consider d random variables X1, . . . ,Xd .

For example, Xi is academic score of students on i-th subject.

Proposition (S. 2016)

There exist unique w1, . . . ,wd > 0 such that

Cov(Y ,wiXi ) = 1 (i = 1, . . . , d),

where Y = w1X1 + · · · + wdXd , under a mild condition.

The proof is based on matrix scaling (Marshall–Olkin 1968).

We call Y the objective general index (OGI).

The Stein identity appears in a functional version of this fact.

6 / 35
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Illustration

A numerical example

Suppose that the covariance matrix of X1,X2,X3 is

(Cov(Xi ,Xj))
3
i ,j=1 =




1 −0.5 −0.5
−0.5 1 0
−0.5 0 1


 .

In this case,

Cov(X1 + X2 + X3,X1) = 1 − 0.5 − 0.5 = 0.

But, a weight (w1,w2,w3) = (2.135779, 1.667566, 1.667566) gives

Cov(w1X1 + w2X2 + w3X3︸ ︷︷ ︸
OGI

,wiXi ) = 1, i = 1, 2, 3.

7 / 35
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Functional OGI

Next, consider a random variable X with density p(x).

Define an infinite number of variables by Heaviside function:

hξ(X ) = I{X≥ξ} − E [I{X≥ξ}], ξ ∈ R.

What is OGI of {hξ(X )}ξ∈R?

Proposition (S. 2016)

There exists a unique positive function w(ξ) such that

Cov(Y ,w(ξ)hξ(X )) = 1 (ξ ∈ R), (∗)

where Y =
∫
R w(ξ)hξ(X )p(ξ)dξ. In fact, Y ∼ N(0, 1).

We call Y the functional OGI of X .

The identity (∗) is considered as a version of the Stein identity.

Let us check it.
8 / 35
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Functional OGI and Stein identity

It is shown that the condition of the functional OGI

Cov(Y ,w(ξ)hξ(X )) = 1

is equivalent to the Stein identity

E [Yfξ(Y )] = E [f ′
ξ (Y )]

for fξ(y) = hξ(T
−1(y)) and T (x) =

∫
R w(ξ)hξ(x)p(ξ)dξ.

In other words, the functional OGI is characterized by an
increasing function T that attains the Stein identity.

The Stein-type distribution we now discuss is a generalization
of N(0, 1) based on this fact.

9 / 35
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Variational characterization

Before proceeding, we recall a variational characterization of
N(0, 1).

Proposition

F (p) =

∫

R
p(x) log p(x)dx +

∫

R

x2

2
p(x)dx

has a unique minimizer p(x) = ϕ(x) = (2π)−1/2e−x2/2.

Proof 1: F (p) =
∫
p(x) log(p(x)/ϕ(x))dx + const

Proof 2: Let p0 be a minimizer of F . Let T (x) = x + εf (x)
be an increasing function. Then,

F (T♯p0)−F (p0) = ε
(
−
∫
p0(x)f

′(x)dx +
∫
f (x)p0(x)dx

)
+o(ε).

The stationary condition is the Stein identity. So p0 = ϕ.

10 / 35
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Fiber

Now let us go on to the Rd case.

Let P2 be the set of probability distributions µ on Rd such
that the marginal distribution µi satisfies

∫
R xidµi = 0,

∫
R x2i dµi < ∞, µi ≪ Leb.

We call T : Rd → Rd a coordinate-wise transformation if

T (x) = (T1(x1), . . . ,Td(xd)), T ′
i (xi ) > 0.

For each µ ∈ P2, define the µ-fiber

Fµ = {T♯µ ∈ P2 | T is coordinate-wise},

where T♯ denotes the push forward.

11 / 35
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Picture

The space P2 is decomposed into the set of fibers.

We define a Stein-type distribution in each fiber.

Stein-type

copulas

fiber

2

Remark

Fµ is totally geodesic in the Wasserstein space.

Fµ has a unique copula (Sklar’s theorem). A copula refers to
a distribution with uniform marginals on [0, 1].

12 / 35
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A free-energy functional

Define a functional F : P2 → R by

F (µ) =
d∑

i=1

∫

R
log

dµi
dxi

dµi +
1

2

∫

Rd

(
d∑

i=1

Xi

)2

dµ,

We can further consider

F (µ) =
d∑

i=1

∫

R
log

dµi
dxi

dµi +

∫

Rd

V (x)dµ,

with some smooth function V (x) (S. 2017).
This appears in the optimal transport theory (McCann 1997)
except that the entropy term is replaced with

∫
log dµ

dx dµ.
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Minimization over the fiber

F

F is not bounded from below on the whole space P2.

But F may be bounded from below on each fiber Fµ.

14 / 35
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Stein-type distribution

To minimize F over the fiber, consider a perturbation of the
transformation around the identity:

Tε = Id + εf , f (x) = (f1(x1), . . . , fd(xd)), ε ∈ R.

Then we have, as ε → 0, the first variation

F ((Tε)♯µ) ≃ F (µ)+ε
∑

i

∫
{−f ′

i (xi )+fi (xi )(x1+· · ·+xd)}dµ.

Definition (Stein-type distribution)

A distribution µ is called a Stein-type distribution if it satisfies

∫

Rd

(x1 + · · · + xd)fi (xi )dµ =

∫

Rd

f ′
i (xi )dµ, ∀i , ∀fi ∈ C1(R).
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Examples

Example 1 (independent case)

If X1, . . . ,Xd are independent and have zero mean, then the
equation

E [(X1 + · · · + Xd)f (Xi )] = E [f ′(Xi )]

forces
E [Xi f (Xi )] = E [f ′(Xi )].

Thus, only the independent Stein-type distribution is the standard
normal distribution.
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Examples

Example 2 (Gaussian)

Let (X1, . . . ,Xd) ∼ Nd(0,S). Then the distribution is Stein-type if
and only if

d∑

j=1

Sij = Cov


Xi ,

∑

j

Xj


 = 1

for i = 1, . . . , d . This is the same as the OGI property.

Example 3 (non-Gaussian)

Let Z ∼ N(0, 1) and U be any distribution with E [U] = 0 and
E [U2] < ∞. Then the random vector (X1,X2) with

X1 =
Z + U√

2
, X2 =

Z − U√
2

is Stein-type.
17 / 35
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Functional OGI (revisited)

We briefly discuss an application of our results.

Problem

Let X1, . . . ,Xd be random variables with joint density p(x),
which represent students’ scores on d academic subjects.

How to define the overall score?

An answer

Let Y =
∑d

j=1 Tj(Xj), where T (X ) is the Stein-type.

Then the Heaviside function f (xi ) = hξ(xi ) yields

E [Y | Xi > ξ] > E [Y | Xi < ξ], ∀ξ ∈ R, ∀i .

Interpretation: students with higher score on each subject i
has higher overall score in mean.

18 / 35
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Assumption on µ: copositivity

S. (2022) established an existence and uniqueness theorem. We
suppose some conditions.

For each µ ∈ P2, denote the product measure of marginal
distributions by

µ⊥ =
∏d

i=1 µi .

Definition (Copositivity)

We say that µ is copositive if

β(µ) = inf
T :cw

∫
{∑i Ti (xi )}2dµ∫
{∑i Ti (xi )}2dµ⊥ > 0.

Trivially, if µ is independent (µ = µ⊥), then β(µ) = 1.

Sufficient conditions for copositivity are discussed later.

19 / 35

Introduction OGI Stein-type distribution Known results Generalization to manifolds Summary

Assumption on µ: regular support

Definition (Regularity)

We say that µ has a regular support if the support of µ is the
direct product of the supports of µi ’s.

regular non-regular

20 / 35
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Existence and uniqueness theorem

Theorem (Existence and uniqueness)

Suppose that µ is copositive and has a regular support. Then there
exists a unique Stein-type distribution in the µ-fiber.

F

21 / 35
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Proof sketch.

Uniqueness follows from the displacement convexity

F ([(1 − λ)T0 + λT1]♯µ) > (1 − λ)F ((T0)♯µ) + λF ((T1)♯µ),

where strict inequality follows from the regular support
condition.

For existence, we use the copositivity to obtain

F (µ) ≥
∫

log
dµ⊥

dx
dµ⊥ +

β

2

∫ (∑

i

xi

)2

dµ⊥.

Then the problem is essentially reduced to the independent
case µ = µ⊥.
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Sufficient conditions for copositivity

We establish sufficient conditions for copositivity

β(µ) = inf
T :cw

∫
{∑i Ti (xi )}2dµ∫
{∑i Ti (xi )}2dµ⊥ > 0.

The notion of positive dependence plays a significant role.

Definition (e.g. Rüschendorf 2013)

1 p(x) is called MTP2 (multivariate totally positive of order 2)
if p(x ∨ y)p(x ∧ y) ≥ p(x)p(y) for all x , y ∈ Rd .

2 p(x) is said to be associated if
∫
ϕψpdx ≥

∫
ϕpdx

∫
ψpdx

for all increasing ϕ, ψ : Rd → R.
3 p(x) is called PSMD (positive super-modular dependent) if∫

ϕ(x)p(x)dx ≥
∫
ϕ(x)p⊥(x)dx for any super-modular

function ϕ.
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Sufficient conditions

Theorem (FKG 1971, Christofides 2004, S. 2017)

MTP2 ⇒ associated ⇒ PSMD ⇒ copositive.

MTP2 is relatively easy to confrim.
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42 OCAMI Reports Vol. 8 (2022)



Introduction OGI Stein-type distribution Known results Generalization to manifolds Summary

Open problems

There are some open problems.

Conjectures

1 The marginal support of any Stein-type density is R.
2 Existence implies uniqueness.

3 A Gaussian distribution is copositive if the covariance matrix
is strictly copositive.

For the rest of talk, we generalize the Stein-type distributions on
Rd to the direct space of Riemannian maniolds.
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Optimal transport on Riemannian manifolds

We recall the optimal transport theory on Riemannian manifolds
according to McCann (2001).

Let (M, g) be a Riemannian manifold that is C 3, compact
and connected without boundaries.

An example in mind is M = S1 (circle).

Let d(x , y) be the geodesic distance between x , y ∈ M.

A cost is defined by c(x , y) = d(x , y)2/2.

A function ϕ : M → R is called cost-convex if there exists
ϕ∗ : M → R such that

ϕ(x) = sup
y∈M

{−c(x , y) − ϕ∗(y)}.

If ϕ is cost-convex, it is Lipschitz and therefore is differentiable
vol-a.e. (Rademacher’s differentiability theorem).
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McCann’s theorem

For cost-convex ϕ, a map T : M → M defined by

T (x) = expx(∇ϕ(x))

is considered as a generalization of increasing functions on R.

Theorem (McCann 2001)

Let µ ≪ vol and ν be probability measures on M. Then there
exists a unique cost-convex function ϕ (up to additive constants)
such that T (x) = expx(∇ϕ(x)) pushes µ forward to ν. This map
is a unique minimizer of the transportation cost

∫
c(x ,T (x))dµ.
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Fiber

Let M1, . . . ,Md be C 3 compact Riemannian manifolds.

Consider the product space M =
∏d

i=1Mi .

Let P be the set of probability distributions µ on M such that
the marginal distribution µi satisfies µi ≪ voli .

We call T : M → M a coordinate-wise transformation if

T (x) = (T1(x1), . . . ,Td(xd)), Ti = expxi (∇ϕi (xi )),

where ϕi is cost-convex.

For each µ ∈ P, define the µ-fiber

Fµ = {T♯µ ∈ P | T is coordinate-wise},

where T♯ denotes the push forward.
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Picture

The space P is decomposed into the set of fibers.

We define a Stein-type distribution in each fiber.

Stein-type

copulas

fiber

2

Remark: Sklar’s theorem on manifolds

Fµ has a unique “copula”, which refers to a distribution with
uniform marginals on Mi . (cf. circula; Jones et al. (2015))
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Stein-type distribution on M

Let V (x) be a smooth function on M =
∏d

i=1Mi .

Define a functional F : P → R by

F (µ) =
d∑

i=1

∫

Mi

log
dµi
dxi

dµi +

∫

M
V (x)dµ.

Definition

A Stein-type distribution on M is defined by a minimizer of F (µ)
over a fiber.

Problem: Existence and uniqueness? → future work..
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Stationary condition

To minimize F over the fiber, consider a perturbation of the
transformation around the identity:

Tε(x) = expx(εf (x)), f (x) = (f1(x1), . . . , fd(xd)), ε ∈ R.

Then we have the first variation

F ((Tε)♯µ) ≃ F (µ) + ε
∑

i

∫
{−∇i fi (xi ) + fi (xi )∇iV (x)}dµ.

Lemma

If µ is Stein-type, then

∫

M
fi (xi )∇iV (x)dµ =

∫

M
∇i fi (xi )dµ, ∀i , ∀fi ∈ C1(Mi ).
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Example

Circular case

Let M1 = · · · = Md = S1.

We use the coordinate xi = (cos θi , sin θi ) ∈ Mi .

Consider a function

V (x) =
1

2
{(∑i cos θi )

2 + (
∑

i sin θi )
2}.

The derivative is ∂θiV (x) = −A(θ) sin(θi − θ̄), where A(θ)
and θ̄ are defined appropriately.

Then the Stein-type distribution has to satisfy

−
∫
M fi (θi )A(θ) sin(θi − θ̄)dµ =

∫
M f ′

i (θi )dµ.

Any application? → future work...
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Summary and future work

Summary

We defined the Stein-type distributions on Euclidean space
and established the existence and uniqueness theorem.

We generalized it to distributions on Riemannian manifolds.

Future works

Existence seems OK due to the compactness. Uniqueness may
be non-trivial.

Any analogue of Poincaré inequality?

We are seeking applications.

Thank you for your attention!
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On LASSO and SLOPE estimators and their
pattern recovery

Tomasz Skalski1,2

1Wrocław University of Science and Technology, Poland
2LAREMA, University of Angers, France

Least Absolute Shrinkage and Selection Operator (LASSO) and Sorted `1 Pe-
nalized Estimator (SLOPE) are the regularization methods used for fitting
high-dimensional regression models. They allow to reduce the model dimen-
sion by nullifying some of the regression coefficients. Moreover, SLOPE al-
lows the further reduction by equalizing some of nonzero coefficients, which
allows to identify situations where some of true regression coefficients are
equal.
We shall introduce the notion of the pattern for LASSO and SLOPE and its
subdifferential-induced generalization to other convex penalized estimators,
which will be illustrated carefully in the case of the orthogonal design matrix.
This talk will present new results on the strong consistency of SLOPE esti-
mators and on the strong consistency of pattern recovery by SLOPE when
the design matrix is orthogonal. We shall also present the relations of LASSO
and SLOPE with root system induced convex hulls.

The research was supported by a French Government Scholarship and by
Centre Henri Lebesgue, program ANR-11-LABX-0020-0.
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Linear regression model

Linear regression model: Y = Xβ + ε:

Y ∈ Rn: response vector

X ∈ Rn×p: design matrix

β ∈ Rp: unknown parameter vector

ε ∈ Rn: random noise term
Noiseless case: ε = 0.
Noisy case: ε has continuous and symmetric distribution.
Goal: to estimate β.
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Ordinary Least Squares estimator

Ordinary Least Squares (Legendre, 1805, Gauss, 1809)
β̂OLS := arg min

b∈Rp

1
2 ‖Y − Xb‖22

β̂OLS = (X ′X )−1X ′Y

Not defined when n < p.
In noisy case: with probability 1 has p pairwise different coordinates.

3 / 25

Penalized estimator

Consider the following penalized estimator

β̂ := arg min
b∈Rp

1
2
‖Y − Xb‖22 + λJ(b), where J is a norm.

β̂ is well defined when n ≥ p as well as when n < p.
The pattern of β̂ is characterized by its subdifferential ∂J .
The dual norm J∗ is given by J∗(x) = sup{z ′x : J(z) ≤ 1}.
β̂ = 0 if and only if J∗(X ′Y ) ≤ 1.
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Examples of penalized estimators

Ridge regression (Hoerl & Kennard, 1970)

β̂ := arg min
b∈Rp

1
2 ‖Y − Xb‖22 + λ ‖b‖2, λ > 0

LASSO (Chen & Donoho, 1994, Tibshirani, 1996)

β̂LASSO := arg min
b∈Rp

1
2 ‖Y − Xb‖22 + λ ‖b‖1, λ > 0

SLOPE (Bogdan, van den Berg, Sabatti, Su, Candès, 2015)

β̂SLOPE := arg min
b∈Rp

1
2 ‖Y − Xb‖22 +

p∑
i=1

λi |b|(i), λ1 > 0,

λ1 ≥ . . . , λp ≥ 0, |b|(1) ≥ . . . ≥ |b|(p)

5 / 25

Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO estimator (Chen & Donoho, 1994, Tibshirani, 1996) minimizes the
`1-penalized Euclidean distance between Y and Xb:

β̂LASSO := arg min
b∈Rp

1
2
‖Y − Xb‖22 +λ ‖b‖1, λ > 0.

β̂LASSO is well defined both for n ≥ p and n < p.
∂‖·‖1(b) = sign(b).
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LASSO dual ball = hypercube

J∗(b) = ‖b‖∞
B∗ = B∞(0, λ) = [−λ, λ]
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Sorted `1 Penalized Estimator (SLOPE)

SLOPE (Bogdan, van den Berg, Sabatti, Su, Candès, 2015) minimizes the
sorted `1 penalized Euclidean distance between Y and Xb:

β̂SLOPE := arg min
b∈Rp

1
2
‖Y − Xb‖22 + JΛ(b).

Sorted `1 norm: JΛ(b) :=
p∑

i=1
λi |b|(i), where

λ1 > 0, λ1 ≥ . . . , λp ≥ 0 and |b|(1) ≥ . . . ≥ |b|(p).

β̂SLOPE is well defined both for n ≥ p and for n < p.
SLOPE generalizes the previous approaches:

λ1 = . . . = λp = 0⇒ β̂SLOPE = β̂OLS ,
λ1 = . . . = λp > 0⇒ β̂SLOPE = β̂LASSO .
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SLOPE dual ball = Signed permutahedron P±(Λ)

The dual of sorted `1 norm is:

J∗Λ(b) = max

{ |b|(1)

λ1
,
|b|(1) + |b|(2)

λ1 + λ2
, . . . ,

|b|(1) + · · ·+ |b|(p)

λ1 + · · ·+ λp

}
.

The unit ball of J∗Λ is the signed permutahedron P±(Λ) :

P±(Λ) = Conv{(±λπ(1), . . . ,±λπ(p)) : π ∈ Sp}.

P±(Λ) in R2 P±(Λ) in R3
9 / 25

Root systems and statistics

LASSO: Ap
1 SLOPE: Bp
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SLOPE pattern

Definition
The SLOPE pattern is a function patt : Rp → Z

p defined by

patt(b)i = sign(bi )rank(|bi |), i = 1, . . . , p,

where rank(|bi |) ∈ {1, 2, . . . , k} is the rank of |bi | in a set of nonzero
distinct values of {|b1|, . . . , |bp|} (and sign(0) = 0).

Properties of patt(x):

sign(patt(x)) = sign(x) (sign preservation),
|xi | = |xj | =⇒ |patt(x)i | = |patt(x)j | (clusters preservation),
|xi | > |xj | =⇒ |patt(x)i | > |patt(x)j | (hierarchy preservation).

Example

x = (1.2, 1.2, 5, −5, 0, 3) =⇒ patt(x) = (1, 1, 3, −3, 0, 2).

11 / 25

SLOPE vs. OLS

Theorem (Schneider & Tardivel, 2021)
For n ≥ p and ker(X ) = {0} we have:
β̂OLS − β̂SLOPE = Proj(β̂OLS) on (X ′X )−1P±(Λ).
For p > n:
Y − X (β̂OLS − β̂SLOPE ) = Proj(β̂OLS) on (X ′X )−1row(X ) ∩ P±(Λ).

Theorem (Orthogonal design, n ≥ p)

The orthogonal projection of β̂OLS on P±(Λ) is equal to β̂OLS − β̂SLOPE.

For LASSO: proven by Ewald and Schneider (2018).
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SLOPE vs. OLS

β1

β2

SLOPE OLS

SLOPE

OLS

SLOPE

OLS

(-2,1)

(-1,2) (1,2)

(2,1)

(2,-1)

(1,-2)(-1,-2)

(-2,-1)

(-1,0)

(-1,1) (0,1) (1,1)

(1,0)

(1,-1)(0,-1)(-1,-1)

(0,0)

Figure: β̂SLOPE and β̂OLS in orthogonal design: X ′X = Ip for Λ = (2, 1)′.

Simpler expression for SLOPE in orthogonal design: Tardivel, Servien and
Concordet (2020).
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Y (n) = X (n)β + ε(n)

Consider the sequence of regression models: Y (n) = X (n)β + ε(n)

with ε(n) ∼ N (0, σ2In).
No assumptions on relations between ε(n) and ε(m) for n 6= m.

Theorem
Assume that

lim
n

n−1(X (n))′X (n) = C > 0.

Let β̂SLOPE
n , n ≥ 1, be the SLOPE estimator corresponding to the tuning

vector Λ(n) = (λ
(n)
1 , λ

(n)
2 , . . . , λ

(n)
p )′.

If lim
n→∞

λ
(n)
1
n

= 0, then β̂SLOPE
n

a.s.−→ β.

If λ0‖β‖∞ > β′Cβ/2 and λ(n)
1 /n→ 0,

then β̂SLOPE does not converge to β. Hence, β̂SLOPE is not strongly
consistent for β.
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Y (n) = X (n)β + ε(n)

Theorem
Assume that

lim
n→∞

λ
(n)
1
n

= 0

and that there exists δ > 0 such that

lim inf
n→∞

λ
(n)
i − λ

(n)
i+1√

n (log(n))1/2+δ
= m > 0 for i = 1, . . . , p − 1.

Then we have
patt(β̂SLOPE

n )
a.s.→ patt(β).

15 / 25

Application of SLOPE: signal denoising
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Application of SLOPE: signal denoising

17 / 25

Application of SLOPE: signal denoising
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Application of SLOPE: signal denoising
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Application of SLOPE: signal denoising
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Application of SLOPE: signal denoising

OLS LASSO-CV LASSO-LS SLOPE-LS
MSE (, ·) 613.6797 426.3705 171.7957 20.74967

Comparison of MSE between different regression methods

21 / 25

Application of SLOPE: pattern recovery

(a) (b)
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Domo arigato gozaimasu!
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Appendix: Pictures from the Title Page

Meeting point of scaled B and scaled unit ball in `2 of (Y − Xb) is equal
to β̂.

sign(β̂LASSO) = (0,+) patt(β̂SLOPE ) = (1, 1)
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Appendix: Subdifferential

Definition (Subgradient)
Let f : Rp 7→ R. Then g is a subgradient of f at b if

∀h ∈ Rp f (b + h) ≥ f (b) + g ′h.

Definition (Subdifferential)
The subdifferential ∂f (b) of f at b is the set of all subgradients of f at b.
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Appendix: Thresholded estimator

Definition (Thresholded penalized least squares estimator)

Let pen be a penalizer, X ∈ Rn×p, y ∈ Rn and λ > 0. Given
β̂ ∈ SX ,λpen(y), we say that û is a thresholded estimator of β̂ if
∂pen(β̂) ⊂ ∂pen(û).

Definition (Thresholded LASSO)

β̂LASSO
i

,τ =

{
β̂LASSO
i , if |β̂LASSO

i | > τ,

0, otherwise.
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Appendix: LASSO and SLOPE in orthogonal design

Theorem (Tibshirani, 1996)
Exact formula for LASSO in orthogonal (X ′X = I ) design:

β̂LASSOi = sign(β̂OLS
i ) max{|β̂OLS

i | − λ, 0}.

Theorem (Tardivel, Servien, Concordet (2020))

Let |β̂OLS |(1) ≥ . . . ≥ |β̂OLS |(p). Let Ŝk :=
k∑

i=1
(|β̂OLS |(i) − λi ). Denote a

partition (k1, k2, . . . , ks = p) of {1, 2, . . . , p} such that

ki := max{arg maxk>ki−1{
Ŝk−Ŝk−1
k−ki−1

}} with k0 = Ŝ0 = 0. Then

β̂olsi · β̂
slope
i ≥ 0 and |β̂slope | is given by
(
k1 terms

(
Ŝk1

k1

)

+

, . . . , (ks − ks−1) terms

(
Ŝks − Ŝks−1

ks − ks−1

)

+

)
.
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Likelihood Geometry of Correlation Models

Carlos Améndola

Technical University of Berlin

We present a problem where algebra appears naturally when estimating
correlation matrices, that is, standardized covariance matrices. Concretely,
we study the geometry of maximum likelihood estimation for correlation
matrices, which form an affine space of symmetric matrices defined by setting
the diagonal entries to one.

We study the likelihood geometry for this model and linear submodels
that encode additional symmetries. We also consider the problem of min-
imizing two closely related functions of the covariance matrix: the Stein’s
loss and the symmetrized Stein’s loss. Unlike the Gaussian log-likelihood,
these two functions are convex and hence admit a unique positive definite
optimum.

Studying the critical points in all three settings leads to systems of non-
linear equations, and we compute some of the algebraic degree invariants
that measure the algebraic complexity of each optimization problem.

This is joint work with Piotr Zwiernik (University of Toronto, Canada).

Mathematical Optimization and Statistical Theories using Geometric Methods 65



Likelihood Geometry of Correlation Models

Carlos Enrique Améndola Cerón
(Technical University of Berlin)

OCAMI: Mathematical optimization and statistical theories using geometric methods

October 20, 2022

Setup / Introduction

Sn+ real symmetric positive definite n × n matrices

Model: M ⊆ Sn+, and Data: S ∈ Sn+
What is the ‘best’ point Σ∗ ∈M that explains S?

Gaussian ML estimation:

Σ̂ = arg max
Σ∈M

log det(Σ−1) − tr(Σ−1S)

Can be seen as minimizing the divergence I(S ∣∣Σ), where

I(Σ1,Σ2) = tr(Σ1Σ−1
2 ) − log det(Σ1Σ−1

2 ) − n

# complex critical points for generic S : ML degree

In this talk: M consists of correlation matrices, i.e. Σii = 1 ∀i

Carlos Améndola Likelihood Geometry of Correlation Models
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Motivating Example: Bivariate Correlations

Let M ⊂ S2
+ consist of 2 × 2 correlation matrices:

Σ = (1 ρ
ρ 1

) K = Σ−1 = 1

1 − ρ2
( 1 −ρ
−ρ 1

) S = (s11 s12

s12 s22
)

where −1 < ρ < 1.

Finding the MLE corresponding to ρ̂ reduces to solving a cubic
equation [Kendall, Stuart, 1961 “Advanced Theory of Statistics”]:

ρ3 − s12ρ
2 + (s11 + s22 − 1)ρ − s12 = 0

ML degree is 3. There could potentially be three positive definite
solutions with a multimodal likelihood function `(Σ).

How often does this happen? How bad can it be?

Carlos Améndola Likelihood Geometry of Correlation Models

A statistical perspective
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Probability of one real critical point

n=2

rho
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m
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e 
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Case Study: Bivariate Correlations

Let a = s11+s22
2 and b = s12.

Note that if S ∈ S2
+ then a > 0 and ∣a∣ > ∣b∣.

It holds that d
dρI(S ∣∣Σ) = 2

(1−ρ2)2 f (ρ), where

f (ρ) = ρ3 − bρ2 − (1 − 2a)ρ − b.

f (−1) = −2(a + b) < 0 and f (1) = 2(a − b) > 0 Ô⇒ at least one real
root in (−1,1).

The discriminant of f is

∆f (a,b) = −4[b4 − (a2 + 8a − 11)b2 + (2a − 1)3].

f has a single real zero ⇐⇒ ∆f (a,b) < 0.

However, we are more interested in:

when does f have a single critical point in (−1,1)?

Carlos Améndola Likelihood Geometry of Correlation Models
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Likelihood Geometry for Bivariate Correlations

Carlos Améndola Likelihood Geometry of Correlation Models

Case Study: Bivariate Correlations

Data matrix

S = (a b
b a

)

where a > ∣b∣ > 0.

It holds that d2

dρ2I(S ∣∣Σ) = 2
(1−ρ2)3 g(ρ), where

g(ρ) = ρ4 − 2bρ3 + 6aρ2 − 6bρ + 2a − 1.

g(−1) = 8(a + b) > 0 and g(1) = 8(a − b) > 0.

The discriminant of g is

∆g = −256(27b6 − 27(2a2 + 6a − 5)b4 + 9(3a4 + 36a3 − 32a2 + 8a + 1)b2

−(2a − 1)(9a2 − 2a + 1)2) (1)

If g(ρ) > 0 for all ρ ∈ R (globally convex) Ô⇒ ∆g(a,b) ≥ 0.

However, we are more interested in:

when is g nonnegative in (−1,1)?

Carlos Améndola Likelihood Geometry of Correlation Models
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Convexity Analysis

Carlos Améndola Likelihood Geometry of Correlation Models

Alternative Loss Functions

From the divergence

I(Σ1,Σ2) = tr(Σ1Σ−1
2 ) − log det(Σ1Σ−1

2 ) − n

I(Σ1,Σ2) ≥ 0 and is zero if and only if Σ1 = Σ2.

strictly convex in Σ1 and in Σ−1
2

Fix S ∈ Sn+:

1 entropy loss: I(S ∣∣Σ) (minimizer Σ̂ is MLE)

2 Stein’s loss: I(Σ∣∣S) (minimizer Σ̌ is dual MLE)

3 symmetrized Stein’s loss:

L(Σ,S) = 1

2
(I(S ∣∣Σ) + I(Σ∣∣S))

(2) and (3) are strictly convex in Σ and optimizers are uniquely defined

Carlos Améndola Likelihood Geometry of Correlation Models
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Full correlation model

Let M ⊂ Sn+ be the space of all correlation matrices: Σii = 1 for all 1 ≤ i ≤ n.
First order optimality conditions give that the optimum is a correlation
matrix Σ = K−1 satisfying for each i ≠ j :

1 entropy loss (MLE):
Kij = (KSK)ij

2 Stein’s loss (dual MLE):

Kij = (S−1)ij

3 symmetrized Stein’s loss:

(KSK)ij = (S−1)ij

Carlos Améndola Likelihood Geometry of Correlation Models

Algebraic Degrees

For the bivariate correlation model n = 2, [Brownlees, Llorens-Terrazas
(2020)] observed that the dual MLE can be given in closed form (solving a
quadratic equation!).
From our computations, for n > 1 one has

dMLdeg(n) < MLdeg(n) < SSLdeg(n)

n 1 2 3 4 5 6 7 8 9

SSL degree 1 4 28 292 ? ? ? ? ?

ML degree 1 3 15 109 1077 13695 ? ? ?

dual ML degree 1 2 5 14 43 144 522 2028 8357

For n > 4, computed with the package LinearCovarianceModels.jl

how are these numbers growing?

Carlos Améndola Likelihood Geometry of Correlation Models
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Equicorrelation Model

The model M now consists of all Σ ∈ Sn+ such that

Σii = 1 Σij = ρ for i ≠ j .

This means that ρ is restricted to −1
n−1 < ρ < 1.

Let W = S−1. We can exploit the symmetry and set:

W = 1

n!
∑
P∈Sn

PWPT

Theorem (Am., Zwiernik (2021))

For the equicorrelation model, the dual ML degree is always 2 for every
n > 1. The dual MLE Σ̌ admits the explicit form

ρ̌ = 1 + (n − 2)w̄ ±
√

(nw̄ + 1)2 − 4w̄

2(n − 1)w̄ .

where w̄ is the off-diagonal entry of W .

Carlos Améndola Likelihood Geometry of Correlation Models

Equicorrelation Model

The model M now consists of all Σ ∈ Sn+ such that

Σii = 1 Σij = ρ for i ≠ j .

This means that ρ is restricted to −1
n−1 < ρ < 1.

We can exploit the symmetry and set:

S = 1

n!
∑
P∈Sn

PSPT

Theorem (Am., Zwiernik (2021))

For the equicorrelation model, the ML degree is always 3 for every n > 1.
The MLE Σ̂ satisfies

(n − 1)ρ3 + ((n − 2)(a − 1) − (n − 1)b)ρ2 + (2a − 1)ρ − b = 0.

where a,b are the diagonal and off-diagonal entries of S, respectively.
The SSL degree is always 4 for every n > 1.

Carlos Améndola Likelihood Geometry of Correlation Models
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Equicorrelation for n > 2

Carlos Améndola Likelihood Geometry of Correlation Models

A statistical perspective
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A statistical perspective

n=2
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Summary

Rich likelihood geometry behind correlation models.

High ML degree may hint to problematic optimization, but careful
analysis shows likelihood function is well-behaved over large regions.

Introduction of another algebraic complexity measure: SSL degree.

Dual MLE appears to behave best algebraically, how do degrees grow?

Plenty of relevant submodels (e.g. symmetries) still to be explored.

Main Reference:
Améndola, C., & Zwiernik, P., Likelihood Geometry of Correlation
Models. (2021) Le Matematiche, 76(2), pp. 559 - 583.

ありがとうございました!

Carlos Améndola Likelihood Geometry of Correlation Models
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Mixed convex exponential families and locally
associated graphical models

Piotr Zwiernik (University of Toronto)

Abstract

In statistical exponential families the log-likelihood forms a concave func-
tion in the canonical parameters. Therefore, any model given by convex
constraints in these canonical parameters admits a unique maximum likeli-
hood estimator (MLE). Such models are called convex exponential families.
For models that are convex in the mean parameters (e.g. Gaussian covariance
graph models) the maximum likelihood estimation is much more complicated
and the likelihood function typically has many local optima. One solution is
to replace the MLE with so called dual likelihood estimator, which is uniquely
defined and asymptotically has the same distribution as the MLE. In this talk
I will consider a much more general setting, where the model is given by con-
vex constraints on some canonical parameters and convex constraints on the
remaining mean parameters. We call such models mixed convex exponential
families. We propose for these models a 2-step optimization procedure which
relies on solving two convex problems. We show that the resulting estimator
has asymptotically the same distribution as the MLE. Our work was moti-
vated by locally associated Gaussian graphical models that form a suitable
relaxation of Gaussian totally positive distributions.

(Joint work with Steffen Lauritzen, University of Copenhagen)
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Mixed convex exponential families and
locally associated graphical models

Piotr Zwiernik

University of Toronto

This story is part of the following paper:

Lauritzen S., & Zwiernik, P., Locally associated graphical models and mixed
convex exponential families. arXiv:2008.04688.

OCAMI Meeting
21(20) October 2022

Modelling with positive
dependence
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Example: S&P 500

graphical lasso estimate of the graph:
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Note: All edges green (positive partial correlations).
1

Gaussian totally positive distributions

The zero-mean Gaussian distribution

fpxq “
1

p2πqd{2

?
detK expp´xTKx{2q

Totally positive: K “ Σ´1 satisfies Kij ď 0 for all i ‰ j.
(K is an M-matrix)

‚ Kij ď 0 if and only if corrpXi,Xj|XVzti,juq ě 0.

2
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A success story

In some applications it works incredibly well.

Rossell&Zwiernik describe a S&P500 dataset:

‚ Our MLE gives a sparser graph and higher likelihood
than the best GLASSO estimate!

see also: Agrawal, Roy, Uhler. Covariance Matrix Estimation under

Total Positivity for Portfolio Selection, 2019.

3

However: Gene expression data

Partial correlations with negative signs additionally
penalized.
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Motivation: Locally associated GGMs

X is associated if covpfpX q, gpX qq ě 0 for any
f, g : Rd Ñ R nondecreasing.

Pitt: A Gaussian X is associated if and only if Σ ě 0.

Gaussian graphical model: X „ Ndp0,Σq:

MpGq “ tΣ P PDd : pΣ´1qij “ 0 for ij R Gu.

With additional positivity:

PpGq “ tΣ P PDd : Σij ě 0 for ij P Gu.

5

Estimation in laGGMs

The log-likelihood (S sample covariance matrix)

log detpΣ´1q ´ trpSΣ´1q

is concave in K “ Σ´1 but not in Σ.

Alternative: mixed dual estimate (MDE).

‚ MDE for mixed convex exponential families is easier to
obtain and has the same asymptotics as the MLE.

6
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2-stage estimation procedure

Information divergence (convex in Σ1 and in K2):

IpΣ1||K2q “
1

2
trpΣ1K2 ´ Iq ´

1

2
log detpΣ1K2q.

S sample covariance, S
1Ñ pK

2Ñ Σ̌

1. K̂ minimizer of IpS||Kq subject to K P MpGq.

2. Σ̌ minimizer of IpΣ||K̂q subject to Σ P PpGq.

Note: Σ̌ P MpGq and it is a reasonable estimator.

7

Mixed convex exponential
families
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Regular exponential families

Exponential family E over X wrt measure ν

ppx ;θq “ exptxθ, tpxqy ´ Apθqu for θ P Θ Ď Rk ,

The set of canonical parameters

Θ :“ int

"

θ P Rk :

ż

X
exp

"

xθ, tpxqy
(

νpdxq ă 8

*

.

In steep exponential families :

‚ Θ convex subset of Rk ,

‚ Apθq strictly convex, smooth over Θ,

‚ }∇Apθq} Ñ 8 at the boundary.
8

Mixed parametrizations

The split tpxq “ pupxq, vpxqq P Rk induces splits
θ “ pθu,θvq P Θ, µ “ pµu,µvq P M.

(Θ canonical parameters, M mean parameters)

Mu “ projection of M on µu

Θv “ projection of Θ on θv

Theorem (Barndorff-Nielsen, Mixed Parametrization):

‚ pµu,θvq forms an alternative parametrization.

‚ pµu,θvq P Mu ˆ Θv (variational independence)

9
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Mixed convex exponential family

Fix mixed parametrization pµu,θvq P Mu ˆ Θv of E .

Mixed convex exponential family:

‚ M1
u ˆ Θ1

v Ď Mu ˆ Θv

‚ M1
u Ď Mu, Θ1

v Ď Θv rel. closed convex subsets.

Example: Locally associated Gaussian distributions form
a mixed convex exponential family.

10

Example: The Gaussian case

Sufficient statistics: tpxq “ ´1
2xxT ,

Canonical/mean parameters: θ “ K , µ “ ´1
2Σ

Gradient map: ApKq “ ´1
2 log detK , ∇ApKq “ ´1

2K
´1.

e.g. in locally associated Gaussian graphical models:

‚ Kij “ θij “ pΣ´1qij “ 0 for ij R G , and

‚ Σij “ ´2µij ě 0 for ij P G .

So this is a mixed convex exponential family.

see also Gaussian Double Markovian Distributions by Boege,

Kahle, Kretschmer, Rötger (arXiv:2107.00134)

11
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This leads to an interesting observation:

Fix positive definite d ˆ d matrices A,B.

For any set I of indices there exists a unique positive
definite matrix Σ such that:

‚ Σij “ Aij for pi , jq P I;
‚ pΣ´1qij “ Bij for pi , jq R I.

12

Kullback-Leibler divergence

Fenchel conjugate: A˚pµq “ suptℓpθ;µq : θ P Rku.

Two distributions in E : one with mean parameter
µp1q P M, the other with canonical parameter θp2q P Θ.

K pµp1q,θp2qq “ ´xµp1q,θp2qy ` A˚pµp1qq ` Apθp2qq

Note: K is strictly convex both in µp1q and in θp2q.

13
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Mixed dual estimator
Mixed exponential family: pµu,θvq P M1

u ˆ Θ1
v.

Sufficient statistics t “ 1
n

řn
i“1 tpXpiqq “ pu, vq.

Two-step procedure:

(S1) pθ :“ argminK pt,θq over θ s.t. θv P Θ1
v.

(S2) qµ :“ argminK pµ, pθq over µ s.t. µu P M1
u.

Some properties:
‚ Theorem: qµ lies in the mixed convex family.
‚ qµ exists if and only if pθ exists,
‚ if exists, it is unique (convexity),

14

Summary + bibliography + thank you!

We study submodels of exponential families where the
model constraints are convex in the mixed parameters.

Our main motivation is in local association.

The likelihood function is not concave so the MLE may
be complicated to compute.

We propose a simple and sensible alternative.

This story is part of the following paper:

Lauritzen S., & Zwiernik, P., Locally associated graphical models and mixed
convex exponential families. To appear in Annals of Statistics.

15

84 OCAMI Reports Vol. 8 (2022)



Classification problem of invariant
q-exponential families on homogeneous spaces

Koichi Tojo

RIKEN Center for Advanced Intelligence Project

Abstract

Q-exponential family is a natural generalization of exponential family and
is an important subject in the fields of information geometry and statistics.
Widely used q-exponential families such as normal distributions and Cauchy
distributions have a symmetry. More precisely, the sample space can be
regarded as a homogeneous space G/H and the family of distributions on it
is G-invariant with respect to the induced G-action by pushforward. Then
the following problem naturally arises:

Classify G-invariant q-exponential families on G/H.

I would like to talk about a strategy to solve this problem using “q-
deformation” of an exponential family. Moreover, we give a new SL(2,R)-
invariant q-exponential family on the upper half plane.

This is a joint work with Taro Yoshino.
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Introduction
Step 1: G/H-method
Step 2: q-deformation

Another topic: natural projection

Classification problem of invariant q-exponential
families on homogeneous spaces

Koichi Tojo1, joint work with Taro Yoshino2

1RIKEN Center for Advanced Intelligence Project, Tokyo, Japan,

2Graduate School of Mathematical Science, The University of Tokyo

Octorber 21, 2022
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Another topic: natural projection
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1 Introduction
Problem
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2 Step 1: G/H-method
Method to construct families
G -invariance of our family
Classification of G -invariant families

3 Step 2: q-deformation
Definition
Property

4 Another topic: natural projection
Questions
Example
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Introduction
Step 1: G/H-method
Step 2: q-deformation

Another topic: natural projection

Problem
Exponential family and q-exponential family
Background

Problem

Aim(rough)

We want to know all the “good” families of distributions on
important spaces.

Mathematically, let G be a Lie group, H a closed subgroup of G
and G/H the homogeneous space of G . Take q ∈ R.

Problem 1.1.

Classify G-invariant q-exponential families on G/H.

3 / 36

Introduction
Step 1: G/H-method
Step 2: q-deformation

Another topic: natural projection

Problem
Exponential family and q-exponential family
Background

A family of probability measures and machine learning

Learning by using a family of probability measures is one of
important methods in the field of machine learning.

Learning=to optimize the parameters in the family of
probability measures

Families of probability measures 

Exponential families

4 / 36
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Introduction
Step 1: G/H-method
Step 2: q-deformation

Another topic: natural projection

Problem
Exponential family and q-exponential family
Background

Exponential family

Exponential family

Exponential families are important subject in the field of
information geometry.

Exponential families are useful for Bayesian inference.

Exponential families include many widely used families.

Families of probability measures 

Exponential families

5 / 36

Introduction
Step 1: G/H-method
Step 2: q-deformation

Another topic: natural projection

Problem
Exponential family and q-exponential family
Background

Examples (exponential families)

Table: Examples of exponential families

distributions sample sp. X

Normal R
Multivariate normal Rn

Bernoulli {±1}
Categorical {1, · · · , n}
Gamma R>0

Inverse gamma R>0

Wishart Sym+(n,R)
Von Mises S1

Poincaré H

6 / 36
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Introduction
Step 1: G/H-method
Step 2: q-deformation

Another topic: natural projection

Problem
Exponential family and q-exponential family
Background

q-exponential family

q-exponential family (q ∈ R)
q-exponential family

is a generalization of exponential family (q = 1).

is also important subject in the field of information geometry.

is useful for Tsallis statistics.

Families of probability measures 

Exponential families

q-exponential families

Cauchy dists
q-Gaussian dists

7 / 36
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Another topic: natural projection

Problem
Exponential family and q-exponential family
Background

Relation

exponential family q-exponential family

Amari’s
α-family

α = 1 α = 2q − 1

Entropy
• Shannon entropy
• maximization with

expected value constraint

• Tsallis entropy
• extremization with

q-expected value constraint

8 / 36
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Introduction
Step 1: G/H-method
Step 2: q-deformation

Another topic: natural projection

Problem
Exponential family and q-exponential family
Background

Definition of q-exponential family

X : manifold, R(X ): the set of all Radon measures on X .

Definition 1.2 (q-exponential family).

P ⊂ R(X ) is an q-exponential family on X if there exists a triple
(µ,V ,T ) such that

1 µ ∈ R(X ),

2 V is a finite dimensional vector space over R,
3 T : X → V , x 7→ T (x) is a continuous map,

4 For any p ∈ P, there exists θ ∈ V ∨ such that

dp(x) = c−1
θ expq(−⟨θ,T (x)⟩)dµ(x),

where cθ =
∫
x∈X expq(−⟨θ,T (x)⟩)dµ(x) (normalizing

constant).

We call the triple (µ,V ,T ) a realization of P.
9 / 36

Introduction
Step 1: G/H-method
Step 2: q-deformation

Another topic: natural projection

Problem
Exponential family and q-exponential family
Background

Definition of expq

For q ∈ R, we put Iq := {x ∈ R | (1 − q)x + 1 > 0}.
Definition 1.3.

The map expq : Iq → R>0 is defined by

expq x :=

{
ex (q = 1),

((1 − q)x + 1)
1

1−q (q ̸= 1).

Remark 1.4.

expq is defined as the inverse map of the q-logarithm function
lnq : R>0 → R

lnq x :=

∫ x

1

1

tq
dt =

{
ln x (q = 1)
1

1−q (x
1−q − 1) (q ̸= 1).

10 / 36
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Introduction
Step 1: G/H-method
Step 2: q-deformation

Another topic: natural projection

Problem
Exponential family and q-exponential family
Background

Graph of expq

expq x :=





ex (q = 1),

((1 − q)x + 1)
1

1−q (q ̸= 1).

q < 0 q = 0 0 < q < 1

q = 1 q > 1
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Introduction
Step 1: G/H-method
Step 2: q-deformation

Another topic: natural projection

Problem
Exponential family and q-exponential family
Background

Example: a family of normal distributions

Example 1.5.

The following family of normal distributions is an exponential
family on R (q = 1):

P :=

{
1√
2πσ2

exp

(
−(x − m)2

2σ2

)
dx

}

(σ,m)∈R>0×R

1 µ =Lebesgue measure,

2 V = R2,

3 T : X = R → R2, x 7→
(
x2

x

)
.

(µ,V ,T ) is a realization of P.

12 / 36
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Problem
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Background

Example: a family of Cauchy distributions

Example 1.6.

The following family of Cauchy distributions is a 2-exponential
family on R:

P :=

{
1

π

γ

(x − x0)2 + γ2

}

(γ,x0)∈R>0×R

1 µ =Lebesgue measure,

2 V = R2,

3 T : X = R → R2, x 7→
(
x2

x

)
.

(µ,V ,T ) is a realization of P.
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Background

Remark 1.7.

By definition, there are too many q-exponential families.

Only a small part of them are widely used.

Widely used exp. families

q-Exponential families enlarge

Normal dists
Gamma dists 

von Mises dists
Bernoulli dists

q-Gaussian dists

Normal dists
Gamma dists 

von Mises dists

Bernoulli dists

q-Gaussian dists

14 / 36
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Motivation

We can expect there exist “good” q-exponential families.
We want a framework to understand “good” q-exponential families
systematically.

Cauchy dists

Widely used q-exp. families

Gauss dists

Gamma dists 
von Mises dists

q-exponential families

Bernoulli dists

good↓
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Background

Observation 1.8.

Useful q-exp. families have the same symmetry as the sample
spaces.

Sample space : homogeneous space G/H

Family : invariant under the induced G -action

normal dist normal dist

−→

R× ⋉R-action
(scaling
and
translation)

G/H = (R× ⋉R)/R× ≃ R

16 / 36
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Strategy

Problem 1.1 (again)

Classify G -invariant q-exponential families on G/H.

Step 1 Classify G -invariant exponential families on G/H by using
G/H-method.

Step 2 Classify G -invariant q-exponential families on G/H by
q-deformation of G -invariant exponential families on G/H.
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Method to construct families
G -invariance of our family
Classification of G -invariant families

G/H-method

We proposed a method to construct exponential families.

The method generate many well-known families.

Families obtained by the method can be classified.

Poisson dist

Widely used exp. families

Normal dists
Gamma dists

von Mises dists

Exponential families

Our method

Bernoulli dists

18 / 36
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G/H-method: overview

G/H-method = a method to construct a family of
probability measures on G/H from

a finite dim. real representation ρ : G → GL(V ),

a nonzero H-fixed vector v0 ∈ V .

See [TY18, TY19, TY20] for the details.
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Classification of G -invariant families

Examples obtained by our method

Table: Examples and inputs (G ,H ,V , v0) for them

distributions sample sp. X G H V v0
Normal R R× ⋉R R× Sym(2,R) E22

Multi. normal Rn GL(n,R)⋉ RnGL(n,R)Sym(n + 1,R)En+1,n+1

Bernoulli {±1} {±1} {1} Rsgn 1
Categorical {1, · · · , n} Sn Sn−1 W w
Gamma R>0 R>0 {1} R 1

Inverse gamma R>0 R>0 {1} R−1 1
Wishart Sym+(n,R) GL(n,R) O(n) Sym(n,R) In

Von Mises S1 SO(2) {I2} R2 e1
Poincaré H SL(2,R) SO(2) Sym(2,R) I2

Here W = {(x1, · · · , xn) ∈ Rn| ∑n
i=1 xi = 0},

w = (−(n − 1), 1, · · · , 1) ∈ W .
20 / 36
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Example: Poincaré dists on the upper half plane

Upper half plane H := {z = x + iy ∈ C | y > 0} admits the linear
fractional transformation of SL(2,R).
⇝G = SL(2,R), H = SO(2), X := G/H ≃ H.

geodesics
Low dimensional representation:
ρ : SL(2,R) → GL(Sym(2,R)),
ρ(g)S = gS tg (S ∈ Sym(2,R)).
v0 := I2.

⇝
{
De2D

π
exp

(
−a(x2 + y2) + 2bx + c

y

)
dxdy

y2

}
(
a b
b c

)
∈Sym+(2,R)

Here D =
√
ac − b2.

Higher dimensional cases:
We obtain new families by G/H-method.
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P is a G -invariant exponential family

Theorem 2.1.

Any family obtained by our method is a G-invariant exponential
family on G/H.

normal dist normal dist

−→

R× ⋉R-action
(scaling
and
translation)

We obtain a family with the symmetry of G/H !
22 / 36
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Question

Conversely,

Question 2.2.

Are any G -invariant exponential families on G/H obtained by our
method?

⇝ Yes, under a mild assumption.
⇝ Roughly speaking,

{G -invariant exponential family on G/H}
“=”{family on G/H obtained by G/H-method}
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Answer to the question

Setting 2.3.

P := {pθ}θ∈Θ is a G -invariant exponential family on G/H. Here Θ
is the parameter space.

Theorem 2.4.

Assume

1 G/H admits a nonzero relatively G-invariant measure,

2 Θ is open.

Then, P is a subfamily of a certain family obtained by
G/H-method.

For the details, see our paper [TY20].

24 / 36
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Classification of G -invariant exponential families

Let us consider an important homogeneous space G/H such as a
sphere and a hyperbolic space, more generally symmetric spaces.

Step 1

Classify G -invariant exponential families on G/H.

By Theorem 2.4, this problem above is reduced to the following:

Question 2.5.

Classify families obtained by G/H-method on G/H.
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q-deformation of exponential family

q-deformation is a method to construct a q-exponential family
from an exponential family with its realization.

Definition 3.1.

Let P be an exponential family on X and (µ,V ,T ) realization of
P. Put

dq̃θ(x) := expq(−⟨θ,T (x)⟩)dµ(x) (θ ∈ V ∨, x ∈ X )

Θ := {θ ∈ V ∨ | − ⟨θ,T (x)⟩ ∈ Iq for any x ∈ X ,

∫

X
dq̃θ < ∞}

qθ := c−1
θ q̃θ, cθ :=

∫

X
dq̃θ (θ ∈ Θ)

Pq := {qθ}θ∈Θ

Then Pq is a q-exponential family on X . We call Pq a
q-deformation of exponential family (P, (µ,V ,T )). 26 / 36
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Property

Example

Example 3.2.

The family of Cauchy distributions is obtained by 2-deformation of
the family of normal distributions.

P: family of normal distribution

µ: Lebesgue measure,

V = R2,

T : X = R → R2, x 7→
(
x2

x

)
.

⇝ P2: the family of Cauchy distributions.
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Property of q-deformation

Let X := G/H be a homogeneous space admitting nonzero
relatively G -invariant measure and q ∈ R.

Proposition 3.3.

Let P be a G -invariant exponential family on X . Then, there
exists a realization (µ,V ,T ) of P such that µ is a relatively
G -invariant measure on X . Moreover, If q > 1 and P is full , then
the q-deformation Pq of (P, (µ,V ,T )) is G -invariant
q-exponential family on X .

28 / 36
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Definition
Property

Question

Conversely,

Question 3.4.

Are any G -invariant q-exponential families on G/H obtained by
q-deformation of some exponential family?

⇝ Yes if q > 1 under a mild assumption.
⇝ Roughly speaking,

{G -invariant q-exponential family on G/H}
“=”{q-deformation of G -invariant exponential family on G/H}
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Answer to the question

Setting 3.5.

Pq = {pθ}θ∈Θ is a G -invariant q-exponential family on G/H
(q > 1).

Theorem 3.6.

Assume

1 G/H admits a nonzero relatively G-invariant measure,

2 Θ is open.

Then, Pq is a subfamily of a q-deformation of a certain G-invariant
exponential family with a relatively G-invariant base measure.

30 / 36
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Property

Classification of G -invariant q-exponential families

G/H: important space

Step 2

Classify G -invariant q-exponential families on G/H by using
q-deformation.

By Theorem 3.6, this problem above is reduce to the following:

Question 3.7.

Classify families obtained by q-deformation of G -invariant
exponential families.

31 / 36
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New family of distributions on the upper half plane

Theorem 3.8 (q-deformation of the family of Poincaré
distributions).

Let q ∈ [1, 2). The following family of distributions is
SL(2,R)-invariant q-exponential family on the upper half plane.

{
c−1
θ expq

(
−a(x2 + y2) + 2bx + c

y

)
dxdy

y2

}

θ:=


a b
b c


∈Sym+(2,R)

cθ :=
π(expq(−2D))2−q

(2 − q)D
,D :=

√
ac − b2.

32 / 36

Mathematical Optimization and Statistical Theories using Geometric Methods 101



Introduction
Step 1: G/H-method
Step 2: q-deformation

Another topic: natural projection

Questions
Example

Family on a group and the natural projection

G : Lie group, H: closed subgroup of G ,
π : G → G/H, g 7→ gH natural projection
π∗ : P(G ) → P(G/H) pushforward

Question 4.1.

What kind of families can we obtain by the pushforward π∗ of
G -invariant exponential family on G?

Is pushforward of exponential family also exponential family?

Is pushforward of G -invariant family also G -invariant?
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Questions
Example

Family on a group and the natural projection

G : Lie group, H: closed subgroup of G ,
π : G → G/H, g 7→ gH natural projection
π∗ : P(G ) → P(G/H) pushforward

Question 4.1.

What kind of families can we obtain by the pushforward π∗ of
G -invariant exponential family on G?

Is pushforward of exponential family also exponential family?
⇝No, in general.

Is pushforward of G -invariant family also G -invariant?
⇝Yes.
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Example: exp. family on affine transformation group

G := R>0 ⋉R, α ∈ R,

ρα : G → GL(3,R), ρα(a, b) :=




1 0 0
b 1 0
b2

2 b 1


 diag(aα, aα+1, aα+2),

v0 :=
t(1, 0, 0).

Proposition 4.2.

If α ̸= 0, by applying G/H-method to (ρα, v0), we get a
R>0 ⋉R-invariant exponential family on R>0 ⋉R as follows:

{ |α|√u√
πΓ(r)

(
detD

u

)r

exp(−aα(s + tb + ub2))aα(r+ 1
2
)−1dadb

}

(r ,S)∈Θ

Here, D :=

(
s t

2
t
2 u

)
, (a, b) ∈ G and Θ := R>0 × Sym+(2,R).
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Pushforward of the obtained family

P :=
{

|α|√u√
πΓ(r)

(
detD
u

)r
exp(−aα(s + tb + ub2))aα(r+

1
2 )−1dadb

}
(r ,S)∈Θ

G := R>0 ⋉R, H := R>0, π : G → G/H ≃ R, π∗ : P(G ) → P(R).

Proposition 4.3.

The family π∗P on R is given as follows:

{
Γ( 1

q−1)√
πΓ( 3−q

2(q−1))

√
q − 1

2

1

σ
expq

(
−(b − m)2

2σ2

)}

(q,m,σ)∈(1,3)×R×R>0

Remark 4.4.

Each distribution is a q-Gaussian distribution.

The family does not depend on α ∈ R×.
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Adaptive shrinkage of singular values for a low-rank matrix mean when a covariance

matrix is unknown

Yoshihiko Konno

Department of Mathematics, Osaka Metropolitan University

Assume that m, n, p are positive integers such that min{m, n} ≥ p and that we observe

a matrix

[
X

Y

]
which is modeled as

[
X

Y

]
=

[
Ξ

0n×p

]
+ E where Ξ is an m × p

non-random matrix(unknown and its rank may be less than min{p, m}), E is an (m +

n) × p error matrix(unobservable) whose rows are identically distributed as Np(0p, Σ), a

p-variate real normal distribution with zero mean vector and covariance matrix Σ. We

assume that Σ is a p× p positive-definite and unknown matrix.

We consider the problem of estimating Ξ under a low-rank mean matrix condition, i.e.,

rankΞ = r < p; r is unknown

under a loss function L(Ξ̂, Ξ|Σ) = tr
{
(Ξ̂ − Ξ)>(Ξ̂ − Ξ)Σ−1

}
, where Ξ̂ := Ξ̂(X, Y ) is

an estimator of Ξ. Here A> and trA stand for the transpose and the trace of a square

matrix A. The risk function of R(Ξ̂, Ξ|Σ) is given by the expected value of the loss

function where the expectation is taken with respect to the joint distribution of (X, Y ).

We give Steins’s unbiased risk estimate for estimators of the form

Ξ̂ =

( p∑

j=1

hj(`j)ujv
>
j

)
(Y >Y )1/2.

Here hj : [0, ∞) → [0, ∞), (j = 1, 2, . . . , p) are absolutely continuous functions and

ULV > is the singular value decomposition of X(Y >Y )−1/2 where U = (u1, u2, . . . , up)

is an m×p matrix such that U>U = Ip (the p×p identity matrix), V = (v1, v2, . . . , vp)

is a p × p orthogonal matrix, and L is a p × p diagonal matrix whose j-th diagonal

element is given by `j. Note that we may assume that `1 > `2 > · · · > `p > 0 (almost

everywhere) with out loss of generality. Based on SURE formula, we propose an adaptive

soft-theshholding rule to the singular values `1, `2, . . . , `p. Furthermore, the results above

are extended to the complex normal distribution setup.
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2 Problem set-up
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4 Mean matrix estimation when a covarianc matrix is unknown

5 Concluding remarks
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MANOVA model and its canonical mode
Problem set-up

Mean matrix estimation when a covariance is known
Mean matrix estimation when a covarianc matrix is unknown

Concluding remarks

1 The reconstruction of a low-rank matrix from its noisy
observation is useful in many applications. This problem is
reformulated into a constrained nuclear norm minimization
problem (regularized problem).

2 An important ingrident of this problem is how to choose a
regularization parameter based on data. Usually the data is
independently and identically distributed with unknown
variance.

3 (1) The discrepacy principle approach, (2) Stein’s Unbiased
risk estimator(SURE) approach.

4 Inspired by approach(2) we consider the problem of
estimating a low-rank matrix mean in MANOVA(Mulitivariate
Analysis of Variance) setting 1when a positive-definite
covariance matrix of error is unknown.

1We have data for unknown covariance matrix. The distribution of this data is
mean-zero.
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Mean matrix estimation when a covarianc matrix is unknown
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MANOVA model and its canonical model

Let m, n, p ∈ N such that min(m, p) ≥ p. Consider a
multivariate regression model

W︸︷︷︸
(m+n)×p

= A︸︷︷︸
(m+n)×m

B︸︷︷︸
m×p

+ Err︸︷︷︸
(m+n)×p

,

where A is a known design matrix of full rank, B is an unknown
regression matrix of rank r (< min(m, p) and r is unknown), and
Err is an unobservable error matrix. Here rows of Err are
independently and identically distributed as Np(0p , Σ) where Σ is
a p × p positive-definite unknown matrix.
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Notation
1

Err =



e⊤
1

e⊤
2
...

e⊤
m+n


: (m + n) × p, vec(Err) :=



e1

e2
...

em+n



where e j ’s are independently and identically distributed as
Np(0p , Σ) (j = 1, 2, . . . , (m + n)).

2 Write

COV(Err) = E
[{

vec(Err − E[Err]
}{

vec(Err − E[Err]
}⊤]

= Im+n ⊗ Σ,

Err ∼ N(m+n)×p(0(m+n)×p , Im+n ⊗ Σ).
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Concluding remarks

1 Let
P = (A⊤A)−1/2A⊤ : m × (m + n)

and take P⊥ : n × (m + n) s.t.

P(P⊥)⊤ = 0m×n and P⊥(P⊥)⊤ = In,

Note that
[

P
P⊥

]
[P⊤, (P⊥)⊤] = Im+n.

2 Put Ξ :=
(
A⊤A

)1/2
B and

[
X
Y

]
:=

[
P

P⊥

]
W ∼ N(m+n)×p

( [
Ξ

0n×p

]
, Im+n ⊗ Σ

)
.
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Problem set-up

Assume that min{m, n} ≥ p and that

( p
m X
n Y

)
=

(
Ξ
0

)
+ E; E =



p
←→
←→
...
←→
←→



where
[

X
Y

]
is observation and Ξ is an m × p non-random

matrix(unknown ) of rank r < p, E is an (m + n) × p error
matrix(unobservable) whose rows are identically distributed as
Np(0, Σ). Here Σ is a p × p positive-definite and unknown matrix.
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Mean matrix estimation when a covariance is known
Mean matrix estimation when a covarianc matrix is unknown

Concluding remarks

We consider the problem of estimating Ξ under a low-rank mean
matrix condition, i.e.,

rank Ξ = r < p; r is unknown

under a loss fucntion and its risk

LΣ(Ξ̂, Ξ) = tr {(Ξ̂ − Ξ)Σ−1(Ξ̂ − Ξ)⊤} =: ∥Ξ̂ − Ξ∥2
F ,Σ

and
RΣ(Ξ̂, Ξ) = E[LΣ(Ξ̂, Ξ)]

where Ξ̂ is an estimator based on (X , S). Here
S = Y⊤Y ∼ Wp(Σ, n), which is the Wishart distribution with the
degree of freedom n and the scale matrix Σ.
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Mean matrix estimation when a covariance is known

Assume that m, p are postive integers s.t. m ≥ p.

Let

Z =



z⊤
1

z⊤
2
...

zT
m



be an m × p data matrix whose row vectors are independently
distributed as

z i : p × 1 ∼ N(ξ̃i , σ
2Ip), (i = 1, 2, . . . , m)

Here Ξ̃
⊤

:= (̃ξ1, . . . , ξ̃m) is unknown but σ > 0 are known.
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We assume that low-rank mean matrix condition, i.e.,

rank
(
Ξ̃
)
= r < p; r is unknown.

Consider the problem of estimating Ξ̃ under a loss fucntion
and its risk

L1(
̂̃Ξ, Ξ̃) = tr {(̂̃Ξ − Ξ̃)(̂̃Ξ − Ξ̃)⊤} =: ∥̂̃Ξ − Ξ̃∥2

F

and
R1(

̂̃Ξ, Ξ̃) = E[L1(
̂̃Ξ, Ξ̃)].

Here ̂̃Ξ is an estimator based on Z .
tr A and A⊤ stand for the traace and the transpose of a
matrix A , respectively.

∥A∥F :=
√

tr
(
A⊤A

)
, the Frobenius norm of a matrix A .
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Eckart-Young approximation theorem

Singular Value Decomposition: We can assume that m ≥ p
without loss of generality. Decompose Z as

Z = ULV⊤; U = (u1, . . . , up), V = (v1, . . . , vp)

L = diag(ℓ1, ℓ2, . . . , ℓp) with ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓp ≥ 0

where ui ∈ Rm, v i ∈ Rp (i = 1, . . . , p) s.t.
U⊤ U︸︷︷︸

m×p

= V⊤V = Ip .

The total least squres (TLS) pseudo estimator is given by

̂̃ΞTLS =
r∑

i=1

ℓiuiv⊤i . ⇐⇒ ̂̃ΞTLS ∈ argmin
Ξ̃: rank

(
Ξ̃
)
≤r

∥Ξ̃ − Z∥2
F
.

Notaton σj
(
A
)
> 0 (j = 1, 2, . . . , r) are non-zero singular

values of a matrix A with r = rank (A). 11 / 31
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Regularization approach

We consider an estimator which minimizes the penalized least
squares criterion

Mat(m, p; R) ∋ Ξ 7→ 1
2
∥Z − Ξ∥2

F
+ penλ

(
Ξ
)
∈ [0, ∞)

where penλ
(
·
)
(≥ 0) is a penality function of Ξ and λ (≥ 0) is

a tuning parameter.
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Examples of penalities: For a positive λ > 0,

⋆ penλ
(
Ξ
)
= λrank

(
Ξ
)

=⇒ a hard-theshholding rule, i.e.,SVHTλ(Z) =

p∑

j=1

ℓj1l{ℓj ≥ λ}ujv⊤j ,

where 1l{event} =
{

1 if event is true,
0 otherwise

.

⋆ penλ
(
Ξ
)
= λ∥Ξ∥1 := λ

p∑

j=1

∣∣∣∣∣∣σ
(
Ξ
)

j

∣∣∣∣∣∣

(
σ
(
Ξ
)

j
: SV’s of Ξ

)

where
{
(σ

(
Ξ
)

j
, uj , v j)

}min(m, p)

j=1
is a system of singular values of Ξ

=⇒ a soft-thresholding rule, i.e.,

SVSTλ(Z) =

p∑

j=1

(
ℓj − λ

)
1l{ℓj ≥ λ}ujv⊤j . 13 / 31
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A hard-shreshholding rule

Assume that σ2 is known.
Solve

SVHTλ(Z) = argmin
Ξ

[1
2
∥Ξ − Z∥2

F
+ λ rank (Ξ)

]

where λ > 0 is a tuning scalar parameter.
Then the solution is given by

SVHTλ(Z) =

p∑

j=1

ℓj 1l{ℓj ≥ λ}ujv⊤j ; 1l{ℓj ≥ λ} =
{

1 ℓj ≥ λ
0 otherwise

The optimal shreshholding is
4
√

3

√
pσ when p = m.

(See Donoho and Garvish (2017, IEEE, Trans. Inform
Theory).
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Steps to obtain an adaptive thresholding esitmator

1 Solve regularized minimizaton problem

̂̃Ξλ ∈ arg min
Ξ∈Mat(m ,p;R)

{
∥Z − Ξ∥2

F
+ penλ

(
Ξ
)
.

}
.

2 Calculate SURE if possible
(
a closed form of ̂̃Ξλ

)
:

R1
(̂̃Ξλ, Ξ̃

)
= E

[
SURE

(̂̃Ξλ
)]

Note that SURE
(̂̃Ξλ

)
is a function of λ and observable data.

3 Solve minimization problem

λ̂ ∈ SURE
(̂̃Ξλ

)
=⇒ ̂̃Ξλ̂.
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Remarks

1 This method works for the soft-thresholding rule. See Cándes
el al. (2013).

2 SURE does not work for the hard-thresholding rule since
Stein’s identity, integration-by-parts formula with respect to
multivariate normal distribution, fails for the hard-thresholding
rule becuase of discontinuity of estimator.
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A soft-thersholding rule

Cèndes et al. define an adaptive soft-shreshholding rule
based on SURE:

SVSTλ(Z) =

p∑

j=1

(ℓi − λ) 1l{ℓi ≥ λ}ujv⊤j =:

p∑

j=1

(ℓj − λ)+ujv⊤j

(1)
which is obtained from

min
Y

{
1
2
∥Z − Y∥2

F
+ λ

p∑

j=1

λj

}
Y = SVSTλ(Z).

The parameter λ in (1) is selected by minimizieng SURE,
Stein’s unbiased risk estimate for (1).
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Gaussian integration-by-parts (=Stein’s identity) and a bit of
algebraic calculation lead to

R1(SVSTλ, Ξ) = E[SURE(SVSTλ)(Z)],

SURE(SVSTλ)(Z) = −mpσ2 +

p∑

j=1

min{ℓ2
j
, λ2}

+2σ2div(SVSTλ(X)),

div(SVSTλ(Z)) = (m − p)

p∑

j=1

(
1 − λ
ℓj

)

+

+

p∑

j=1

1l{ℓj > λ}

+2
p∑

j=1

p∑

k,i

ℓj(ℓj − λ)+

ℓ2
j
− ℓ2

k

whenever ℓ1 > ℓ2 > · · · > ℓp ≥ 0.
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An adaptive estimator is given by

SVSTλ̂(Z) =

p∑

j=1

(ℓi − λ̂)+ujv⊤i , (2)

λ̂ ∈ arg min
λ≥0


p∑

i=1

min{ℓ2
i
, λ2}+ 2σ2div(SVSTλ(Z))

 .

Numerical evaluation of the risk of (2) was carried out by
Candés et. al.

But it is not clear if R1(SVSTλ̂(Z), Ξ̃) is close to
R1(Ξ̂TLS(Z), Ξ̃) for ∀Ξ̃ s.t. rank

(
Ξ̃
)
≤ r < min(m, p).
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Mean matrxi estimation when a covarianc matrix is unknown

Assume that min{m, n} ≥ p and that

( p
m X
n Y

)
=

(
Ξ
0

)
+ E; E =



p
←→
←→
...
←→
←→



The m × p mean matrix Ξ is of rank r < p
The error E is an (m + n) × p error matrix(unobservable)
whose rows are identically distributed as Np(0, Σ).
The covariance matrix Σ is a p × p positive-definite and
unknown.
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We consider the problem of estimating Ξ under low-rank
mean matrix condition, i.e.,

rank Ξ = r < min(m, p); r is unknown.

A loss fucntion and its risk are given by

LΣ(Ξ̂, Ξ) = tr {(Ξ̂ − Ξ)Σ−1(Ξ̂ − Ξ)⊤} =: ∥Ξ̂ − Ξ∥2
F ,Σ

and
RΣ(Ξ̂, Ξ) = E[LΣ(Ξ̂, Ξ)]

where Ξ̂ is an estimator based on (X , S).

S = Y⊤Y ∼ Wp(Σ, n), which is the Wishart distribution with
the degree of freedom n and the scale matrix Σ.
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To derive a class of estimators, first assume that Σ is known.
Then we have

XΣ−1/2 ∼ Nm×p(Ξ̃, Im ⊗ Ip), Ξ̃ = ΞΣ−1/2

which leads to an estimator of Ξ̃ given by

̂̃ΞTLS ∈ arg min
rank Ξ≤r

∥XΣ−1/2 − Ξ∥F 2 =⇒ Ξ̂ = ̂̃ΞTLSΣ1/2.

Hence we consider a class of estimators of the form

Ξ̂H =


p∑

i=1

hi(ℓi)uiv⊤i

 S1/2; XS−1/2 = ULV⊤

where L = diag(ℓ1, . . . , ℓp), H = diag(h1, . . . , hp),
U = (u1, . . . , up) and V = (v1, . . . , vp) s.t.
U⊤U = V⊤V = Ip .
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Regularized minimization problem

Known Σ case: For λ ≥ 0,

Mat(m, p; R) ∋ ΞΣ−1/2

7→ ∥XΣ−1/2 − Ξ̃Σ−1/2∥F 2 + 2λ∥Ξ̃Σ−1/2∥1
Unknonw Σ case: For λ ≥ 0, find a minimizer ̂̃Ξ of a
regularized minimization problem

Mat(m, p; R) ∋ Ξ̃

7→ ∥XS−1/2 − Ξ̃∥F 2 + 2λ∥Ξ̃∥1
and

Ξ̂ = ̂̃ΞS1/2 =

(∑

j=1

ℓj(ℓj − λ)+ujv⊤j

)
S1/2

where {(ℓj , uj , v j)} is a system of singular values of XS−1/2.23 / 31
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If

hj(ℓj) = ℓj − c
ℓj

(j = 1, 2, . . . , p);

c is a known positive constant,

then it results in the Efron-Morris estimator which is given by

Ξ̂H = XS−1/2
[
Ip − c{(XS−1/2)⊤(XS−1/2)}−1

]
S1/2

= X − cX{X⊤X}−1S .

On the other hand, Tsukuma and Kubokawa (2015)
considered estimators of the form

Ξ̂T = X − UTU⊤X

where T = diag(t1(ℓ
2
1
), . . . , tp(ℓ2p)) and XS−1/2 = ULV⊤

with m × min(m, p) matrix U s.t. U⊤U = Imin(m, p).
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Recall that

XS−1/2 = ULV⊤ ⇐⇒ L−1U⊤X = V⊤S1/2.

From a simple calculation we get

Ξ̂H = UHV⊤S1/2 = UHL−1U⊤X = UL−1HX .

If we set Ip − T = L−1H (tj(x) = hi(
√

x)), then we have

Ξ̂H = Ξ̂T .

From this we can see that

LΣ(Ξ̂H , Ξ) = LΣ(Ξ̂T , Ξ).
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Furthermore, using the result due to Tsukuma and
Kubokawa (2015), we have

RΣ(Ξ̂T , Ξ) = E[SURE(T)];

SURE(T) =

p∑

j=1

[
m + aℓ2

j
t2
j
− 2bti − 4ℓ2

j
tj̃tj − 4ℓ2

i
t̃j

−2
p∑

k,j

ℓ4
j
t2
j
− ℓ4

k
t2
k

ℓ2
j
− ℓ2

k

− 4
p∑

k,j

ℓ2
j
tj − ℓ2k tk

ℓ2
j
− ℓ2

k

]
;

ti = 1 −
hi(ℓj)

ℓj
; t ′

i
= − 1

2ℓ2
i

h̃′j (ℓj) +
h(ℓj)

ℓj

 ,

a, b : known positive constants.
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Then we have an adaptive soft-thresholding rule

Ξ̂λ̂ = : SVSTλ̂(XS−1/2)S1/2 =


p∑

j=1

(ℓj − λ̂)+ujv⊤j

 S1/2

where λ̂ = argminλ≥0 SURE(SVSTλ)(XS−1/2);

SURE(SVSTλ)(XS−1/2) =

p∑

j=1

[
m + aℓ2

j
t2
j
− 2bti − 4ℓ2

j
tj̃tj

− 4ℓ2
j
t̃j − 2

p∑

k,j

ℓ4
j
t2
j
− ℓ4

k
t2
k

ℓ2
j
− ℓ2

k

− 4
∑

j,i

ℓ2
i
ti − ℓ2i ti

ℓ2
i
− ℓ2

j

]
;

tj = 1 −
(ℓj − λ)+

ℓj
(j = 1, . . . , p);

t̃j = −(2ℓj)−2
1l{ℓj > λ}+

(ℓj − λ)+

ℓj

 . 27 / 31
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Special case

Σ = σ2Ip where σ is postive but unknown.
Let s2 = tr(Y⊤Y)/p.
Then an adaptive soft-thresholding rule for this case is given
by Ξ̂λ̂ =

∑p
j=1

(
ℓi − λ̂s2

)
+ujv⊤j ; , X = ULV⊤, with

λ̂ = argmin
λ≥0

SURE(SVSTλ)(X) and

SURE(SVSTλ)(X) =

p∑

j=1

[
ms2 + aℓ2

j
t2
j
− 4ℓj̃tj − 2

p∑

k,j

ℓ4
j
t2
j
− ℓ4

k
t2
k

ℓ2
j
− ℓ2

k

+s2
(
aℓ2

j
t2
j
− 4ℓ2

j
tj̃tj − 4

p∑

k,j

ℓ2
j
tj − ℓk tk

ℓ2
j
− ℓ2

k

)]
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where

tj = 1 −
(ℓj − λs2)+

ℓi
; t̃j = − 1

ℓ2
j

1l{ℓj > λs2}+
(ℓj − λs2)+

ℓj

 .
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Concluding remarks

1 Derivation of an adaptive threshholding rule:
For λ ≥ 0, solve a regularized minimizaton problem(random
one) ̂̃Ξ ∈ arg min

Ξ∈Mat(m, p;R)

∈ Ξ

{
1
2
∥XS−1/2 − Ξ∥F

2 + λ∥Ξ∥1

}
.

We have Ξ̂λ = ̂̃ΞS1/2 =

(∑

j=1

ℓj(ℓj − λ)+ujv⊤j

)
S1/2.

wherer
{
(ℓj , uj , v j

}
j=1, 2, ...,m

is a system of singular values of

XS−1/2.
Obtain SURE RΣ

(
Ξ̂λ, Ξ

)
= E

[
SURE

(
Ξ̂λ

)]

Solve the minimization problem
λ̂ ∈ arg min

λ≥0
SURE

(
Ξ̂λ

)
=⇒ Ξ̂λ̂..

2 It is routine to convert this result to case for complex normal
distribution. 30 / 31
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Abstract

Expected Euler characteristic (EC) heuristic is a method for approximating the tail

probability of the maximum of a Gaussian random field. In this talk, we provide an ex-

pected Euler characteristic formula for the approximate tail probability and its relative

approximation error when the index set M is a closed manifold and the mean and variance

of the marginal distribution are not necessarily constant. When the variance is constant,

[TTA05] proved that the relative approximation error is exponentially small in a general

setting where the index set M is a stratified manifold. When the variance is not constant,

it is shown that only the subset Msupp of M , referred to as the supporting index set,

contributes to the maximum tail probability. The proposed tail probability formula is

an integral of the Euler characteristic density over Msupp, and its relative approximation

error is proven to be exponentially small as in the case of constant variance. These results

are generalizations of [KTT22], who addressed a restricted case of finite Karhunen-Loève

expansion by the volume-of-tube method. As an example, the tail probability formula

for the largest eigenvalues of noncentral Wishart matrices Wp(ν,Σ; Φ) and its relative ap-

proximation error are obtained. Numerical experience supports the high accuracy of the

expected Euler characteristic formulas regardless of whether the marginals are homoge-

neous or inhomogeneous.

Keywords: Borel’s inequality, Kac-Rice formula, noncentral Wishart distribution, volume-

of-tube method, Weyl’s tube formula.
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PATTERN RECOVERY BY SLOPE

PIOTR GRACZYK

Abstract

I will present recent results obtained in [1] jointly with M. Bogdan,
X. Dupuis, B. Ko lodziejek, T. Skalski, P. Tardivel and M. Wilczyński.

SLOPE is a popular method for dimensionality reduction in the high-
dimensional regression. Indeed, some regression coefficient estimates
of SLOPE can be null (sparsity) or can be equal in absolute value
(clustering). Consequently, SLOPE may eliminate irrelevant predictors
and may identify groups of predictors having the same influence on the
vector of responses.

The notion of SLOPE pattern allows to derive theoretical properties
on sparsity and clustering by SLOPE. Specifically, the SLOPE pattern
of a vector provides: the sign of its components (positive, negative or
null), the clusters (indices of components equal in absolute value) and
clusters ranking.

In this research we give a necessary and sufficient condition for
SLOPE pattern recovery of an unknown vector of regression coeffi-
cients.
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Linear regression model

We dispose of n observations of p explicative variables (predictors)
X1, . . . ,Xp and a response variable Y :

Yi = β1xi1 + · · · + βpxip + εi , i = 1, . . . , n.

X = (xij)1≤i≤n,1≤j≤p is the design n × p matrix.

The columns of X correspond to p variables

β = (β1, . . . , βp) ∈ Rp unknown regression coefficients.

ε = (ε1, . . . , εp) ∈ Rn random noise.

Matrix notation: Y = Xβ + ε
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Linear regression Y = Xβ + ε, X ∈ Rn×p.
Estimator of β?

Classical statistics case: p ≤ n, rankX = p

Ordinary Least Squares estimator:
β̂OLS = arg minb∈Rp ∥Y − Xb∥22

= (X ′ X )−1X ′ Y

Chalenging case: p > n

β̂OLS is not uniquely determined, so no longer useful
Modern statistics resorts to the penalized least squares estimators:

β̂ = arg min
b∈Rp

∥Y − Xb∥22 + pen(b),

where pen is the penalty on the model complexity.
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Penalized estimators LASSO and SLOPE

LASSO (Tibshirani (1996)): pen(b) = λ∥b∥1, λ > 0

SLOPE (Sorted L One Penalized Estimation)
(Bogdan et al. (2015)), defined as

β̂SLOPE = argmin
b∈Rp

1

2
∥Y − Xb∥22 +

p∑

i=1

λi |b|(i)
︸ ︷︷ ︸
sorted ℓ1 norm

,

where λ1 > 0, λ1 ≥ . . . ≥ λp ≥ 0 and |b|(1) ≥ . . . ≥ |b|(p).
When λ1 = . . . = λp > 0 then SLOPE coincides with LASSO.
Our results for SLOPE give a new approach to LASSO.

6/14 Piotr Graczyk Pattern Recovery by SLOPE

Penalized estimators LASSO and SLOPE

LASSO (Tibshirani (1996)): pen(b) = λ∥b∥1, λ > 0

SLOPE (Sorted L One Penalized Estimation)
(Bogdan et al. (2015)), defined as

β̂SLOPE = argmin
b∈Rp

1

2
∥Y − Xb∥22 +

p∑

i=1

λi |b|(i)
︸ ︷︷ ︸
sorted ℓ1 norm

,

where λ1 > 0, λ1 ≥ . . . ≥ λp ≥ 0 and |b|(1) ≥ . . . ≥ |b|(p).

When λ1 = . . . = λp > 0 then SLOPE coincides with LASSO.
Our results for SLOPE give a new approach to LASSO.

6/14 Piotr Graczyk Pattern Recovery by SLOPE

Mathematical Optimization and Statistical Theories using Geometric Methods 127



Penalized estimators LASSO and SLOPE

LASSO (Tibshirani (1996)): pen(b) = λ∥b∥1, λ > 0

SLOPE (Sorted L One Penalized Estimation)
(Bogdan et al. (2015)), defined as

β̂SLOPE = argmin
b∈Rp

1

2
∥Y − Xb∥22 +

p∑

i=1

λi |b|(i)
︸ ︷︷ ︸
sorted ℓ1 norm

,

where λ1 > 0, λ1 ≥ . . . ≥ λp ≥ 0 and |b|(1) ≥ . . . ≥ |b|(p).
When λ1 = . . . = λp > 0 then SLOPE coincides with LASSO.
Our results for SLOPE give a new approach to LASSO.

6/14 Piotr Graczyk Pattern Recovery by SLOPE

Polyhedral penalties and dimensionality reduction

In case when the penalty function pen is a polyhedral norm

(i.e. the unit ball Bpen(0, 1) ⊂ Rp in the pen norm is a polyhedron)
penalized estimators usually possess the dimensionality reduction
properties.

It is well known that LASSO estimator has many null components

β̂LASSOi = 0

.
Dimensionality reduction property of LASSO consists in
elimination of irrelevant predictors Xi .
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SLOPE: dimensionality reduction also by clustering
variables

Another important kind of dimensionality reduction consists in
clustering (merging, summing) variables with the same values of
regression coefficients:

β̂i = β̂j =⇒ Y = ...+ β̂i (Xi + Xj) + ...

LASSO does not have this property!

Statisticians working with SLOPE observed that many coefficient
regression estimates of SLOPE can be:
• equal =⇒ clustering predictors
• null =⇒ eliminating irrelevant predictors like LASSO
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Simulations: n = 100, p = 200, LASSO and SLOPE on R

We simulated Y = Xβ + ε where ε has iid N(0, 52) entries and
β1 = . . . = β30 = 40, β31 = . . . = β200 = 0.
The rows of the design matrix X are generated as independent binary Markov chains, with
P(Xi1 = 1) = P(Xi1 = −1) = 0.5 and P(Xi(j+1) ̸= Xij ) = 1 − P(Xi(j+1) = Xij ) = 0.0476.

Both LASSO and SLOPE properly estimate at 0 null components of β (not drawn)
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Main objective of our research

Why/when does SLOPE recover the clusters

and zeros (” SLOPE pattern”) of β?

Explain this phenomenon strictly

mathematically.
Give sufficient and necessary conditions for
SLOPE pattern recovery.

A by-product: a new and simple mathematical approach to these
questions for LASSO (huge literature on LASSO is very technical)
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Dimensionality reduction by SLOPE

Some coefficient regression estimates of SLOPE can be null or can
be equal in absolute value.

Figure: This figure intuitively illustrates that SLOPE can have some null
components or some components equal in absolute value.
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Dual penalty norm and dual ball

Suppose that pen is a polyhedral norm on Rp.

Our results show that the dual unit ball B∗ plays a crucial role in
studying penalized estimators rather than B itself.

Given a norm ∥ · ∥ on Rp, recall that the dual norm ∥ · ∥∗ is defined
by

∥b∥∗ = max{v ′b : ∥v∥ ≤ 1} = ∥b∗∥,
i.e. it is the norm of b considered as a linear functional b∗.
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Dual SLOPE norm and dual ball

Let Λ = (λ1, . . . , λp)′ where λ1 > 0 and λ1 ≥ . . . ≥ λp > 0.

The sorted ℓ1 norm is denoted

JΛ(b) =

p∑

i=1

λi |b|(i) where |b|(1) ≥ . . . ≥ |b|(p).

The dual sorted ℓ1 norm is equal to

J∗Λ(b) = max

{ |b|(1)
λ1

,
|b|(1) + |b|(2)
λ1 + λ2

, . . . ,
|b|(1) + . . . + |b|(p)
λ1 + . . . + λp

}
.

The dual SLOPE ball is defined by

B∗ = {v ∈ Rp| J∗Λ(v) ≤ 1}.

B∗ is a signed permutahedron in Rp: its vertices are signed
permutations of Λ.
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p = 3, B∗ = signed permutahedron
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Approach of minimization by subdifferential

Let f : Rp → R be a convex function.
The subdifferential ∂f is defined by

∂f (b) = {v ∈ Rp : f (z) ≥ f (b) + v ′(z − b) ∀ z ∈ Rp}
Evidently, f attains its minimum at a point b if and only if

0 ∈ ∂f (b)

.
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Approach of minimization by subdifferential

Recall the SLOPE minimization problem:

minimize b → f (b) = 1
2∥Y − Xb∥22 + JΛ(b).

It is a particular case of pen–minimization problem
minimize b → f (b) = 1

2∥Y − Xb∥22 + pen(b).

Proposition (Solution of pen-min problem)

β̂ is a solution of the pen minimization problem if and only if

X ′(Y − X β̂) ∈ ∂(pen)(β̂).

Proof. f attains its minimum at a point b if and only if 0 ∈ ∂f (b).
We have
∂f (b) = ∂ 1

2∥Y −Xb∥22+∂(pen)(b) = {−X ′(Y −Xb)}+∂(pen)(b).
The condition 0 ∈ ∂f (b) gives the proposition. □.
Thus we need to understand ∂(pen).
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Subdifferential of a norm and the dual ball B∗

Proposition (Subdifferential and the dual ball)

(a) The subdifferential of a norm ∥ · ∥ is the following subset of B∗:

∂∥ · ∥(b) = {v ∈ Rp : ∥v∥∗ ≤ 1 and v ′b = ∥b∥}

(b) If the norm ∥ · ∥ is polyhedral, then ∂∥ · ∥(b) is a face of B∗

and all faces of B∗ are subdifferentials of ∥ · ∥.

Proof. (a) is an easy exercice. Both parts are in the book:
HIRIART-URRUTY, J.-B. and LEMARÉCHAL, C. (2004).
Fundamentals of convex analysis. Springer.
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Set SX ,Λ(Y ) of SLOPE solutions. Uniqueness.

We denote SX ,Λ(Y ) ̸= ∅ the set of SLOPE solutions. It is easy to
see that it is compact. It may be bigger than a singleton.
The unicity has the following geometrical characterization.

Theorem (Uniqueness, [S-T],[2])

The solution of the pen-minimization problem is unique for all
Y ∈ Rn if and only if row(X ) does not intersect a face of the dual
ball B∗ whose codimension is greater than dim(col(X )).

• Cases in which SX ,Λ(Y ) is not a singleton are very rare.
Indeed, the set of matrices X ∈ Rn×p for which there exists a
Y ∈ Rn where SX ,Λ(Y ) is not a singleton has a null Lebesgue
measure on Rn×p ([S-T])
If ker(X ) = {0}, then SX ,Λ(Y ) consists of one element.
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SLOPE pattern and related notions

The SLOPE pattern ( introduced by Schneider and Tardivel
(2020)) extracts from a given vector:

a) The sign of the components (positive, negative or null),

b) The clusters (indices of components equal in absolute value),

c) The hierarchy between the clusters.

Definition (SLOPE pattern)

Let b ∈ Rp. The SLOPE pattern of b, patt(b) ∈ Zp, is defined by

patt(b)i = sign(bi ) rank(|b|)i , i ∈ {1, . . . , p}

where rank(|b|)i ∈ {0, 1, . . . , k}, k is the number of nonzero
distinct values in {|b1|, . . . , |bp|}.
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Example

b = (4.7,−4.7, 0, 1.8, 4.7,−1.8)′ → patt(b) = (2,−2, 0, 1, 2,−1)′.

PSLOPE
p = patt(Rp) denotes the set of SLOPE patterns.

22/14 Piotr Graczyk Pattern Recovery by SLOPE

Identification of patterns as subdifferentials

Theorem (SLOPE pattern= subdifferential(SLOPE pen))

Let Λ = (λ1, . . . , λp)′ where λ1 > . . . > λp > 0 and a, b ∈ Rp. We
have patt(a) = patt(b) if and only if ∂JΛ(a) = ∂JΛ(b).

Proof. A first (involved) proof was given in [S-T]. In [1] we give a
simple proof as a corollary from the (coming below) Proposition on
affine characterization of ∂(JΛ) for SLOPE.
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Identification of patterns as subdifferentials

Consequently,
for any polyhedral norm penalty pen, we define in [2]:

Definition (Pattern= subdifferential(pen), [2])

For a penalized estimator with pen equal to a polyhedral norm, we
say that patt(a) = patt(b) if a and b have the same
subdifferentials: ∂pen(a) = ∂pen(b).

Example. For LASSO, with pen = ∥ · ∥1, we get

patt(a) = sign(a).

Indeed, the subdifferentials of pen = ∥ · ∥1 (=faces of the unit ball
in ∥ · ∥∞) are in bijection with the set {−1, 0, 1}p.
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Pattern recovery

Definition (Pattern recovery)

We say that SLOPE pattern is recovered by the SLOPE estimator
if there exists β̂ ∈ SX ,Λ(Y ) with

patt(β̂) = patt(β).

Example. Let the true β = (5, 5, 2,−5)′ and the SLOPE estimator
β̂1 = (4, 4, 3,−4)′.
Then patt(β̂) = patt(β) = (2, 2, 1,−2)′ and we have the pattern
recovery.
If β̂2 = (4.01, 3.99, 3,−4)′ , then patt(β̂) = (4, 2, 1,−3) ̸= patt(β)
and there is no pattern recovery.
However, it is natural to round up (threshold)

β̂2 = (4.01, 3.99, 3,−4)′ ≈ (4, 4, 3,−4)′.

The thresholded estimator β̂thresh2 recovers the pattern of β.
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Accessibility of a pattern

Not all the patterns can be realized by β̂ when p > n.

Definition (Accessible pattern)

Let X ∈ Rn×p and pen be a polyhedral norm. We say that β ∈ Rp

has an accessible pattern with respect to X and pen, if there exists
y ∈ Rn and β̂ ∈ SX ,pen such that patt(β̂) = patt(β).
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Accessibility of a pattern

Proposition (Geometric characterization of accessible patterns, [2])

The pattern of β ∈ Rp is accessible with respect to X and pen if
and only if

row(X ) ∩ ∂(pen)(β) ̸= ∅.

Proof. ( =⇒ ) When the pattern of β is accessible with respect to
X and pen, there exists y ∈ Rn and β̂ ∈ SX ,pen(y) such that

∂(pen)(β̂) = ∂(pen)(β). Because β̂ is a minimizer,
X ′(y − X β̂) ∈ ∂(pen)(β̂) = ∂(pen)(β), so that, clearly,
col(X ′) = row(X ) intersects ∂(pen)(β).

( ⇐= ) If row(X ) intersects the face ∂(pen)(β), then there exists
z ∈ Rn such that X ′z ∈ ∂(pen)(β). For y = Xβ + z , we have
X ′(y − Xβ) = X ′z , so that β ∈ SX ,pen(y) and patt(β) is
accessible with respect to X and pen. □
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n = 2, p = 3: typically, 17 patterns accessible from 147
The Figure is from [S-T]

colour type intersection 6= ∅ face intersected isometric to SLOPE models

orange segments row(X) ∩ Fw(±(1, 0, 0)) {5.5} × P±(3.5,1.5) ±(1, 0, 0)

red segments row(X) ∩ Fw(±(1, 1, 1)) P(5.5,3.5,1.5) ±(1, 1, 1)
black segments row(X) ∩ Fw(±(0, 0, 1)) {5.5} × P±(3.5,1.5) ±(0, 0, 1)

pink segments row(X) ∩ Fw(±(−1, 0, 1)) P(5.5,3.5) × [−1.5, 1.5] ±(−1, 0, 1)
purple points row(X) ∩ Fw(±(2, 0,−1)) {5.5} × {3.5} × [−1.5, 1.5] ±(2, 0,−1)
green points row(X) ∩ Fw(±(2, 1, 1)) {5.5} × P(3.5,1.5) ±(2, 1, 1)
blue points row(X) ∩ Fw(±(1, 1, 2)) {5.5} × P(3.5,1.5) ±(1, 1, 2)
yellow points row(X) ∩ Fw(±(−1, 0, 2)) {5.5} × {3.5} × [−1.5, 1.5] ±(−1, 0, 2)

Table 1: Accessible SLOPE models with respect to X =
(

8 5 8
10 1.25 −6

)
and w = (5.5, 3.5, 1.5)′.

Figure 4: Illustration of the sign permutahedron P±w (in brown) and the plane row(X) (in light blue).
Because rk(X) = 2 and row(X) does not intersect any vertex of P±w (the faces with codimension equal
to 3), the SLOPE estimator β̂w(y) is unique for all values of y ∈ R2. Colored segments and points
are the intersections between row(X) and the faces of P±w , determining the accessible SLOPE models
shown in Table 1. For example, m = (2, 1, 1)′ is an accessible SLOPE model, which implies that there
exists y ∈ R2 for which the SLOPE minimizer β̂w(y) satisfies β̂w(y)1 > β̂w(y)2 = β̂w(y)3 > 0. In
addition, since m = (2, 1, 0)′ is not an accessible model, one cannot pick y ∈ R2 for which the SLOPE
minimizer satisfies β̂w(y)1 > β̂w(y)2 > β̂w(y)3 = 0.

14
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SLOPE pattern matrix

In order to characterize the SLOPE pattern recovery, we will need
some more notions related to a pattern M.

Definition

Let 0 ̸= M = (M1, . . . ,Mp)′ ∈ PSLOPE
p with k = ∥M∥∞.

Pattern matrix: UM ∈ Rp×k is defined as follows

(UM)ij = sign(Mi )1(|Mi |=k+1−j), i ∈ {1, . . . , p}, j ∈ {1, . . . , k}.

Example. Let M = (1, 2,−2, 0,−1)′. Then |M|↓ = (2, 2, 1, 1, 0)′

UM =




0 1
1 0
−1 0
0 0
0 −1




U|M|↓ =




1 0
1 0
0 1
0 1
0 0



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UMRk+ gives all vectors with pattern M

For k ≥ 1 we denote by Rk+ = {κ ∈ Rk : κ1 > . . . > κk > 0}.
Definition of UM implies that for 0 ̸= M ∈ PSLOPE

p and
k = ∥M∥∞, for b ∈ Rp we have

patt(b) = M ⇐⇒ there exists κ ∈ Rk+ such that b = UMκ.

Example. Let M = (1, 2,−2, 0,−1)′ and κ = (κ1, κ2)′. Then

UMκ =




0 1
1 0
−1 0
0 0
0 −1




(
κ1
κ2

)
=




κ2
κ1
−κ1

0
−κ2



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Clustered matrix X̃M and clustered parameter Λ̃M

Definition (Clustered matrix and Λ– parameter)

Let X ∈ Rn×p, Λ = (λ1, . . . , λp) where λ1 > · · · > λp > 0.

Clustered matrix: X̃M = XUM .

Clustered parameter: Λ̃M = (U|M|↓)′Λ.

Example. Let X = (X1|X2|X3|X4|X5), M = (1, 2,−2, 0,−1)′ and
Λ = (λ1, λ2, λ3, λ4, λ5)′ where λ1 > λ2 > λ3 > λ4 > λ5 > 0.

X̃M = (X2 − X3|X1 − X5) and Λ̃M =

(
λ1 + λ2
λ3 + λ4

)
.

The clustered design matrix X̃M has only k = 2 columns instead of
p = 5.
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If patt(β) = M, then Xβ = XUMκ = X̃Mκ for κ ∈ Rk+. In
particular,

(i) null components Mi = 0 lead to discard the column Xi from
the design matrix X ,

(ii) a cluster K ⊂ {1, . . . , p} of M (component of M equal in
absolute value) leads to replace the columns (Xi )i∈K by one
column equal to the signed sum:

∑
i∈K

sign(Mi )Xi .
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New characterization of ∂(JΛ) for SLOPE

The next Proposition provides a new and useful formula for the
subdifferential of the sorted ℓ1 norm, via an optimal system of
affine equations. This representation is crucial for the paper [1].

Proposition (Affine characterization of ∂(JΛ) for SLOPE)

Let b ∈ Rp and M = patt(b). Then we have the following formula:

∂JΛ(b) =
{
v ∈ Rp : J∗Λ(v) ≤ 1 and U ′

Mv = Λ̃M

}
.

Moreover, the affine space generated by ∂JΛ(b) equals{
v ∈ Rp | U ′

Mv = Λ̃M

}
.

Example. For M = (1, 2,−2, 0,−1)′ the condition U ′
Mv = Λ̃M

means
v2 − v3 = λ1 + λ2, v1 − v5 = λ3 + λ4.

This description is much more performant than the hyperplane
equation v ′M = JΛ(M) that we saw before!
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Proof.

Let us prove the inclusion

∂JΛ(b) ⊃
{
v ∈ Rp : J∗Λ(v) ≤ 1 and U ′

Mv = Λ̃M

}

Assume that v ∈ Rp satisfies J∗Λ(v) ≤ 1 and U ′
Mv = Λ̃M .

To prove that v ∈ ∂JΛ(b) it remains to establish that b′v = JΛ(b) .
Since b = UMs, where s ∈ Rk+, we have

b′v = (UMs)′v = s ′U ′
Mv = s ′Λ̃M = JΛ(b).

The proof of the other inclusion is also elementary but longer, we
omit it.
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Characterization of pattern recovery by SLOPE

The characterization of pattern recovery by SLOPE given in the
next Theorem is the main mathematical result of article.
The main statistical results of paper [1] are based thoroughly on
this characterization Theorem.
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Given a SLOPE minimizer β̂ ∈ SX ,γJλ(Y ) for which

patt(β̂) = M ̸= 0, we observe that the following two simple
properties occur:

Dual ball condition: for π = X ′(y − X β̂), we have J∗Λ(π) ≤ 1.

(Actually, we know more: π ∈ ∂(JΛ)(M))

Positivity condition: Consider the vector
X̃ ′
MX β̂ = X̃ ′

MXUMs = X̃ ′
M X̃Ms, where s ∈ Rk+.

Thus we have ∃s ∈ Rk+ X̃ ′
MX β̂ = X̃ ′

M X̃Ms.

Getting rid of β̂ in the two conditions by some simple
algebraic operations, including:
• the Moore-Penrose pseudo-inverse A+ of A
• P̃M = (X̃ ′

M)+X̃ ′
M = X̃M X̃+

M , the projector onto the space col(X̃M)
we derive the necessity of two conditions of the next Theorem.

It is next easy to show that these two conditions are also
sufficient for the recovery of the pattern M.
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Theorem (Characterization of SLOPE pattern recovery by
positivity and dual ball conditions)

Let X ∈ Rn×p, 0 ̸= β ∈ Rp, Y = Xβ + ε for ε ∈ Rn, Λ ∈ Rp+.
Let M = patt(β) ∈ PSLOPE

p and k = ∥M∥∞. Define

π = X ′(X̃ ′
M)+Λ̃M + X ′(In − P̃M)Y .

There exists β̂ ∈ SX ,Λ(Y ) with patt(β̂) = patt(β) if and only if
the two conditions below hold true:




there exists s ∈ Rk+ such that X̃ ′
MY − Λ̃M = X̃ ′

M X̃Ms

(positivity condition),

J∗Λ(π) ≤ 1 (dual ball condition).

If the positivity and ball conditions are satisfied, then
β̂ = UMs ∈ SX ,Λ(Y ) and π = X ′(Y − X β̂).
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Proof of necessity of two conditions for model recovery.

Let β̂ ∈ SX ,JΛ(Y ) with patt(β̂) = M, i.e. β̂ = UMs, s ∈ Rk+.

We have X ′(Y − X β̂) ∈ ∂JΛ(M). We want to deduce X̃ ′
MX β̂ from

this inclusion.
Multiplying it by U ′

M , by the affine characterization of
subdifferential, we get
X̃ ′
M(Y − X β̂) = Λ̃M and X̃ ′

MX β̂ = X̃ ′
MY − Λ̃M .

The positivity condition is proven.
Apply (X̃ ′

M)+ to the last equality X̃ ′
MX β̂ = X̃ ′

MY − Λ̃M and use
the fact that P̃M = (X̃ ′

M)+X̃ ′
M is the projector onto col(X̃M). We

have X β̂ = X̃Ms ∈ col(X̃M) so that P̃MX β̂ = X β̂. We get

(X̃ ′
M)+X̃ ′

MX β̂ = P̃MY − (X̃ ′
M)+Λ̃M ⇒ X β̂ = P̃MY − (X̃ ′

M)+Λ̃M

We insert this formula for X β̂ in
B∗ ∋ X ′(Y − X β̂) = X ′(X̃ ′

M)+Λ̃M + X ′(I − P̃M)Y .
We proved the dual ball condition.
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Necessary condition for model recovery: Λ̃M ∈ col(X̃ ′
M)

Observe that the positivity condition:

there exists s ∈ Rk+ such that X̃ ′
MY − Λ̃M = X̃ ′

M X̃Ms

implies that the property

Λ̃M ∈ col(X̃ ′
M)

(or equivalently, the projector X̃ ′
M(X̃ ′

M)+Λ̃M = Λ̃M)
is necessary for the positivity condition.
The condition Λ̃M ∈ col(X̃ ′

M) automatically holds when n ≥ k and
col(X̃ ′

M) = Rk .
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Essential term X ′(X̃ ′
M)

+Λ̃M in the dual ball condition

The first term X ′(X̃ ′
M)+Λ̃M in the expression

π = X ′(X̃ ′
M)+Λ̃M + X ′(In − P̃M)Y

is essential for the dual ball condition. Actually, the second term

X ′(In − P̃M)Y = X ′(In − P̃M)Xβ + X ′(In − P̃M)ε = X ′(In − P̃M)ε

will be shown neglectable, under natural conditions on the (strong)
signal β or when n → ∞.
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Noiseless case

The second term is null in the noiseless case ε = 0.

The dual ball condition becomes J∗Λ(X ′(X̃ ′
M)+Λ̃M) ≤ 1

We check that the positivity condition holds for αΛ with Λ

verifying the necessary condition Λ̃M ∈ col(X̃ ′
M)

and α > 0 small enough.

We prove the following characterization of SLOPE pattern recovery
in the noiseless case.
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SLOPE IR ⇐⇒ noiseless pattern recovery

Corollary (SLOPE IR ⇐⇒ pattern recovery for ε = 0)

Consider the noiseless case when ε = 0.
There exists α > 0 such that SLOPE with tuning parameter αΛ
recovers the pattern patt(β) = M if and only if

J∗Λ(X ′(X̃ ′
M)+Λ̃M) ≤ 1 and Λ̃M ∈ col(X̃ ′

M).

Then ∃α0 such that for all 0 < α < α0, SLOPE with tuning
parameter αΛ recovers the pattern of β.

By analogy to LASSO terminology (Zou, Wainwright, de Geer) we
say that the SLOPE Irrepresentability(IR) Condition holds if

J∗Λ(X ′(X̃ ′
M)+Λ̃M) ≤ 1 and Λ̃M ∈ col(X̃ ′

M)

( or equivalently X ′(X̃ ′
M)+Λ̃M ∈ ∂JΛ(M))).

When ker(X̃M) = {0} then the SLOPE IR condition reads:

J∗Λ(X ′X̃M(X̃ ′
M X̃M)−1Λ̃M) ≤ 1.
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Example, p = 2, n ≥ 2

Let X = (X1|X2) ∈ Rn×2 such that

X ′X =

(
1 0.6

0.6 1

)
.

Let Λ = (4, 2)′, β = (5, 3)′, M = patt(β) = (2, 1)′.
X̃M = X and Λ̃M = Λ.
ker(X̃M) = {0} and

J∗Λ(X ′(X̃ ′
M)+Λ̃M) = J∗Λ(X ′X (X ′X )−1Λ) = J∗Λ(Λ) = 1 ≤ 1.

The SLOPE irrepresentability condition holds true, so the noiseless
pattern recovery holds for for αΛ.
Using R, we see that 0 < α < 0.4 garantees the pattern recovery.
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Noiseless pattern recovery holds for β = (5, 3)′, pattern
= (2, 1)′
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IR does not hold for β = (5, 0)′, pattern = (1, 0)′

J(4,2)(X
′X̃ ′+

M Λ̃M) = 6.4/4 > 1
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Geometrical meaning of π1 := X ′(X̃ ′
M)

+Λ̃M

Proposition (π1 := X ′(X̃ ′
M)+Λ̃M is a meeting point )

Suppose that Λ̃M ∈ col(X̃ ′
M).

Then {π1} = aff(∂JΛ(M)) ∩ col(X ′X̃M).

Proof. We use the Proposition on Affine characterization to π1.
Since X̃ ′

M(X̃ ′
M)+ is the projection on col(X̃ ′

M) we have

U ′
Mπ1 = X̃ ′

M(X̃ ′
M)+Λ̃M = Λ̃M .

Thus π1 ∈ aff(∂JΛ(M)).
Moreover, since col((X̃ ′

M)+) = col(X̃M),
we deduce that π1 ∈ col(X ′(X̃ ′

M)+) = col(X ′X̃M).
We omit the (short) proof of unicity of the meeting point. □
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Back to the Example: β = (5, 0)′, pattern = (1, 0)′ J∗(4,2)(π1) > 1,

the meeting point π1 is not in the pattern face ∂JΛ(M)

β1

β2

∂JΛ(M)∂JΛ(M)

col(X ′X̃M)
π1
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Meeting point IR for any polyhedral pen

For SLOPE, the space col(X ′X̃M) = X ′X colUM = X ′X linCM

where CM = UMRk+ is the ”pattern set” of all x ∈ Rp with the
same pattern as M, i.e.

∂JΛ(x) = ∂JΛ(M)

The ”pattern set” can be defined for any penalty pen.
The meeting point π1 of aff∂pen(x) and XX ′linCM is well defined
for any penalty pen.

In [2] we conjecture that the condition π1 ∈ ∂pen(x) is equivalent

to the Noiseless pattern recovery for any polyhedral pen.
(proof at finish)
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LASSO analogues of our SLOPE characterization Theorem
and our SLOPE IR condition

Consider the LASSO sign recovery (i.e. existence of estimator
β̂LASSO such that sign(β̂LASSO) = sign(β) = S ∈ {−1, 0, 1}p)
The LASSO analogue of our characterization Theorem with
positivity and dual ball conditions is new. In conclusion we get

Corollary (New LASSO Irrepresentability condition )

Consider the noiseless case when ε = 0.
There exists λ > 0 such that LASSO with tuning parameter λ
recovers sign(β) = S if and only if

∥X ′(X̃ ′
S)+1Rk∥∞ ≤ 1 and 1Rk ∈ col(X̃ ′

S).

Here X̃ ′
S is the design matrix X signed and reduced according to S .

Example. If S = (1, 0,−1, 0)′ and X = (X1|X2|X3|X4), then
X̃ ′
S = (X1,−X3).
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New and old LASSO IR condition

The two conditions

∥X ′(X̃ ′
S)+1Rk∥∞ ≤ 1 and 1Rk ∈ col(X̃ ′

S)

equivalent to noiseless LASSO sign recovery are new.

When ker(X̃S) = {0} then 1k ∈ col(X̃ ′
S) occurs and

∥X ′(X̃ ′
S)+1k∥∞ ≤ 1 is equivalent to

∥X ′
I
XI (X

′
IXI )

−1SI∥∞ ≤ 1

where I = supp(S), I = {1, . . . , p} \ I
( MI denotes the submatrix of M obtained by keeping columns
corresponding to indices in I )

This latter expression is known in literature as the LASSO
irrepresentability condition (Fuchs, Zhao, Zou, Wainwright, de
Geer).
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Symmetric error. Necessity of the SLOPE IR Condition

Corollary

Let Y = Xβ + ε where ε and −ε have the same distribution.
If J∗Λ(X ′(X̃ ′

M)+Λ̃M) > 1 or ΛM /∈ col(X̃ ′
M) then the probability of

pattern recovery by SLOPE is smaller than 1/2.

For LASSO, a similar result when ker X̃S = {0}, was obtained by
Wainwright (2009).
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Asymptotic Pattern Recovery (Pattern Consistency) when
ε ̸= 0. Open IR Condition.

In order to give a sufficient condition for pattern recovery, we must
strengthen SLOPE IR condition to an Open SLOPE IR condition
(this also happens with LASSO)

Recall that our SLOPE IR condition is equivalent to

X ′(X̃ ′
M)+Λ̃M ∈ ∂JΛ(M)

The Open SLOPE IR condition is

X ′(X̃ ′
M)+Λ̃M ∈ ri(∂JΛ(M))

where ri(F ) is the relative interior of F .
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Open IR Condition is numerically effective

The Open IR Condition X ′(X̃ ′
M)+Λ̃M ∈ ri(∂JΛ(M))

is equivalent to the following computationally verifiable conditions:

{
J∗Λ(X ′(X̃ ′

M)+Λ̃M) ≤ 1 and Λ̃M ∈ col(X̃ ′
M),∣∣∣

{
i ∈ {1, . . . , p} :

∑i
j=1 |X ′(X̃ ′

M)+Λ̃M |(j) =
∑i

j=1 λj

}∣∣∣ = ∥M∥∞.

We count the number of equalities in p inequalities equivalent to
J∗Λ(b) ≤ 1. Recall that

J∗Λ(b) = max

{ |b|(1)
λ1

,
|b|(1) + |b|(2)
λ1 + λ2

, . . . ,
|b|(1) + . . . + |b|(p)
λ1 + . . . + λp

}
.
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Asymptotic Pattern Recovery (Pattern Consistency) when
ε ̸= 0: Open IR, big tuning and strong signal are sufficient

SX ,αΛ(Y ) = argmin
b∈Rp

1

2
∥Y − Xb∥22 + αJΛ(b).

Theorem (Pattern consistency with X fixed)

Let X ∈ Rn×p, 0 ̸= M ∈ PSLOPE
p , and Λ = (λ1, . . . , λp)′ where

λ1 > . . . > λp > 0. (β(r))r≥1 sequence with pattern M:

β(r) = UMs(r) with s
(r)
1 > . . . > s

(r)
k > 0 and k = ∥M∥∞,

∆r = min1≤i<k

(
s
(r)
i − s

(r)
i+1

)
r→∞−→ ∞. STRONG SIGNAL

Let Y (r) = Xβ(r) + ε, where ε is an arbitrary vector in Rn. If

αr → ∞, αr/∆r → 0 as r → ∞ and

X ′(X̃ ′
M)+Λ̃M ∈ ri(∂JΛ(M)), OPEN IR

then ∃ r0 > 0 ∀ r ≥ r0 ∃ β̂ ∈ SX ,αrΛ(Y (r)) such that patt(β̂) = M.
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Pattern consistency with p fixed and n → ∞

We suppose:
X = Xn random, satisfying a natural Lindeberg-Feller condition;
an incremental error εn = (ϵ1, . . . , ϵn)′, where (ϵi )i are i.i.d.
centered with finite variance;
(Xn)n and (ϵn)n are independent.

Theorem (Pattern consistency with n → ∞)

Let X ∈ Rn×p such that 1
nX

′X → C almost surely when n → ∞,
0 ̸= β ∈ Rp and M = patt(β). If limn→∞ αn

n = 0,
limn→∞ αn√

n
= ∞ and

CUM(U ′
MCUM)−1Λ̃M ∈ ri(∂JΛ(M))

then
patt(β̂SLOPE

n )
P−→ patt(β).
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Strong Pattern consistency with n → ∞, for all ω

Assume additionnally that the rows of Xn are independent and that
each row of Xn has the same law as ξ, where ξ is a random vector
whose components are linearly independent a.s. and that
E[ξ2i ] <∞ for i = 1, . . . , p.

Theorem (Strong Pattern consistency with n → ∞)

Let X ∈ Rn×p such that 1
nX

′X → C almost surely when n → ∞,
0 ̸= β ∈ Rp and M = patt(β). If limn→∞ αn

n = 0,
limn→∞ αn√

n log log(n)
= ∞ and

CUM(U ′
MCUM)−1Λ̃M ∈ ri(∂JΛ(M))

then
patt(β̂SLOPE

n )
∀ω−→ patt(β).
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Simulation study: example already seen

Consider Y = Xβ + ε where ε has iid N(0, 52) entries and

β1 = . . . = β30 = 40 and β31 = . . . = β200 = 0.
X ′X̃M(X̃ ′

M X̃M)−1Λ̃M ∈ ri(∂JΛ(M)).
∥X ′

I
XI (X

′
IXI )

−1sign(βI )∥∞ ≤ 1.
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Consider Y = Xβ + ε where ε has iid N(0, 52) entries and

β1 = . . . = β100 = 40 and β101 = . . . = β200 = 0.

J∗Λ(X ′X̃M(X̃ ′
M X̃M)−1Λ̃M) > 1.

∥X ′
I
XI (X

′
IXI )

−1sign(βI )∥∞ > 1.
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Theorem [2]. Under the accessibility condition THRESHOLDED
SLOPE asymptotically recovers the SLOPE pattern of β
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RESEARCH PROGRAM

RESEARCH PROGRAM (planned with H. Ishi, B.
Ko lodziejek, H. Nakashima)

Study of Pattern recovery for Graphical SLOPE on
Graphical Gaussian Models

Pattern = clusters of equal terms and blocks of 0’s
⇐⇒ Colored Graphical Models
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Mathematical optimization and statistical theories
using geometric methods

Date : October 20–21, 2022 (Japan Standard Time)
Venue : Academic Extension Center (Osaka Metropolitan University)
Contents : Workshop (Hybrid: physical/virtual)

• This workshop is held as a part of OCAMI Joint Usage/Research (JP-
MXP0619217849)
“MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics”

• This workshop is also supported by Japan Science and Technology Agency,
CREST
“Innovation of Deep Structured Models with Representation of Mathematical In-

telligence” in ”Creating information utilization platform by integrating mathe-

matical and information sciences, and development to society”

Organizers: Hideto Nakashima (ISM: hideto (at) ism.ac.jp), Yoshihiko Konno
(OMU), Hideyuki Ishi (OMU), Kenji Fukumizu (ISM)

Program
• October 20 (Thursday)

13:00–13:50 Shoji Toyota (SOKENDAI)
Invariance Learning based on Label Hierarchy

14:00–14:50 Sho Sonoda (RIKEN AIP)
Ridgelet Transforms for Neural Networks on Manifolds and
Hilbert Spaces

15:00–15:50 Tomonari Sei (The University of Tokyo)
Ushio Tanaka (Osaka Metropolitan University)
Stein-type distributions on Riemannian manifolds

16:10–17:00 Tomasz Skalski (Wroclaw University of Science and Technology:
LAREMA, University of Angers)
On LASSO and SLOPE estimators and their pattern recovery

17:10–18:00 Carlos Améndola (Technical University of Berlin)
Likelihood geometry of correlation models
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• October 21 (Friday)

9:00– 9:50 Piotr Zwiernik (University of Toronto)
Mixed convex exponential families and locally associated graphical
models

11:00–11:50 Koichi Tojo (RIKEN Center for Advanced Intelligence Project)
Classification problem of invariant q-exponential families on ho-
mogeneous spaces

13:50–14:40 Yoshihiko Konno (Osaka Metropolitan University)
Adaptive shrinkage of singular values for a low-rank matrix mean
when a covariance matrix is unknown

14:50–15:40 Satoshi Kuriki (The Institute of Statistical Mathematics)
Expected Euler characteristic heuristic for smooth Gaussian ran-
dom fields with inhomogeneous marginals

16:00–16:50 Piotr Graczyk (LAREMA, University of Angers)
Pattern recovery by SLOPE
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