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Preface

Quantum field theory (QFT) is one of the most successful theoretical frameworks in
Physics, which has been widely used in particle physics, condensed matter and cosmology.
To understand the behavior of QFT, in particular the non-perturbative effect of QFT,
geometry, representation theory etc in Mathematics play a crucial role. Although this fact
is not new at all, the idea in Mathematics are continuosly contributing to the development
of QFT, and the new discovery in QFT could lead to the progress in geometry and
representation theory.

We focus in this international workshop “Quantum Field Theory and Related Mathe-
matical Aspects” on this relation between Physics and Mathematics from the view point
of QFT, so as to strengthen the relationship between Physics and Mathematics communi-
ties, and furthermore to discover new connections. The workshop covers the topics such
as exact results in supersymmetric QFT, nonperturbative methods, generalized symme-
try of QFT, and holography. We invited the experts of these fields to discuss the recent
developments. At the same time, young researchers and graduate students are welcome
to interact them to stimulate their researches.

The workshop was held in the in-person format in Shuzenji Sogo Kaikan, Izu City,
Shizuoka Prefecture. 36 people have participated. We had 10 talks by the invited speak-
ers including young researchers. They gave talks focusing on recent developments, which
promoted the various discussions. The venue is in a remote area, but this makes partici-
pants easy to communicate each other and produce a new project.

In this report, we record the abstracts and the slides of the talks.
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Critical hypersurface of su(n) gauge theory with
flavors from A, ; multi matrix model

Hiroshi Itoyama

ABSTRACT.

(H. Itoyama) NITEP
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Things to remember & recall

* K. M.

* OCAMI brother of NITEP

* wksp “duality, integrability & matrix model”
JSPS/RFBR collaboration

2016 3/7-9 @Shuzeniji

speakers:  Mironoy, Seki, Sleptsov, Matsumoto, And. Morozov,
Okuyama, Moriyama, Bajnok, K. Yoshida, Zenkevich,

K. Ito, A. Morozov

Critical hypersurface of A/ = 2 su(n) gauge theory °
with flavors from A4, — 1 multi-matrix model

H. Itoyama
Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP)
Osaka Metropolitan University (formerly Osaka City University), Japan

based on the collaboration with T. Oota & R. Yoshioka, arXiv:2210.16738: I0Yoshi7, PLB to appear
also arXiv: 2212.06590: 10Yoshi8. IJMP to appear

also « 0911.4244, PTP, with Maruyoshi, Oota: IMO
* 1003.2929, NPB, with Oota: 105

e 1008.1861, PRD, with Oota, Yonezawa: IOYone; 1805.05057, PLB; 1812.00811, JPA,
with Oota, Katsuya Yano: I0Yanok1,2; 2103.11428, IJM, with Yano: IYanok

I) Introduction

® matrix models (of eigenvalue type, f-deformed):

* have played important roles in N/ = 1, 2 susy gauge theory

* have derived the instanton expansion of the partition function

 assure the S. W. = m. m. curve by S-D eq. (or Vir. const.)

* in the case of § = 1 (free fermions), the partition fn. is by construction
a tau fn. of certain integrable hierarchy.
* permit us to probe critical phenomena & phases = today’s talk

delivered on 2023.03.15 @Shuzenji
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® 2d-4d connection & AGT relation

6d Irregular version
N =2, SU(n)
Np=2n-2

folklore in 70’s
AGT conjecture ‘09 abelian,
2d 4d two-derivative appx.

curve .7'—5 eff) (az)

O & dSg,
' O

Liouville
& Toda

DF conformal D
block

MMS

loop eq. & 281’62
Operator (2nd quantized) perturbed Selberg Nek
description Ood M
expansion
Nt Zmat ae®
Matrices 105

B-deformed MMS MS

conclusion ‘F = me

® some remarks in advance:

* integral representation 2d Virasoro block is provided by one-matrix model of
multi-log potential: log(z; — z;) both for 2d CFT and log(v.d.m. det)

* in the cases of W, block, the series of multi- matrix models of quiver type
which obey the W}, constraints by construction is available.

irregular limit of this series of models of the multi-log type:
a place to look at to explore new critical phenomena

an interplay between symmetry and phase structure ala Landau

investigate broken symmetry structure of the model enforced by the automorphism of
the Dynkin diagram and its possible connection to the critical hypersurface of the system,
namely the nature of singularities of Argyres-Douglas type

cf. Argyres-Douglas; Argyres-Plesser-Seiberg-Witten;
Eguchi-Hori-Ito-Yang; Kubota-Yokoi; ...
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® maximal symmetry = a set of flavor mass relations: 5

our conclusion:  mM; = Map+1—4, 1=2,---,n

which is our proposed critical hypersurface

® |n fact

* in I0Yosh8, we checked that the S-W curve of Hanany-Oz maximally degenerates
under this rel. no need to set all masses being equal.

® contents:

1) one matrix model irregular C.B./su(2) Ny = 2, 3: our past work as review
) A,_, extension

IV) constraints from maximal sym.

\2

Il) ® Generating g-expansion coeff. from Selberg-type m.m. 105 °
* the 3-log type m. m. in general

* g here is “the cross ratio”, namely, the location of the third V. O.
* (cologz+ calog(z — 1) + e3log(z — q)) =0 has two roots.
* = .". two cut distributions of e. v., but at ¢ = 0 collapse to one-cut

still need to keep N1, Nk finite for g-expansion
» factorizes into left & right, each factor being the Selberg integral,
the generalization of Euler’s beta fn. dx;, dy; integrals over [0,1]

0ok N Nr
. q .
« formula for g-expansion = A(q) = <<GXP [ > ™ ((m +bp ZT’?) (bE > y5>
k=1 I=1 J=1
oo q’“ Ny, Ng
o k=1 I=1 J=1 NL,Ngr
Alg) =" Avi ve-
3 . .y — —
* “a pair of partitions (Y1,Y2) k=0 Ml+Yal=k
* to evaluate, finite N; g S-D eq. & “Kadel formula” have been used.
* The lowest order gives the mm-4d dictionary filling fraction necessary
bpNy, = a— 7712.’ bpNp = — a+ms3
9s 9s
1 1
ap = —(ma—my +e€), ag = —(ma +my),
s s
= i(m3+m4), oy = i(mg—m4+e), €e=¢€ + €

«
* Higher orders in g computable ' 9s



QFT and Related Mathematical Aspects

“« »” _ I0Yone, I0Yanok 7
o IrregUIar block” from Nf =4 - 3' 2 cf. Eguchi-Maruyoshi; Nishinaka-Rim
* possible to obtain from the Ny = 2N, case (f fn = 0) by sending some of the masses to o

* canbedone3log— 2log— 1log
* the potential then contains 1/z and the original path of the real axis
must be deformed to a complex path for analytic continuation
W(4)( ) = a1 log || + az log |z — qo| + a3 log |z — 1| my — 00, A3 = 4gomy fixed
Q142 = a1 + ay fixed
— WO (2) =aipplogz — q% + +aszlog(z — 1), qo3 = As/(4g5)
= W(2) = —qoo (Z + 1> +aiyologz m3 — 00, Az = (m3As)'/? fixed
z Q344 = g + ay fixed
o2 = N2/(29s)

. il > 1
best to use / dww® Z cpow™ | = T / dww® Z cpobw ™| for Rea >0
0 n=0 (e B 1) C(qo)
(o] oo 1
and / dww® cpow | = ——— / dww® cow™ | for Rea <0
1 (Z ) (1 =€) Joq) (Z )

n=0
* instanton expansion in qoz,03, using the left part Z(Z)
and the right part Z}g ) of 7@

Z(z Nr Nr Wy 28 Np \/_ B N N (e = e
- = 1-— — — r—i0
N @) Z Z(2 <<11_[1 ]1_[1 ( ro2 J) ECXP ( Bqo2 wz)

X 1
. X H exp <—\/EQO22—)>> ,
* can be evaluated from finite N loop eq. J=1 uy Np,Ngr
® Unitary m. m. of GWW typeat B € Z .. IOYanok ’

* the cut disappears if \/Ba1+2 eEZ
and the both paths can be deformed to the unit circle.

* In particular, at § = 1, is a unitary m. m. with a log potential

7 _ (H /c<2> ‘Zf’;) (w)® A(w=1)P exp [fz {—QO2 (wz + i) +MlongH :

* vev a dependence disappears
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® AD pointand P Il ’
* Again, we hunt for the criticality & the dsl, this time in GWW with log
1 1 s —
Wy(z) = —— <z+>+Mlogz, g =95 M a4 N = 2=
29, z =5 Ay Js

* the method of orfhog. poly. is available here & we developed further
more involved than the hermitian case

* we do not, however, have a time/space to discuss this fully.
N-1

* To quote the result:  Zy(y = h H (1—R3)N=7: partition fn

(1-R?) (\/R?Rg+1 + M2g +RER2_ + M2g?) = 2ng R?
* let &, = Rn, M =ng,, ¢=Mg,_,
* Inthe planar limit, where N — oo, g — 0, S = Ny, fixed,
77n—>77(z)zg% 0<2<1, gn—>§($)
* (*) becomes a quartic eq. for &, where, from the discriminant

cslles Ge) = Oailvo
we see three out of four roots generate to & = 0: (€ 71e: Ce) = )

* note S = ——(m2 ha m3), ¢= 7(7%2 —m3)
Ao . Ay
* Inthed.s.l. n(x) =1— §a2t, ¢=a’SM, &(x) = a’u(t)
1 1
K= Yst = —1 kept fixed

N (1-8)3C0)’
(u' )2 2 1 M?
2u, 2 2u,

* derived v’ =

Ill) @ the original model with three log potential: TP Kostov ©

://E{Iﬁdxp} (Ag()\)>_b exp (——ZZW (A ) f=—

9s o111

where W, is a potential

T N, Ny
a a a b
. :H H ()\5)_/\5))2 H HH(}\S)_)\S))(aa,ab).
a=11<I<J<N, 1<a<b<r I=1 J=1

¢g: a finite dimensional Lie algebra of ADE type with rank r, fj the Cartan subalgebra of g
and h* itsdual. e, € b* (e =1,2,---,r) simple roots of g,
(e,e): inner product on h*as (g, ) = 2.
3
« Walz) = Z (Hp, aa)log(qy —2), ¢1=0, 2=1, g3=¢
p=1
* a generic 4 point block of su(n) Toda theory by n — 1 independent free scalar fields
in the screening charge formalism, evaluated by the Wick contractions.

* The n — 1 species of screenlng charges of arbitrary numbers Ny, N,,..., and N,,_; =

H()+ZH1)+ZS aafo Sa— lbgs‘Na

a=1

o po=po1 A, ps = /~L3,n71A
in accordance with the “simple" puncture and o, p1 to be a generic type

My = Z ppoA®,  A®: fundamental weight
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® irregular limit to Ny =5, 4, su(3): "

the 0d-4d dictionary atn = 3, Ny = 6 from Gaiotto vs. m.m. curve
(H1,00) =myg —ms,  (p2,01) =mi+ma+ms, (s, o) =0,

(1, 00) =ms —mg, (p2,00) =0, (p3, ) = my + ms + me.

IMO

* the Ny =6 — 5 limit: mg — 00, go — 0 with A5 = lim ggmg (up to constant) kept finite.

qos = lim qo(ps3, 2),  so that gos = As/gs (up to constant).

* the potential Wfo':5)(z) = (p1,001)log z + (pa, oz) log(1 — z),

qos

Wi (2) = (1 + s, ) log 2 — 22

* the subsequent limit Ny =5 = 4: my; — 00, qo5 — 0
with A, = lim(mA)'/? (up to constant) kept finite.
q§4 = lim qo5(p2, @1),  goa = Ay/gs up to some constant.

* the potential W1<N’:4>(z) = (p1, 1) log z — qoaz,

Wi 0@ = + s ) log 2 — T

® generalization to A, _ 1: straightforward 2
e thelimit Np = 2n - 2n—1: Wi(z), Wy(2),a=2--- ,n—2 thesameas Ny =2n
Wh-1(2) = (11 + p3, ap—1) log 2z — q%’ qos = lim go (3, 0tn—1)-

* Further limit Ny = 2n — 1 - 2n — 2: ¢3, = lim qo5(p2, o).

* The potentials Wy (w™®) = (1, 1) logw® —gosw™, W, (w'®) = (g1, a0) logw@, a=2,--- ,n—2,
n—1) 404
uv(”*l) :
the (broken) symmetry based on the “evenness” of the potential and
the automorphism of the Dynkinldiagram still not manifest.1
The 0d-4d dictionary o = Z(—ma + May1)A®, @y = Z(m"+“ — Mptar1)AY IMO

a=1 a=1

= (Zn: ml> Al ps = <2": mi_HL) AL
i=1

i=1

W1 (WD) = (1 + p3, 1) log w'

® recasting into the unitary form (“unitarization”):

N, B8
N =2n—-2 T (1117 g 1 °
A'{ i / /H {1 wr, } Ny=an (AATHI(U))) ) (AAH?l (I>> X

=1

* The potentials WUil(w(l)) = ¢y logw M — g™, WUﬁﬂ(w(“)) = ¢, log w®, a=2- n—2

q04
w@®’

* the evaluation of ¢,; again the case of su(3) Sy = —mg—ms—ma, Sy =—m3—my—ms.

_ _ 3 . .
Wim—1(w™ V) = ¢, logw™ 1 — extra contributions

1 1
* Hence, ¢1 =— <m2 —myg + 5(m3+m4+m5)) , co =ms5 —m3+ §(m2 + mg + my).
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® dual coefficients: 13
* observe ¢ = (po + pa, o) + Sy + w%.

* actually valid for arbitrary n: ¢ +¢; = 0.

* by the “unitarization" procedure, we have restored the left-right symmetry of

the original irregular 4 point block which became invisible by the SL(2,C) fixing.
* can proceed further to work out the coefficients ¢y = —¢1,¢2,+ -+ ,cp—1
51 CIIN D)
sz — ¢! (a2’zi i) Col = (Ag,Aw) = T—llmin(a,a/){n —max(a,a’)},

— ’
, a,a

3, (1, Y, fis) the inverse of the Cartan matrix

® dual coeff for general n:

Qg, Qg o C Qg, Qg C
( ° 1)Sa—1+sa+( ° +1)Sa+17
with (p3, ) =0, a=2,--- ,n—2, -

N, Oy A, X ~
(@0, @) e ) (o) g ez o,

o Co = (M1 + p3,00) +

i éa = (M0+ﬂ27aa)+ Safl+‘§a+

* checked ¢, = —¢4, fora=1,--- ,n—1, adual expression
o S1=—(mg4--+mpy1), So=—(m3z+--+mpia), -,
Spog=—(Mp_1+-+mMan_2), Sn-1=—(mp+--+mgn_1),
& =mg — Myt +%ZL1 Moyi, **-

. 1 1
Co = (—Mg +mgi1) + 5(771,[, — Mgy1) — é(maﬂ,, — Matnt1)

1 1
= _Q(m“ — Mgy1) — §(m,a+n — Magni1), a=2,--+.,n—2,

— 1 n
Cp—1 = Map—1 — My + 2 Zj:l Mon—1—j-

IV) @ constraints from maximal symmetry: “

* impose the maximal symmetry in the parameter space and derive a set of relations among
ma, mg3, -+ and Map_1.

* inn = 2, demand evenness of the potential = ¢; = —¢; =0 = M2 = M3 = the A-D point

* n = 3, demand the combination of evenness and folding of the Dynkin diagram:
1

- (2) —

v s e v W

which imply ms = ms, m3 = mgy.

=4 5'1 = 5'2 and ¢1 = ca,

1 1 1
o n = - - G = @ =
n = 4, the case of su(4), demand w e T ETE @
= 51 :gg, ¢1 = cs, Cog =co = 0.
= m27m7:7(m37m6), m27m7:f(m4fm5)7 mo — M7 = M3 — Mg.

,',mg—m7:m3—m6:m4—m520.
°n=5, S1 =84, So=283, ¢1=c4, Co=c3.
= (ma —ma4) + (m3 —mg) + (mg — my7) =0,
m3z—mg =0, mg—mg=—(ms—mg), Ma— Mg =Mz~ Mg
LMo — Mg = M3 — Mg =My — My = ms —mg = 0.

At general n, the number of net free parameters is n — 1. Do the same analysis to conclude

mi = Man41—i, 1:2~ y 1L

after imposing the maximal symmetry of the system, we still do not reach the point of all
masses being equal, which is sometimes assumed in the analysis of the S-W curve in general.
the same conclusion has been drawn at the level of the S-W curve perse. = |0Yosh8
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® Hanany-Oz curve at the proposed critical hypersurface:
'ﬁla:an—l—aa a:172a"'an_1
. 2 =C(E)% - G(2)? . .
where C(Z)=i"+> 5",  G&)=A[] @+ ).
=2

a=1

§; the moduli parameter and A the scale parameter
*n=3
Put = =2+ mas. y? = (2% + 512 + sox + 53)% — A%2% (2 + m)?,
where m = my — Mo
Set Sgli =81 +A= 0,
Sggi = 8o + Am = 0,
533 = 83 = 0

we obtain (x) ¢% = 2*(2? F 2Az F 2Am).

Hence the curve is degenerate with multiplicity four.
Az

S§1is§2i5§3 S314=5324=533=0
where Agy = 4A(A + 2m)is the discriminant of 2% F 2Ax F 2Am.

= (2Am)8A3i,

The condition Ags = 0 reduces (x) to 4> = z*(z F A)?

* can be generalized to arbitrary n.

V) @ HW set (partial) to myself:

* 0 < Ny <2n-—3 case: not possible in the current procedure

while keeping the size of the matrices finite

* operator analysis: Aq type even potential < (Ay, Agp—1) series

multicritical pts. IOYanok2,3

generalization
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A microscopic description of the Witten effect
with negatively massive fermions

Naoto Kan

ABSTRACT. Inside topological insulators or in the theta=pi vacuum, mag-
netic monopoles gain fractional electric charges, which is known as the Witten
effect. In this work, we try to give a microscopic description for this phe-
nomenon, solving a "negatively” massive Dirac equation. The ”Wilson term”
plays a key role in 1) identifying the sign of the fermion mass, 2) confirming
evidence for dynamical domain-wall creations, and 3) understanding why the
electric charge is fractional.

(N. Kan) Osaka University
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A microscopic description of the Witten effect
with negatively massive fermions

Naoto Kan (Osaka University)

Based on collaborations with Shoto Aoki, Hidenori Fukaya, Mikito Koshino,
Yoshiyuki Matsuki (Osaka U.) [arXiv:2303.XXXXX].

The Witten effect

In 6 # 0 vacuum, the magnetic monopole is dressed by the electric
charge, and, consequently, we observe the dyon and its electric
charge is fractional, in general [Witten ('79)].

In a context of the condensed matter phys,

- in a 3D (T symmetry protected) topological insulator (6 = 7
vacuum), a magnetic monopole gains 1/2 electric charge,

- in a 2D topological insulator, a vortex gains 1/2 electric
charge.
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The Maxwell action with the 0 term,

1 0 i
= [ d*z [ FuF* + = F F™
o / ’ (4 p T gt )

and the Maxwell equation in the 6 # 0 vacuum is given by

0

- 8m?

O FH = O M.

The Gauss law around the monopole is then

Qe:/dgl'V'E:—éli dgiEV-B:—Hq—m

w2 o

In particular, for # = 7 and g, = 1, the electric charge becomes
—1/2.

In a similar way, the (2 + 1)-dim effective action of the Dirac
fermion in a topological phase is the CS action w/ level k =1,
which modifies the Maxwell equation to

k
OuF™ = == Fy,

and the vertex with flux a: gains an electric charge through the
Gauss law

Qe = /dQ:cV -E = —2£ /d2a: P’ Py = —ka.
T

When o = 1/2, the electric charge is fraction with k£ = 1.
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13

The effective theory description above is quite simple, but can’t

answer to the following questions:

(1) what is the origin of the electric charge? (must be electrons)

(2) if the origin is the electrons, why is it bound to

monopole/vortex?

(3) why is the electric charge fractional?

In this our work, we try to give answers to the questions from in

terms of a microscopic description.

In order to give a microscopic description of the Witten effect, we

solve the Dirac equation,
1 i
Y5 | D+m———D;D" | ¢ = Ev,
Mpvy

which contains the Wilson term .

Here D = +'D;.
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The Wilson term can be interpreted as a correction from the
Pauli-Villars (PV) field

D+m
D—{—Mpv’

1 .
=D +m— ——D;D'+ O(1/M3y,m/Mpy, F,,/Mpv).
Mpy

Deg = Mpy

Note that the overall factor Mpy is multiplied just to keep the
standard normalization.

In perturbative theory, the regulator usually appears in loop
computations only.

However, in nonperturbative lattice regularization, the Wilson term

Vi _ VZT

4 it
. +2vvi),

5 Dwilson = 75 <%‘

is needed even at the tree-level.
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1. Introduction

2. 2D vortex

3. 3D monopole

4. Numerical analysis of monopole

5. Summary

2. 2D vortex
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Solving a naive Dirac equation

We first consider the Dirac Hamiltonian with a mass m. We put a
U(1) gauge flux located at the origin describing the vortex:

xr
Ay(z,y) = —a%, Ay(z,y) = a5, Fuylz,y) = 2mad(z)d(y).

The naive Dirac Hamiltonian is

I8 = @ Zaz(az—zAl)—km ,

1=,y

The general solution for HyFJ = EyF s

i (r,0) = C (m+ E)K; 172 o(Vm? — EQT)ei(.j_'l/Q)g
’ V m2 - E2Kj+1/2_a(m7‘>€l(j+l/2)9 '

where j € Z 4 1/2 is an eigenvalue of the total angular momentum
J. The solution is finite at r = oc.

We also impose the normalizable condition at » = 0. Then, we find
a = 7, and the solution with £ =0 is

|m|ei0

- m .
YE=OnH1/2(r, 0) = ( ) Kio(|mir)e™,

where n € Z.

10
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It is important to note that the zero mode Z=0"+1/2 is 3 “chiral”
eigenstate:

O'TQﬁE:O’TH_l/Q(T; 9) _ sign(m)¢E:O’n+1/2(T’ 9),

T y [0 e~
Or = ;U:E + ;O'y = eig 0 .

where

The solution explains that the vortex captures an electron w/o
energy loss: “charged” vortex.

However, the solution doesn’'t describe

(i) why this happens in topological insulators (m < 0) but
doesn’t in normal insulator (m > 0) (w/o imposing a
boundary condition by hand [Yamagishi ('83)]),

(ii) why the chiral zero mode appears (why the chiral boundary
condition is imposed),

(iii) why the charge becomes fractional.

11

12



18

OCAMI Reports Vol. 3 (2023)

The regularized Dirac equation
Let's modify the vector potential to regularize the size of U(1) flux:

(for r <ry),

=)

Ay =
(for r > rq).

LT

The Hamiltonian with the Wilson term is
A dr I <]+1/2 A9>

i == ]\[
j—1
dr + ( Ag) —m—l——]\,,fpv Ay

Y

with

13

The solution outside r:
= i(j—1/2)0
#8400 = 0 (7 B = i) Koo jacalieor)eli=0
’f—K'+1/27a(’<0—7")61(]+1/2)6
2 L.
n D <m + E — M—PV) Kj_1/2_a(ﬁ.’+r)el(j—l/2)9
”v+Kj+1/2—a(’i+7')€i(j+1/2)9
with
(1 + 2m/Mpv) + \/(1 + 2m/Mpv)2 — 4(m2 — EQ)/ME,V
5 .

k+ = Mpv
Note in the large Mpy and 1/71, the solution converses to the

naive one.

14
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The solution inside 7q:

L_ a j i(j—
¢~E’j(7“, 0)=A <(m +E+ Mpy ij”%) fi(r)e v 1/2)0>

g (r)etatioe
L+ 20 g i(j—1/2)6
+B<(m+E+MPv Mpv’r‘%>‘f+(r)e 7
J i(j+1/2)60
g+(r)e (G+1/2)
with
,%
Fi(r) = pi—1/2, 277 ;Fl(—T%Li/éla,j +1/2; ar? /r2) )
. —CIE
r—dt1/2, 277 1F1(—T%L:t/4a —-Jj+1/2,—5+ 3/2;0”,2/7%) (for j < 0),
L 70(7‘22
gu(ry = 4 TEIT TP B P (il /et 1,5+ 3/2 0r® /r]) (for j > 0),
£ = S

_ar

. 2
(25 — Dr=9=Y2e 21 Fy(—r3Ly/da —j+1/2,—j +1/2ar?/r2) (for j < 0),

2 2 2 2 2
Ly =My |-(1+ ™) 4 14 —4{m?2 - (E— e /M2, | /2.
Mpy Mpv Mpyr? PV

Let's connect the exact solutions inside and outside at » = 1. One
requires the wavefunction and its first derivative to be continuous:

A (r1,0) = B (r1,0), 8,057 (r1,0) = 8,95 (1, 6),

determines the coefficients and energy.

In the limit |m| < |Mpy| < 1/71, we can obtain E approximately
but analytically:

—jm| (for j — a ~ 1/2),
E ~ < 2|m|log (AL[";L)(j—a) (for j —a ~0),
|m| (for j —a~ —1/2).

The solution exists only when mMpy < 0.

15

16
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We note that when j = «, the energy F is zero and unique.

Also, the existence of the £ = 0 mode is protected by the reality
of the (effective) Dirac operator. The topological invariance of the
number of zero modes is known as the mod-two Atiyah-Singer
index.

Moreover, since H* = —(0,e “29) "1 H(g,e~"2i%) any
non-zero mode, Hipy = \i)y, makes a pair with o,e =" 279,
whose eigenvalue is —\.

Therefore if the eigenvalue below |m| is unique, £ = 0 is the only
possible choice, which keeps the spectrum 4+ symmetric.

Numerically, we find a solution only when mMpy < 0 (or inside of
the topological insulator), j ~ «a, and the obtained energy satisfies
|E| <|m].

m 1 FE

-1 0.1 —0.991669
—1 0.01 —0.647566
-1 0.001 —0.096941
—1 0.0001 —0.00997177
—10  0.001 —0.969028

—10 0.0001  —0.09977173
—10 0.00001  —0.0099972

In this calculation, we set Mpy = 10, and j = a = 1/2.

17

18
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Microscopic interpretation

Since the Laplacian —D; D’ is always positive, the mass shift due
to the Wilson term is always positive when we take Mpy positive.

For m < 0 (or inside topological insulators), it is possible to locally
flip the sign of the “effective” mass
—D; D! 1

m<0 — meg=m+—-- ~m+—-=>0
of Mpy Mpyr? ’

in the region r < ry.

It's implies that the inside region r < r; becomes a normal
insulator, and the domain-wall is dynamically created and the
chiral edge-mode appears on it!

19

So far, we considered a R? space, but in order to discuss
topological feature of the fermion zero mode, we also need an IR
regularization, such as the one-point compactification.

Then the topological insulator region with (meg < 0) have
topology of a disk with a small S* boundary at r = ry.

However, due to the cobordism
invariance of the mod-two AS
index, the disk is not possible.

20
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A resolution is: to create another domain-wall at, say, » = ry,
outside of the topological insulator.

Another zero mode is localized at the outside domain-wall, and the
index is kept trivial (We will see explicitly in the case of 3D
topological insulator).

Then the two zero modes

is mixed by the tunneling effect, (and the

eignevalues may split to +¢), and the 50%
of the state is located at the vortex, while
the other 50% is sit at the domain-wall.

Thus the dressed
electric charge of the vortex becomes 1/2!

3. 3D monopole

21
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The vector potential of the Dirac monopole with the magnetic
charge ¢, is given by

_ —qmyY A _ gmT
Tor(r+2)’ Voor(r+2)’

of which field strength is
Ty
Fij = qm‘fijkr_g — 47Tqm(5($)5(y)9(—2)€ij3,

where the second term represents the Dirac string. Due to the
Dirac quantization, we assume ¢,, = n/2 with n € Z.

22

Solving a naive Dirac equation

The solution of the Dirac equation Hy = Ev for j # |n/2| — 1/2

is
by = Gigsk [ (A E)E (Vi — B2r) x;0,2(6, ¢)
5,33 JT meil/Q(mr) 0rXjja,a(0,0) )

where o, = z'o;/r, v = \/(j + 1/2)? — n?/4, and the X j, + is
the eigenstates,

nx;

o' (Li + 57) Xjga,t = (=1 £ V) Xjjs,+-

However, the solution is not normalizable at » = 0.

23
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The only normalizable solution is the state with j = |n|/2 — 1/2
and £ = 0:

C. .
Vj,j3,0 = %30 exp(—|m|r) ( ) ® Xj,j3,0(0, @),

sign(m)sign(n)
where x; j;.0(0, @) satisfies

TrXj.js,0 = SIZO(12) X js,0-
The state is a chiral eigenstate of 0, ® o, with the eigenvalue
sign(m).

For example, for a unit magnetic charge n = 1, the possible bound
state is unique (the degeneracy is |n|), but we can't distinguish the
normal /topological insulator unless we specify the boundary
condition at 7 = 0.

24

The Dirac equation with the Wilson term

We introduce the Wilson term,

g D;D*
H = lDi — )
90 (7 +m Moy )

The Hamiltonian still anticommutes with ¥ = 0, ® 1, which
indicates that if the bound state around the monopole is unique,
its energy eigenvalue £ must be zero and it must be a chiral
eigenstate of 7.

25
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Assuming j = |n|/2 —1/2 and r; — 0, let’s solve the Dirac
equation w/ the Wilson term. The solution of the zero modes is
given by

Be—Mp\/'r‘/2

- 1
s = G 1y (k) (_8> ® Xj,j,0(0, ),

where v = /2|n| + 1/2, k = Mpy+/1 + 4m/Mpv /2, and

s = sing(n). The zero modes should have 2j + 1 = |n| degeneracy,
having different values of js.

The state becomes previous one v; j, o in the limit Mpy — oo.

26

The solution is also the zero modes of the operator

ot (Li + %%) + 1. In fact, this operator can be identified as the
effective Dirac operator on the two-dim sphere around the
monopole with an infinitesimal radius 7.

With a local Lorentz (or Spin® to be precise) transformation

R(0, ¢) = exp(iflo,/2) exp(ip(o, + 1)/2), we obtain

D5 = R(0,$) [ai <Li + g%) n 1} R0, )1,

) I
= —04 |:O’x% +O'y (m% +ZA¢+ZA¢>:| 5

n _sin@
2 14+cos@

generated by the monopole.

where A, = is the vector potential (in units of ;)

27
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The second connection,

- 1 cos 6

¢~ 9sinf 25in902’

is the induced Spin® connection on the sphere which is strongly
curved with the small radius 7.

Namely, the zero modes are the chiral zero modes of not only 3D
but also DS,

Stability of the chiral zero modes is topologically protected by the
AS index theorem. On the two dim sphere, (noting that the Spinc
connection As does not contributes,) the total flux reproduces the
index:
— >z F,, = n.

47'(' S2 i
Since the AS index is a cobordism invariant, the long-range
discussion in the case of the vortex in two dim works here:

We need a normal insulator region with m > 0 outside the
topological insulator with m < 0 and |n| zero modes with the
opposite chirality must appear on the outer domain-wall.

28
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To see this, let's solve the regularized Dirac equation around the
outside domain-wall at r = r.

The edge-localized state is obtained as

=2 CES) ('K, (5or) + C' L (5-1) (l> ® Xss0(6,8) (r <o),

PV =
7,33
M
D’ exp (%T)

1
NG Ky (k) (8> ® Xi.j3,0(0, 9) (r > o),

where k4 = Mg’\’ /1% 4|m|/Mpy.

This edge-localized modes have the same |n| = 2j + 1 degeneracy
and the opposite chirality with the zero modes captured by the
monopole.

So far we considered only 1 — 0 limit: how about finite 717

We calculate numerically!

)

30
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4. Numerical analysis of monopole

Lattice setup

On a three-dimensional hyper-cubic lattice with size L = 31 with
open boundary conditions, we put a monopole at

Ty = (L/2,L/2,L/2) with a magnetic charge n/2. We also put
an anti-monopole at x, = (L/2,L/2,1/2) with the opposite
charge n /2.

The continuum vector potential at @ = (z,y, z) is then given by

.. —(y = ym) _ —(y = va)

A«(=) q’”[|m—wm|<m—mm|+<z_zm>> |w—wa|<|m—wa+<z—2a>>}’
Au(®@) = am [|$—mm|(iﬁ ~ @l + (2 —2m))  |@ — @a|(j@ — &d] +<Z—Za>>} ’
A.(x) =0,

with g,, = n/2. Note that the Dirac string extends from x, to x,,.

32
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For the fermion field, we assign a position-dependent mass term to

be m(x) = —mgo with mg = 14/L for \/|x — x,,| < ro = 3L/8,

and m(x) = +myg otherwise.

Namely, the monopole is located at the center of a spherical
topological insulator with radius g surrounded by a normal
insulator with the gap mg, while the anti-monopole sits in the

normal insulator region.

We assume that outside of the lattice with open boundary
condition corresponds to a “laboratory” with m(x) = +o0.

The Wilson Dirac Hamiltonian is given by

3 f b
VI 4+V? 1
Hy = +° (2: [%sz_§vzfvi?
=1

where V{@b(m) = Ui(x)y(x + e;) — ¢ (x) denotes the forward
covariant difference and V1 (z) = ( ) — UT(a: — ez)¢(m e;) is
the backward difference. Also, U;(x) = exp (z fo (x + e;l dl) is

the link variables.

Note that Hyy anti-commutes with 4 = v, ® 1 even on a lattice.

33
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Numerical results

We plot the eigenvalue spectrum of Hyy w/ n =1 on the L = 31

lattice:
n=1
1.00
604 @ [atlic'c (N=32)
mrg 1 X conti ‘ 0.75
4.0 1 o
P 0.50
a*
2.0 1 025
&*
B
§ 00 " - 000 E
5
204 ; L —0.25
o -0.50
07 ol
—mr - - —0.75
6.0 7 o
. : L1 100
—40 -20 0 20 40
j 35
We see that:

- the circle symbols are the numerical results,

- the cross symbols are the continuum results,

36
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Let's focus on the near-zero modes which are apparently not chiral.
The number of these modes is doubled compared to the continuum
prediction of the edge-localized modes around the domain-wall at

r=7.

We expect that any chiral zero mode localized at the domain-wall
must appear in pair with the mode with the opposite chirality
localized at the domain-wall dynamically created by the monopole.

To see this, we plot the amplitude,

Ao(z) = o(x) do(z)r?,

for the positive nearest-zero mode.

37

The amplitude of ¢y for n =1 in z = 0 slice:

E=0.0010167867940603648, chi=0.0078916833143306 1.00
075

0.50

0016
0014
0012

<. 0010

. 0008

“ 0006

0,004
0,002

r 0.00

—0.50

-0.75

-1.00
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We see that:
- for the nearest zeromode, the amplitude has two peaks around
r=|x—xy| =0and r = rg,

- the local chirality near each peak is ~ —1 and +1,
respectively, although the total chiraity is near zero,

- the 50% of the state is located around the monopole, while
the other 50% is located at r = ry: the half electric charge,

- this is only for the nearest zeromode, e.g., for the second
nearest zero mode, we have only the edge-localized modes:

39

The amplitude of the second nearest zero mode:

E=0.10733174602634117, chi=0.9963691637745856 1.00
075

0.50

—0.50

-0.75

-1.00
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The same amplitude Ag(x) but with n = —2 on z = 0 slice:

E=0.0013386055817429469, chi=0.0049125307118271 1.00
075

0.50

0.030
0.025

Ro,

0.020

4t

\
. 0015 ..
" 0010 _ ' \\\\\\ L 025
0.005 / il ,.";‘tl. gﬂ‘ o\‘\\\\\:\\\\ _10-'5
".'.’.'."li.',':'u 'u ~‘* 5 050
-15 10 . .. 0 N
N 5 -0.75

-1.00

To directly confirm creation of the domain-wall near the monopole,
we plot distribution of the “effective mass” (normalized by my),

meg(z) = dp(x)t |- Y va”+m(> Sr(x)dx(x) (),

1—123

on the z = 0 slice.
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The effective mass for K = 0 with n =1 on z = 0 slice:

/o

43

We see that:

- the small island of the normal insulator (or a positive mass
region) appears around the monopole: the domain-wall is
dynamically created,

- even for non-zero edge localized modes, (which has almost no
amplitude at the monopole) the measured mass meg () is
clearly positive at the monopole.

44
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As discussed above, the distribution of the chirality o, ® o, has no
significant difference between n =1 and n = —2, i.e., the
wavefunction near the monopole is 0, ® o, ~ —1, while that near
the domain-wall at » = rg has ~ +1 chirality.

However, the two-dimensional chirality 1 ® o, is sensitive to
sign(n).
We plot the distribution of

()" [1 @ 07] po()/¢o(x) o ().

The plot of Ap(x) and 1 ® o, chirality w/ n =1 on z = 0 slice:

E=0.0010167867940603648, chig>=-0.9897929609872 1.00

0.75

0016
0014
0012

. 0010

. 0008

© 0006

0,004
0,002

—0.75

-1.00
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The plot of Ap(x) and 1 ® o, chirality w/ n = —2 on x = 0 slice:

E=0.0013386055817429469, chi=0.0049125307118271 1.00
075
050

0.030
0.025

Ko,

L 0020

—0o

g}
~. 0015
" 0010
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-0.50

-0.75

-1.00
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We see that:

- the local chirality is ~ +1 for n =1, and ~ —1 for n = —2,

- this is consistent with the cobordism property of the AS index
that the spherical domain-wall at » = ry and that near the
monopole must share the same value.

48
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We discussed a microscopic description of the Witten effect with
the Wilson term.

How do we distinguish between the normal insulator (m > 0) and
topological insulator (m < 0)?

- It is the topological insulator if the mass is relatively negative
compared to the PV mass.

Why are electrons bound to monopole/vertex?

- Because of the positive mass correction from the magnetic
field of the monopole/vortex, the domain-wall is dynamically
created (only for the negative mass).

49

Why does the chiral zero mode appear?

- Because the zero modes localized at the domain-wall are
protected by the AS index.

Why is the electric charge fractional?

- Because the 50% of the wavefunction is located around the
monopole/vortex (the other 50% is located at the surface of
the topological insulator).

50
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Blowup Equations for 5d/6d theories

Hee-Cheol Kim

ABSTRACT. I will talk about the blowup equations for 5d/6d supersymmetric
QFTs and little string theories which generalize Nakajima-Yoshioka’s blowup
equations for the instanton partition functions of the 4d/5d gauge theories on
Omega background.

(H. Kim) POSTECH
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Blowup equations for 5d/éd theories

Hee-Cheol Kim
POSTECH

Based on work arXiv:2101.00023 w/ M.Kim, S-S. Kim, K-H. Lee
arXiv :2106.04731 w/ M. Kim, S-S. Kim
arXiv :2301.04151 w/ M.Kim,Y. Sugimoto
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Higher dimensional SUSY theories

Interacting non-gravitational theories in higher dimensions (d=5,6) have been
COI’IS‘tI‘UC‘ted |l’1 S’Er‘lﬂg 'theOl‘}’ [Witten 95], [Strominger 95], [Seiberg 9€], ...

They are all SUSY theories preserving 8 or |6 supersymmetries.

Non-Lagrangian theories involving not only interactions of massless particles,
but also of light strings.

Their compactifications can engineer a rich class of consistent lower
dimensional QFTs.

4d Class S theories, 5d KK theories, 3d-3d correspondence,...
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BPS spectra of 5d/éd theories

We are interested in Witten index counting the spectrum of BPS states in 5d/
6d SUSY theories.

Z(p,m; e, 6) =Tr [(*1)FG—H{QQ?}6—61(J1+Jn)e—ez(Ja—t—Jn)e—ﬁHe—m-H]

Jy, 03 : SO(4) Lorentz rotations
Jr : SU(2)r R-symmetry
IT: Gauge charge
H : Flavor charge
F=2Jgp

- Nekrasov's instanton partition function in 5d gauge theories on Omega
background.
- Elliptic genus of self-dual strings (or little strings) in 6d SCFTs (or LSTs).

- (Refined-)Topological string partition function or Gopakumar-Vafa (GV)
invariant of local Calabi-Yau 3-folds.



42

OCAMI Reports Vol. 3 (2023)

BPS spectra of 5d/éd theories

We are interested in Witten index counting the spectrum of BPS states in 5d/
6d SUSY theories.

Z(p,m;e1,€) ="Tr [('1)Fe_ﬂ{Q\Qr}e_“(Jl+J”)e_“(J”J")e_’f"ne_’""‘q]

Jy, 03 : SO(4) Lorentz rotations
Jr : SU(2)r R-symmetry
IT: Gauge charge
H : Flavor charge
F=2Jgp

In this talk, | will introduce a systematic approach to computing BPS spectra of
“any 5d/éd theories” including 6d LSTs.

Assumption : A UV finite 5d/6d theories has either (on its Coulomb or tensor branch)
I} Gauge theory description in 5d
2) Gauge theory description in éd on a circle with/without twist
3) Geometric description as a local (elliptic) Calabi-Yau 3-fold
4) Can be obtained by RG-flows of 1), 2), 3).
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Plan

|. Introduction

2. Review
- 5d/6d SQFTs on Coulomb (or tensor) branch

- Generalized blowup formula
- Solving blowup equations

3. Blowup equations for 6d little string theories

4. Conclusion
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5d/6d SQEIls on Coulomb: branch
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5d SUSY gauge theories

Five-dimensional A =1 theories with gauge group G
* Preserve 8 supercharges + SU(2) g R-symmetry.
* Matter content
*  Vector multiplet (Au, é;A)
«  Hypermultiplet (¢%¢)  (A=12: SU@2)x doublet)

5d gauge theories are non-renormalizable. But certain class of SUSY theories
admit non-trivial UV CFT fixed points. [Seiberg 96], [Morrison, Sicberg 96},

[Intriligator, Morrison, Seiberg 97]
The gauge theory has Coulomb branch of the moduli space parametrized by
the real scalar field @; in the vector muttiplets, and on the Coulomb branch we
have a theory with Abelian gauge groups U(1)" coupled to charged matters
with masses

W-boson: My ~e- ¢ Hypermultiplet : Mg ~w - ¢+ m;

e € root , w € weight

r : rank of G
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Effective theory on Coulomb branch

The effective theory at low energy is an Abelian gauge theory characterized by
the prepotential, which is [-loop exact, given by

a a 1
Py (e Kigtos wiusiasor) + o 5 leol -5 5 fuobmf)

ecER [ wewy
m, = 1/g> : bare coupling, K =Te(T7T}), diy, = %Trfl"f{Tj“,T,‘:}. tq ¢ Classical CS-level

[Witten 96], [Seiberg 96], [Intriligator, Morrison, Seiberg 97]

» Effective coupling: 7; = 8;0; F
* Metric on Coulomb branch: ds® = 7;;d¢’d¢?
* Cubic Chern-Simons (CS) terms

_ Crk
2472

Ses / AIANFIANFE | Ok = 0,0,00F
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Effective theory on Coulomb branch

The effective action also involves mixed Chern-Simons terms

* Gauge/gravitational Chern-Simons term

1 .
SgraV:—E/CfA’/\pl(T) 5 C'f:—&(Zk-q‘)I—Z Z |w-¢’>+mf|)

eER, f wewy
[Witten 96], [Bonetti, Grimm, Hohenegger | 3], [Grimm, Andreas 15]

*  Gauge/R-symmetry Chern-Simons term

SR:%/CfA"/\CE(R) , OF=

T

BT:Z|€‘(/’|

eeR

| =

(CF =2 in Dynkin basis)

[Genolini, Honda, HCK, Teng, Vafa 207, [M. Kim, HCK, S-5. Kim, Lee 21]

As we will see later; these effective Chern-Simons terms will be used to establish the

blowup equations.
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6d SCFTs on a circle

6d SCFTs compactified on a circle with/without outerautomorphism twists
give rise to 5d Kaluza-Klein (KK) theories.

* Effective prepotential on tensor branch receives contributions from |-loop
contributions for KK-modes and Green-Schwarz term.

* Green-Schwarz terms: Sy e = f_igaﬁpa 5wy — 0P dg o A Ky + oo

Green-Schwarz term
T~R Y, F=d4,, 0°? . Intersection form of tensors

[Bonetti, Grimm | I], [Benetti, Grimm, Hohenegger [3],

[Bhardwaj, Jefferson, HCK, Tarazi, Vafa 19]

* Outer-automorphism twist modifies the intersection form and the gauge
algebra factors accordingly.

Qa[j s Qg"ﬁ’ s Z Qﬂtﬁ & Ka,'ij for g — Ka,ij for ﬁ g

gep’ [Bhardwaj, efferson, HCK, Tarazi, Vafa 9]
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M-theory on local Calabi-Yau threefolds

| 1d M-theory compactified on local Calabi-Yau threefolds Xg will engineer 5d
SCFTs or éd theories compactified on a circle.

* Cubic Chern-Simons coefficients = Triple intersection numbers

[Cadavid, Celesole, D' Auria, Ferrara 95],

CIJK — Dj A DJ A -DK [Ferrara, Khuri, Minasian 98], ....
X6

» Mixed gauge/gravitational Chern-Simons coefficient = Intersection of the divisor
D; with the 2nd Chern class of CY3

Cf =cs(Xe) - D; === ¢3(X5) -P? = —6, c2(Xe) - Fp = —4+2b

*  Mixed gauge/R-symmetry Chern-Simons coefficients

Clt =2  forall component surfaces in Xg
(also for all gauge fields in Dynkin basis)
[M. Kim, HCK, 5-5. Kim, Lee 21]



50

OCAMI Reports Vol. 3 (2023)

Generalized Blowup Formula
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Blowup partition function

Let us now consider 5d QFTs on S x C? — 8! x BL,C? (w/ §-deformation)

~2
2 2 Bl C?
Will be blown up :b
"
o) o

* (Gottsche)-Nakajima-Yoshioka computed partition functions of pure 4d/5d
SU(N) SYMs put on B1;C? which take factorized forms as

[Nakajima, Yoshioka 03, 05, 09,

ZBIICQ(E) = Z Z(N) (ﬁ‘ _é) X Z(‘S) (ﬁ, g) [Gottsche, Nalajirma, Yoshioka 06]

3l

Zm = Zn (ff)z + nger,my + Bjél; €1, €3 — 61)

: Magnetic flux for gauge symmetry

fueft

7(5) — Zeo (@Z + nze2,m; + Bj(ﬁz; €1 — €3, Eg) : Magnetic flux for flavor symmetry
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Nakajima-Yoshioka’s blowup equation

(Smooth) Transition Bl;C* — C? gives rise to a functional relation

Pl —pt

lim Zpy,ce =y 28R, B) x Z°)(5i, B) = AZg:

A #0 : Unity blowup equation [Nakajinna, Yoshicka 03, 05, 09],
A =0 : Vanishing blowup equation  [Gotlsche, Nakajima, Yoshioka 06]

* 5d SYMs with exceptional gauge groups and generic matters [ > |4

Kim, Kim, Lee, Lee, Song 19]

e Generalization to local CY 3-folds  [Huang SunWang 17]

. . . [Gu, Haghighat, Klermnm, Sun, Wang 18, 12, 20],
» Elliptic generalization for 6d SCFTs ik M kim,$-5. Kim, k-H. Lee 711 [K. Lee, SunWang 2]

* Blowup formalism for Wilson loops  tHck. M. Kim, 5-5Kim 21, [Huang K. Lee Wang 22]
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Effective prepotential in Blowup equations
Partition function on Omega background takes the form

Zea (¢, ms €1, €9) = €5 (902) L Zoy (¢, mieq, €)

- U P oy /p2) x5 P (prpa)
Zav (¢, m;e1, e2) = PE Z (—1)2(J’+3r)NJ‘?,"jr( il/z = L ) s
-

Juidrd D1

1/2 —-1/2
Wpy'2 —py

€1.2

Gopakumar-Vafa (GV) invariant Pa=€

Regularization factor £ is effective prepotential evaluated on {2-background!

8(05, m; €1, 62) =1 (ch + ngv + S+ - ) |¢,m,51,52 A — o
_ 1 l voaipe oy, amiio wl pi(T) = —( +¢3)
— E F“"‘ EC“" (El _+_ 62) + EC! Qb E+ (;Q(H) sy (_i

e Similarly, SUSY Casimir energy in 2d/4d/6d SCFTs was interpreted as anomaly
polynomials on background fields.  [Babey, Bullimore, HCK 15]
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Magnetic Flux Quantization

Magnetic flux F coupled to BPS state C; of spin (3, 4») should be quantized as

F-C; is integral/half-integral, when 2(j; + j,) is odd/even

[Huang, Sun, Wang 17], [M. Kim, HCK, 5-5.Kim, Lee 2]

* In 5d gauge theory, W-bosons should couple to integral flux, while
hypermultiplets should couple to half-integral flux of gauge/flavor symmetries.

]. 5 root
) A-e€Z, 2)A-wy+BrE€l+- .

2 wy € weight of f

« Condition 1) implies 7 is in co-root lattice Acoroot-

ex) For A, gauge algebra, n; € Z+ 27i, (1<i <4, 0<h <J)

¢ Condition 2) fixes quantization for background fluxes for global symmetries.
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Solving blowup equations
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Solving blowup equations
To bootstrap BPS spectrum, we first expand

A - Zea(d,m; €1, €2) Zz N(#, B) x z9(, B)
in terms of e~ V°(¢¥) and |terat|ve|y solve it to determine multiplicities N¢

Jtadr
of BPS states.

e Expansion in e~ V'€ is well-defined for a UV completable QFTs.

Zez ~ 1+ Z filer,e0)e™ Vo)

* BPS spectrum (or degeneracies N5 . ) can be systematically computed order

by orderin e~ Vel (€i) expansion.
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5d pure SU(2) gauge theories

There are two 5d N=1 SU(2) gauge theorieswithf =0 and § = 7.

20+ m

20 Fq

SU(2)o=0

They have the same prepotential, g L

€1€2

o+m

2¢

(J—"—_

6F =6mo° +8¢°

and the same perturbative spectrum,

Zev (¢, mie1,€2) = Zpere (@i €1, €2) - Binst (s €1, €2)

/ 1 +
Zoert (@5 €1,€2) = PE | — mp2

—2¢
(1 =p){(1 —pa)

m=1/g>



o8

OCAMI Reports Vol. 3 (2023)

5d pure SU(2) gauge theories

However, they have different magnetic flux quantizations :

SU@2)o : neZ, Bu=-2 -1, 0, 1,2
SU(2)r : n€Z, Bpn=-3, -1, 3,3

At |-instanton level (¢~ order), the blowup equation reduces to

P (SN | B (SN (pupy) B lgm 23 Bmdin
2 AZ)= oG + o) - : (
L~ e ,.\L/ﬂj?ﬂ,. LS (1= e 29)(1 — pre—29)(1 — poe29) (1 — pypoe29)

=1 o= 2(2— B )é:

ol L (sz ) &
A=) (1 —pi et (1 —py T e 2 )(1 — (pups)~te~20)

Need to t;e défermined
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5d pure SU(2) gauge theories

However, they have different magnetic flux quantizations :

SU@2)o : neZ, Bu=-2 -1, 0, 1,2
SU(2)r : n€Z, Bpn=-3, -1, 3,3

At l-instanton level (e~™ order), the blowup equation reduces to

R ) . Brut1o—2(2+Br)iby
M+7,= pl‘B'" ZEN) +p£3""Z§S) 2= (PLPz)

(1— e 2#)(1—pie~2*)(1 — pze~2#)(1 — pypze—2%)
(plp2)B,‘._—LP—Q(Z—B.,.)M

(L)l pre ) (L pp e 1)(1 — (papa) e )

which can be solved by using three distinct B,,,’s.

; 2 (1 + pip2)e 2
Z.su(z)u ] _ plpz(
1 i) (1—p1)(1 —p2)(1 — pipee %) (e — pips) '
Zsu(z),,(qb_ b = p?mpg/z(l e e*i’da)e*d:
' i (1—p1)(1 = p2)(1 — pip2e=2*) (e~ — pyps)

Spectrum at higher instantons can be similarly computed.
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All rank-1, rank-2 5d/6d QFTs

BPS spectra for all rank-1 and rank-2 5d KK theories were computed by solving
blowup equations.
* Rank-1: SU(2) +8F, SU(2)o.» + 1Adj

* Rank-2: Sp(2) +3A*%, SU(3)4+6F, SU(3)3 +9F, SU(3)o + 10F,
SU(2) x SU(2) + 2biF, SU(3)o + 1Adj,
Sp(2)o.r + 1Adj, SU(3)o + 1Sym + 1F, G2 + 1Adj

We also computed BPS spectra for new 5d SCFTs having no gauge theory
description in 5d/6d and no (conventional) geometric realization.

P? + 1Adj P? UF3 + 1Sym P2 UFg + 1Sym

[Bhardwaj 19], [M. Kim, HCK, S-S. Kim, Lee 21]
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Blowup equations for 6d LSilis
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Little string theories

* Little string theories are 6d non-local theories with 2-form tensor fields,
gauge fields, and matters decoupled from gravity.

* One distinguished feature of LSTs is that the intersection form Q7 is
negative semi-definite with a single null direction.

Q%P4 =0

* Little string is the full winding string carrying tensor charges along the null
vector ¢° whose tension T’ ~ Mftring defines intrinsic scale of LST.

* T-duality : when compactified on a circle, LSTs enjoy T-duality which
exchanges winding and momentum states.
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Anomalies in LSTs

» Mixed gauge-global anomalies in LSTs are not completely canceled by the
standard Green-Schwarz mechanism.

Iénixed — Y:L A X4’0 # 0

N
1 1 1
V=g Y LTE , Xyg= —50n(To) + 5 > bap Tr F2 + cyca(R)

a=1 a

* This leads to 2-group symmetries.

Sga) ~ /5(2) /\ZfO(T&"FéQ

[Cordova, Dumitrescu, Intriligator 20]

B® - B® 1+ an§) + 281 (WQdAR) + T2 tr(0 ™)
m

Am 167

* The mixed anomaly implies that the global symmetry is broken in the
presence of background gauge fields for the symmetry.
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Anomalies in LSTs

We need to turn on background fields M, €1.2 for the global symmetries
and the local Lorentz transformation!
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Anomalies in LSTs
We need to turn on background fields 7711, €1 2 for the global symmetries

and the local Lorentz transformation!

For this purpose, we propose the counter term with an auxiliary 2-form gauge
field By which plays a role of Lagrange multiplier as

AS—fBQAX4,0

BD — BO + %TrAgﬂFGa

Another counter term of the form/CS(AG“) A CS(4,) was proposed in

[Cordova, Dumitrescu, Intriligator 20]
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Blowup equations for LSTs

Tree level contribution to the effective prepotential in the presence of

background fields is now modified as
counter term Bo A Xao
ELST = ESCFT 4 gbmj l
tree ree ?

tree

tree

1 |w ; Qg bapo
E(U) —_ ?62- EE,,K,M,@{D{,,MQJ = ¢0.0 (Z(EJZ + Eg) + %Ka,ijmﬂﬂimu,j + C[)Gi

We propose that the partition functions of LSTs on T% x Rf, , satisfy the

blowup equations with £rs, :

A Zaa(dmier, ) = Y 2N (@, B) x 297, B)

Z(N) = Zcz(gi)i + n;eq, m; + Bj(i'l; €1,€2 — 61)
Z'5) = Zea(¢i + miea, mj + Bjca; €1 — €a,€a)

* RHS involves a summation over magnetic fluxes no,0 € Z for the auxiliary 2-
form field Bo.
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Blowup equations for LSTs

* Summation over Ng,0 implements a (divergent) constraint on background
fields for global symmetries.

Z e moofmat oy §(f(mser))

ng‘QEZ
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Blowup equations for LSTs

* Summation over Ng,0 implements a (divergent) constraint on background
fields for global symmetries.

Z e~ noof(mier2) = 5 ..y § (f(m;er2))

n(],QEZ

* We claim that the blowup equation holds as a Laurant series expansion in
terms of Kahler parameter M = e~™ appearing in f(m;e1,2) such as

Noo=0 = -+ H#M 2L HAM 14 L EM 4 H#M ... =0
ool €1 =+ +#M P+ #FM 3+ #FM 2+ 0+ #M2+ #MP + #M* +... =0
ool £2 — -+ #M O+ FEM P+ HFM 0+ #M +H#M° +#M +.-- =0

- Note that without the divergent sum for Moo the blowup equations for LSTs doesn't
work, which is the main difference from those for 4d/5d/6d QFTs.
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(2,0) and (1,1) LSTs

¢ Little string theories on N parallel NS5-branes in Type Il string theory.

[Berkooz, Rozali, Seiberg 97], [Seiberg 97], [Aharony, Berkooz, Kulasov, Seiberg 97], ...;

* Worldsheet theories on strings are described by 2d ADHM quiver gauge
theories. For instance, when N=2, these are

Type IIA picture Type |IB picture

—ig® 6d (1,1) SU(2) SYM
[0 1 2 3 4 5 67 8 98 ki D2's
NS5 |+ o « = o« = == i |01 2 3456789
D2 |+ . ky D2’ A
D6 « s e e . NS5 NS5 kDL|e«
) (b) )
: ; 1o
Field | Type | U(k) x Ulks)  U(1)u (Aplei::.\{ﬂ]l :;y::r \bag;) U(2)
T yad . . ir AT e
[A(‘:) ‘)«::,;)) vector (ad_!, 1), (l,ad_].} (ay5,A%4) Hyper adj
(@, 4 A%%) hyper (adj, 1), (1, adj) (040 A9 | twisted hyper | adj
(el X% ) | twisted hyper | (k; k), (K k) +1 (A2) Fermi adj
(x3) Fermi (ki Xo), (kp ko) +1 (gar 0 hyper k 2
(@429 | hyper (ki,1), (1,ks) (¥2) Herl k. 2
(o) Fermi (ky,1),(1,ky) 41
() Fermi (ki 1), (Lka) =1

[Ahareny, Berkooz 99], [J. Kim, 5. Kim, K. Lee 15]
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(2,0) and (1,1) LSTs

¢ Little string theories on N parallel NS5-branes in Type Il string theory.

[Berkooz, Rozali, Seiberg 97], [Seiberg 97], [Aharony, Berkooz, Kutasov, Seiberg 27], ...

e Partition functions of these LSTs, which are T-dual to each other; satisfy a
blowup equation with background magnetic fluxes B,, =1/2, B,=B,=0..

* For example, the (2,0) LST partition function when N=2

oc
Zbl:lA z e—ik‘l(d’l.u-@z‘u)E?kg('ﬁl( —2,0— u)Z}Jf'?Ag)
k1,ka=0
2 (o, ~(a,b)
A Z ]___[ ]___[ 61 (T, bHH m + e_)0 (T, EH L +mtel)
(el 6., ECY 1 )01 (r, ECP — &)
{Y1.Y2},|Yi|=k; i=1 (a.b)eY; Ty Ly OT, H 2

satisfies the blowup eqguation

n1+na (n1—ng)? ITA(N) SIIA(S
AZRR = 3 (—1mtmgmemdd (M pipy) ™t 2t M 25N

ny,no€Z
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Solving blowup equations for LSTs

A single blowup equation for LSTs does not seem to be enough to be solved
unlike the blowup equations for 5d/6d SQFTs.

Modular ansatz for elliptic genera for strings plugged into the blowup
equation allows us to compute the full partition function of LSTs.

Proper modular ansatz is determined by the anomaly polynomial 4 of strings
which can be computed by anomaly inflow mechanism!

7 TE 2] = b e en( 20 7, )

ecr+d er+d cr+d

where f(z)=/f4

Jeq
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Example

Modular ansatz for (k1, k2)-strings in (2,0) LST when N=2:

ZIA (p(-’n Jk2) (Tv €t, Tn)

kika) =
Bl TR o aa(sier2) - Ty @-1/2(s2612)

(¢ ()

o (i) (i) () (i) i) (i) (i)
Dk kn) = ZC} CRIER B poa1(e)? poalen)” poai(e )’ poa(e-)" ooz (m) po,1(m)’

Pa,b 1weight 'a', index'd’ SU(2) Weyl invariant Jacobi form

E,. Fg : Eisenstein series
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Example

Modular ansatz for (k1, k2)-strings in (2,0) LST when N=2:

Z&Ak y = Dk, k) (T, €4, )
. Hsll:l P-11/2(s1€12) - H§§=1 ©-1,1/2(52€12)

k1 . k: i) gt (1) (i) (i) (i) (i) ()
Dty ey = 3G ER Eg® o a1(en)? 0a(ex)? oo (e-)¥ poa(e- ) poa1(m)®” po,1(m)%

Pa,b 1weight 'a', index'd’ SU(2) Weyl invariant Jacobi form

E,. Fg : Eisenstein series

- Coefficients ¢*+*2's can be determined by solving the blowup equations.

(K1, ks) {cfhy
(1,0) | g5l -1}
(1,1) | s{1,-21,0}

(2 0) 51'7;;{1‘—1.—1,),0‘0.40.—'10, —40, 40,0,0,—32, 32, 32, —-32,0,—15, 15,15, —15,0,0, 24, -24,
2 ~24,24,0,0,0, —45, 45,45, —45,0,0, 0,0, 0, 27,27, —27,27,0}

srhas (1-6,4,0,2,2,~4,-3,8,0,~16,8,8,0, 32,40, -8, 48, 45, 48, —48,5,~40,32,0, &, -8,
(2 1) 16, 0, 86, —96, —128, 64, 64, 0, 128, —160, 32,0, 6,6, — 12,0, -12,24, —24, 12, -9,9,—185, 18, 6,6, - 12,
' 3,—3,0,—24,24,0,0,0,48, 48,24, —24,0, —48,48,0,0,0,0,4, —9, 36, —18, —18,—54,54, —27,27,
—36,72,~72, 36, 0,36, ~ 18, ~18,0,0,0,0,0,0, 0, 81, 81, 108, ~54, —54,0, ~ 108, 135, ~27,0,0,0,0}




74

OCAMI Reports Vol. 3 (2023)

Summary.
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Summary

* Blowup equations for 5d/6d theories can be formulated by using quantized
magnetic fluxes and the effective prepotential on the Omega background.

* We can compute BPS spectra of 5d/6d theories by solving their blowup
equations.

* Mixed gauge-global anomalies in LSTs should be carefully treated on blowup
background.

Future directions

* Blowup equations for other observables ?  [M Kim HCK 5-5 kim], [in progress]

* Blowup equations for supergravity theories !
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Thank you !
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S! Reduction of 4D A =3 SCFTs and Squashing
Independence of ABJM theories

Tomoki Nakanishi

ABSTRACT. We study the compactification of 4D N = 3 superconformal field
theories (SCFTs) on S!, focusing on the relation between the 4D supercon-
formal index and 3D partition function on the squashed sphere S;j’. Since the
center u(1) of the u(3) R-symmetry of the 4D theory can mix with an N' =6
abelian flavor symmetry in three dimensions, the precise 4D /3D relation for
the global symmetry is not obvious. Focusing on the case in which the 3D the-
ory is the ABJM theory, we demonstrate that the above R-symmetry mixing
can be precisely identified by considering the Schur limit (and/or its N’ = 3
cousin) of the 4D index. As a result, we generalize to the ABJM theories
recent discussions on the connection between supersymmetry enhancement of
the 4D index and squashing independence of the S} partition function.

(T. Nakanishi) Osaka Metropolitan University
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S! Reduction of 4D A = 3 SCFTs and
Squashing Independence of ABJM theories

Tomoki Nakanishi

Osaka Metropolitan University

Based on arXiv:2211.07421, w/ T. Nishinaka,
and on a work in progress.

QFT and Related Mathematical Aspects
© Shuzenji Sogo Kaikan, Shizuoka

Introduction

[40 N=3 SCFTs]

» We have no known Lagrangian description of 4D N'=3.

= 4D genuine N'=3 SCFTs are strongly interacting.
(Known 4D N'=3: S-fold construction).
[Garcia-Etxebarria and Regalado, 1512.06434, 1611.05769 |
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Introduction

[40 N=3 SCFTs]

» We have no known Lagrangian description of 4D N'=3.

= 4D genuine N'=3 SCFTs are strongly interacting.
(Known 4D N'=3: S-fold construction).
[Garcia-Etxebarria and Regalado, 1512.06434, 1611.05769 |

» 4D genuine N'=3 SCFTs have no marginal deformations.
[Aharony-Evtikhiev, 1512.03524]

= 4D N'=3 is isolated at strong coupling fixed point.

Q: How can we analyze that?

Introduction

Many works on 4D N'=3 SCFTs :

» Analyzing from field theoretic perspective.
[Aharony-Evtikhiev, 1512.03524],
[Nishinaka-Tachikawa, 1602.01503],
[Aharony-Tachikawa, 1602.08638],
[Argyres-Bourget-Martone, 1904.10969, 1912.04926], etc.

» Calculating the superconformal index (SCI).

[Imamura-Yokoyama, 1603.00851],
[Arai-Fujiwara-Imamura, 1901.00023], [Arai-Imamura, 1904.09776],
[Agarwal et al., 2103.00985], etc.

| will analyze 4D N'=3 SCFTs a bit differently.
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Introduction

The key is dimensional reduction.

[ 4D N=3 ] [3D./\/'=6(ABJM)]

dim. reduction

> U(3)r — > SO(6)r x U(1)g
» 4D N=3 SCI » Matrix model
> on S x S} > on S}

By using “squashing independence”,
we found a non-trivial relation

between U(3)r in 4D and SO(6)z < U(1)g in 3D.

Outline

1. 4D N = 3 SCI and Squashing indep.
2. Relation to ABJM

3. Application
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_1 _
4D N = 3 Superconformal Index R=3(R'W—R%),

r=R4+R%,

[40 N=3 SCl] f=RY + R+ 2R3 .

I = TI‘(_1)ij2_j1_rqj2+j1_rtr+Raf )

(j1,J2): s0(4) spins. (R, r,f): R-charges.

> T preserves one pair (Q, QN)(= (9, é;_))
» We can consider this as 4D SCI.

_ 1l
4D N = 3 Superconformal Index R=3(RM~R%),

r=R4y+R?%,

[4D N=2 SCI] H =R R, 2R

T = Tr(_1)ijz—J1—qu2+jl—rtr+Raf -

(1, J2): s0(4) spins. (R, r): R-charges.
f: u(1) flavor charge.

> 7 preserves one pair (Q, Q') (= (Q,-, @2_))

» \We can consider this as 4D SCI.
» For 4D N'=2, f is a flavor charge.
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Schur limit: t — g (MN=2)

The Schur limit is special limits on 4D N'=2 index: t — q,
T = Tr(_1)ij2—j1—qu2+j1—rtr+Raf ’
N Tr(_l)ijgfjlfrqj2+j1+Raf — Tr(—l)quﬁjﬁRaf.
(.j2 —jh—r= {Ql) Q/T} - {Q7 QT} ) [Q/v qj2+j1+R] = [Ql7 af] =0 )
SUSY enhancement does occur: the index becomes

» preserving one pair (Q', Q') additionally and
» p-independent.

Analogous independence occurs when we take t — pq.

t — pq (N=2)

Taking t — pq,
T = Tr(_1)ij2—j1—fqi2+j1—rtr+Raf 7

— Tr(—1)F(pg)=*R <g>h a = Tr(—1)F <§>h 2

1 1
(j2 + R - §{Q”7 Q//T} - E{Qa QT} ) [Q//).jl] = [Q//7 f] = 0 )
SUSY enhancement does occur: the index becomes

» preserving one pair (Q", Q") additionally and
» pg-independent.
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Squashing independence

These limits can cause Squashing independence.
To explain this, we use the following parametrization:
—Bb —pb~1 t —iBm

p =€ 9 q==¢€ 9 —F =€

VPq ’

3 : radius of S' | b : squashing parameter of S} |

a=e M ,

(m, M) : mass paramters .

(532 whlnf +wlzP = 1,07 = =)

Squashing independence

1. Taking the special limits causing an independence,
2. and redefining parameters appropriately,
= b is removed from SCI.

—Bb_l

Squashing independence (Check) r=e¢" a=e

t efiﬁm L a= efiBM )

VP

1. Schur limit t -q = m— ib’é’_l.

Tr(_l)Fqi2+f1+Raf _
Def: (3, M') = (8b~1, bM)
= (g,a) = (e, eM) = (e, M) (b7t =1)

2. t—=pg = m—)—ib%’fl.

j
Tr(—1)" (ﬂ) 1 a, (ﬂ = e‘ﬁ(bl‘b)) .
p p

Def: (8, M) = (B(b~* — b), 7= - M)

= (q/p,a) = (e7FETI0) emiMY _y (e e MY (1 1)

—1++/5"
2

One finds these turn out to be on 5%, x S and S, x 527 .



84

OCAMI Reports Vol. 3 (2023)

o+ L (N3
P r="R4Y+R%
f =Rl +R% +2R% .
In 4D N'=3, we get a new limit 2 — %:

T = Tr(—1)F phrgeta—rirtRyf

— Tr(—1)F (pt)> > (%)52 = Tr(—1)F g (5)52 |

1 1 1, . ) 3
01 = E{Q’ QT}—E{QW> QY| 6 = E(Jz —h—R—-2r— Ef) ;

[Q" o+ —r]=[Q",6]=0.
SUSY enhancement does occur: the index becomes

» preserving one pair (Q", Q") additionally and
» pt-independent.

— o Bb ,q= e—,@'b’l ,

Squashing independence (Check) *

\/% — e iBm 45— ¢~iPM
t 3b — b7t
a— L_ = M- z + i
p 2 4
L o . p—b—L
iy (2) (2ol

Redefining (8, m') = (5’3_1’ b(m + ib_f_l))

b—b"1

S (0.2) = (e D) s (o )
(bl=1landb—b"1=0—-b=1)

We have reached that the 4D A'=3 SCl| must have
three types of Squashing independece associated with

[t%q, t— pq and a%%. ]
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Outline

1. 4D N = 3 SCl and Squashing indep.
2. Relation to ABJM

3. Application

Relation to ABJM

» To observe the squashing independencies from another view, let's consider
S'-reduction of the 4D N'=3 SCI.

» As the reduced objects we will consider the ABJM matrix model.
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Relation to ABJM

» To observe the squashing independencies from another view, let's consider
S'-reduction of the 4D N'=3 SClI.

P As the reduced objects we will consider the ABJM matrix model.

> Recently, the squashing independence of mass-deformed ABJM matrix
model was analyzed by [Chester-Kalloor-Sharon, 2102.05643],

» and interpreted as the SUSY enhancement on 4D index
by [Minahan-Naseer-Thull, 2107.07151].

» However, naive dim. reduction of the 4D A'=3 contradicts these results.

» We will resolve this by carefully observing the relation between 4D and 3D.

Mass-deformed ABJM matrix model on SZ’
ABJM: 3D N=6 U(N), x U(N)_, CS w/ four bi-fund matters.

ZSA3B-,]VMk(m1 , M2, m3)

/dNM LA ST S

(N1)?
X H2smh(7rb(,u,,< — w;))2sinh(mb ™ (u; — pj))2sinh(mb(v; — v;))2sinh(rmb~ (v — 1))
i<j
Q  myi+m+ms Q M —my—m3
Q  —my—mp+ ms Q —my + my —mg

sp(x): double sine function, @ :=b+ b~ L.
(my, m3): masses associated with 50(2)? C s0(4) C 50(6)g,
m1: mass associated with 1(1)z.

u(l)g is an Baryon number symmetry.
(topological /monopole U(1) in recent terms.)
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Contradiction & Resolution

[ 4D N'=3 ] [3DN’=6(ABJM)]

> U(3)r dim. redyction B SO(6)z x U(1)5
» 4D N'=3 SCl » Matrix model

> on S x S} > on S}

» (m, M) > (mq, ma, ms)

In 4D N'=3 there are two masses while three in ABJM.

This difference contradicts naive dimensional reduction.

Note that the center C u(3)g can be with

To resolve the contradiction, we can identify the mixing.

R-symmetry mixing
We can identify 4D (Q,, Q;4) and 3D (Q,) supercharges:

2/-1

I 21 ~ 2/-1 21
Qup X Q5p " +Q5p, Quaprx Q55 — Q3p (I=1,2,3).

These allow us to equate three Cartans in U(3)g with the three
in SO(6)g directly, up to R-symmetry mixing with u(1)g:

[R/m =R+ &0y, € ]

R,4D/3D : three Cartans in 4D/3D , J?/?l)s : charge of U(1)g ,

where R,4D/3D are defined by

[R/4D/3D, Ql1=+9., [R,4D/3D7 Qral =914 [Rj&/gD, Q! (Q14)]=0.
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. L o
Mass identification R=1(R'1 — R%),
r=R4Y~+R%,
One can find f=RN+R%H+2R3.

f f
Rf'D:R+r—}—§, R;'D:—R+r—|—§, R3° = f .

Then the 4D AN'=3 SCl is written by

I:Tr(_l)ijQ,hquHl (\/%y?fo <\/%>R§D (a p_;’)Rg‘D

U R = R® + €0,

R3D R3D R3D £J3D
Tr(—1)F p2 g2t ‘ 1 L 2 a9 3 a t e )
VPq VP4 t Pq

We can read fugacities associated with the 3D masses.

Mass identification p=e b qme B

t _ g—ifm —iBM

VPa

R3D R3D R3D £J3D
Tr(*l)Fsz_h qj2+j1 t ! 1 2 3 Pa ’ 3 t ve '
vra) \Vm t pa

» Since this index preserves Q = éz;,
R;DBD can not be associated with mass parameters.

» Remains are associated with s0(4) C s0(6)g and u(1)g:

3
t _ emiBm . a Paq _ o iBms : <a i) — e iBm
v Pq t pq

We find an identification between (m;y, m,, m3) and (m, M),

: ]

,a—=¢e

Q
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Mass identification =€ (M+ 3 +i8520)  my = m,

— 0 _ m _ jbtbT!
m3 =M > — i

Next, let's fix £ by using squashing independence.

Taking the Schur limit m — ib_é’*l, (my, my, m3) become

b b— b1 b
mlzg(M+I§), m2:i > s m3:M—i§.

Redefining (5, M') = (3b~1, bM) removes b.

In [Chester et al., '21], they showed the corresponding ABJM
matrix model depends only on b¥(m3 £ my), which can be
now written as

b((g—l)/w+(§+1)i§> , b7t ((5+1)M+(§—1)/§) :

To reproduce b indep. by the redefinition, we get

Short Summary

We considered the S! reduction of 4D N'=3 SCl to
3D N'=6, ABJM matrix model.
We found R-symmetry mixing £ = —1:

and mass identification between 4D and 3D:
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Outline

1. 4D N = 3 SCl and Squashing indep.
2. Relation to ABJM

3. Application

Sl reduction

» |'d like to demonstrate the S!-reduction from 4D N'=3 SCl
to ABJM matrix model.

» Unfortunately, no one knows the full expression of 4D A/'=3 SCI.

» But, ABJM with k = 1,2 have 3D /=38,
and its 4D uplifting should have N'=4, which is correct from S-folds.

» \We can test the Sl-reduction of 4D N'=4 SClI.
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Sl reduction

Let's consider the Schur index, which is automatically on S?_;.

The 4D N'=4 (N'=2%*) Schur index

can be given in a following form.

dg 3 2rc—dg re
: dz;
/G — u?2 (qv q)oo 7{ / F o, —1.
Schur |W(G) (Q(U; q) | | | 27_”.21_ aelAl (U7Z u ,Q) s
G

zil=1525

rc,dg : rank and dim. of G, Ag : set of roots ,

0(xy; 9)(a; 9)3,
0(x;q)0(y;q)

Next, we take S* reduction of this index with G = U(1), U(2).

0(x; q) = — X" 2(q; @)oo (X; @)oo (X 25 @)oo » F(x,¥: G) =

o _ 1 q)iojf dz . _ 1(q9)%
Schur 0(u;q) J 2miz 0(u; q)
e ﬁ (1—q")

Uz — U2 (1= ug")(1—u'q")

Taking 8 — 0 and picking up a leading contribution, we obtain

™

u(1) _
p—=0  [PcoshmM +

Schur

o).
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G = U(2)

When G = U(2), we have

u? dz, dz
o) = — ]4 IR fy (z)2)uY q) F(u, (z1)22) u Y q) .

2 (2ﬂj)22122

To integrate, we can use an expansion form of F(x,y; q):

—m

Y
F(X,Y;Q)22m7 for [g] <[y] <1 <|x]|.

meZ
Taking 5 — 0 and picking up a leading contribution, we obtain

2
CAT L (R, ROTC!
g0 2! (6cosh7rM> +00).

Schur

Generalization

Generally, we can calculate the S* reduction for G = U(N):

1 T N
50 NI (ﬁcoshﬁ/\/l) +00).

According to our analysis, this must be reproduced by
substituting

U(N)
Schur

b b— bt b
m; = —M —i- s my = i , m3 = M — i—',
2 2 2
in Z&23\ (my, my, ms). This is indeed correct for k =1 and 2.

1 1 N 1 N
Z&M(M) = :
s KNN! \ 2sinh 70 2coshm™M

One can expect this is also correct for 4D genuine N'=3 cases
corresponding to k = 3,4,6. (This is constructed by S-folds.)
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More generalization

We found the exact method for S! reduction of 4D N'=4 SCI.

The S* reduction of IS, for g = ABCDEFG become

™

1 &
Is; = 1) .
senrl -0 = W Q) (ﬂcosth) o)

In general, the S* reductions of IS, have this type of
divergent structure.

Summary

Between the 4D A/=3 and the 3D N'=6 (ABJM),
» We identified the R-symmetry mixing with U(1)g
RI® = R® — Jgty, (1=1,2,3),
» and mass parameters

b+ b1 b+ bt
m foEfi S , mpy=m, m3 M,T,,‘
2 4 2 4

Observing the S! reduction of 4D N'=4 SCl,

» We checked the above result for k = 1,2 (N=4) and

» expected the form of divergent structure
for k =3,4,6 (N=3) and for g = ABCDEFG (N'=4).

1 T re
_ o(1) .
50 = TW(G), <,;coshnm> +0)

G
/Schur
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Probing Anomalies of Non-Invertible Symmetries
with Symmetry TFTs

Emily Nardoni

ABSTRACT. ’t Hooft anomalies provide crucial insight into the properties
of quantum field theories, imposing powerful constraints on their low energy
dynamics. For invertible global symmetries, it is known that the 't Hooft
anomalies can be characterized by an invertible TQFT in one higher dimen-
sion. However, the analogous statement remains to be understood for non-
invertible symmetries. In this talk we will discuss how the linking invariants
in a non-invertible TQFT known as the Symmetry TFT can be used as a
diagnostic for the anomalies of non-invertible symmetries. We will illustrate
this proposal through examples in two and four dimensions, including 4d ad-
joint QCD, and comment on how knowledge of these anomalies can impose
constraints on the dynamics.

(E. Nardoni) IPMU, University of Tokyo
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Probing Anomalies of Non-Invertible
Symmetries with Symmetry TFTs

Emily Nardoni

based on [2301.07112]
with Justin Kaidi, Gabi Zafrir, Yunqgin Zheng

IPMU

QFT and Related Mathematical Aspects | Shuzenji | 3/13/2023

(Generalized) Global Symmetries = Topological Defect Operators

* Example: continuous g-form G@, with conserved d x j = 0.
Uy (47971 = exp [w 7{ *j] g(0) e G x4t c My
»d—q—1

= operator that implements the symmetry,
depends topologically on £4-1-1

* Also exists in general! For finite symmetries,...

* The symmetry defects U, (£4797!) act on local operators
O(x%) charged under G

d—q—1
O(27) UalS ) = R(9)O(%9)

[Gaiotto, Kapustin, Seiberg, Willett *14]
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Non-invertible (categorical) symmetries
* For group-like symmetries the symmetry operators satisfy the
group multiplication law < fusion of defects.

UgUy = Ug.g Ug Ug‘1 =1

I I N S S R

* Generalization: relax invertibility, and consider defects
governed by a (higher) fusion category, rather than group.

HE

L; L Ly L, L;

e.g. in 2d, [Frélich, Fuchs, Runkel, Schweigert '09][Bhardwaj, Tachikawa ’17][Chang, Lin, Shan, Wang, Yin ’18]
[Komargodski, Ohmori, Roumpedakis, Seifnashri '20]...; in d>2, [Nguyen, Tanizaki, Unsal "21][Koide, Nagoya, Yamaguchi
’21][Choi, Cordova, Hsin, Lam, Shao ’21][Kaidi, Ohmori, Zheng '21][Bhardwaj, Bottini, Schafer-Nameki, Tiwari '22]...

Goal today: Discuss a set of easy-to-compute observables that
constitute a sufficient condition for a 't Hooft anomaly of a non-
invertible symmetry in d-dimensions.

[) Anomalies for invertible symmetries
Il) Anomalies for non-invertible symmetries, and the Symmetry TFT

[ll) Examples in 4d gauge theories
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|. 't Hooft anomalies for invertible symmetries

an inflow perspective

t Hooft anomalies are obstructions to gauging

* Let T[M,] a QFT with an (invertible) global symmetry G.

* There is a 't Hooft anomaly if 7 cannot be coupled to a background
gauge field A (L ~ A A jfor continuous G) in a G-invariant way:

ZrlA] 5 Al e o19
* The anomaly is an obstruction to gauging G (promoting A — dynamical)
Z76|B) =Y Zrla) ™ Jaay @08
4 a

quantum G4=2-7)

97
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't Hooft anomalies are obstructions to gauging

* Let T[M,] a QFT with an (invertible) global symmetry G.

* There is a 't Hooft anomaly if 7 cannot be coupled to a background
gauge field A (£ ~ A A jfor continuous G) in a G-invariant way:

ZrlA] 5 Zp[A)T g o)

* The anomaly is an obstruction to gauging G (promoting A — dynamical).
Zr)cIBl =" Zrla] ™™ Jaay @08
quantum (AJ("?Z*’”

* Anomaly matching provides powerful constraints on RG flows, since
anomalies are preserved under G-preserving continuous deformations.

* e.g. a QFT with a nontrivial anomaly cannot flow to a unique, trivially
gapped vacuum.

Anomaly inflow: a modern perspective

* The anomaly is naturally described by inflow from (d + 1)-d, whereby
the anomalous phase is canceled by an invertible TQFT.

[Callan, Harvey '85]
+ see [Freed 14, Monnier ‘19]

Anomaly Field Theory
(OMgy1 = My)

T[M]

Zanom|[A] = e Jasgy () such that Z7[A] - Zanom[A] is invariant

* Special case: chiral fermion anomalies in even-d are encoded in the
anomaly polynomial I;42(A) = dwgs1(A); but inflow holds in general!

e.g. for U(1) in 4d, ws(A) ~ ANdANdA
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’t Hooft anomalies for finite G

* Turningon A < inserting a network of G-defects
* Gauging <« fixing a triangulation and summing over configurations
* Anomaly < phase from change of topology of the junctions

M
¢ Ly Ly

L, = Y (Fur AL,

L, Ly XLy
L, L L L, " Ln L

capture gauge transformations

(change of basis of network)

see [Kapustin, Thorngren ’14,’14][Gaiotto, Kapustin, Seiberg, Willett *14][Tachikawa ’17]

Extension to non-invertible symmetries

Suppose T[M ] has a (finite) non-invertible symmetry associated to a
fusion category C.

It can still have a 't Hooft anomaly (obstruction to gauging),
where gauging = fixing a triangulation of M,; and summing
over defect configurations. But questions remain!

* What is the background field that couples to C?

* |s there a picture of anomaly inflow by coupling to a bulk TQFT?

* How do | characterize the anomaly?
In 2d, equivalent to lack of a fiber functor [Thorngren, Wang °19,°21] ;
also see [Décoppet, Yu ’22] for the higher-categorical perspective.
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Extension to non-invertible symmetries

Suppose T [Mg] has a (finite) non-invertible symmetry associated to a
fusion category C.

It can still have a 't Hooft anomaly (obstruction to gauging),
where gauging = fixing a triangulation of M,; and summing
over defect configurations. But questions remain!
* What is the background field that couples to C?
* |s there a picture of anomaly inflow by coupling to a bulk TQFT?

* How do | characterize the anomaly?
In 2d, equivalent to lack of a fiber functor [Thorngren, Wang *19,21] ;
also see [Décoppet, Yu ’22] for the higher-categorical perspective.

Our main result: a sufficient diagnostic for the existence of a 't Hooft
anomaly, from computing correlation functions in the Symmetry TFT.

. 't Hooft anomalies for non-invertible symmetries
from the Symmetry TFT
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Symmetry TFT

The Symmetry TFT is a TQFT which yields 7[Mg4] when
compactified on an interval with appropriate boundary conditions.

hrink slab
AnomTFT [My. 1] SymTFT [My 1] shnes?
(top b.c.| |dynamical b.c.) Z[Myg]

* SymTFT + top b.c. capture the full symmetry structure C of T[Mjy].
» SymTFT is invariant under topological manipulations of 7[M,].

[Kong, Wen, Zheng ’15][Freed, Teleman ’18][Gaiotto, Kulp '20][Burbano, Kulp, Neuser '21]
[Apruzzi, Bonetti, Garcia-Etxebarria, Hosseini, Schafer-Nameki '21][Freed, Moore, Teleman ’22]...

*Picture drawn with AnomTFT for invertible G, but the SymTFT
can be defined for general categorical C. [Kaidi, Ohmori, Zheng *22]

Symmetry TFT, in detail

gauged version of Anomaly field theory
= Dijkgraaf-Witten theory with action matching

/ T’s anomalies (for non-intrinsically non-invertible)
[Kaidi, Zafrir, Zheng ’22]
lf aUda hrink slab
Zanom|4] = Zsym ~ Ze Mgyq shrink sla
627Ti fMd+1 w(A) a,a “Z Anom [CL] -
(top b.c.| |dynamical b.c.) Zr|My]

e.g. (Dirichlet(A)] = "(alé(a — A) IT) = Zrlal|a)

a

labels the symmetry defects

*Picture drawn with AnomTFT for invertible G, but the SymTFT
can be defined for general categorical C. [Kaidi, Ohmori, Zheng *22]
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Topological defects of the SymTFT — symmetries of 7

Ubuik(X7) € A associated to the topological b.c.

—_—
(p — 1)-locus

,Ubdy(zp) give rise to C upon shrinking the slab

L Upuik(2?) € B. ending on a boundary operator
(p — 1)-locus
(top b.c.|

An invertible 4d example
T =4d SU(N) Yang-Mills, ZS\}) generated by UU(%?) = e~ $u2 B

(5d 2-form gauge theory)

L Zsym = Z ¢ 7 Jarg BAe | shrink slab
b,c

Y= Zrb)  ZrlB]

e.g. see discussion in [Gaiotto, Kapustin, Seiberg, Willett *14]
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An invertible 4d example

* T =4d SU(N) Yang-Mills, ZS&,) generated by U/(¥?) = e fx2 B

(5d 2-form gauge theory)
27i
i — E 7 Jus 1 | shrink slab
L Sy ) 5

b,c

—

IT)=>_Zr®)b)  Z7(B]

b
(D(B)| =) _(bls(b—B)

b

« Bulk surface defects: {1, U,(S?) = e #20 U (32) = F ¢, |}

=U.(2?) — boundary Z{ symmetry defect U/(2?)

e.g. see discussion in [Gaiotto, Kapustin, Seiberg, Willett 14]

Probing 't Hooft anomalies with link invariants

» Suppose we can gauge C (it is anomaly free). Gauging C changes
the topological b.c., but the SymTFT is unchanged.

* The left boundary is now a condensate of operators in C. For
each Uyq, € C, a corresponding U,k € B. should move to A.

* Topological operators in A have trivial link invariant in the bulk:

U’ U’
- L, U U e~ 1

Main observation: If C is anomaly-free, then for each U4, € C there
must be bulk topological operators Uy, € B. with trivial link invariants.

PN If one cannot find a representative Uy € B. with trivial link invariants,
then C is anomalous.

*up to equivalence relations
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Comments

» This is a sufficient (not necessary) condition for a nontrivial anomaly.

* It is strictly weaker than the fiber functor condition.
[Thorngren, Wang ’19,’21][Décoppet, Yu ’22]

* This is especially useful when the non-invertible symmetry arises by
topological manipulations from a QFT with only invertible symmetry.
Then the SymTFT is a DW theory, and the link invariants are easy to
compute.

» Can go beyond links involving 2 lines.

Computing link invariants
e 2-components: closed MP*, M'P>can link in g-dim if p1 +p2+1=¢

Link(MP*, M'P?) = / PD(NP* 1) dPD(N'P2 1) = Int(NP 1 MP2)
5 Seifert surfaces

e.g. linesin 3d: /! . e @

Link(Hopf link)=1 Link()=2
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Computing link invariants
e 2-components: closed MP*, M'">can link in g-dim if p1 +p2+1=g¢q

Link(MP*, M’m): PD(NP1+1)dPD(N’P2+1) Int(NP 1 M7P2)

Selfert surfaces

e.g. lines in 3d: . M C(j:)

Link(Hopf link)= Link()=2

e 3-components: closed MP* M2, M"Pscan link in g-dim if
pr+p2+ps+(3—n)=2¢ (n=0,1,2)

Link(Mpl’M/PQ’M”P3)n:0 — Int(Npl"'l, N’p2+1,N"p3+1)

e.g. lines in 3d, n=0: Qb Link(Borromean ring)=1

\/I

Il. Examples in 4d gauge theory



106 OCAMI Reports Vol. 3 (2023)

An invertible 4d example with anomaly

* T =4d SU(4) Yang-Mills + gauge a normal subgroup ZS) C fo)

R - T
G =7V x (ZgU ~ 7 /Z§1)> with mixed anomaly B
L T
quantum B B
o™ S (BB)B
cancels anomaly
B, B]

ZT/zg”

An invertible 4d example with anomaly

* T =4d SU(4) Yang-Mills + gauge a normal subgroup Zgl) C Zfll)

N N T
G =78 % (ZS) ~ Z?/ZQ) with mixed anomaly B
T L
quantum B B
5d 2-form gauge | shrink slab ™ Jas; (8B)B
theory cancels anomaly
> (balo(b— 20— B)e™ S F|T) Zr 1y B, Bl
2

aczi, bazi"

» Gauging changes the Dirichlet b.c. to mixed b.c.
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The mixed anomaly is probed by a 2-link invariant

1
—

Up(B2) = e fb —  [(2?) generating Z"
U.(2?) =e%$¢ —>  [J(x?) generating Z{" (quantum)

(Meanwhile (U.)* moves to A, as it reduces to the gauged Zgl) defect.)

(U (2) Uo(2))) = (—i)¥" ) due to the mixed anomaly

A class of anomalous non-invertible examples

Consider T[My] with G =--- x H x Z;‘,‘Z, where H and Z;‘}I have a
mixed anomaly, and Z2 has a self anomaly.

* e.g. applies for 4d SU(N) adjoint QCD, 4d N = 4 SYM, ...
(1)
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A class of anomalous non-invertible examples
Consider T[My] with G = --- x H x Z*:, where H and Z:} have a
mixed anomaly, and Z# has a self anomaly.

* e.g. applies for 4d SU(N) adjoint QCD, 4d N’ =4 SYM, ...

(1) Gauge H to promote Z# to a non-invertible symmetry,
implemented by non-invertible defect N4

(1) ‘ ‘
— \} —>

-

(top b.c.| |T) T with G (top b.c./| |T) T/Hwith C

A class of anomalous non-invertible examples
Consider T[My] with G =--- x H x Z;‘,‘Z, where H and Z;‘}L have a
mixed anomaly, and Z2 has a self anomaly.

* e.g. applies for 4d SU(N) adjoint QCD, 4d N = 4 SYM, ...

(1) Gauge H to promote Z“ to a non-invertible symmetry,
implemented by non-invertible defect N4

(1) ? ‘

—

-

-
(top b.c.| IT) T with G (top b.c./| |T) T /Hwith C

(2) The non-invertible symmetry is anomalous (as expected!), as can
be probed by link invariants in the SymTFT.

N/\ o /
Ubulk <Ubu1k(z) . Ubulk(zl» ~ eWLlnk(E,--- 2
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Example: 4d adjoint QCD

* Consider 4d SU(N.) gauge theory with N, adjoint Weyl fermions

1 N2_—1
w(A,B) = AP(B) + ABABA (evenN,)

2N, 6.V,

[Cordova, Dumitrescu '18], also see [Delmastro, Gomis, Hsin, Komargodski '22]

» Bulk defect operators in the SymTFT include:

= electric line/surface operators € A
Ua(Ml):eQI\%f%‘fMla Ub(MQ):eZNLs§M2b
* magnetic non-invertible surface/volume operators € B
27 a
Ua(MS) — 2N Ne $us . TQFT[b] —» bdy ZéNfNC defect

Uy (M?) = e ¥ 2% . TQFT[a,b] —» bdy Z§ defect

c

Example: 4d adjoint QCD

(1) Gauging Zg\l,) — PSU(N,) adjoint QCD with ZE\}) symmetry, and

noninvertible defect A4, see [Choi, Cordova, Hsin, Lam, Shao ‘21][Kaidi, Ohmori,
Zheng '21,’22][Bhardwaj, Bottini, Schafer-Nameki, Tiwari '22]

Na x N g~ Yo (1M (M), Nax Upay ~Na
M2€H2(M3,ZNC)

The magnetic UE(M2) moves to A, and electric Uy(M?) moves to B, with:

Up(M?) = Upay(M?)  Ua(M®) = Na(M?)
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Example: 4d adjoint QCD

(1) Gauging Z( ) — PSU(N,) adjoint QCD with z¢ )symmetry, and

nonlnvertlble defect NA , see [Choi, Cordova, Hsin, Lam, Shao ‘21][Kaidi, Ohmori,
Zheng '21,’22][Bhardwaj, Bottini, Schafer-Nameki, Tiwari '22]

NA X NA ~ Z (—I)Q(Mz)ﬁ}—,dy(]\fo), -/\/A X ﬁbdy ~ N/\

MZEHg(M?’,ZNC)
The magnetic U;(M?) moves to A, and electric Uy(M?) moves to B, with:

Ub(MQ) —> ﬁbdy(]\"fz) Ua(MB) *NA(A[%)

z‘ir(N

3N2 Llnk S3 S/S g3
Q) (Ua(S®) Us(S®) Ua(8")) ~e  *™ ( Joe

=4d PSU(N,) adjoint QCD has an anomalous non-invertible
symmetry for all N, > 1, Ny > 1.

(rules out special N¢, Nf with non-anomalous invertible symmetries)

Matching the anomaly in the IR

* e.g. consider N’ =1 SYM (NN, = 1 adjoint QCD).

Zsy. Y 7, = N, gapped vacua.

. domain walls supporting 3d C'S[B]
/ match the ZNC) X Zan,anomaly ~/ AUP(B)

L] M5
. . [Acharya, Vafa '01][Gaiotto, Kapustin, Komargodski, Seiberg '17]
[Hsin, Lam, Seiberg ‘18][Apruzzi, van Beest, Gould, Schafer-
Nameki '21][Apruzzi, Bah, Bonetti, Schafer-Nameki ‘22]

How is the self-anomaly matched?

[Delmastro, Gomis, Hsin, Komargodski '22]
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Anomaly matching via the SymTFT (schematically)

see [Apruzzi, Bah, Bonetti, Schafer-Nameki '22] for the holographic perspective!

UV ‘ shrink slab ‘
(D(A, B)] ﬂ [T ﬂ N =1SU(N.)SYM
IR ‘ —
(D(A, B)| |D(A =0)) N.vacua
IN(B =0))

Anomaly matching via the SymTFT (schematically)

see [Apruzzi, Bah, Bonetti, Schafer-Nameki '22] for the holographic perspective!

UV ‘ shrink slab ‘
(D(A, B)| ﬂ [T ﬂ N =18U(N.) SYM
ya!
IR Uds(M™) —
(D(A, B)| |D(A =0)) N.vacua
IN(B =0))

« U,(M") becomes top. order parameter of Z’Q“NC, labeling the N.vacua
« Ua(M?) —p bdy Z4y, defect == domain wall with C'S[B]

* The fact that the domain walls + junctions saturate the Z’Q“NC self-
anomaly is related to the nontrivial U;(M?)triple link invariants.

It would be interesting to see this in detail!
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Summary

* Much like for ordinary symmetries, 't Hooft anomalies of non-
invertible (categorical) symmetries are a useful tool for
constraining the dynamics of QFT.

* Linking invariants in the Symmetry TFT provide a diagnostic of 't
Hooft anomalies for generalized symmetries, which are simple to
compute in many examples.

* Examples of theories with anomalous non-invertible symmetries
include 4d adjoint QCD, and N = 4 super Yang-Mills.

* Tracking the defect operators in the SymTFT across RG flow can
lead to insights into anomaly matching.

Future directions

* Notion of anomaly field theory for the non-invertible case?

» Complete characterization of 't Hooft anomalies for non-invertible
symmetries?

* General framework for intrinsically non-invertible symmetries?

* More dynamical consequences for non-invertible symmetries?
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Fusion Surface Models: 2+4+1d Lattice Models
from Higher Categories

Kantaro Ohmori

ABSTRACT.

(K. Ohmori) University of Tokyo
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Fusion Surface Models:
2+1d Lattice Models From Higher Categories

Kantaro Ohmori,
University of Tokyo

@Shuzenji Mar. 2023

based on work with Kansei Inamura (Institute for solid state physics, UTokyo)

People has been Generalizing symmetry for a decade,
which has been sucessful.
There are a lot of new symmetires.

Are all of them relevant to physics?

A necessary condition for the relevance:
Is there a physical system having a given gen'ed sym?
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Is there a physical system having a given gen'ed sym?

Yes, at least a theoretical lattice model exists,
for a broad class of finite generalized symmetry.

Today we discuss systematic constructions
for gen'ed sym.s in 1+1 (review) and 2+1d.

Fusion Surface Models

Iy
¢ 2+1d quantum model on a honeycomb lattice

T, HIEGE T

e Variables on plaquette, edges, and vertices: s 2
pa 205
Ui, i, ¢i) € H K
N

« Contraints on variables + Hamiltonians, Ty Saduris

¢ the model has a fusion 2-cateogry symmetry,
given as an input.

e Generalizing spin systems in a symmetry-based way.

e Microscopically realize the symmetry of anyons.
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Outline

¢ Generalized Symmetry and Topological Order.

¢ 1+1d Anyon Chain [Feiguin, Trebst, Ludwig, Troyer, Kitaev, Wang, Freedman '06]
[Aasen,Fendley,Mong '20]

e 2+1d Fusion Surface Model

Generalized Symmetry and Topological Order
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Symmetry and Topological Operator

A conventional symmetry g € G
~~ Codimension-one topological operator U, g

* 69.G = U(1):Uy[%] = exp [y, *3].

e Conservation law:
d * j = 0 ~~ topological-ness.

Symmetry and Topological Operator (2)

* Spacelike U, : symmetry action,  timelike U, : twisted boundary

U,
I I 7 U,

Sym. action on Hilb. sp. Twisted boundary condition

o Ug acts on the local operators:
U, = x0O
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Grouplike Fusion

* Group-like fusionrule: Uy, Uy, = Uy, g, .

3> &

* Inparticular, itis invertible: Uy Uy = 1

Generalized Symmetry

* A conventional symmetry operationg € G
& codim. oneg, invertible topological operator.

e Topological-ness = conservation law.
¢ Relax the first two:
o codim.p + 1: higher-form (p-form) symmetry.

o non-invertible symmetry.

¢ (Relaxing the last one leads to "subsystem symmetry".)

10
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H ig her-fOI‘m Symmetry [Gaiotto, Kapustin, Seiberg, Willett '14]

¢ p-form symmetry < codim p + 1 invertible topological operator.

¢ Acts on a p-dimensional operator. }@q Oq

¢ eg.Electric U(1) one-form sym. Q U, = o

in 4d free Maxwell theory: ‘
o JY o Fu, 0*JE =0 (EOM)
o Charged object: Wilson line

e SSB: Jlf; creates photons ~» Photon is a NG particle!

11

Non-invertible Symmetry

* A general fusion of topological surface: (N 3, € Zx)
ol ® [p =2 Na fc

> €

¢ In particular, a general top. op. does not have its inverse.

e E.g. KW duality in 1+1d critical Ising model [Aasen Mong Fendley '16]:
N2 =1+ UZ2-

12
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Topological Order as SSB of Gen'ed Sym.

e Combine the two relaxations: higher-form non-invertibe symmetry.

2+1d TQFT has such symmetry.

A TQFT can be thought as the IR limit of a topological order.
o A 2+1d topological order contains a quasi particle called anyons.

o The worldline of an anyon = top. line operator in the TQFT N
o Emergent one-form symmetry.

Non-trivial symmetry operator in the deep IR: SSB! \b
a

Anyon ~ domain wall in O-form SSB phase.

13

Topological Order as SSB of Gen'ed Sym. (2)

e The fusion rule of anyons/top. lines can be either
Ugl ® Ug2 = U9192
o grouplike (abelian anyon)
~ invertible one-form sym., or > €
o general (non-abelian anyon 5
g ( ‘ y ) al ® lp = ZNab .
~~ non-invertible one-form sym. G

e SSB of gen'ed symmetry characterizes top. order: > €
Generalized Landau paradigm.

14
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Towards UV Models of topological order

e UV lattice construction for a general top. order is unclear.
¢ Top. order is the SSB phase of a gen'ed sym.

e UV lattice model with the same gen'ed symmetry
might flow to the phase! ~~» Fusion surface model!

¢ In general the models are (probably) unsolvable and strongly-interacting
~~» we need numerical study.

15

1+1d Anyon Chain

[Feiguin, Trebst, Ludwig, Troyer, Kitaev, Wang, Freedman '06]...[Aasen,Fendley,Mong '20]...

16
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1+1d Anyon Chain

¢ 1+1d lattice system, generalizing spin chain.

¢ Acted naturally by a fusion (1-)category C.

* Anobject p € Cinstead of spin, i.e. |p) instead of |0),|1) acted by Zs.

17

Fusion Category

¢ A generalization of a finite group.

* Fusion category C consists of
o Simp C: set of topological lines, called simple objects,

o 1 € Simp C: the trivial line operator.

© ObjC 3 > csimpe Ma®  Ma € Zxo: objects. a € 0bjC
o Home(a, b) fora, b € ObjC:line-changing op.s. b
» C-vector space. (b"a
= Home(a,b) = C% of a,b € Simp C. ¢ € Home(a, b)

¢ And other data:
18
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Fusion
e Fusionproducta ® b =Y NS5c, NS € Z>o.

a®b:ZNgbc
(&

2> €
e When N, > 0, there are junctions by fusion upper half:

C

a b
¢ dim Hom¢(a ® b,c) = N§,.

F-symbol
*a® (b®c) = (a®b)® c butnot trivially:

20
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Pentagon ldentity

¢ F-symbol should satisfy the consistency condition:

F F

—

F F

¢ This makes a fusion category not arbitrary.
21

Anyon Chain (State Space) [Feiguin, et. al. '06]

* Input for state space: FusioncatC, p € ObjC.
(Assume N5, = 0, 1 for simplicity.)
o Coloring onedge {I'} ~» |{T'})

Li—p Lioq Iy Cipa Tit2

¢ Constraint on coloring: Nll:ilp* >0

22
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Anyon Chain (Hamiltonian)

» Hamiltonian depends on w : SimpC — C,
e explicit next-next-nearest neighbor interactoin:

H<i—1,i,i 1>| i?]_]:‘i]:‘H»l)
7 FT. ‘ I
E fm E : p;'l ' )pI & (F]pfl)l)l";)‘ i*lF;Fi+1>.

1
I" 1eSimp C

| T; | iy I; |

7

= Y EETm (PR Y pr * *
P

F T/l QF
p p p

23

Fusion Category Symmetry

 The anyon chain based on fusion category C has C-symmetry.

e The action is by "hitting from above":

—)\a@)f‘ a®T; m;

= T

24
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Fusion Category Symmetry(2)

e The C action commute with H:

¢ The pentagon identity justifies the pictorial intuition.

25

Examples

e C=Vecy,, p =1+ Uz, ~» Zy spin chain.
e C = Kramers Wannier, p = N ~~ critical Ising chain.
[Aasen,Mong, Fendly '16], [Yamaguchi-san's talk]
e C=Fib (W2 =W + 1), p = W: original Golden chain.
[Feiguin, et. al. '06]
o This model numerically flows to the tricritical Ising CFT,
which has the F'ib symmetry.
RG flow constraint from non-invertible symmetry!

26
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2+1d Fusion Surface Models

27

Fusion Surface Models

¢ Generalization of anyon chain to 2+1d.

¢ Now the gen'ed symmetry is described by a fusion 2-category.
[Douglas, Reutter 18]

28
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Fusion 2-Category

e Fusion 2-category now contains the information about topological
surface, line, and point operators.
o Simp C : topological surfaces (objects),

o Hom¢(A, B) for A, B € C:interfaces (1-morphisms)

o Hom 4, 5(a, b): interfaces of interfaces (2-morphisms).

29

Fusion

e Fusion of surfaces A[1B:
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10-j symbol
¢ 2+1d generalization of F'-move:

Tora  Tiza T284 Tora Diza T'231

—

To124

= > > dim(Toza)z (T;[01234]) Toas

LLH To2a To124,l0234 F 1-H

T4 Tss

T T S T T ——
04 034 Tos Tor 12 04 034 Tgog Fm\

¢ Should satisfy (rather complicated) consistency condition. .

Invertible Fusion 2-cat.s

e Fusion 2-cat.C is invertible
when all of L] (fusion of surfaces) and o (fusion of lines) are invertible.

Invertible fusion 2-categories are equivalent to "2-group"s.

0-form symmetry < surfaces < Simp C

1-form symmetry < lines < Hom¢(1,1).

10-j symbol contains both the information about
o "Postnikov class" (nontrivial mixture between 0- and 1-form)

o 't Hooft anomaly.

32
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Symmetry of Anyons as Fusion 2-cat

e Usually, the data about anyons in a topological order is organized as
a modular tensor category (MTC) B.

e B (MTC) ~» Mod(B) : fusion 2-cat

 Simp Mod(B) = {gapped self-interfaces}

e Hompoq(B)(1,1) = {anyons}

33

State Space of Fusion Surface Model (1)

e Depends on fusion 2-cat C, p, o, A € Obj C and 1-morphisms f, g.

o H# :={|{T',a, ¢})} : colorings on top.
(I :obj., a: 1-morph., ¢: 2-morph.)

* Constraints on {I', a, ¢} determined by A, p, o, f, g.

34
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Hamiltonian

e F € Simp C + data at intersections
~~ a term in local plaguette Hamiltonian.: Hy = Z{f} w({]-'})Hgf}

e Explicit formula in terms of the 10-j symbol.
35

Symmetry

e "Action from above".

e Commutation with H, which is acted "from below"

36
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String-net operator

¢ |t turns out that the above action of line s is not topological.
o A contractible loop of s is not a c-number.

¢ We can force this via projecting down to the image of
string-net projector. [Levin,Wen]

= Z number

Tus EHom(F4 ,F4)

37

Examples

¢ Using invertible fusion 2-categories, we can obtain the models with
o (anomalous) one-form symmetries

o 2-group symmetries.
» C = Mod(B) for anyon statistics I3:
microsopic model with the symmetry of anyons!

» Reproduce Levin-Wen solvable models for non-chiral BB as special cases.

38
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Summary
¢ Higher and non-invertible sym.s are described by fusion d-category.
e Ford =1[AFM]and d = 2: r,
explicit lattice models with any given s ]
Ty, 93@=o T
fusion-d category! ,a-{ ‘aG‘
e This includes non-invertible one-form _"‘b.'j\;_: To ajﬁ‘—
symmetry of anyons! R EP LA
o Numerical study is desired. / ) )

Thank you!

39

Backup

40
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e Dual:a ~+ a* : orientation reversal of a.
o Evaluation ev € Hom¢(a ® a*, 1),
coevaluation coev € Home(1,a ® a™).

o Relaxation of inverse.

41
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Graph Zeta Functions and Kazakov-Migdal Model

Kazutoshi Ohta

ABSTRACT. We consider a generalized Kazakov-Migdal model defined on
an arbitrary graph. The partition function of the model can be represented
by the unitary matrix integral of the weighted graph zeta functions, which
have series expansions by possible Wilson loops (graph cycles). The partition
function of the model is expressed in two different ways according to the order
of integration. A specific unitary matrix integral can be performed even at
finite N, thanks to this duality. In addition, we evaluate exactly the partition
function of the Kazakov-Migdal model on the graph in the large N limit and
show that it is expressed by the infinite product of the graph zeta functions.
We also discuss an extension including the bumps, the random matrix model
approach, and the Gross-Witten-Wadia phase transition.

(K. Ohta) Meiji Gakuin University
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Graph Zeta Functions
and
Kazakov-Migdal Model

Kazutoshi Ohta
Meiji Gakuin University

Collaboration with So Matsuura at Keio University
JHEP 2022, 178 [arXiv: 2204.06424]
PTEP 2022, 123B03 [arXiv:2208.14032]
arXiv:2303.03692

“QFT and Related Mathematical Aspects”, Shuzenji Sogo Kaikan, Shizuoka (2023/3/15)

Introduction (phys)

« Cycles on the graph play an important role in gauge and string
theory

» Wilson loops in lattice gauge theory:

))—

We = TrU,U,U,U U US We = TrU, Ul UsU Us U

» Gauge invariant operators in quiver gauge theory:

X 2 6=TrXYZ



138 OCAMI Reports Vol. 3 (2023)

Introduction (math)

» Cycles on the graph can be counted by a kind of zeta function
» |hara introduced a Selberg zeta function of p-adic fields (1966)
* Serre pointed out a relation to graph theory (1980)

* Sunada gave a definition of Ihara zeta function for the regular graph and a
graph theoretical proof for Ihara's theorem (1986)

» Hashimoto gave a determinant expression by the edge matrix (1990)

* Bass proved lhara’s theorem via the determinant expression for generic
graphs (1992)

» Bartholdi introduced two parameter extension of |hara zeta function
(1999)

« Question: Can we utilize the zeta function on the graph (lhara zeta function)
for problems on gauge or string theory?

Plan of talk

1. Introduction
2. lhara Zeta Function

. Kazakov-Migdal Model on the graph

N OV

. Partition Function

(&)}

. Large N Limit

6. Duality

7. Bartholdi Zeta Function and Matrix Model
8. GWW Phase Transition

9. Conclusion and Discussions
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Kazakov-Migdal Model

. Kazakov-Migdal model is defined by unitary matrices Uﬂ(x) on links

(edges) and hermite matrices ®(x) on sites (vertices) as D-
dimensional lattice gauge theory [Kazakov and Migdal (1992)]:

p=12,+-D

§= ) NTr [m§¢(x)2 - ) eWUWPK + mUf()
X U,A(“)

®x) d(x+p)

- After eliminating ®(x), we get

JDUDCD e SIUPT JDUe‘Sind[U]
where §; 4 is a induced action given by

1
Sind[U] = ETrIOg [5 —my ZZ U, (X) ® U () x+/4y]

u

Generating Function of the Wilson loops

+ The induced action has the following expansion:

| Tr W[U]|?
Sinal Ul = __Z szc
£(Cym"©
where ¢

C : lattice loops
Z(C) : length of the loops
W[U] : ordered loop product of U (Wilson loop) along C

« It had been expected that the induced action reduces to the Yang-Mills

action (induced QCD) in the continuum limit, but ’
r"_l%“l
» C contains “bad” (collapsed) Wilson loops ) U,
3 ng I/l"““'f
» £[C] does not count the net length of the loop ]
e.g. TrtU,U,UsU U3 U, = TrU, U, U U, for £(C) = P

backirack "



140 OCAMI Reports Vol. 3 (2023)

Graph Theory

« A graph G consists of the vertices V and the edges E; G = (V, E)

- Each edge connects two vertices between s(e) and t(e),
where e € E, s(e),t(e) € V

s(e)———>1(e)
e
« Graph theory gives a mapping from the graph structure to matrices;
e.g- double triangle adjacency matrix:
2 3 4
O 11 1)1
1 rotofz2 , _ 4 of edges
11013 " connecting vand v’
1 01 0)4
|nC|dence matrix:
3 4 5
3 1 0 0 -1 -1\1 = charge matrix of
quiver gauge theory,
B = -1 0 0 012 Dirac operator on the graph,
0 -1 1 0 113 index theorem on the graph
0O 0 -1 1 0)4 [S. Matsuura and KO (2021)]

Graph Zeta Function

« The Ihara zeta function of the graph G is defined
as follows [Ihara (1966)]:

1
o= ] =G

[C]: prime cycles

where the product is taken over the prime cycles,
which are

. . . 616265 ~ 626561 ~ 656162
¥ Neither backtracking nor tail (reduced cycle)

¥ Not written by a power of the reduced cycle (primitive cycle) C' # C”

v Defined by a equivalence classes (a fixed cyclic ordering) C ~ C’

+ By definition, the lhara zeta function counts non-collapsing cycles only
= A coefficient of g* are the number of the reduced cycles with the total
length of k
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Cf.) Riemann Zeta Function

+ Recall that the Riemann zeta function (Euler product) is
defined by a infinite product of all prime numbers

1 o |
{(s) = ——=)—
’ p: prim!_n[umbers 1 —-p~ 1; n

The graph zeta function is an analogy to this (or Selberg zeta
function)

Example1: triangle graph

« Atriangle graph is known as a cycle graph C; orAz quiver diagram (Dynkin
diagram)

« We have two prime cycles: U U, U, U,

[C_?] = {e10,63, €265¢), €3¢1€, }
[C] = {e;e,e,, e 258y, e,¢ 25}

U, A o
1
CQ(CI) = —(1 mpEs =1+ 2q3 + 3q6 + 4q9 + 5q12 + ..

power of ¢ (length) 3 6 9 12

coeff 2 3 4 5

= ~ A C3, C?C C*, C3C, C?C?
2 2 7 = Y &
cycles c,Cc|c oo C ocz, ¢ cos, o

Easy? = For more general graph, the prime cycles are rather complicated (infinite)
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Example2: double triangle graph

« For the double triangle (DT) graph, there are infinitely many prime loops

« Then, the Euler product expression of the graph zeta function becomes the
infinite product in general
£orlq) = 1 1 1
T = =g (1= (1= % (1 — g

» But we have another determinant (a reciprocal of a polynomial) expression
of the graph zeta function

lhara’s theorem

« For a given graph G, the Ihara zeta function is given by the
following determinant formula

1
(1 —g¥rrvdet (I—gA+q2(D—1))

Co(q) =

where
ny : the number of the vertices

ng : the number of the edges

I : ny, X ny, identity matrix

D : the degree matrix (f of the edges attached with the vertex)
A : the adjacency matrix

A,, = {# of edges connecting v and v’}
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A Brief Proof

+ Using an identity for the determinant between vertex and
edge adjacency matrices, we can show that

(1= g?yvedet (I, - gW) = (1 = g?edet (1, = gA + (D - 1,) )

where
W : the edge adjacency matrix without bumps

’ e
e
W, =1for —» @+ But, W,, = 0 for ==@
e

e

« Then, we obtain

o0

1 q . 1
{olg) =——————=exp Z TTrW =
det (IZnE - qW) P (1 = g2y det (Inv —gA+qXD - 1,,»,))

Hashimoto expression Ihara expression

Example1: triangle graph

- For the triangle graph, ny, = np; = 3 and

200 011
D=(020) A=(101
00 2 110 s 3

then we have
1 1

et(I—-gA—q2(D-1) BCEYE

Cel@) = P

« This agrees with the previous simple observation from the
graph
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Example2: double triangle graph

- For the double triangle (DT) graph, ny, = 4, np = 5 and
3000

A=

0
_ 1
b= 1
1

1
0
1
0

—_— O =

1
0
1
0

N OO

020

003

000
1

(1 =gddet(I—gA—q*(D-1))

3 1

(L —gH(1+ > = 2¢3) (1 — g2 - 2¢°)

=1+4¢>+2¢* +12¢°+ 12¢" + 3¢% + -

¢or(g) =

« For first few terms, the counting is as follows:

length 3 4 6 7
coeff 4 2 12 12
o e. - Ci, Ct, C3, C3, C1C3, C1Cs, CoCs, CaCs,
cycles Cl é’ C3, C3 CCy, G0y, C1Cs, C1C3, Ca2C3, C2C3,
2 C1Cy, C1Cs, C1Ca, C1C Cs, Cs, Cs, Cs
C4, (74

Kazakov-Migdal model on the graph

« We consider the generalized Kazakov-Migdal model defined on the graph

Zogn = JHd(I)VH dU, exp { —pTr (% Y mi—q ) U D, Uf > }

veV ecE veV ecE
where

V : a set of vertices (sites) of the graph
E : a set of edges (links) of the graph
s(e) : a source of the edge e
t(e) : a target of the edge e

« We can also integrate out the scalar field @, then get

1
Zyxn & JHdUe exp {—ETr log (m26,, ® 1. — gA[U1) }

eckE
where A[U] is the weighted adjacency matrix

« For the general couplings, the induced action still generates the “bad” (collapsed)
Wilson loops, but we will show that they can be removed by a coupling tuning
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Discretization as the graph

+ At least, the flat plane can be discretized by using the graphs

NININ N

Square lattice

(Original KM model) Hexagon lattice

Triangle lattice
« The continuum limit and emergence of the dimensionality are
difficult problem

Coupling tuning

+ The partition function of the graph Kazakov-Migdal model becomes

Zygm = JHd':DVH dU, exp {—ﬂTr <% Y midl-g) @S(e)ueq(e)uj> }

veV eek veV eek

1 1
x 7JHdUE exp {—ETrlog (m26,, ® 1y, — gA[U]) }

2
(1 =gy Loy

= JHdUe !

N2 1
et (1= g T det (m2 — qA[U])?

where A[U] is a unitary matrix weighted adjacency matrix
« The determinant looks like the determinant formula of the lhara

zeta function. In fact, by setting mv2 =1+ (degv— l)qz, we get

1
ZgKM e JHdUe Co(q; U)2 {c(g; U) : the unitary matrix weighted

e€E Ihara zeta function
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Example1: triangle graph

« The unitary matrix weighted adjacency matrix for U(N):
0 UeU UieU,
AlU1=|Uj® U, 0 U,® Uj
U; U] Uj®U, 0

+ Recalling that the lhara zeta is a generating function of the multi-
trace Wilson loops, then we obtain
1

Zy IdUldUsz3

W= U1U2U3

1
det (I-qA[U] +¢*(D - D)’
0 q3k
= JdUldUsz3 expq T, U U
k=1
2 3 1 4 212 6 1 6 2 212 32 9
=|aw {14 1TeW g +5<|TrW| + | Tew?| )q +g(|TrW| 3| TOW P TeW? 2 + 2 | oW | )q + o
N

1
-7

i

where W = U,U,U,

Cycle graph C,

- We can generalize the previous results to cycle graphs (polygons, An_l quiver diagram)

€1

€En

®
\‘

& C, graph

A o

« After integrating over the unitary groups, we obtain

ch(q) = ZCI(C]”) °

N
zll:!l_qni

C, graph
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Large NN limit

« It is difficult to perform the integral over the unitary matrices in general, but

the situation becomes simple in the large N limit, thanks to the decomposition
(clustering) of the vev of the Wilson loops
q/(C)k

ZgKM‘XJHdUeeXP{ Z i X |TrWC[U]k|2}

eeE Cell* k=1

o0 qf(C)k 2
= TrW.[U
H+exp 2w Ut
Cell k=1

o0 qf(C)k
N exp ) | TrW[UTF|?
N—=oo Y k
Cell k=1

= 1 = i1
= —e- 1}:@@%

Cell* i=1

where IT% is a set of chiral prime loops (choose a one direction of the loops)

+ The partition function of the graph Kazakov-Migdal model can be written by a
infinite product of (square roots of) the |hara zeta functions

Duality

« We can perform the U, integral by using the Harish-Chandra-Itzykson-Zuber
integral: b
det; ;"%

J dU etTrAUBU"’ -
A(@)A(D)

where a;, b; are the eigenvalues and A(a), A(b) are the Vandermonde

determinants of A, B

- Then we obtain the multi matrix model for @ as the partition function of
the graph Kazakov-Migdal model

N
ZgKM o JH H d¢v,i e—%m3¢§iA(¢v)2—deg vH det e9Ps.i%e

vev i=1 ecE

+ We can perform this integral exactly for simpler cases like the cycle graph
and agrees with the results from the graph zeta function, but it is difficult to
evaluate for the generic graphs
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Extension to Bartholdi’s zeta function

« Itis known that there is a generalization of the lhara zeta function, which
contains one more parameter and counts the number of the bumps too

= Bartholdi’s zeta function

1
! ,u) = T O 2OY
C6lq u) [] 1 = ucbe©gr(©

C:primitive (not reduced)

1
(1= (= w2q2)" ™" det (1= gA+ (1 w3 (D - (1 = wl) )

where cbc(C) is cyclic bump count (# of bumps) and lim {(q, u) = {5(q)
u—0

+ A proof is similar to the Ihara zeta function
1 1

el ) = det (I— qg(W+ uJ)) T (1= (1= w2y det (I-gA+ (1 —uwq*D—(1-uwl)
where
’ e
W, = 1for —ey.i> J,;=1for =@
e

Graph Kazakov-Migdal model with bumps

« The mass and coupling of the Kazakov-Migdal model is tuned to be

1
v = Tt {E Z (1= %1 — w)?+ ¢*(1 — u)degv) @2 — qz (DS(@UEKD,(E)UJ}

S,
veV eeE
« Then, the partition function becomes

Zoxn = JHchVH dU e PSexn

vev e€E

<2ﬂ> 2N J 1
== du,
p cer det(I—gAy+q*(1 —u)(D - (1 —wl))

2 N 2 o\ 3(ng—ny)N? N
== (1= —u?q?)™™ V (g, u)>

p
© 1 2
xJ du, [ exp { > —fela. u)"|TrWC[U]"‘ }
= Cell* k=1 k
where fC(q’ u) = Z quC(C)q|C|

C: reducible to ¢
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Contribution from the zero-area Wilson loops
(collapsed cycles)

« 7 (g, u) is the contribution from the collapsed cycles (zero-area
Wilson loops)

V12

«ForG=C,,

1+ —udg? - \/1 —2(1 + 1D + (1 — udg*

7 (qu) = 242

Generalized Catalan number

V(g u) =1+ u?q? + U + ubHg* + W? + 3u* + ubqb + -
< N+ u’TrUU g% + WTrUUU U™ 4+ u*TruU UU g
+@?TrvvUUUTUT
+u(TruUTUUUTUY + TIUUUTUUTUT + TrUUUTUTUUT)
+ubTrUUTUUTUU O + -

€1

Comparison with matrix model

- In the large N limit, 7" ;(g, u) contributes to the free energy at order N?
Fgxm ~ N? <—L log 7 (qs u)> + O(N)
ny

« On the other hand, after eliminating U, , we obtain the matrix model
for @,

« The exact semi-circle solution for this matrix model [Gross 1992]
corresponds to the N? order contribution to the free energy

« Thus, we expect that the semi-circle solution of the matrix model at
large N comes from the zero-area (collapsed) Wilson loops only
= infinite tension strings [Boulatov 1992]

+ The Wilson loops with the bumps are important to understand the
relation to the string theory (zigzag symmetry)
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KM model with the fields
in the fundamental representation

+ In the original KM model, the Gross-Witten-Wadia (GWW) phase transition seems
not to occur

. We replace the scalar fields in the adjoint representation with ]\9 fundamental
fields (FKM model)

§= Y molo,—q), <q>j JUD, + @ U q>s(e),> I=12,..,N)
veV e€eE
« Then we get the effective action:

s =3 N3 L ,u”(TrW U"+TrWTU”>
R%) CE%] fZ} —felg. U] iU
- For the cycle graph C,, we can show that there two different phases with
respect to the eigenvalue distribution of U
p(0) +0(6)

>

GWW PT
-7

- s

GWW Phase Transition

« For the general graph, it is difficult to see the GWW phase transition
+ However, if we take the scaling limit:

Ny 1 .
g—0, y=— > oo, AE—[:flxed
N, g
we can see the GWW phase transition in the symmetric graph, since the action
reduces to the Wilsonian one

« For example, the (derivative of) free energy on the double triangle graph behaves
as:

d .
+ (For = Fir)

¥ — o0

20
7 = 2000
v =200

3rd order PT occurs at
A=2inthey — oo limit
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GWW Phase Transition

 For the triangle-square graph, the action does not reduce to
the Wilsonian one and seems not to occur the 3rd order PT

d
a (FI'S - Fli)
0.8

Conclusion and Discussions

+ We proposed a generalization of the Kazakov-Migdal model on the
graph, which reproduces the weighted Ihara zeta function

+ The graph Kazakov-Migdal model generates the countable Wilson
loops (excluding/including the bumps)

« We can perform the unitary matrix integral exactly in the large N
limit and the partition function of the graph Kazakov-Migdal
model is given by the infinite product of the Ihara zeta function

« We can see the interesting “physics” like GWW PT in the graph
zeta function models

+ We expect much more applications of the graph zeta function to
the counting (index) of the gauge invariant operators (chiral rings)
in quiver gauge theory
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Emergent N=4 supersymmetry from N=1
Jaewon Song
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Quantum Field Theory and Symmetry

* Symmetry is one of the most fundamental principle in physics.

» Symmetry constrain the system: consequences in the
observables.

+ Totalitarian Principle: “Everything not forbidden is compulsory”
* In this sense, symmetry defines a quantum system.

» Symmetry can change along the renormalization group flow.
* |t can be spontaneously broken.

» Symmetry can be emergent. Accidental symmetry, symmetry
enhancement.

Supersymmetry is good

* Supersymmetry is a spacetime symmetry that exchanges bosons and fermions, that may
explain or solve: gauge hierarchy problem, grand unification, dark matter...

* Supersymmetric field theories provide an ideal theoretical laboratory to study non-
trivial aspects of quantum field theory.

* Supersymmetric quantum field theories are highly constraining: e ' a
* Non-renormalization theorems
« Certain protected quantities are exactly computable. r;ﬂ—':"rj;l‘
* Rich mathematical structures.

* Learned lot about RG using SUSY: IR duality, conformal manifolds, symmetry
enhancement, dangerously irrelevant operators, non-commuting flows, ...
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Enhancement of supersymmetry via RG flow

« One can sometimes find an N=1 theory flows to N=2

* [Gadde-Razamat-Willet '15]: rank 1 Es SCFT

(“singular” Lagrangian ~ merging punctures)

¢ [Maruyoshi-JS ’16]: (infinitely) many Argyres-Douglas
theories (nilpotent Higgsing of the “filpped’ flavor RG flow
current)

* [Razamat-Zafrir *19][Zafrir '20]: T4, Ro,4, Rz;5, rank 2n Es

MN theory, N=3 SCFTs (bottom up search)
« This provides “N=1 Lagrangian” theories for the “N=2 _

non-Lagrangian” theories.

SUSY enhancement is an IR duality

* Supersymmetry enhancement can be thought of as another example of IR duality.

» For example: Argyres-Douglas theory

« IR limit at the special locus in the Coulomb branch of N=2 gauge theory.

« IR fixed point of the N=1 gauge theory with a superpotential

e
=2 Aryres-Douglas SOFT
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Summary:

We find a new duality between N=1 non-Lagrangian theory
and the N=4 Super Yang-Mills theory!

N=1 non-Lagrangian

\
\ N=1 preserving

\ conformal manifold

[Kang, Lawrie, KH Lee, JS "23]

The Dual Theory
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The N=1 Dual of N=4 SYM

DQ(SU(?” + 1))

SU(2n +1)

DQ(SU(?TL"FI)) IR DQ(SU(Qn-i-l))

Conformal manifold of
N =4 SYMsy@nt1)

The dual theory is built out of 3 copies of ,(SU(2n + 1)) theory,
gauging the diagonal flavor symmetry group via N=1 gauge multiplet.

This gives an asymptotic free gauge theory that flows to a point on
the conformal manifold of N=4 SYM theory with G=SU(2n+1)

gp [ G] theo ry [Ceco&(t:ifalgoetltiistilo,zgr:ggmelIi]

[Xie][Wang, Xie]

« Itis a 4d N=2 SCFT (Argyres-Douglas type) with flavor

symmetry G (or larger). Irregular puncture (o)

« It can be realized as the 6d N=(2, 0) theory of type G
compactified on a sphere with one irregular puncture (p) and
one full regular puncture (flavor G).

v
*

 The flavor symmetry is exactly G (without any U(1)’s) for some
choice of p, when the irregular puncture does not possess extra
flavor symmetry. Let’s restrict to this case from now on. ’

’

4
4

G ‘ SU(N)  SO(2N) Es Er Ey Full regular puncture (G)

No additional symmetry ‘ (p,N)=1 p¢2Z=o p¢3Z=o p¢&2Z=o p¢30Zso
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D ,[G] theory (cont’d)

2(p - l)hv

. The flavor central charge (“amount of matter”) for G: k; = )

It is defined as —2Tr(R ;_,TT?) = k6% .

« Once coupled to (N=1) G-gauge field, it behaves as a fractional amount of an
adjoint matter. For the case of p=2, k; = hg;’ which is like a half of an adjoint matter.

« As an N=2 SCFT, it possess SU(2), X U(1) ,_, R-symmetry in addition to the flavor
symmetry G.

« As an N=1 SCFT, it contains U(1)s symmetry and a U(1)r flavor symmetry generated by

1 4
Ry = ERN:z + 513 » F=—Ry=2+21;

‘N=1 Gauging of 2 ,[G] theories

* Now, consider diagonal gauging of 3-copies of D2[SU(2n+1)] theories.

[Kang, Lawrie, KH Lee, JS "21]

* The 1-loop beta-function coefficient for the gauge coupling is given as
B, ~ = TtRGG ~ — E(Zn +1)<0 : Asymptotically free

* D»[G] theory behaves like a half of an adjoint chiral multiplet in terms of the
beta-function contribution. (Ns = 3/2 Nc)

* There are 3 U(1)F symmetries for each D2[SU(2n+1)] and one of them is broken
by ABJ anomaly.

* What is the IR fixed point upon RG flow? On general ground, we expect it to
be an N=1 SCFT.
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Superconformal fixed point

* Necessary condition: Non-anomalous U(1) R-symmetry
TrRT“T’ = 0 & T(adj)+ X T(R)(r; = 1) =0

* Due to the superconformal symmetry, the conformal anomalies are fixed by the trace
anomalies of R-symmetry. [Anselmi, Freedman, Grisaru, Johansen]

0= (3TtR*~TiR) , c= L (9TtR? — 5TtR)
32 32

* The R-symmetry is not always determined via anomaly constraint. There can be a family of
candidate R-symmetries.

* The superconformal R-symmetry is fixed by ‘a-zmaximization’:
aatrial _ J Arial

oR ~  OR2

<0 [Intriligator,Wecht]

Decoupling of operators along the RG flow

* Important caveat in a-maximization: accidental symmetry _ UVtheory |

* Some of the gauge invariant operators may seem to violate Ag>1
the unitarity bound: A > 1. RG flow Ay=1

* Plausible scenario: such an operator gets \

and becomes free with A@ — 1 [Kutasov, Parnavhev, Sahakyan] - -

» One can remove the decoupled free field by introducing a
‘flip field’ X and a superpotential coupling W = XO. L ven Conemely o
[Maruyoshi, Nardoni, JS]

* Redo the a-maximization until no operator gets decoupled.
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IR fixed point of the gauged 9,[G]®°

. . . [Kang, Lawrie, KH Lee, JS '21]
» The superconformal R-symmetry in the IR is given as [Kang, Lawrie, KH Lee, J$ '23]

R=Ry+ ) &F,;

1
* The mixing parameter is constrained by the anomaly free condition ,
1 4
0=TrRGG = hé + Z ((g - €i> TI'Z'R/\/:QGG + <§ + QFl) TriI3GG)

6 — 25, (1—3e) =0

* The mixing parameter is fixed by a-maximization:

—_

3
d
(1(61,52.,53)—32(13—928?(61-&-2)) e ama E:1=¢g1 =€y =€3=——

i=1 3
The anomaly polynomial for the IR theory is given as
1 1
Is = 6kRRR01(R)3 + (YZ::l gkRR}'uCl(R)zCl(«Fa)
2y b= 3 e = 2 d
+ Z gkR}'Q}'gCl(R)Cl(]:a)cl(]:ﬂ) RRR = 9’ RF2 = 3 RF1F> = 3
aﬂ 1 k}_lz}_/z:fk;}_l}.g:d,, a:c:zd’
+ Z kf Farc(Fa)er(Fp)er(Fy)
a,B,y= 1
) 2 L d =dimSUQn + 1)) = 4n(n + 1)
- ﬂkl?(’l pl 2:: Z Fa P1(T) ga = Fa+l _ Fa

It agrees with that of the N=4 SYM theory with G=SU(2n+1)!
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Matching operator spectrum

Matching of chiral operators

Each D2[SU(2n+1)] has Coulomb branch operators of scaling dimensions

oLy _[35 4l
CB_2 N=2 " 252s 5 )

and also their superpartners having (A, I3, R y—,) = (Acg+ 1, 1, r=2).

Each D2[SU(2n+1)] has the moment map operator 4 in the adjoint of G with
dimension2and 3 =1, R y_, = 0.

Upon flowing to the IR, the scaling dimension of the moment map operator becomes
Am(p) = R =4 (1 +2) =1
The scaling dimension of the Coulomb branch operators and their superpartners in

the IR become Am(”ﬁ =(1- 355) AUV(,L‘L) A—{93 om 4 1 Coulomb branch
Am(Q) =146+ (=39 Auv(w) A ={2,3, .20+ 1} operators of N=d SYMI
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Matching of chiral operators (cont’d)

N=4 SYM ‘N=1 dual theory
Tr ¢i1 ¢'L'2 tee ¢ik TI' /“L’L'llu“ig e /“L’Lk
Tr(p;)" {u,, Q%u;}

Superfluous looking chiral operators are removed via relation:

2 _ k _
,u ’adj—(], Trp® =0

Matching conformal manifolds

« The marginal operators of the N=1 dual theory:

« 3 from the Coulomb branch operators having A, = 3/2 and 2 formed out of the
moment maps Trp iy ps, Trp psp,

» Two of them are marginally irrelevant since it breaks U(l)2 symmetry. They combine with
the broken flavor symmetry currents to form a long multiplet and becomes non-BPS.

\ Green, Komargodski, Seiberg, Tachikawa, Wecht,
« The marginal operators of the N=4 SYM [ OMargocsl, selberg, fachiaw ]

» 11 of the form Tr¢;h,¢p;

* 8 of them are marginally irrelevant as they break SU(3) flavor symmetry.

* We have 3-dimensional conformal manifold on both sides.
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Matching of the superconformal index

» As a more refined check, we compute the superconformal index.

For G=SU(3), the full index is available using the SUSY enhancing RG flow from an
SU(2) gauge theory with and adjoint and 2 fund/anti-fundamental matters with
W= X¢2 + q194, + Mq»q, [Agarwal, Maruyoshi, JS *16]

« Using above description, we can compute the index for our N=1 dual theory.
[Kang, Lawrie, KH Lee, ]S "22]

The index perfectly agrees with that of N=4 SYM with G=SU(3)

o = (1= £8y) (1= 2 y) (17 — 1)
=G — 3G 04T - g + 1)
— TR0 — ) + 0GE - X g
+2x5") — °X52 (Xfg + 1) + 105X
+ 100 — X3 oxgt — 2x2) 4+,

I= Tr(f1)Ft3(P”+2j2)yzj1 UZ-fZ

i

Matching of the superconformal index (cont’d)
- Schur index

* The full index is not available for n>1, but the Schur limit of the index is

avallable' [N:Q(I% q, t) _ Tr(_1)ij1+j2+7'qu—j1+'rt13—%r

* In the g = t limit, the p-dependence drops out. [Gadde, Rastelli, Razamat,Yan *| 1]

» The Schur index for the D2(SU(2n+1)) theory is written in a succinct form

ID2(SI»'(2n+1)) ) — PE q . [Xie,Yan, Yau]
5 (g:2) = Xadj(2) [S, Xie,Yan]

which is the same as that of the free hypermultiplet upon g — q2.

» Had we known the full index for the D2(SU(2n+1) theory, we can compute the
index schematically as

3
I(p.q) = / (0] vee(2) [T 172 (2)| P=ryg=rly
- i=1

2 .
t—(pg) 5t
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Matching the index (cont’d)

We would like to compare the following two expressions:

I(p,q) = /[dz}]veC(z)H[DQ(z)"_)(pq)gﬂi IN:4(p7 Q) = /[dZ]Ivec(Z)Ichi(Z)3

1/3 2/3

(r9)'° — (pq)

Ini(2) = PE {mhdj(z)

)1/3

Now, take the limit g = t = (pg)'? or equivalently p — g>.  [Buican, Nishinaka 16]

Then the index for the adjoint chiral multiplet becomes identical to that of the
D2(SU(2n+1)) theory!

ISDZ(SU(ZTH»U)((I; z)=PE L qu Xadj(z)]

Therefore, in this limit, the index matches exactly!

N=1 gauging realizes the analogy between the D>G theory and the free theory.  [Buican, Laczko ’17]

Landscape of 4d SCFTs with a=c
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Central charges of 4d CFT

Conformal anomalies of a 4d CFT are parametrized by two parameters (central

charges) a & c:
) a

") = ——W~ — E
(T 1672 1672
* It is now well-established that a-function is a monotonically decreasing
function along the RG flow (a-theorem): [Cardy][Komargodski, Schwimmer]
aig < dyy

One can think of the a-function as a quantity that measures degrees of freedom.

The c-function, on the other-hand, does not always decrease along the RG flow.

Hofman-Maldacena bound on central charges

 The ratio a/c of central charges is bounded by unitarity: [Hofman, Maldacena]

1 a 31
E <—X< ﬁ (lower/upper bound saturated by free scalar/free vector)
c
» For superconformal theory:
I a 3 .
. N=1SCFT: E <-—X 5 (lower/upper bound saturated by free chiral/free vector)
c
1 a 5
. N=2 SCFT: 5 < — < — (lower/upper bound saturated by free hyper/free vector)
c

« N=8orN=4SCFT: a=c [Aharony, Evtikhiev]
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Theroleofa &c

* Any holographic theories have a = ¢ (for large N). [Henningson, Skenderis]

» When a # c, there is a correction to the celebrated entropy-viscosity ratio bound of
[Kovtun, Son, Starinet] O [Katz, Petrov][Buchel, Myers, Sinha]

n 1 c—a
Z>—(1- 4o
s 4r c

* Appears in the Cardy-like (high-temperature) limit of superconformal index:

[J. Kim, S. Kim, JS]
3¢c—2a > [Cabo-Bizet, Cassani, Martelli, Murthy]

ﬂz [Cassani, Komargodski]
[Choi, Kim, Kim, Nahmgoong]
This formula accounts for the entropy of supersymmetric black holes in AdSs [Benini, Milan]
[Cabo-Bizet, Cassani, Martelli, Murthy]
* ¢ — a appears in the universal part of entanglement entropy. [Perimutter, Rangamani, Rota]

Ip=qg=e") > exp <#

N'=2 Gauging @p [G] theories [Cecotti, Del Zotto, Giacomelli]

[Closset, Giacomelli, Schafer-Nameki, Wang]
[Kang, Lawrie, JS]

* In order to gauge the flavor and obtain SCFT, the 1-loop beta
function for the gauge group should vanish:

Po=0 o D k=4hy

i
flavor central charges k; : “matter” contribution to the beta
function.

« Consider gluing a number of & [G] theorles to form N=2 SCFT:

Zz(pl ) 4hV - Z——I’l— “\ ----

i=1 pl i=1 pl
* Only 4 non-trivial solutions: (2, 2, 2, 2), (3, 3, 3), (2, 4, 4), (2, 3, 6)
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['(G) theory with I" = D, E, E;, E;

[Kang, Lawrie, JS]

(p1.p2, 3, D4) f(G) Quivers via gauging Dp(G)s a=c

We get a = ¢ is when the
D(C) largest comark o of I satisfies

(2.2,2.2)  Du(G)  Dy(G) Dy(G)  3dim(G)
ged(hfyar)=1 = a=c

Ds(G)

Dg(G) ap, = 2, Qpg = 3, ap, = 4, gy = 6.

(1,3,3,3)  Eo(G) 2dim(G)
Dy(G) ‘(ci' D5(G) a = c¢ without any symmetry

- Dy(G) constraints! Genuinely N=2.
(1,2,4,4)  E7(G) 3dim(G)
Da(@) %} Pi(@) In holography, it prevents waa
D(G) correction in the effective

(1,2,3,6)  Es(G) 2dim(@) . . oo
Dy(C) i Do(C) supergravity action. Why??7

N=4 SYM and I (G) theory

- The Schur index of I'(G) theory is identical to that of the N=4 SYM upon rescaling!
It (@) = I/=4(gr; g2

» For the ﬁ4(SU(2f + 1)) theory, we find the index can be written in terms of MacMahon’s
generalized ‘sum-of-divisor’ function which is quasi-modular:

Iﬁ4(SU(2k+1)) (Q) = qik(kJrl)Ak(qQ) Z gt
_ _ k(k+1) A’»<q) = my )2 My
I%?%kﬁ»l)(Q) =q 2 Ak(q) 0<my <ma-<my (1 4 >2 o (1 —d )2

* There is an isomorphism between associated VOAs as a graded vector space.
[Buican, Nishinaka]

« More connections to N=4 SYM: 1 exactly marginal coupling, S-duality, 1-form center
symmetry Z(G), 2-group symmetry, non-invertible symmetry...
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N=1 SCFTs with a = ¢

[Kang, Lawrie, Lee, JS "21]

* One can construct even larger set of a = ¢ theories Dy, (G)
with minimal supersymmetry. 1
| , | Dy (G) —{Gr— Dy(G)
« Consider a number of & [G] theories gauged via /7N
: g D,,(G) Dy (@)
N=1 vector multiplet. P2 P
g e . . P1 P2 P3 P4 Ps P1 P2 P3 s Ps P P2 P3P Ps
« |t modifies the condition to be a CFT in the IR, since T s 12 s wen 13
the theory now RG flows. From asymptotic Ll om p 1281 <13 138 4 <u
freedom bound: Ll omop L2 44 p 1335 <7
N ( ) N L2 2 p p 12 4 5 <19 1 3 4 4 <5
2pi—1),, v 1 12 3 <6 p 12 4 6 <11 2 2 2 2 p
Z i hég < 6heg Z; >N-3 12 3 7 <4 1 2 4 7 <9 2 2 2 3 3
=1 i=1 " 1 2 3 8 <23 1 2 5 5 <9 2 2 2 3 4
1 2 3 9 <17 1 2 5 6 <7 2 2 2 3 5

* The IR SCFT has a number of U(1) flavor symmetry
originates from broken R-symmetry of each block. Tuples of (p))’s satisfying the
asymptotic freedom bound.

Landscape of N=1 SCFTs witha = ¢

[Kang, Lawrie, Lee, JS, in progress]
* a = c theories with less SUSY not only exists, but rather common!

* One can add 1 or 2 adjoint chiral multiplets on top of the previous setup. D (G) 4@‘\\
p /'u
« 1 adjoint: can attach up to 4 .EJZI,[G] theories. T, N
i = (P1p2), (2,2,p3), (2,3,<6), (2,4,4), (3,3,3), (2,2,2,2 Nad
pi = (p1,1), (2.2,5), ( ), (2,4,4), (3,3,3), ( )5 D) —GJ— Da(@)

« 2 adjoints: One can even have zero 9P[G] theories! / \

* The simplest Lagrangian model with a = ¢ aw~y ™ aw~ys  AWXY2 Ay vz e

N=1 gauge theory with 2 adjoints. R £ R
D A
« Can attach upto 2 9P[G]’s ‘ ‘ \
AW~ XE-1 AW~pX AW~ XEFL
* One can consider superpotential deformations of ADE type l l \
as in the case of adjoint SQCD. [Intriligator, Wecht] Dy (k =3,4,5) ? A (2<k<6)

* How common are the a = ¢ theories in the landscape of 4d CFTs?
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RG Flow from N=1 a = ¢ theory to N=4 SYM theory

[Kang, Lawrie, Lee, JS "23]

* |t turns out many (not all) of the a = ¢ theories we consider can be
deformed so that it RG flows to the N=4 SYM theory!

. QZP[G] theory has a relevant operator of dimension A = (p + 1)/p.

« Upon deforming QI,[G] theory via this operator, it flows to a theory of
|G| free chiral multiplets. [Xie,Yan]

« Therefore, by deforming our N=1, 2 a = ¢ SCFT using this operator,

we can effectively replace the 9P[G] block via a chiral multiplet in
the adjoint of G.

* Once we reach 3 adjoint chirals and nothing else, we get a theory
that is in the same conformal manifold as N=4 SYM!

Holographic dual of a=c
theories?
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Lagrangian ['(G) theory with " = D,, E¢, £, Eg

* What is the holographic dual of such a = ¢ theories? It should forbid particular type of
corrections in SUGRA action without any symmetry constraints. How?

» When G = SU(a¢), we recover Lagrangian affine quiver gauge theory obtained via £ D3-
branes probing ALE singularity C2/T".

D,(SU(pl)) = |[SUpO)—(SU((p — 1)) )— ---

* The holographic dual for f‘(G) theories have been known for ages: It is dual to the type 1IB
theory on AdS5 X S3/T with £ unit of 5-form flux through S°/T".

© © @ .
E7(SU(4f))
O—CD)—D (20) Mm @D—3E)—1D)—GED—20—®
O O—20—3E0—20—© @
R R : l Ey(SU6¢))
D,(SUQ2¢)) Ey(SUG3?)) O—@D—GD—@D—ED—G6)—@—2)

Holographic dual of ['(G) theory?

» For general G, our theory naturally generalizes the affine quiver theory by
‘fractionalization’: N = ar-¢ + m , £ D3-branes with ‘extra charge’ m/ar.

* |s there a string-theoretic/holographic realization for such configuration?

* One particular example of holographic dual: A, type Class-S with 4 twisted minimal
punctures realizes the D,(SU(2ZN + 1)) theory.

Dy(G)
[Beem, Peelaers]
Ds(G) # Ds(G) [Kang, Lawrie, Lee, Sacchi, JS]
Dy(G)

» Holographic dual for the (untwisted) class-S theories are known.

[Gaiotto, Maldacena][Nishinaka]
» Any good reason for a = ¢ from gravity perspective?
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Conclusion

Summary & future direction

Dy(SU(2n + 1))

« We have found an N=1 non-Lagrangian theory that flows in the IR v
D2(SU(2n + 1)) R D2 (SU(2n + 1))

to a point in the same conformal manifolds as N=4 SYM theory of
G=SU(2n+1). Maximal SUSY enhancement. e Sy of

« We have a ‘landscape’ of genuinely N=1, 2 SCFTs with @ = ¢, exact in N.

« The Schur index of N=2 SCFTs ['(G) is identical to that of N=4 SYM upon rescaling:
N: (63 (63 -
I (a) = 1= (™, g7
- Some of the N=1 SCFTs constructed out of gauging multiple Dp[G] theories flow to N=4 SYM
upon suitable deformation.

« Holographic interpretation? The term R,fy/m “forbidden” without any symmetry in SUGRA EFT.

* Any (generalized) symmetry constraint hidden in the landscape of a=c theories?

Thank you!
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Non-invertible symmetries and disk partition
functions

Satoshi Yamaguchi

ABSTRACT. Recently, the concept of symmetry has been generalized, and
what was not traditionally called symmetry is now being used similarly as
symmetry. In this talk, we discuss a class of such generalized symmetries,
called non-invertible symmetries, from the viewpoint of the lattice field the-
ories. In particular, we construct topological defects in four-dimensional Zs
lattice gauge theory, including the Kramers-Wannier-Wegner (KWW) duality
defect; the KWW duality defect is an example of non-invertible symmetries.
Also, we consider the system with a boundary and discuss the relations be-
tween the disk partition functions derived from the non-invertible symmetry.

(S. Yamaguchi) Osaka University
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Open string Witten indices of 2d N = (2,2)
GLSMs

Yutaka Yoshida

ABSTRACT. In our previous work, we have derived a supersymmetric lo-
calization formula for indices of 2d N' = (2,2) gauged linear sigma models
(GLSMs) on I x S'. In this talk, we consider the localization formula in
the Landau-Ginzburg(LG) phase and discuss BPS boundary conditions which
reproduce cylinder amplitudes with Recknagel-Schomerus boundary states in
Gepner models.

(Y. Yoshida) Meiji Gakuin University



