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Preface

This is the proceedings of the international conference “Integrable Systems and Quan-
tum Groups” held at Osaka Metropolitan University, Sugimoto Campus, General Educa-
tion Building, Room 810, during March 4th—8th, 2023, in honor of Masato Okado’s 60th
birthday. The conference was held as a part of OCAMI Joint Usage/Research Project.

One of the central problems in integrable systems is to solve the Yang-Baxter equa-
tion, which describes collisions of particles in statistical mechanics. Quantum group (also
known as quantized enveloping algebra), which is a purely mathematical object, was in-
vented to attack the problem in physics above. As a result, studies of quantum group and
related areas such as representation theory, (quantum) Lie superalgebra, quantum sym-
metric pair, crystal base, orthogonal polynomial, and symmetric function, have provided
remarkable results relevant to integrable systems.

The aim of the conference was to seek new developments in branches of mathematics
and physics above. It is quite difficult to become deeply familiar with all of these fields,
which have been developing at a remarkable pace in recent years. Hence, for new progress,
we need to bring together experts in both integrable systems and quantum groups to
exchange state-of-the-art information.

We invited seven experts of integrable systems or/and quantum group from both home
and abroad to the conference as speakers. The talks were broadcasted via Zoom. Some of
them are available on OCAMI’s YouTube channel (https://www.youtube.com/@ocami_
math4918/videos).

During the conference, we had approximately 20-30 participants in person and 30-40
online for each day. There were lively discussions among participants.

We are grateful to the participants of the conference for their contribution. The
conference was supported by JSPS KAKENHI Grant Numbers JP18K03250, JP20K 14286,
and JP21H04993.
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A BRIEF INTRODUCTION TO QUANTUM SYMMETRIC PAIRS

STEFAN KOLB

ABSTRACT. The present notes are an extended version of an introductory talk
on quantum symmetric pairs given at the OCAMI conference ‘Integrable Sys-
tems and Quantum Groups’ held at Osaka City University from 4-8 March
2023 in honor of Masato Okado’s 60th birthday.

1. Introduction. A Lie algebra g together with a Lie algebra automorphism 6 :
g — g such that 6% = idy is called symmetric. If (g,6) is symmetric then we have
g = €@ p where £ and p are the +1 and the —1 eigenspace of 0, respectively. Here
£ is a Lie subalgebra of g while p is a ¢-module. Hence the universal enveloping
algebra U (£) is a Hopf subalgebra of U(g). We refer to the pair (g, ) as a symmetric
pair. If g is a complex semisimple Lie algebra then £ is reductive and we can think
of the symmetric pair (g, £) as an infinitesimal realization of a compact Riemannian
symmetric space.

Throughout these notes we assume that g is a symmetrizable Kac-Moody al-
gebra. Hence there exists a Drinfeld-Jimbo quantized enveloping algebra Ug(g).
However, even if both g and ¢ are complex simple Lie algebras there is in general
no Hopf algebra embedding of Uy (¥) into U, (g), see [Brad4]. For g of finite type this
problem was first addressed in the early nineties by the groups around T. Koorn-
winder in Amsterdam and M. Noumi in Kobe, see [Nou96|, [Dij96], [NS95], with
the aim to construct quantum group analogs of compact symmetric spaces. In
the late nineties, G. Letzter independently developed a comprehensive theory of
quantum symmetric pairs of finite type [Let99], [Let02]. Letzter’s approach can be
formulated as follows:

Goal: Given (g, ), find all subalgebras B C U,(g) with the following properties:

L1) B is a right coideal of U,(g), that is A(B) C B® U,(g), where A denotes
the coproduct of Uqy(g).

L2) The non-restricted specialization of B coincides with U(¢).

L3) The subalgebra B C U,(g) is maximal with respect to properties 1) and 2).

We call subalgebras B C U,(g) with the above properties quantum symmetric
pair coideal subalgebras (QSP coideal subalgebras), and we refer to (U,(g), B) as a
quantum symmetric pair. For finite-dimensional g, Letzter constructed and classi-
fied all QSP coideal subalgebras of Uy(g), see [Let99], [Let02]. Her constructions
were extended to the Kac-Moody case in [Kol14].

The theory of quantum symmetric pairs has seen an explosion of activity since
the appearance of the preprint versions of the the papers [BW18] and [ES18] in
October 2013. It turned out that many constructions for Drinfeld-Jimbo quantum

2020 Mathematics Subject Classification. 17B37, 17B67.
Key words and phrases. Kac-Moody algebras, involutions, symmetric pairs, quantum groups,
coideal subalgebras.
1
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groups allow analogs for quantum symmetric pairs. H. Bao and W. Wang refer
to QSP coideal subalgebras as iquantum groups and to the program of finding
quantum symmetric pair analogs of results for Uy(g) as the s-program. Over the
past decade, W. Wang, his collaborators, and others have made fantastic progress.
Constructions which have been addressed in the i-program, at least partially, in-
clude the classification of representations, canonical and crystal bases, the universal
R-matrix, Lusztig’s braid group action on modules and on Ug(g), Hall algebra inter-
pretations of Uy (g), the Drinfeld-Kohno theorem, categorification, Drinfeld’s second
realization and more. There would be too many papers to cite for the present short
set of notes. Instead we refer the reader to W. Wang’s survey article in the pro-
ceedings of the ICM 2022, [Wan21], and references therein.

The aim of the present notes is to give a brief account of the construction of
QSP coideal subalgebras and of their fundamental algebraic properties. To this
end we revisit the paper [Koll4] which was built on Letzter’s work [Let99], [Let02].
We attempt to provide explanations and proofs but refer to the literature for more
technical arguments. We hope that this will provide the novice reader with an easy
entry point into the world of quantum symmetric pairs.

Even foundational aspects of the theory of quantum symmetric pairs are still
in flow. In the present notes we modify or amend the constructions in [Koll4] in
several ways, which we list in the following for the expert reader:

I) In the present notes we mostly work in the setting of generalized Satake dia-
grams proposed in [RV20]. This is a minor technical generalization of the setting
of Satake diagrams (or admissible pairs) considered in [Kol14] and does not affect
the proofs in the quantum group setting. Generalized Satake diagrams provide
additional examples of QSP coideal subalgebras, which are no longer related to in-
volutive Lie algebra automorphisms. An underlying classical theory was developed
in [RV22].

IT) Proposition 5.1 offers an alternative proof of the coideal property for QSP
coideal subalgebras. This proof relies on the description of the coproduct of Lusztig’s
braid group operators in terms of quasi R-matrices. The original proofs in Letzter’s
work and in [Koll4] rely on the interplay between Lusztig’s braid group automor-
phisms and the adjoint action of U,(g) on itself.

IIT) The QSP coideal subalgebras Bc ¢ as defined in [Kol14] depend on two fam-
ilies of parameters ¢ € C,s € S for explicitly described parameter sets C, S. In
[Kol14], following [Let99], [Let02], the QSP coideal subalgebras B s were intro-
duced in one go, in terms of generators inside Uy(g). It seems more natural to first
introduce the standard QSP coideal subalgebra B, = B¢ o. The additional parame-
ters s can then be added by a uniform procedure which works for any right coideal
subalgebra C' of a Hopf algebra H over a field K with coproduct A(h) = h(1) ® h(a)
for h € H. Namely, if x : C' — K is a character, that is a one-dimensional represen-
tation, then Cy = {x(c(1))c(2) | ¢ € C} is a right coideal subalgebra of H. As a right
H-comodule algebra, C is a homomorphic image of C, see Section 10 for details.
For quantum symmetric pairs, this perspective immediately implies that B. and
Be,s are isomorphic as right U,(g)-comodule algebras. Moreover, this construction
suggests a detailed analysis of the characters of B, which we indicate at the end of
Section 10. It turns out that there are non-standard QSP coideal subalgebras for
slightly more parameters than considered in [Let02] and [Kol14]. This phenomenon
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had already been observed elsewhere, see e.g. [BB10], [RV20], however, the general
perspective of twisting by a character allows a uniform treatment of these examples.
Many properties of quantum symmetric pairs are easier to prove in the standard
case s = 0, and twisting by a character often supports translation into properties

of Bes.

IV) In [Koll4], building on Letzter’s work [Let99], [Let02], we proved several
desirable properties of the QSP coideal subalgebra B, under the condition ¢ € C.
These properties include triangular decompositions of B, and U,(g), in particular
a g-analog of the Iwasawa decomposition, the specialization property L2), and the
fact that (U,(g), Be) is a quantum homogeneous space in the sense of, say, [Krél12].
In Theorems 7.2 and 8.2 of the present notes we show that each of these properties
is indeed equivalent to the property ¢ € C. This underscores the importance of the
choice of the parameter set C for the parameters c.

The talk underlying the present notes was originally planned as part of a three-
hour lecture series. A second talk covered the x-product interpretation of quantum
symmetric pairs, quasi K-matrices and defining relations along the lines of [KY21].
A third talk on universal K-matrices and braided module categories unfortunately
had to be cancelled. T hope to extend the present notes to include these topics
at some point in the future. The present notes already lay some of the necessary
groundwork.

Acknowledgements. 1 owe much gratitude to the organizers of the OCAMI
conference ‘Integrable Systems and Quantum Groups’, and to H. Watanabe in
particular, for the generous invitation and for their patience when I failed to deliver
to deadline.

2. Satake Diagrams. Letzter’s theory is based on the combinatorial description of
involutive automorphisms 6 : g — g in terms of Satake diagrams. Let I be an index
set and let (as5)i jer be the generalized Cartan matrix for g. Let II = {«;|i € I}
be a set of simple roots, @ = ZII the root lattice with positive cone Q1 = NyII,
and let W be the Weyl group with simple reflections {o; |i € I}. A Satake diagram
for g is a pair (X,7) where X C I is a subset of finite type and 7 : I — [ is a
diagram automorphism with 7(X) = X such that the following three properties are
satisfied:

S1) 72 =idy;

S2) 7|x = —wx, that is a ;) = —wx(a;) for all i € X;

S3) If i € I\ X and 7(i) = ¢ then a;(p%) € Z.
Here wyx denotes the longest element in the parabolic subgroup Wx C W and
p% is the half-sum of the positive coroots corresponding to X. Let h C g be a
Cartan subalgebra, and let e;, f;, h; for i € I be the Chevalley generators of g. Let
w : g — g be the Chevalley involution defined by

(21) w|h = *idh, UJ(@i) = *fu w(fz) = —e€;, for alli € I.
For i € I define an automorphism Ad(c;) of g by
(2.2) Ad(o;) = exp(ad(e;)) exp(ad(—f;)) exp(ad(e;)).

The map o; — Ad(o;) defines a braid group action on g. Hence, for any w € W
we obtain a well-defined automorphism Ad(w) of g. Let s = s(X,7) : Q@ — {£1}
be a group homomorphism such that s(o;) = 1if j € X or 7(j) = j, and s(¢;) =
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(—1)aj(2p§<)s(aT(j)) if j ¢ X and 7(j) # j. Define an automorphism Ad(s) : g — g
by Ad(s)(z) = s(B)x for all x in the root space gg.

A Lie algebra automorphism ¢ : g — g is said to be of the second kind if the
standard Borel subalgebra b™ C g satisfies dim(p(b7)Nb™) < co. For example, the
Chevalley involution given by (2.1) is of the second kind. The following theorem
provides the main conceptual idea behind the construction of QSP coideal subal-
gebras in terms of Satake diagrams. Any diagram automorphism 7 can be lifted to
a Lie algebra automorphism of g, see [KW92, 4.23].

Theorem 2.1. ([KW92], see also [Koll4, Theorem 2.7]) The map
(2.3) (X,7)—0(X,7) ;= Ad(s(X, 7)) o Ad(wx) o Tow

defines a bijection between the set of Satake diagrams (up to the action by diagram
automorphisms) and the set of involutive Lie algebra automorphisms of the second
kind of g (up to conjugation by automorphisms of g).

The involutive Lie algebra automorphism 6 = 6(X, 7) defined by (2.3) maps the
Cartan subalgebra b to itself and the restriction to h can by expressed in terms of
the Weyl group action as

9|h = —Wx OT.

Hence, 0 induces a map on h* which in the following we also write as § = —wx o 7.

For any subset X C I of finite type let gx C g be the semisimple Lie subalgebra
algebra generated by {e;, fi,hi|i € X}. If (X,7) is a Satake diagram and 0 =
6(X,7) then 6(z) = z for all z € gx. Moreover, one checks that the Lie subalgebra
£ is generated by gx, h? = h N € and the elements

(2.4) fi +0(f:) = fi — Ad(s) o Ad(wx )(er;)) forallie I\ X,

see [Koll4, Lemma 2.8]. In Section 5, we will define the QSP coideal subalge-
bra B C Uy(g) corresponding to the Satake diagram (X, 7) as the subalgebra of
Uq(g) generated by suitable quantum group analogs of gx, h? and the elements in
Equation (2.4).

For finite-dimensional or affine g the information of a Satake diagram can be
encoded in the Dynkin diagram of g. The nodes corresponding to X are colored
back and the diagram automorphism 7 is indicated by arrows in the diagram. With
this convention, a complete list of Satake diagrams for finite-dimensional g can be
found in [Ara62, pp. 32/33]. The rank of a Satake diagram is the number of 7-
orbits in I\ X. A rank 1 subdiagram of a Satake diagram is the 7-orbit of a
connected component of {i} U X containing ¢ for some ¢ € I\ X. The notion of
rank 1 subdiagrams makes sense for any pair (X, 7) with 7(X) = X which satisfies
conditions S1) and S2).

It was observed by V. Regelskis and B. Vlaar that, for the purpose of quantum
symmetric pairs, condition (S3) in the definition of a Satake diagram can be replaced
by the weaker condition

S3) If r(i) =tand aj; = —1fori e I'\ X, j € X, then 0(a;) # —; — a5,
see [RV20]. The condition S3’) is equivalent to (X, 7) not having a rank 1 subdia-
gram of the following form:
o—e

As explained in [RV20, Section 4], the construction of quantum symmetric pairs
and much of their theory remain valid for generalized Satake diagrams.
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Remark 2.2. Every Satake diagram is a generalized Satake diagram, but the con-
verse does not hold. Indeed, even in finite type, the diagram

&——>0

is a generalized Satake diagram but does not satisfy condition S3).

3. Quantum group preliminaries. By construction (h, I, ITV) with ITIV = {h; |i €
I} is a minimal realization of the symmetrizable, generalized Cartan matrix A. We
extend IIY to a basis ITY,, of b such that a;(d) € Z for alli € I, d € I, \IT" and we
set Qe = ZI1Y,,. Define the weight lattice by P = {\ € h* | AM(Q) € Z}. In this
situation the abelian groups Y = QY,, and X = P together with the embeddings
I —-Y,i— h;and I — X, i — «a; form an X-regular and Y-regular root datum
in the sense of [Lus94, Section 2.2].

Let D = diag(e; |,4 € I) be a diagonalizing matrix for A. There exists a non-
degenerate, symmetric bilinear form on § such that (h;, h) = «;(h)/e; for all h € b,
i €1 and (d',d") =0 for all d’,d” € Y, \ IIV. This pairing induces a pairing on
h* which we denote by the same symbol.

In the present notes we work over the field of rational functions K(g) where K is
a field of characteristic 0. We define the quantized enveloping algebra U,(g) as the
associative K(q)-algebra generated by elements F;, F;, K, for all i € I, h € QY%
and relations given [Lus94, 3.1.1]. In particular, the generators E;, F; satisfy the
quantum Serre relations

Sii(Ei, Ej) =0 = S;;(F;, Fy)
for all 4,5 € I, where

1—a;j

(3‘1) Sij(xzy) = Z (—1)2 |:1 _Zaij:| vxl—aij—fyxé

£=0

with ¢; = ¢% denotes the (non-commutative) quantum Serre polynomial [Lus94,
Corollary 33.1.5]. We will use the notation K; = K., for all ¢ € I. With this
notation, Uy(g) is a Hopf algebra with coproduct A given by

AE)=E®1+K E, AF)=FoK '+1aF, AK,)=K,®K),

for alli € I, h € QY. Let U = U,(g’) be the Hopf subalgebra of U,(g) generated
by the elements Ei,Fi,Kiﬂ for all i € I. As usual, let U, U~ and U° be the
subalgebras of U,(g) generated by the elements of the sets {E; |i € I}, {F;|i € I}
and {Kj, | h € QY. }, respectively, and define UZ = UTU°, US = U~U". We also
write U for the subalgebra of U°® generated by {K;|i € I}. For any U%module
M and any X\ € P we write My = {m € M | Km = ¢*™m for all h € QY,,}. This
notation can be applied in particular to U+, U~ and UZ, U< under the left adjoint
action of UY. For any subset X C I of finite type, define U,(gx) C U to be the
Hopf subalgebra of U generated by E;, F;, KilLl for i € X. Moreover, we write U;,
Uy and U to denote the subalgebras of U,(gx) generated by the elements of the
sets {E;|i € X}, {F;|i € X} and {Kjil |j € X}, respectively.

By [Lus94, Chapter 1] there exists a unique K(q)-bilinear pairing (,) : US ®
Uz — K(q) such that for all z,2’ € UZ, y,y/ € US and g,h € QY. the following
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relations hold

(y,22') = (A(y), 2’ ® 2), (wy',z) = (y@y, Az)),
-1
<Kg’Kh> :qi(g’h)v <Fiij> :6ij$’
<KhaEi> = 0? <F17Kh> = O

Here we follow the conventions used in the finite case in [Jan96, 6.12]. The restric-
tion of the pairing (, ) to UZ, ® U} vanishes if u # v and is non-degenerate if
p = v. Forany p € Q" let {F,;} C UZ, and {E, ;} C U} be dual bases with
respect to the pairing (, ) and define ©, = 7, F, ; ® E, ;. For simplicity, we
usually suppress that summation and write formally ©, = F, ® E,. The quasi
R-matrix for Uy(g) is defined by

(3.2) ©= > F,®E,
reQt
see [Lus94, 4.1.2]. For any p = ) ;i € Q we write K, = [[,c; K. With

this notation we can use the properties of the skew-pairing (, ) to determine the
coproducts

(A®id)(©,) = > F®F,K,'®E,E\
Av=p

([d® A)(0,) = > F\F,@EK,®E,
Arv=p

for all p1, see [Lus94, 4.2.2].

4. Completions of U,(g). The quasi R-matrix for U,(g) defined by (3.2) belongs
to a larger algebra ?/0(2) which contains Uy(g) ® Uy(g) as a subalgebra. To define

%0(2) let Oiny denote the category of integrable U,(g)-modules in category O, see
[BK19, Section 3.1] for our conventions. The category Oyt is semisimple, sim-
ple objects in Oy, are irreducible highest weight modules with dominant integral
highest weights. If g is finite-dimensional then O coincides with the category of
finite-dimensional Ugy(g)-modules of type 1.

Let For : Oy — Vect be the forgetful functor into the category of K(q)-vector
spaces and define % = End(For). Elements of % are families (fa)neob(0im)
of vector space endomorphisms fy; : M — M such that for any U,(g)-module
homomorphism ¢ : M — N the relation ¢ o fyy = fn o ¢ holds. Multiplication by
elements of U,(g) gives us such a family of vector space endomorphisms, and hence
Uq(g) may be considered as a subalgebra of % .

Example 4.1. For any map § : P — K(q) and M € Ob(Oint) define a linear
map 0 M — M by Ey(m) = EAN)m for all m € My, X € P. The family
(6a1) Mecob(0s,) defines an element in % which we also denote by .

Example 4.2. For any i € I and M € Ob(Oiy) let Ty pr - M — M be the linear
automorphism denoted by T} 5, in [Lus94, 5.2]. The family T; = (Ti m) MecOb(Om)
defines an invertible element in % . By [Lus94, 39.4.3] the elements T; € % for
i € I satisfy the braid relations of W.
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Moreover, conjugation by T; leaves the subalgebra Uy(g) C % invariant. Hence
there exist algebra automorphisms TV : U,(g) — U,(g) such that

T (um) = T (w) Ty pr(m) for all M € Ob(Oiny),m € M,u € Uy(g),

see [Lus94, 37.1.2]. The automorphism T is a quantum group analog of the action
Ad(o;) defined by Equation (2.2). By construction the algebra automorphisms T
also satisfy the braid relations of W. In particular, for each element w € W there
exists a uniquely determined element Ty = (Tw, M) Me0Ob(Om) € % and a uniquely
determined algebra automorphism TY : U,(g) — Uy(g), and TY coincides with
congugation by T,,. Following common practice, we omit the superscript U from
now on and use the same symbol for the braid group action on modules in Oy and
on Ugy(g).

The algebra % is no Hopf algebra. To define a larger algebra containing Uy, (g) ®
U,(g), consider the forgetful functor For® . O x Oms — Vect given on objects
by (M,N) — M ® N and define %0(2) = End(For?). Elements of 9/0@ are
families (far,,015) 0y, Mo €Ob(04) Of linear maps fas, s, : My @ My — My @ My such
that for any two U,(g)-module homomorphism ¢y /5 : My/3 — Ny/o the relation
(p1 ® 92) 0 fam v, = fny N, © (91 ® 2) holds.

Example 4.3. Any infinite sum ® = ZH6Q+ b, ® u, with u, € Uj and b, €

Uq(g) defines an element %0(2). Indeed, the element ® has a well-defined action on
My @ My for My, My € Ob(Oint) as only finitely many terms survive on the second
tensor factor. In particular, we can consider the quasi R-matriz © defined by (3.2)

as an element of %0(2).

We can now define an algebra homomorphism

AU — %0(2)» A((fM) Meob(Oimy)) = (fMEN) M NEOB(O1m)-
This algebra homomorphism restricts to the usual coproduct on Uy(g) C % . Let
X C I be a subset of finite type. Recall that wx € W denotes the longest element
of the parabolic subgroup corresponding to X. As discussed above, we have a
corresponding braid group operator T,,, € % . The coproduct A(Ty,, ) € %0(2) can
be expressed in terms of the quasi R-matrix by the formula

(4.1) A(Tuy) = (Tyy ® Ty ) 0 O

where Ox denotes the quasi R-matrix of U,(gx), see for example [Lus94, Proposi-
tion 5.3.4], [CP94, Lemma 8.3.11], [BK19, Lemma 3.8].

5. Construction of QSP coideal subalgebras. Let (X, 7) be a generalized Sa-
take diagram and let ¢ = (¢;);enx € K(g)™\X be a family of parameters. Recall
from the comments below Theorem 2.1 that we write § = —wx7 : h* — h*. With
this notation we set Q¥ = {a € Q|6(a) = a}. Define Ug/ = K(g)(K,|a € Q%)
and observe that

U = K(q)(K:K .}y, K |i € T\ X, j € X)).

Define Be = Be(X,7) C U,(g') to be the subalgebra generated by U, (gx), UY" and
the elements

(5.1) B = F; — ;T (B,;))K; " foralliel\X.
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Observe that U,(gx) and Ug/ are quantum group analogs of gx and €N g’ Nk,
respectively. Hence B, may be considered as a quantum group analog of U(¥)
for ¥ := g’ N €. In the following we will show that the subalgebra B. C U,(g’)
satisfies the desired properties L1) and L2) formulated in Section 1, for a suitable
choice of parameters c. The coideal property holds independently of the choice of
parameters.

Proposition 5.1. The subalgebra B. is a right coideal of U,(g'), that is

A(Be) C B. @ Uy,(g').
Proof. As Uy(gx) and Ug/ are Hopf subalgebras of U,(g’) it suffices to check that
the elements B; defined by (5.1) satisfy A(B;) € Be @ Uy(g’) for all i € I\ X. To

this end consider T, as an element of the algebra % discussed in Section 4. In %
we can hence write

B = F; — ¢;Tw, By Ty L K71

The coproduct formulas for U,(g) and (4.1) hence give us
AB)=F oK '+10F

— ¢i(Tuwy ®T w5 )OX (Br(y @14+ K, (1), (1)) O x (Tuy @Twy )~ (K ' @ K; )
in ?/0(2). Similar to (3.2), we write formally O x = ZQ} Fx, ® Ex, with Fx , €
Uy and Ex ,, € U;g. As ©x commutes with E.;) ® 1 in %0(2) we obtain
(5.2) AB)=B;®K;'+1®F,

= €i( Ty T )Ox (K (o) ® Er ()0 (Tuy T ) T (K @ K7,
The above formula implies that O3 (K, ;) ® E,;))Ox € Uy(¢') ® Uy(g'). Given
the specific form of © x we hence obtain
0% (K1) ® Er(;))Ox € Us K-y @ U™.
As Ty (UxKr3y) C U;U%KT@), we obtain
AB) - B; @K' =18 F, e ULUY @ U,(¢).

This implies A(B;) € Be ® Uy(gx) and concludes the proof of the proposition. [

Remark 5.2. The element T, (E,(;)) can be expressed in terms of the left-adjoint
action of Uy (gx) on E(;). This allows an alternative proof of the coideal property
for Be, see [Koll4, Proposition 5.2] .

To simplify notation define H = H(X,7) = Uy(gx)UY and H> = ULUY'. We
call H(X, 7) the partial Levi factor corresponding to the generalized Satake diagram
(X, 7). As noted previously, H(X, ) is a Hopf subalgebra of U,(g’).

It is convenient to set B; = F; for i € X. With this notation the generators of
B, satisfy the relations

K;j—K;!

(53) EJ.BZ — BZEJ = (Sij — -1
J J

(5.4) KsB; = q P*)B,Ks  forallicl, feQ’.

foralliel,je X,
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For any multi-index J = (j1,...,Jm) € I"™ we write Fy = Fj, ... Fj and By =
Bj, ... Bj,,. The relations (5.3) and (5.4) imply that

Be=Y HZB; =Y B;H>
J J

where we sum over all multi-indices J of any length. Let J C UleNO I be a subset
such that {F;|J € J} is a linear basis of U~.
Define a set of nonzero parameters C C (K(g)*)"\X by

(5.5) C={ce K(q))\¥|¢ = @ forall i € I'\ X with (o, 0(c;)) = 0}.

We will see in Theorem 7.2 that the coideal subalgebras B, show good behaviour if
and only if ¢ € C. For example, we will see that in this case {B;|J € J} is a left
and right HZ-module basis of Be.

Definition 5.3. Let (X,7) be a generalized Satake diagram and ¢ € C. Then the
subalgebra Be is called a standard quantum symmetric pair coideal subalgebra (QSP
coideal subalgebra) of Uy(g').

We will discuss non-standard QSP coideal subalgebras in Section 10.

6. Triangular decompositions of U,(g’). Recall that the algebra U = Uy(g’)
has a triangular decomposition

(6.1) U-oU”Ut=U

in the sense that the multiplication map from the left to the right is a linear iso-
morphism. We recall some related tensor product decompositions. For any sub-
set X C I of finite type let Lx = K(q)(F;, E;, K;*'|i € I,j € X) denote the
corresponding Levi factor, and let P = K(q)(Fj, E;,Ki'|i € I1,j € X) and
Py = K(q)(Fi7Ej,Kf1 |i € I,j € X) be the corresponding positive and nega-
tive standard parabolic subalgebras of U, respectively. Let ad; and ad, denote
the left and right adjoint action of U on itself, defined in Sweedler notation by
ad;(u)z = u1)zS(ue)) and ad,(u)(z) = S(ua))zue). Let RY C UT be the sub-
algebra generated by the subspaces ad;(Lx)(E;) for i € I\ X, and similarly, let
Ry C U~ be the subalgebra generated by the subspaces ad, (Lx)(F;) fori € I\ X.
The standard parabolic subalgebras P)j? are Radford biproducts of Lx and Ri,
[Rad85]. Moreover, R§ can be described in terms of Lusztig’s braid group action.
The following Lemma is well-known, see for example [KY21, 2.2] for a detailed
proof of the statements about R .

Lemma 6.1. Let X C I be a subset of finite type. Then
RL =UTNT, (U"), Ry=U NTyu (U7)
and the multiplications maps Lx ® R;E( — 77; are linear isomorphisms.

Comparing the triangular decomposition (6.1) with the above lemma, we obtain
linear isomorphisms

(6.2) Ry@Ux 22U, UfoRL=U"
via multiplication, and therefore

(6.3) Ry®Lx @R =2 U.
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7. The standard filtration of B.. We call the subalgebra A = A(X,7) :=
U~H(X,7) C U the partial parabolic subalgebra corresponding to the general-
ized Satake diagram (X, 7). The triangular decomposition (6.1) for U implies the
triangular decomposition
(7.1) U U oUt = A
for the partial parabolic subalgebra A. Let I, C I\ X denote any fixed set of
representatives of all T-orbits in 7\ X and define

U =K(q)[KF i € I].
Multiplication gives a linear isomorphism
(7.2) Uy oUY ~uY
Hence, by (6.1) and (6.2) we obtain a triangular decomposition
(7.3) AQUY @ RL 2 U.
The algebra A is Ng-graded via a degree function on the generators given by

deg(u) =0 ifueH,
deg(F))=1 ifiel\X.

Let UP°Y = UP°Y (X, 1) be the subalgebra of U generated by A and the elements
E; = BK; ' K Horalli € I\NX. As Ty (Br)) K, € UL B ) K UL Koo K
we have B, C UP°Y. The triangular decomposition (6.1) of U implies that

(7.4) UY @ K(q)[K; i€ L] = U nUY.

Recall that we write Ko = [[;c; K" for a =37, nsa; € Q. The following lemma

will be needed to prove the implication 5) = 4) of the main Theorem 7.2 below.

Lemma 7.1. If BeNU” # Uy’ then there eists a nonzero a € —3,c; Noa; with
K, € B..

Proof. Assume that 3 .o aaKa € Be N U\ UY for some a, € K(g). Then, by
the coideal property of Be, there exists a non-zero o € @ \ QY such that K, € B..
By the decomposition (7.4), we can write @ = o + o/ with o/ € Q% and o/ €
— > ier, Noa; \ {0}. Multiplication by K_,e shows that K, € Be. O

Define a degree function on the generators of B by

deg(u) =0 if ueH,
deg(B;) =1 ifiel\X.

This degree function defines a filtration F, on the algebra B.. An element of B,
belongs to F, B, if it can be written as a polynomial in the generators, involving
at most n of the generators B; for ¢ € I \ X in each monomial.

Let p = p(x; |i € I) be a homogeneous, non-commutative polynomial of degree m
in the variables z; for i € I with coefficients in #=. Here ‘homogeneous of degree m’
means that each monomial contains precisely m factors x; with i € I'\ X. Let p(B)
denote the element of B, obtained by evaluating z; at B; for all ¢ € I. Similarly,
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let p(F) denote the element of A obtained by evaluating z; at F; for all i € I. The
triangular decomposition (6.1) implies that

p(B) € Fm-1(Be) = p(F)=0.
Hence we obtain a surjective homomorphism of graded algebras
(7.5) prgr(B.) — A

satisfying ¢(B;) = F; for all i € I and ¢(u) = u for all u € H. We would like to
know under which conditions the map ¢ is an isomorphism. Recall that we write
U = Uy(¢') and recall the definition of the set of multi-indices J given at the end
of Section 5.

Theorem 7.2. Let (X,7) be a generalized Satake diagram and c = (¢;)icn\x €
K(q)"\X. The following statements are equivalent:
1) The map ¢ given by (7.5) is an isomorphism of algebras.
2) The multiplication map mult, : BC®U£/®R} — U is a linear isomorphism.
3) The set {By|J € J} is a basis of Be as a right (or left) H=-module.
) B.nUY =0y’
5) U is a free left B.-module.
6) The coefficients ¢ = (¢;)iep\x satisfy the relation

Ci = Cr(i) foralli e I'\ X with (a;,0(c;)) = 0.

N

Proof. 1) & 2): Via the triangular decomposition (7.3), the grading of A induces
a filtration of U as a vector space. On the other hand, the filtration on B¢ induces
a filtration on B, ® UQ’ ®R}. The multiplication map mult, is filtered with respect
to these two filtrations. The associated graded map is (¢ ® id ® id) composed with
the multiplication mult4 : A ® UQI ®RY — U. As mult4 is an isomorphism by
(7.3), we see that gr(mult.) is an isomorphism if and only if ¢ is an isomorphism.
1) & 3): Consider the subspace Wy = Y- ;. ByH= of Bc. The filtration F on
Be induces a filtration on W and we have an inclusion

gr(Wy) < gr(Be)

By the triangular decomposition (7.1) the algebra A is a free right H=-module with
basis {Fy|J € J}. As o8 (By) = Fy for all J € J, the map ¢ 048" is a bijection.
Hence 8" is a bijection if and only if ¢ is a bijection. Moreover, as {F;|J € J}
is a basis of the right H=-module A, the set {B;|.J € J} is a basis of the right
HZ-module B, if and only if ¢ is bijective.

2) = 4): By definition of B we have U’ C Be. If 2) holds, then the decomposition
(7.2) implies that Be cannot contain any element of U\ UY’.

4) = 5): The Hopf algebra U is pointed with coradical U%. If 4) holds then
Be N U is invariant under the antipode S of U. By [Mas91, Proposition 1.4] this
means that U is free as a left (and right) B.-module.

5) = 4): Assume that B N U £ Ug/. Lemma 7.1 implies that there exist a
nonzero a € — ZiGIT Nooy; with K, € Be. As K, is not invertible in B, C UP°Y,
we obtain that KB, is a proper right submodule of B.. However, the induced map
KoB.®p, U — B:.®p, U is surjective. Hence U cannot be free as a left B.-module.
4) = 6): Let ¢ € I\ X such that 7(¢) # ¢ and (o;,0(c;)) = 0. By [Koll4,
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Lemma 5.3] we have §(a;) = —a, ¢y and (ay, o)) = 0 in this case, and hence
B;=F;, — ciET(i)Ki_l and B = Fr4) — cT(i)EiKT_é). A direct calculation gives

K;— K1 Koy — K

i - T(3) 7-—1
(7.6) [Bi, Byiy] = criiy———5 K-} — e UK
() ()qz'—qil () G —q !
Hence, if ¢; # c;(;) then Ki_lKT_(i) € Bc. This would be a contradiction to 4).
6) = 2): This is the statement of [Koll4, Proposition 6.3] up to a reordering of
factors. 0

Remarks 7.3. 1. If we assume ¢; # 0 for all i € I\ X, then the theorem states that
B. has any of the properties 1)-5) if and only if B. is a QSP coideal subalgebra as
defined in Definition 5.3.

2. The triangular decomposition in part 2) of the theorem is commonly known as
the quantum Iwasawa decomposition.

3. The final implication 6) = 2) is the hardest part of the proof. It hinges on a
subtle argument involving the evaluation of ¢-Serre polynomials on the generators
B for i € I, see [Let02, Section 7] and [Kol14, Corollary 5.17].

4. By Lemma 7.1 and the decomposition 7.4, the subalgebra Ug/ is the maximal
subalgebra of U "M B, which is closed under the antipode S. Hence condition 4) in
Theorem 7.2 is equivalent to the statement that U N B, is a Hopf subalgebra of
U. As U is pointed with coradical U 0/, this condition is equivalent to the faithful
flatness of U as a left (or right) B.-module, see [Mas91]. A right coideal subalgebra
C of a Hopf algebra H such that H is faithfully flat as a right C-module is commonly
called a quantum homogeneous space, see [Krdl2]. Statements 4) and 5) of Theorem
7.2 hence express the desirable fact that the pair (U, B.) is a quantum homogeneous
space.

8. The specialization property. We briefly recall non-restricted specialization
as outlined in [CK90, 1.5]. As in [Koll4, Section 10] we follow the presentation in
[HK02]. Let A = K[g](4—1) be the localization of the polynomial ring K[q] at the
prime ideal (¢ — 1). For any i € I we set (K;;0), = I;fll. The A-form U}, of
U = U,(¢') is the A-subalgebra of U generated by the elements E;, Fi7Kf1, and
(K;;0), for all ¢ € I. The field K is an A-module via evaluation at 1. The algebra
Uy = K®a U, is called the specialization of U at ¢ = 1.

For any = € U} we write T to denote its image in U;. The following result is
well-known.

Theorem 8.1. ([CK90, Proposition 1.5], see also [HK02, Theorem 3.4.9]) There
exists an isomorphism of algebras U] — U(g') such that E; — e;, F; — f; and
(KZ'; 0)q = Ezhl

For any Satake diagram (X, 7) recall the signs s(c;) in the construction of the
involution 6(X,7) in Theorem 2.1. We say that a set of parameters ¢ = (¢;) € AN\X
is specializable if ¢;(1) = s(a,(;)). If ¢ € AP\X is specializable then the generators
B; of B. belong to Uj and satisfy B; = fi + 0(f;) for all i € T\ X, see [Koll4,
Corollary 10.3].

For any subspace W C U we define W = K®a (W NUY) CU;. We call W the
specialization of the subspace W. The subalgebra B has the desired specialization
if and only if the parameters satisfy the conditions in Theorem 7.2. Indeed, let
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(X, 7) be a Satake diagram and write ¥ = €N g’ where ¢ is the Lie subalgebra fixed
under the involution (X, 7). By [Koll4, Theorem 10.8] we know that condition 6)
in Theorem 7.2 implies that B, = U(¥). Conversely, if condition 6) in Theorem
7.2 fails, then we have seen in the proof of the implication 4) = 6) of the Theorem
7.2 that K; 'K_; € B for some i € I\ X with ¢ # 7(i) and hence K;* € Be.
This implies that h; € B., however, h; ¢ £. We summarize the discussion in the
following Theorem.

Theorem 8.2. Let (X,7) be a Satake diagram and ¢ € A™NX specializable. Then
Be = U(¥) if and only if the equivalent conditions in Theorem 7.2 hold.

Remark 8.3. It is natural to ask how Theorem 8.2 extends to generalized Satake
diagrams and general parameters in AT\X. In [RV20], [RV22] V. Regelskis and
B. Vlaar introduced the notions of pseudo-involutions and associated pseudo-fixed-
point subalgebras. We expect that the above theorem extends to this setting.

9. Generators and relations for B.. Let (X, 7) be a generalized Satake diagram,
c € C and B the corresponding QSP coideal subalgebra. For i,j € I we can
evaluate the quantum Serre polynomial S;;(x,y) defined by (3.1) on the generators
B;, Bj of Bc. By definition, we have S;;(B;, Bj) € Feg(i,j)(Be) where

2—ay ifijel\X,

l—a; ifiel\X,j€eX,
deg(ig) = {140 BIEIN

1 ifieX, jel\X,

0 ifi,jeX.
By the equivalence 1) < 6) of Theorem 7.2 there exist elements Cj;(c) € Faeg(i,j)—1(Be)
such that
(9.1) S;i(Bi, By) = Cyj(c) foralli,jel,i+#j..

Comparison with the defining relations of the partial parabolic subalgebra A then
implies the following result. Recall that we write #= = ULUY’".

Theorem 9.1. [Let02, Theorem 7.4], [Kol14, Theorem 7.1] Let ¢ € C. The algebra
B. is generated over HZ by the elements B; fori € I subject to the defining relations
(5.3), (5.4) and (9.1).

The deformed quantum Serre relations (9.1) can be made explicit, see [KY21]
and references therein.

Examples 9.2. We write down the relations (9.1) for three explicit examples.

(1) Let A = (_21 _21) with I = {1,2}, that is g = sl3(C), and choose
(X,7) = (0,id). In this case, C = (K(q)*)? and B. C U,(sl3(C)) is the
subalgebra generated by the elements B; = F; — ciEinl fori=1,2. The
relations (9.1) are given explicitly by

(9-2) BiBj —(¢+4q"")BiB;Bi + B; B} = —qc; B;
for {i,j} =1
(2) Let A = _22 ;), that is g = slo(C), and choose (X,7) = (0,id). To

account for the affine situation, we write I = {0,1}. The generators of Be
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are again given by B; = F; —ciEiKi_l fori=0,1, but the defining relations
(9.1) now read

B}Bj — [3],B} B; B + [3],B:iB; B} — B;B} = q(q+q")*ci(B;Bi — B;B;)
for {i,j} ={0,1} where (3], = ¢* + 1+ ¢~ 2, see [Koll4, Example 7.6].

(3) Let A = (_22 22> as before but now choose (X,7) = (0,(01)) for I =
{0,1}. The generators of Be are given by B; = F;—c; E;K; " for {i,j} =1,
and the defining relations (9.1) read

B} B;~[3]¢B}B; Bi + [34B:iB; B} — B;B} =
g (1=®) 1+ @) B KK + ¢ (1 - ¢ )1+ ¢ ) BIK K
again for {i,j} =1.

10. Non-standard QSP coideal subalgebras. Let k be a field. For any unital

k-algebra A we write A to denote the set of unital k-algebra homomorphisms Y :

A— k. We refer to elements of A as characters of A. If H is a Hopf algebra over

k then Hisa group. If C' C H is a right coideal subalgebra then the group H acts

on C from the right via

X < p(e) = x(cqy)ulee)) forall y € C, p € H and c € C.

Moreover, for any y € C the set

Cy =A{x(cqy)e@) [c€ C}
is a right coideal subalgebra of H, and the map p, : C — C, defined by
(10.1) px(c) = x(cy)e) forallce C
is a surjective homomorphism of right H-comodule algebras. Taking the perspective
of quantum homogeneous spaces, we refer to the right coideal subalgebra Cy, C H
as the shift of basepoint of C by the character x.

We return to the specific setting of these notes. Let (X,7) be a generahzed
Satake diagram and ¢ € C. For any y € B there exists a character pu € U such that
(X <1)|v,(ax) = €lu,(gx)- In the following we hence restrict to characters x € B.
with X|v, (gx) = €lv,(ax)- Define a subset I,,; C I by

Ins={ieI\X|7(i)=1iand a;(h;) =0Vj € X}.

Proposition 10.1. Let ¢ € C and x € Be a character such that x(u) = e(u) for
alluw € Uy(gx). For any i € I\ X define t; = x(K; K )) and s; = x(B;). Then
the following hold:

(1) If 7(i) =i then t; = 1.

(2) If 7(4) # i and («;,0(e;)) = 0 then t; = £1.

(3) Ifi ¢ I,s then s; = 0.

Proof. If 7(i) = i there is nothing to prove. If 7(¢) # ¢ and (o, 0(c;)) = 0 then the
condition ¢ € C, Equation (5.4) and Equation (7.6) imply that
_ ) )
KK LBy = BIGK L, KK By = 672 Bry KK,
KK G — K Ky 3
BiB.iy — Br@yBi = ¢
qi — ql
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Hence the subalgebra of B, generated by B;, B, ;) and (KiKT_(,li))jEl is isomorphic to
Uy, (s2(C)). Hence KiKT_é) acts as =1 in any one-dimensional representation of Be.

Finally, if 7(i) # 7 then KiK;é)Bi = q;2+a”“)BiKiK;é). Hence, any character y
of B satisfies x(B;) = 0 in this case. Similarly, if o;(h;) # 0 then (o;, ;) # 1 and

hence the relation K;B; = q_(”““f)Bin implies that x(B;) = 0. O

Examples 10.2. (1) Consider Example 9.2.(1). In this case I,s = I. Assume

that x € Z/S‘: and write x(B;) = s; fori=1,2. If s; # 0 then the relation
(9.2) implies that (2 — (¢ +q~1))s? = —qc; where {i,j} = {1,2}.

(2) Consider Example 9.2.(2). In this case there exist x € Be with x(B;) = s;
for all sg,s1 € K(gq).

(3) Consider Exzample 9.2.(8). By Proposition 10.1.(3) any x € B. satisfies
x(B;) = 0 for i = 0,1. However, there exists a unique X € l/’)’; with
X(KoK 1) = to for any ty € K(g)*.

Any x € l/’j’: with x|v,(gx) = €lv,(ax) s uniquely determined by two parameter
families s = (s;);cr x € K(¢)"\X and t = (t;);en x € (K(g)*)"\¥ defined by
X(Bi) =si,  X(KiK ;) =t

For s € K(q)™\X and t € (K(q)*)"\X we denote the correspond character by x¢,,
if it exists. In this case we define pg¢ = pye, to be the corresponding map defined
by (10.1).

Definition 10.3. Let ¢ € C and assume that x5, € Be exists for some non-
vanishing s € K(¢)"\X and 1 = (1,1,...,1). Then we call Bes := (Be)xe, =
ps1(Be) a non-standard quantum symmetric pair coideal subalgebra.

It follows from the coproduct formula (5.2) that the non-standard QSP coideal
subalgebra Bc s is generated by H= = U, (gX)Ug/ and the elements

Bi = Fz — CiTu)X (ET(Z))K;l + SLK;l
foralli e I\ X.

—~

Proposition 10.4. Let ¢ € C and x = xS, € Bc for some s € K(¢)™\¥, t €
(K(q)*)"\X. Then (Be)ye, = Bers with ¢ = (c}) € C defined by ¢ = cit; "

Proof. By Equation (5.2) we have

(10.2) P ¢(Bi) = Fi — citr(iyTuy (Br)) Kt + s K

Moreover, by Proposition 10.1.(2), the element ¢’ = (¢}) given by ¢} = cit;1 lies in

the parameter set C. As t,(;) = ;! we get (IS’C)X;t = B s. d

By the above proposition, the additional parameter family t does not produce
additional coideal subalgebras and may hence be ignored.

Proposition 10.5. Let c € C and s € K(¢)!\X such that there exists a character
Xs1 € Be. The map psy : Be — Bes is an isomorphism of right U-comodule
algebras.
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Proof. By construction, the map pf; is a surjective homomorphism of right U-
comodule algebras. Assume that b € B. \ {0} lies in the kernel of p$ ;. By Theorem
7.2 we can write b = ZJGJ Bjaj for uniquely determined elements a; € HZ.
Choose J = (ji,...,Jes)) € J of maximal length ¢ = /(J) such that a; # 0.
Then the explicit form of pg, in (10.2) and the triangular decomposition (6.1)
imply that ZZ{JG)ZZ Fja; = 0, in contradiction to the linear independence of the

set {Fy|J € J} over H=. O

We would like to know all s € K(q)!\X for which there exists a character
XS = Xs1 € Be. By Proposition 10.1, any such s = (s;);e\x needs to satisfy
the condition

(10.3) 5i£0 = i€l

However, as example 10.2.(1) illustrates, condition (10.3) is not sufficient for the
existence of a character xg; € Bc. Consider the set

S={seK(q)"\X|s; #0= (i € I, and aj; € —2NgVj € I, \ {i})}.
The following proposition can be deduced from [KY21, Thm. 1.2 and Prop. 4.4].

Proposition 10.6. Let c € C and s € §. Then there exists a character xg, € Be.

Remark 10.7. The character x in Example 10.2.(2) is of the form described in

Proposition 10.6. However, Example 10.2.(1) shows that not all characters in B.
are of the form described in the proposition.
A careful analysis of the defining relations in [KY21] shows that if x§; € Bc and

2
s; # 0 for i € I,5 with odd aj; for some j € I, then i—j must satisfy a certain
algebraic equation related to the g-Serre relations. This algebraic equation can
be explicitly described in terms of continuous ¢-Hermite polynomials. The family

of all algebraic equations in Z—? obtained in this way for all i,j € I, provides a
necessary and sufficient condition for the existence of the character xg;. It would
be interesting to find a simple description of these algebraic equations. See [RV20,
End of Section 1.1] for a related conjecture.
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1. Quantum sSupSIL Q,l%eb.na, uc‘_(,%&(,m\m})

( Cr‘las‘\'o.\ bace of )

2. ‘Po\(‘mom‘\al vepresentation V(A)

3. Kac wmodule KK(R)

4. The neqative haf of %(SQ(""“))

1. Quomtuw supetalqebxa

Assume that the bece ®teld = €

A super space = Q Z.z‘%ﬂo.d@d space V. = \/09 \/‘
even odd
30 (v) = Endg(v)
a  super space qﬂ(\l)& 3 PV, — Ve

1R1\gl
a Lie superalgebya  w r. it [£.31 = Feq-(-») ge¥f

Called a gemeral lineart Lie super algebiia
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cven

® C v,

X (win)
even

" qU(mlm) = q2(c™™)

= +the set of (wrm)x(me+m) wmatdices

gl(min) = 93Um) ® g2(n)

span. of E,, (_dem su.ba,\%>

*(X.x) = S+\”(XY> - mon-deq  inv. super symm. bilineast Lorm.

{go,l a.eI('mlfn)')I : a basis of ‘g* dual to {EM}

(3a|5b) = cc=bhm
/ a=b>m

induced

bilinecwt e -
otherwise

’ §+: { 8o Sb | a%b } . the set of positive dtoots
o< b

§:’ = { 8.8 | a<bgm M<Q<b} even

ST = { Sa-8u| asm<b § odd
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ANEE { 8o.” SM_,\ “ﬂso,<m-\--n.§ . the set of simple stoots

O—0—  —0—®—0 — - —0
&8 8:-ds sm“ Smﬂ 80.-\- § 2

\/

(al) >0 () =0 (i) < O

cuen odd sven

5 u(qg(mm)) : the enveloping aiqebxa, ol qQ('m!'n)
U (ge(mim)’) = U(ga(mimh) ® U(g2mm)?)

sl
A(‘ﬁ(“\'ﬁi) as a QC-olg.

Q. : Tndeterminate , k= Q(3)

u%(QQ('m\'ng : the q-analoque of 'U.(qﬂ.('mlfn)) intstoduced by
Namane (99)

genem+ors . Ee\.'r:cl,’ KQ_, Ka—‘ ( OCGA, a € I(m\m))

relations

(€

EA = -l o) -l
Ko = cemmutative K EK, =9 E, KFK

Kd - kd._‘
-1

1@l

EsFa =G0 FRE, = 84 sgnlak) (K, = KKan )

usual  Serre delatiens $oo B, Fy (i) >0, <0

+ odd Serre selation For E,FE, (aje) =0
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Bnk

@ () >0 {ELELREY o Uq( 58,)

<o {ELFLKE'Y = u%"(sg”)

©)] 'u,%.(q%em\-n)) © Z,-gqwnaded  deg(E,)=deg(Fy) = ¥ (o) =0

(@ Imstead of super depresentations, We consider @ Jepn of

U (q20mim) T = Ug(gelmim)) @ Ug (g2 miny) o-
0"2':: “.

X, = (—!)M‘YOL o (%= E,F)

V' a 'L(.%(%ll (fm\m)) [o] - module ¥
s V =Vo@®\, . L-9tded 'U,%_('g!l(;mh)) ~-module
&
. oV, = OV

( = Q supst epresentation of (U%(%l(“‘\'n)) )
Hop® algebria, structwie of Uor(sﬂ('mw))[“‘]

AKY = kKMo kK

E,ok, + ¢®E, | AF = F,et1 + oKy,
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P=@® LS,
Q,
A weight space of V' wiw ZNeP

\/;\ = i v* | K,_bl)“ = ct()"\k)u. Lor HG(P %

We assume V' has @ wt space decomposition

Pmk  We may censidet cnother Uersion of @SA

( due to Kuniba: Okado- Sergecu- ‘15')

for A= LS., M=2 @S
a a a-o

defining Melafions

- g q ()

weight  space %~ =g

(on sdd SPace)

Tt is alwmost Isomm,Fh).‘c to ut(‘aﬁ(,mlho ™ the semse ;
Ug(atlmk)) o] = < Uglaalnim) o0

A (a&l(mlm)) :

o O

(Salet)
0"@ O;Xﬂ :(Salsa) X o

Gé. K\, b
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‘U.Z;os [O’a] ;* u:{_ [GJQ,] as a “Q.—a,lﬁ.

Xc! —_— X**(.P)(dm"' eﬁcz)s) X:ExFlK-

[»)
q MY s c;_()‘
M=wt sp M -wt sp

From wew on, we use U . = U»‘L(sﬁ(ml'v\)) by KOS

AKY = ke K2

E,ok, + 1®E, , AF = F,e1 + Kuo ),

n usuel QG
Mamy cuquvnewks\QM be applied diveetly W/ above chomqe of convewur

2. ?o\(é'nomia,l representations

Unlike w(gﬂ(m-&m)), a $m-dim’ umm"modu.\e

Ts mot semisimple in genexal.

* But, thete s a good Family of  semusimple sepn’s

elosed undew ® ( due Yo  Schus-Weyl- Jimbo duality )

P, = ® ‘ZL»O §o @ the set of polymemial weights.
a €T (min)

. the category of 'um":'modules w/  wks 7 (P»o
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\/;;l =@® kv, : the matwial wepresentotion of U
a € I(mw

min

Fy

vo, Pa— v, (o= Saf&m)
Ed

SQ, Sa'l'\

Ved €O

min )

Moreover , = omalog of Jimbo’s duo.l?ﬁj on \fmm®a

VRS VAGRRE

min min d

Heck o&%. of ‘+ype 'Ad—-\

VN (WA Ve DA pattition W/ Ay ST ( € 'Pml“)

/\9\, — 11 81+ o +1m3m + }-‘:smﬂ F ook M-n.SM'rn

. \fm‘n(l) : the Trreducible h.w. wmodule w/ hw Ay
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@ \rmm = @ \/‘mlm(‘%) ® SX
N

(Au=d

[y &)

® Everté Trreduwcible module € Gr/o 1=

(Benkeodt - Kamg - Washiwara. oo>

- 3 Q Combimoterial. wmodel For ch V;\'h(x)

SSTm‘n(X) = the set of (wmln) ~heok sewustamdord +ableawx

_ T
ch V—ml“(?\) = Z X = }131(‘7() hook Schwt poly.
TeSST_(0 (super)

* ((Bevskcuﬂ'" \4:.#13- Kashiwara OO)

(13
\/‘mm (%) has a catystal base’ w/ a cnn. exystal syt on
SST, . (%)

What & a “crtgeral base here 2

o~

Tt is defined T a similax way wrt  crystal operators *EL

lowert crystal opercadior (slat) > O

csz-l'a\ opertactor (d, € A)

multiplieation by F. (ald) =0
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Rmk e A (ale) <o

¢
(Eabukd Yy 20 Uulsh) Qi

A

B —

(S
+— £
3

— -g=p

A s AV lowen comult.

CM(‘&&U_Q. bace ok Pzw

U uppoc enystal, opexater

+  tewmsor prroduct rule

LTvs Hevense otclem)

e A (ale) <o

g
(EgFa k'Y =

Ea

Fa
Ka

A e Agr wppet co-mult. + 2hp

er— ce®f +t10e
£y 204 + R'®F

‘é ©uppot erystal, opestatet

+  tewsor product mule

L'fn revense owd em)
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V € O, (2.B) : o crystal base of V' 3

Q) i Ay laftiee of +  wt sp. decomp.

® B =Bol-B) B C i/‘i.t. : Q. -basis. + W Sp. decom,P_

® %, cd ., % DcBoley x=ef deA
whene A, = { heX | nequiax ot q:=0}

* (BKK) (i;f&;) ta ogsal brse @ VD e O,

= (8,82, Bed,) : a vwystal base f V, 8V,

+ ewplicit description of £,

Por o€ A w (dlet)=0

o~

b, ® £,5, 9 (wtle)|a) =0

. Nﬁ’b.@bz 1 ( wt(b, %
%‘—’a(b,@bz) = { . * ( LS

M \fmlm (. A) A€ P:Pml'n

@ i—ml‘n(x) = Z Ab%&"' '(;'@'_ U}\ ( C20, sie AN , x::e,,e_>
@l,"';@p

:Bmh'\(‘x) = {i g’C&”. q@» U)\ (mod 1im\n(7")) } \ ‘l"}

a cxystal base .
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©) ':Bm\“b:) com be deolized as a subgyaph  ef me}hG\ 1l
whete By @ eMystall @ Vi

= Byn (A) = SST (2) ¢ B ™

mim

® Beom (™) may have am clemed b s+t

b £ vy, but 'é'&v}\:o for ol e A

@ Unhke B,(),

which yields awm Tnvetse limit.

Exo.mple

m=3, n=4

——+ w=632111525364 ¢ 82"
3la

Jtow
Meadﬁnﬂ
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(m¢)>o 632011525364

i

632 @inbra2ab536c4

6(@211% 425364 =W
+ —_— —

|

E@2441M4 2536 4

(x:&?)
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Applications /' pyoblem

@  ( mon-stomdard 'Bome\)

One com comsiden UL i~ WY

O—O0—® — 0 —o0
1 2 3 4 5

@—@—@ —®@ —®
1 2 3 4 5

“The (mon~s+oundam<§> caystal  styuctwie on iBm,.,:&d

has a comnection Loith quasi - symmetHic Fumetions . (K 0‘!)

® ( affime case)
One com define the QSA @ offine type A

®

e

O—O0—® — O —o0
1 2 3 4 5

= wrillow- Reshetiklin_ tuype module W ™% with a cxtystal base

for (%) = (v, 0) €, ( K-Okado 2t)

s

omd fBrlsg SSTW“((rS)) as o orystall of Pimie type
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® = Other cxystall Jiea,\T3Q+?an?

(5 combinatedial model eq LS-path, model 2 )

=
@ 8\0509. otystall basTs ( camonical bas‘xs) ef \T;n'n('k,) [4

3. Kac medules.

= crystal base of a Verma module $or Umm ?

= natwiel  Tnverse Sljsi'em on {rbmm(l) ‘ Xe?m“}?

No phesentation for Vi, () 15 kmown.so Fan.

ary We do mot kmow o matwtal posttial. ovdere o Pruim

How +o +oke a limit of Bm\‘n(’)“) ?
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- Inm ¥epn theory of 90 (m|m) ,

3 am Tmportant —‘Pa/vni(té of  fin-dim ndecomp h.w. modules

S (c 'Po.rabo\"(c Verma module  w.rt 6\;11 (fm\fn)o

\/'mm(,l) = Vm‘o('l+> ® \/Ol'" (‘R—) D) (P (Em:miu?allg>
n

<um,'n: Em >

k (,%3 : u'mh\ ® \r;n,n K'/\,)
(P

Tndecomposable h.w. wmodule w/ huw A

the max. quotient of X (X))
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(Ki4)

@ X)) has a oystal bose (i(K(M),'B(KLM))

whexe B(X(2)) : conneeted

A ¢

KDY = V)
V) )
i(.\((?\)) —r imln(}‘)

mim

BIKG)) — B, Duled §=0

Rm®  We should defime €y %.m.

* To comstyuet a crystal base of K(2)

we use a PBW +ype basis of -,

\éz = { .- | a<bgm , m<

:{8Q~Sb| a sm < S»

* We take a paxticulax Convex oot o B assee.to

a seduced expression of W, € S ., adapted o

O—>0 —%  +—0—0«— Q0 <¢— - <0
o, oy L m L min-y
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@ :(ele)>o0 O :(gip)<o

- Re §+ , defme a oot wvector Y—’@ by

using Lus2tig’s +ytcums? T-;s (i#'m) W BE€ §:

applying g -adjoint a&l*(‘r\i))s (i#m) v F,. ¥ @ 635.‘:

adq(F)e - o adg(F,,)e adg (F;) o o ady (Fi) (o)

di-&-.‘..‘-o(m_‘_ .tda )

where adq (%) (y) = [wc,g]% = ey - q(ixLig) yx
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We also howe +the levewdowku. - Scibelman tupe selation,

(L) F,F,  (2<mes<e  are=7d)

[F@' Fa ]qL: Fe (¥ = are)

< —
- {‘;\:o:c» € Z,, , Cp=o4 Lge@ﬁ}} o lk-basic @ Wpm

< e
W= (Folpedi ) = spmep TF
4
the S'ubo&g. gemerated b\é odd Moot vectots.

KO Uy, = K@'lim; ® ‘LLD; as Ik -spaces

‘U..;m QVaunld) = K® V'mm(’x*) ® V;\,,('A_) os lk - spaces
Yo e
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« K() : Fin-dimemsionol &

ch K(,K\ = C\'\.K ch \f‘m,“(%) =) ‘ESE"‘P\- u;‘\ri) S}\-\-(.U-) S()\")t(V)

t¢qsm

which com be viewed as a q- deformed Koae-module

* (Deffne é,A.?a 0 K(Q') b%

lowgt erystal opeonatot  Lor 1gi<m ( (cfol,y > o)

cxystal opeatot  for M< L MEM- ( ('*;W;\)<°>

~

£ (( mobiplication ) whote  Cm = €, [ lsft deduation)

Sketch of P.‘noo$> ( Ex‘ssfemoe)

K %'( K" ® ‘\(") P q-deformed exiodioe adq,

o v qom- by U@

Fo o WOY (pes-g)

Fam actionop U (sl )@ U (92,) on N(We K")

SHl
W

m,n

um,-n_ "‘mOduke K Tnduﬂed bﬁ Ql) '—\__-:) K (O) = K @Vm‘n(O)
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2 K(2) = AHR"OK) ® Via(d)  as Uy, —module

(ce) : |

> LkA):= L) e £(v,, (3))

B(x() = BK) * B(Vma(»))

forms a crystal base of \<(_>\) as o Umm~module

Finally, one com cheek 'f;mi(K()\)) C i(K(x}) ('x:e.$)

w m

2. T F;P TS gwem by Cy — Cutt (¢a,=0)
= i

o (cy=1)
4=
'B(Kv & (P<§:> . power set

We Moy yegend

B(KM) = P& x B(Vioa®) *B (Ve (20))
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BOKONY)  com be desocibed ex?\?c‘\\-h&_ Since

U= Cstal stsuctwe Ts well-lowown 4+ densoc product rule

This ~mn;al”ces the -Pollouﬁng

@© ftae connectedmess of B(K(N)

~

® i(K@J) = Z Ao Q;."” ESECEN ( it te '>C=@,$)

-

ii '\‘chi\--- '(;.t-r'\)‘)\ ( mod 1&(‘((”) } \ {o}

® Uniqueness of o owstal base of K(3)

(Qompo:\-'\b“\m-té with \r'm\n(?’) For K€ ")‘Y‘\"‘)

« X(2) : tredueible e P typical
T.e. (’J\,-\-?m‘n\@) =0 $or all @€ §t

where ?m\m =

( I+ Pollows Prom the Rack ok q=1 due to \(ac)

Ta postticulars,
)‘e?m\n /\>\1+\d\>\co~l D — (q\w‘) C A
= K(A) = Ve (2)

K (Ax)




K(aengy) —+ V. (2+a8:)

1®@VU

08¢

OCAMI Reports Vol. 5 (2023)

° pe er?m‘,“ ( Tdemﬁ-?\a'mﬁ w/ A)\)

14 +8m

A+ 88, : typical Por L3 O.

Consdot  the -?ollow?ng comm . diagram -

m ST RS

Oq

K(2+a8y)

S| 8

K (2)
cach map semds

= M, sends

Vo2 ® V1, (265)

U@V,

horigental @ W, -lineax

vertical ' Wyn - linease

“7\*13*
T?‘ Vw,,('l»f&&)

Oy

— Vm ()

cnqs{—aﬂ. bate@ o 01!35{-0&. base

ROK) — £,..(0)

BN ) — Byulr) 030}




Integrable Systems and Quantum Groups

‘Rm®

O We have a combimatovial description of cxystal embedding

Bon (1) ——+ P(E!) * Bopo(a*) = Bop ()

i n \

SST (») ST (Aen)  SSTyu(sm)

min

T(yerm ) —— (5 7T )

Aﬂm- Smlat"s skew RSK .

Pc-:"" °£ Slﬁuﬂ' SS'TDS n {w},’) ,_(VRS’ {‘W\'\-),"',W!'t'n—(}

of chawe Tnnert S\'\Q,Pe

@ Crystal sbuctwre @ B(K())

B(X(N)) = P(EY) * Bumo(a®) = By(?)

—r

’P(§:) @Bm‘o (‘7\.*) X ‘—Boln (’A,_) (¢ ¥} uwﬂb =t 031(13‘\'&1.

’P(§:) e ‘:B'm\o(—’\*) ® —Bo]n(_”\:) as uol-ﬂ “0%3‘!‘&9..

= ’P(§:) “Bm\o(’\*) >‘.-Bohn(’x) For gm'(:ém

So # suffices ¥o consider B(K()) & (P(@;)
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M o B(X(e)) °‘”'—P(§:)

T
§* n conuex ondee

D (aufd,) >0

%

C = (CM’CW.Cag;QE, ) +— @ SG?_ OQ +.- AS,
() — =

(3) — -

It W
chtained by applying  Signature wle
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Lo ) ——+ o s R +,- s
() — =
()=~

o W
cbtained by appl%‘m% Signo;hme >ule

Sxo.mple of &nbe&dfng Bml“(ﬁ,} E— :B(K("))

A= (5,8,2.2) = 58S +38, 428, + 84+ 8

At p

€ SST,,(5.3.2,2)

—— (5,7,772) € P(E) *Boula?) *Bau()
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tensoe product

Bm‘o (- dg-\-v )@ 5

K~ applying the mvense RSK

W sesction necmd“.ni
tab +ab .
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—

(

tensoe prioduct

B, (de+)®®
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S

581—35 $,-8 &7 Sa's*l}

€ ’P(§:) x B 3\0(.)"*) "FBOIC\(”V)

Rt
A= («m,“)

/\A: "7\8.‘. 2 +lﬂP'lco_L

B, (3 —— B

Tz((T$M)*: T>m)' e (.S.. H ,‘b)

X s 'hoﬁﬁw.g bufr RSK (,Linoot-a_)

% rmmph]sm oy um‘h" C)‘L%S"'G.Q-S.
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4 The neqative pant of W inim,

Now, we com toke a Lmit of

BIKM) = P(8Y) x Bpp(a®) * Bow ()

—r P(E]) *Baul®) x Buanlw) (AT —ww)

We will

@ desutibe the onystall sbuctwie of the Limet (& cnn.eomponen’rs)

® Cowsixtuet o otystal base of Um, W/ the above ortystal

® compaiibility ws ystal base oF W (),

* Recolf

Lim 'Bmla(k) = Bmlo (oo) (= q.&m—domimxm-)

aA—roe

A< p & p-a: dominant Tntegrol

B,
’Bm\o(?\B — BMIO(H)

Xuy ——— X% (X:pred of F5)

well-defined directed systow. o2 embedding of orystals

whose Qi 15 Tso. Yo owstal B (e0) of u;,o.
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def
A< p & APt (2. pnePh)
(s.:.b.) € B(K(A) (= WE)VBMf)EwsD,,,(x))

Y ( So, X U4, v;\.) £ somE

X=Tg Y:-T[' : -+ S°®“0’>\_ g uom~'ma.xfmtzﬂ

a<m 4 7m

Debine @x'*
Rx@) B(K(w)

b=(S,bsb) r— Y(So,)(o-m, 1)'“_)

@7““ (S

@ Thg'ecﬁue ( w/ Lt '—P(_§T) x Bopl?) x Bon(o@) as a se{-)

@ am embed&?na o$ U.m,n~ 0‘:‘13*’0,(3 (:«e. %c %QMC-B%Q“)

11 2)
©) 60001(% oun embedd?n% of  Umjn - axystal

\vl
b=(b,) € P(&]) xB,yplo0) xBowlod) (as a Limit)

T e Pt such that

m

bk—r b;, = bp_l b/}h for all >N




Integrable Systems and Quantum Groups

* The Uimit of the directed systom ( {®,, % {B(Km)})

has o well-defined abstiact 'L!.mh,—ou,‘s’ral shiuetune

(P(,§:) x'_Bm‘O(OO) X —Boln(w)

o

P(2) * Buia(®) x Ban(e) for O, . %

m

; (P(.?é:}@iBmlo(oo‘) X '—Bb]n("o) as @ u.m(o“OU.}?('aL

( nwence U.mh)

(P(?ﬂ *$m|e(“) X B on(0) as @ (.Lo‘.,rmgsboﬂ,

the crystal opetatos $or Wmq » Woin

commucte -

Bm\n(oo) F= (P(§:\) "';Bmlo (oo) X ’Bo)n(w) Umin~ O“QS{"'*Q'

* Bwn(o0) T8 comected Tn qeneﬂ,aﬂ..

* To desodbe a comected Gewmponemt of B,.(0), reall

For X : domimomt

int. wt Foe 92m , we have

Bl2) ® B () £ A B (=) ®T,.0
be B, (~)

( o uustal version of Varma $iltwation V()@ M(o) )
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Pf-) ( Kas\\ivoaxa.)

:B% 31(3%) : the alg. o2 q-bosons. assoc. Yo al,,

< ei." —?i. \ € = by, Wl > ( possibly + Carttam PQ}(;(-)

3!
@ Simple 'Bc‘_~~nodu,le Veo (up to h-w)

) € : q-dodvation

%‘ © mutiplicahion

wth @  oustal base = (&m(w) ,':Bm("o))

® M : Ffn-dim uq_(sﬂm)—‘modw\e
3 'B{'module shwectwe on M@ \/:><> Wwhete the achion T

%Toem, b\é a u,l-eomoclule sbt. on —B"L

A - By — U @By
ecl — (ke @1 + keoe/

f, o— $o1 + ROF

0

1 M@\/‘oo s a sensimple Bg-module = © V.
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©) (i,'B) 3 cmés‘ro.l base 2 M os o %*maéule
(M@ﬁ(«»), ’B@B(oo)) : a oystal bose f MOV
Y @ (£=).36)

e, £ at en BeB(w) Following the tensor preduct rule

T

® By 9~®

Bl @ Bulw) —+ 1L Bold) ® T,
B

Wy ® _tm(b*)

Thn ( Tomg- K- Uruno 22.)

@ Cach cnn. component = B (@) x Bam (o)

m(n-1)
2
‘-_\-: Bm“(w)x Bo]n(.oo) <

ln panticulaxt, Bmn(oe) @ comnected {— @=4

o an(,OO)x'Boln(,OO) né:_-ﬁ (<% wme)

(41geem)
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PP P(e) 2 B, 0) & B(Ku) x &

mn

as Wmt - crystals

6 = {CC3)| Ca=0 For @ odd oot oF 3Qm"} C"P(§:)

14
mx(n-1) (z‘z'>

i Bm(“‘) « B (2) 0 (ge, .98,.) - biorystal
Loy em
XM <m

via  Skew- RSK.

A

'LL ‘Bmio(%)e i

e(X) ¢m
e(at)<m

My = | Bcl'n-l(xt)l

’Bmh, (o)
= B(Kmm((’)) 53 'Bm\o(.w) & go‘n (oo)

B(Kmh(o)) x & x Bm\o(“) x Ben (”)

B(Kuu) * 1L B, ()" % Bumals2) x Bapn ()
LX) ¢m
e(At)<m

LN

®
l_L B(Kmh(O)) 2 'Bmm()\) £s Bm\o(“) X gq“ (“’)
e(N) ¢m
(At <¢m
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@ m),
I 1L B(Kue®) %[ Bme)® Tr) * B ()

e g¢m B (N)
mio
e(At) <

®m
1 1t ( B (2] x Boin (°°)> ® wa(b) °
e(N) ¢m Bm‘gx)
e(At)<m

® |l m(n-1
& Byl x B () ' where (el = 2mt

e 1-4 @ m)
. t MMK(I\-I) (12) _LL 'Bmm()\)

e(X) ¢m

e(rt)<¢m

* Now, we want to constiuct

a onystal base (&(oo),'B(w)) o ’U.m:,, Such thal

B(w) = Buom() & U s comparible w, (2(k(n), B(xtD))

« Ore moy toke

L(e0) = R(K(): Loyo(0): Lon(ee)

wheote Eyolo0): the crystal lattice of Ume ¥ Ug (38m) ot q=0

b
io\'\'\ (oo) s 7 uo(n <

u?(%%) of P=oq
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¥,

t

© the associared orystal epestatots. on Umis » Uon (cdm)

o

LI defined ™ the Sownre wwj as m K('L)

m

-

umln E K ® umlo ® uom
w,Uu, — U, ® U, @ LUz

R)Y‘ Ww = u‘uzu.a c um]'n & (; > degrne

(% Wius) g (tem)

W, U, (E;.ue) (,i»m)

£ wiuUz (e=m)

Thm ( :Ievuﬂ - K~ Useuno 21)

(&(oo),iB(oo)): a owstal base of um—,, w.nt ‘éi ,:(:’;

Rk

¢
2UK(N)) (X)) +—+ am uppoc ougstal laftice Ror Uplgl) ot p=co

o an
L1’0\% - V°\“(>\—)

Tomlee) —— &0 (%)
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“Recall X : dominant inteqnal for qQ,

¥ (e0)

For L€ (P,,,ln , We hove the %l(ow?nc‘f Gotrespondence

£m\v(°°) B— 2 imlo(’f) Qowsrt ot g.=0

T s
L) — 2 5 ()

v

o (Re) " L¥(X)

K K

Lan(0) +—— £,.(2)
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X(R) == Ump 2 Vohﬁr) where Q@ = < (u“:;: Laoin, >

2 K® U.;‘o @ V,.(X) as le-space

- - LES

uml-n - X(l‘) - K(”L)

a orystal bose (i(X(X)),B(X(l})) where

(X)) = 2IKE)) Enip(=0) - 2 410 (X)

3B (X(x)) = (P(§1;) X (Bmlo(.oo) X ‘:BOhs(‘l;)

» Consgider

Then we have

_ it T

u > X)) — K@)

Min
g(0) =—— R(x()) ——— L)

B(e) +— B(XE) — Blk) oo}
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Ramb.
Q) = o categetifcation of 'u,m; (Khovcmw~ Susson 16)

® A C(pseudo) comomical basis of Wornrn (Clqn\(-HTIl-Wwvxﬁ \e)
Ula Ct_uam'k’u.m.. shuffle aﬂ.%

® A camomical basis o U ( Do Gu %)

Vie. quewdusn  Schut supetala.

Questions

@ a cateqotcal sealization of B, (=)

® F a camonical basis @ WUmp ¢ (compa.ﬁble W/ e nepn,’s)

2 Tts c..m‘s-l-u.Q.
3

® o cotegstification of um'."n 4 (o('? odd Seuvte ne[a-klcn)

Related wotks

@ 9(n) . queext Lie superalq
crystal base of cn T polynomial repn ((W Vs du.al?t—;)

( Grovtehanow ~Tumg - oug - Kagiiwena - K. 15)

- ( o.bstua.c*) cxystal B ('°°) C Solis\w.mé - Sexvimshow- 22)

® OSP(WIZh) " ov*hos\smp\ecﬁc

Cmdsi-a.l base of am T q - oscillatec yeepn (K\ﬁ)
( — Tnteﬂrto.ble h.w. module ©f. clossical ‘?\jpes)
Supere duality

ernystal bese of o paxabelic Uotma / Ll{

(T progyest W/ Jomg us-(umo)
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Relations among the g-characters of simple modules over

guantum loop algebras of several Dynkin types

Hironori Oya
Tokyo Institute of Technology

Based on a joint work with
Ryo Fujita, David Hernandez, and Se-jin Oh
arXiv:2304.02562

Integrable Systems and Quantum Groups
—In Honor of Masato Okado’s 60th Birthday—

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562

@ Introduction
Brief review of the monoidal categorification of cluster algebras

Main result: Substitution formulas

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562
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Quantum loop algebra U/,(Lg)

Representation theory of the quantum loop algebra U, (Lg) ]

@ g a fin. dim. simple Lie alg. / C,
— C = (cij)i,jer the Cartan matrix of g, type An, By, ..., G2
- D =diag(di)ier s.t. di € Zo, ged;c;(di) =1 and DC' is symmetric.

o U,(Lg) the Drinfeld-Jimbo quantum loop alg. / C. q € C*,|¢%| = .
® ¢, = the category of fin. dim'l reps of U, (Lg) of type 1

(i.e. the eigenvalues of the actions of {k; | i € I} are of the form ¢, m € Z).

¢4 is an abelian rigid ®-category, but non-semisimple and non-braided J

@ Fix amap e: I — {0,1} (parity function) satisfying
€; = €; + min{d;,d;} mod 2 whenever ¢;; <O0.

o I:={(i,p) €I xZ|p=¢ mod 2}.

@ ¢4 D ¢4,z the abelian monodal subcategory “supported on” I.

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562

The g-character gives an injective alg. hom. [FR99].
Xq: K(C4y2) = Z[Yz,j;’ | (i,p) € I] =: Vg, [V] = xq(V).
The simple modules in €5 7 is parametrized by dominant monomials in V:

(-highest weight theory [CP91, CP95, CP]

Irr 64,2/ ~ Ly My = {Monomials in Y; s»'s, (i,p) € T},
w w

[Lm)](= [Lf(m)]) < m

Here we have
Xq(L(m)) = m + lower terms.

eg
o g=sl,I=1{1,23}

Xq(L(YLq—S)) = Yl,q_5 + Yqu_4Y1Tq1_3 —+ }/3,(1_3Y72jq1_2 + }/})qu_l'
e g=s=s051=1{1,2}

Xq(L(Yl,q”)) =Yiq7+Yz4-0Y5 41 1?(11*3 + Y27(176Y2Tq1*2 + Yl,q*5Y2quf4Y2quf2 + Y1Tq171'

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562
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The g-character gives an injective alg. hom. [FR99].
Xoi K(Gqz) = 2V | (ip) € 1] =: Vg, V] = xg(V).

The simple modules in €5 7 is parametrized by dominant monomials in Yg:

(-highest weight theory [CP91, CP95, CP]

Irr 63,2/ ~ By My = {Monomials in Y; s»'s, (i,p) € f},
w w

[Lim)](= [Lf(m)]) < m

Here we have
Xq(L(m)) = m + lower terms.

Fundamental problem
For m € My, xq(L(m)) =77.

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562

Our result (Recall from Fujita-san’s talk)

Theorem [FHOO22]

Let g1, g2 be simple Lie algebras / C such that the "“unfoldings” of g; and go are
the same. Then there exists an isomorphism of Z[t*!/?]-algebras

W90 Kt(%gl,z) = Kt(%z,Z)
satisfying
Vg, o ({L8 (M) | m € Mg, }) = {L{*(m) [ m € My, }. J
o K(%y,,z) the quantum Grothendieck ring of 4, 7 in the sense of Hernandez

[HO4].
o L}'(m) the (q,t)-character of L% (m).

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562
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Our result (Recall from Fujita-san’s talk)

Theorem [FHOO22]

Let g1, g2 be simple Lie algebras / C such that the “unfoldings” of g; and g, are
the same. Then there exists an isomorphism of Z[t*!/?]-algebras

\Ijglygz : Kt(cgglyz) — Kt(cggz,z)
satisfying

Uy, 0, ({L8"(m) | m € Mg, }) = {L{(m) | m € M, }.

Remark

| A

Our isomorphism W, . can be constructed according to the choice of Q-data
QW = (g;,04,6M) of g; (i =1,2). Hence, precisely speaking, we should write
Pg,,g2 as

\PQMQZ (Q(Q)a Q(2))'

The Q-datum is a generalization of height function &: I — 7 for simply-laced case
[FO21].

.

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562

Our result (Recall from Fujita-san’s talk)
Theorem [FHOO22]

Let g1, g2 be simple Lie algebras / C such that the “unfoldings” of g; and go are
the same. Then there exists an isomorphism of Z[t*!/?]-algebras

\1191792 : Kt(cgm,z) = Kt(cgﬁm,z)

satisfying

Vg,.g ({LE(m) [ m € Mg, }) = {L¥(m) | m € M, }.

Applications

@ Proof of several positivity properties for non-symmetric case.

@ Proof of the Kazhdan—Lusztig type conjecture (Hernandez's conjecture) for
type B,,.

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562
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Folding/Unfolding

The Folding/Unfolding correspondence is given as follows:

A, A, id I 1 2 n+2 n-=1 I 6 5
n 4 2
D, | D, |id| (Agu_1,V) (Es,V)
E¢,78 | Egrs | id 2n—1 2n-2 n+2 n+l 1 3
Bn A2n—1 \
1 2 n—2 n—1 n 1 2
Cn Dpt1 | V Cp o o— —o o Go ===
Fi | B |V I H I 1
— 1 2 n-=2 n+1 . 2
T R e R el (D) @%
4

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562

Example of the correspondence under ¥ ..

e.g. g1 = sl4, g2 = 505 (type Az/Bs) :

Wg, g0 (L1 (Yi,0)) = Li% (Y1 00), Wg, g0 (L7 (Y1,-2)) = Li% (Ya,q-5),
\1191792 (qu (Yl,q—4)) - L;tj% (Y2,q—3)’ \Ilghgz (Lf[‘l (Y2,q—1)) = Lfos (Y2,q—1)7
\Ij91792 (qu (Y2,q—3)) = L?S (Y2,q—5Y2,q—3)) \2[191,92 (Lf[‘l (Y3,q—2)) = Lios (Yl,q—2)'

This correspondence preserves neither dimension nor degree of /-highest weight. )

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562
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What to do next

Suppose that J

Vg, . (Li" (M) = Li®(m).

Actually, we can calculate m’ from m explicitly (although we need the
case-by-case calculation for the explicit computation).
< This can be seen as the explicit correspondence between “highest terms”.

Can we calculate “lower terms” of L{*(m’) from those of L{*(m)?

We will give an answer to this question by looking at
the (quantum) cluster algebra structure

on the quantum Grothendieck rings!

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562

Introduction

© Brief review of the monoidal categorification of cluster algebras

Main result: Substitution formulas

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562



68 OCAMI Reports Vol. 5 (2023)

Cluster algebra

Cluster algebra A(T", J) is defined associated with a quiver I' = (I'g, ') without
loops and 2-cycles, and a subset J C T’y of its vertex set Iy [FZ02] .
The input datum (I", J) has an information of the “seed’ of the cluster algebra

A(T, J).

Let F =Q(z; | j € I'p). A pair (Y, X = (z;);er,) is called a seed in F if
Q@ Y = (Yo, Y1) is a quiver without loops and 2-cycles such that Yo = T'y.

Q@ X = (zj)jer, C F is a ['g-tuple of elements of F which are algebraically
independent and F = Q(z; | j € I'y).

Next, we explain the “mutation” of seeds, which is a procedure of producing
generators of A(T, J).

IHere we explain the cluster algebras of skew-symmetric type

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 10/30

Mutation of seeds

Let (T, X) be a seed in F and k € T'y.
The mutation

:u'k(TvX) = (T/VX/ = (x;')jero)

of the seed (Y, X)) in direction k is defined as follows:
Definition of T":
(i) Add one arrow j — ¢ for each subquiver of the form j — k — £ in ;.

(i) Reverse the arrows in T; which are connected with the vertex k.
(iii) Remove all 2-cycles generated as a result of (i) and (ii).

Definition of x;

H Tt(a) T H Ts(a)
.’L‘; _ a€Y;s(a)=k aeYt(a)=k If] — I
Tk

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562
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Cluster algebra

The cluster algebra A(T', J) is a Z-subalgebra of F generated by the set X of
cluster variables defined as follows:
Denote by

(T, 2) "' (T, X)

when (T, X) is obtained from the initial seed (I', Z = (2;),er,) of F by a finite
number of mutations in direction indexed by J(C I'g). Then

X = U X.

(T,X)"(T, 2)

i (e (T, X)) = (T, X).

e.g.

1 1
A(l — 2, {1}) = <217227 %)Z—alg. (:J Z lzl’ * z2]>

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 12 /30

Cluster algebra

The cluster algebra A(T", J) is a Z-subalgebra of F generated by the set X of
cluster variables defined as follows:
Denote by

(T, 2) "= (1, %)

when (T, X) is obtained from the initial seed (I', Z = (2;),ecr,) of F by a finite
number of mutations in direction indexed by J(C I'g). Then

X = U X.

(T,2)"=Y(T, 2)

1

Al = 2,{1}) = (21, 22, #m'& (: 8 l - D

X is an infinite set in general, and A(T', J) may not be finitely generated.

= — — Sape

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 12 /30
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Comments on quantum cluster algebras

By definition, cluster algebras are commutative algebras. A quantum cluster
algebra is a non-commutative deformation of cluster algebras [BZ05].
For the definition of a quantum cluster algebra, we need an additional data

A = (Nij)iger, € ZNOT0,
satisfying certain conditions, which encodes the non-commutativity of variables:
Z;Z; = this Z;Z;. (Nij = —\ji,t: indeterminate)

A
o T(A) a quantum torus over Z[t*1/2] in the variables Z;, = (Z;)er,
o F(T(A)) the skew field of fractions of T (A)

The quantum cluster algebra A, (T, J, A) is defined as a Z[t*'/2]-subalgebra of
F(T(A)) generated by the quantum cluster variables.

AT, J,A) C T(A) (Laurent phenomenon) J

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 13/30

Monoidal categorification

Monoidal categorification of cluster algebras [HL10]

An abelian monoidal category % is said to be a monoidal categorification of
A(T, J) if it satisfies the following:

—

o AT, J) # K (€) satisfying t(M) C {[simple objects]}.
-alg.

M = U {Monomials in X} (cluster monomials).

mut

(r,x) ~(T,2)

Many subcategories of € are known to give examples:
® ¢y, { € Z~o [Hernandez—Leclerc '10 —, Nakajima '11, Qin '17,...]
@ %o [Hernandez-Leclerc '15 4+ Kang—Kashiwara—Kim—-Oh '18,...]
o G<¢ [Kashiwara—Kim—Oh-Park '21]

~> It produces an algorithm for calculating g-characters of simple modules which
correspond to cluster monomials (“reachable simple modules”).

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 14 /30
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Example of monoidal categorification

g=sb
In €s1,.z, there exists a (non-split) short exact sequence

0— L(Y,-1Yy) = L(Y,—1) ® L(Yy) — L(1) — 0.
In particular, we have

Xg(L(Yq=1))xq(L(Yq)) = Xq(L(Yg-1Yy)) + 1.

On the other hand, in A(1 — 2,{1}), we have

zizl =2z9+1

Here we write p1(1 — 2, (21, 22)) = (1 « 2, (21, 22)).

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562

Example of monoidal categorification

If we write the Serre subcategory of @5, 7 generated by L(Y;) and L(Y,-1)
(“supported” on {(1,1),(1,—1)} C I x Z) as %1, then

~

J: A1 = 2,{1}) —— K(%))

Y Z-alg. N

21 = [L(Y,)]
29 = [L(Y,-1Yy)]
% = [L(Yg)]

Moreover,
L(Y))®* @ L(Y1Yy)®",  L(Y-1)®* @ L(Y,1Y)®"  (a,b € Zxo)

are simple modules.
The relation
Xq(L(Yy-1))xq(L(Yg)) = Xq(L(Yy-1Yq)) + 1.

is a special case of T'-system, for Kirillov—Reshetikhin modules.

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 16 / 30
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For each (i,p) € I and k € Z=g, set

k
W,gzp L(m ) mgo = H Yi’qp—i-Q(s—l)di.

These simple modules are called Kirillov—Reshetikhin modules (or KR modules).

T-system [NO3, HO6]

For (i,p) € I, we have the following equality in K(%4,2):

(4) (2) (2) (2) (4)
[Wk,p] [Wk,p—l—Qdi] = [Wk—i—l,p] [Wk—l,p+2di] + [Sk:,a} )

where S,(ji

modules.

There exists a quantum analog of T-system (=T-system for (g, t)-characters of
KR-modules) [HL15, FHOO22, FHOO23+].

is also an explicit simple tensor products of Kirillov—Reshetikhin

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 17 /30

The subcategory ¢,

Fix a Q-data Q@ = (g, 0,¢&) of g.
The essential datum of Q is the height function &: I — Z (I=index set for g).
identify ~

Moreover, we have [ I/{c) and 7: I — I can. proj.

Set

Tee :={(x(1),p) € T | & — p € 2dn(y L0}

Let ¥<¢ be a monoidal abelian subcategory of ¢, 7z “supported” on fgg.
Associated to ¢<¢, Hernandez—Leclerc [HL16] found the quiver I'<¢ which
“encodes” the T-system for KR-modules in €<¢, and proved that

There exists a Z-algebra isomorphism
Al<e, (P<e)o) = K(C<e)

which sends the initial cluster variables to certain KR-modules.

Moreover,

Theorem [KKOP21+]

%<¢ is a monoidal categorification of A(T'<¢, (I'<¢)o).

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 18 /30
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Examples of I',

o Type Aj:

-5 —4 -3 -2 -1

-7 -6

—24 -23 -22 -21 -20 -19 —-18 —17 -16 —-15 —-14 —-13 —-12 —-11 —-10 -9 -8

(i\p)

*
*

.
*

.
*

.
.
*

NN N TN SN SN SN SN SN SN SN S

NN TN NN NN LN LN LN LN S

N AN SN NN NN oINS

NN TN TN SN TN SN SN SN SN S

,A./
z

—~ &N om0

o Type Ds5:

-5 -4 -3 -2 -1

-23 -22 -21 -20 -19 —-18 —-17 -16 —-15 —-14 —-13 —-12 —-11 -10 -9 -8 -7 —6

(i\p)

*
*
*

NN TN N SN SN SN SN SN SN SN

*

A AN AN AN AN AN A AN ANYANYAN

N
xi/ WYY ARY AR Y ARY AR YR YR YA Y

.
*

N NN EININ TN IN N NN NS

P

1
2
3
4
5

19/30
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Examples of I'<,

o Type Bj:

1

\*/*

-5

-8 -7 -6

—-24 -23 -22 -21 -20 -19 -18 -17 -16 -15 —-14 —-13 —12 —11 -10 -9

(i\p)

.\o/
-

e

./"Qﬂ/‘

*

T

1
2
3
2
1

o Type Cy4:

-5 -4 -3 -2 -1

-7 -6

—-24 -23 -22 -21 -20 -19 -18 —-17 -16 —-15 -14 -13 —-12 —-11 -10 -9 -8

(i\p)

CNIN NN NN NN NN

/

N TN TN TN TN SN TN SN TN SN SN SN

3.
.4./

I B

o Type Ga:

-5 -4 -3 -2 -1

-7 -6

—-24 -23 -22 -21 -20 -19 -18 —-17 -16 —-15 -14 -13 —-12 —-11 -10 -9 -8

(i\p)

- N~

20 /30

Based on arXiv:2304.02562

0
o
5
o
©

(©]
=
=1

2
]
3

(¢4

el
e
o
o}
c
i

g
3
>

(%]

o

o
m
)
I

2

Hironori Oya (Tokyo Institute of Technology)




74 OCAMI Reports Vol. 5 (2023)

Introduction

Brief review of the monoidal categorification of cluster algebras

© Main result: Substitution formulas

Based on arXiv:2304.02562 21/30

Integrable Systems and Quantum Groups

Hironori Oya (Tokyo Institute of Technology)
Application of cluster structures
Easy observation
If two seeds (T, X), (Y, X’) in F satisfies

(1, %) "W (Y, &),

then there exists a Z-algebra isomorphism
AT, X)) ~ AY, X7
U U
M > M.

A parallel statement holds for quantum cluster algebras

~» This type of isomorphisms produces a non-trivial isomorphism in our situation!

Based on arXiv:2304.02562 22/30

Integrable Systems and Quantum Groups

Hironori Oya (Tokyo Institute of Technology)



Integrable Systems and Quantum Groups 75

Theorem [FHOO23+]

Let

@ g; be a simple Lie algebra / C
o QW = (g;,04,6W) be a Q-datum of g;
for i = 1,2. Assume that g; = go. Then
(1) Kt((fgg(n) ~ At(I‘Sg(@, (FSE(“)O’ ElAsg(i)) which specializes to HL's isom.
at t =1,

(2) mut

Ccem, Ace) ~ T<e@s Ace@)
(3) The following isomorphism induced from (1) & (2)

K(C<e) = At(T<e, T<e )os Ace)
~ At (F§§(2) 5 (FS§(2) )0, ASS(Q)) ~ K(%Sﬁ(z))

coincides with the ‘I’gl,gz|K(<€S§(1>)'

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 23/30

Substitution formulas

The mutation sequence required for

mut

Tcew, Acey) ~ (Pe@, Ace)
€ 13 1 3

is of infinite length. However, it is well-defined since it is “locally finite”.

Moreover, by investigating the mutation sequence above, we can obtain the
following;

Theorem (Substitution formulas [FHOO23+])

With the assumption above, 3 an explicit birational transformation between the
variables Y; ;», which makes the (g, t)-characters of simple modules in €, 7 into
those in 6, 7.

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 24 /30
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Sketch of the proof

The essential part of the construction of substitution formulas can be explained by
the following commutative diagram:

Substitution formula

F(V}<e) = F(T(A<er)) —=F(T(A<e)) F(Vr.<e)
yZJS ) monom;ltransf. T(A_g’) T(Agg) monom{\./ transf. y\;gg
S o
Ki(%Le)<e A, A, = Ki(Cee) — > Ki(C=e)<
GAEMES j s %j ) == Ki(¢en1¢)
t <Dr-1gr <D-1lg <D-1l¢

Vliecel o0 e

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 25/30

Example of Substitution formulas

Substitution formula from Bél) to Agl) (t=1):

(Yi-s-sm¥i-1-am if (i,p) = (1, -3 — 12m),

Y1 5 8m i (iup) = (1, -7 — 12m),

Yl,—7—8m if (z’p) (1, ~11 — 12m)
Y2,—8m if (z,p) (2, _12m)

Yz,—2—8mY1T_11_18m FVisism i (i,p) = (2, -2 — 12m),

Yi p > 9 Yl _11 gm T Y —2 8mY1,—3_8m if (Z,p) (27 4 12m)

) YQ,—4—8m if (l p) (2, 6 12m)

Yo, em + Y2’16—8mY?;—15—8m if (i,p) = (2,—8 — 12m),

Yy Lo smY3—7-sm + Y3 5 sm if (i,p) = (2,10 — 12m),

Y3 _1-8m i (ip) = (1,—1 — 12m),

Y3 _3_8m if (i,p) = (1,—5 — 12m),

(Y3, 7-8m Y3 —5-8m if (i,p) = (1, -9 — 12m).

Here Y; , =Y ¢».

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562



Integrable Systems and Quantum Groups 7

Example of Substitution formulas

Applying the formula above to

Xq(L505 (Yl,—7)) = Yl,—7 + Y2,—6Y2,—4Y1T—13 + Y2,—6Y2j—12 + Yl,—5Y2TE41/éTi2 + Ylj—lla

we obtain

Yo 4

Yo 4
Y15+ :
b S L

’ (Y1,_—11 + YQTEQYI,—3)Y1,—3Y1,—1
Y3,—3(Y1T—11 + Y2T—12Y1,—3) + Y—l
YQ’_2Y1T_11 +Y1,-3 St
ViV + Y
Y Y
= Vi o5+ Yo, a5 4+ V3 3V by + V3t = xo(L°4(Y1,25)).

+

=Y, 5+Y>_ + Y3,—3Y2T—12 + Y3_—11

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 27 /30

Further direction

@ Relation with integrable systems?
— g-characters = transfer matrices (Frenkel-Reshetikhin)
— We have a family of simple modules in 65, whose g-characters give a solution
of T-system of type go.
(~ Fermionic type formula?)
— Extend this story to the category O for quantum affine Borel algebra?

o Categorical /conceptual understanding of substitution formulas?

Thank you for your attention & Happy Birthday, Okado-sensei!

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 28 /30
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Lecture 1: Crystals for stable Grothendieck polynomials

Anne Schilling, University of California at Davis

Osaka, March 5, 2023

This is based joint work with
Jennifer Morse (2016) & Jennifer Morse, Jianping Pan, Wencin Poh (2020)
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81

Outline

@ Motivation

Crystal graphs

® ® ®
a [ 2 [2] [3]
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i 2 i 3 2 3 3
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\ \
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/

2 1 /2

/

BN Bl
B] [3] (2] H.
(]3] (23]
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1

®
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i3

@ The generating function

Xweight(b)

vertex b

is the character of the
crystal.

The character of each
connected component is a
Schur function

sx) = >

TESSYT())

Xweight( T)

where X is the weight of
the highest element.
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Crystal operators

Action of crystal operators e;, f; on words/tableaux:
© Consider letters i and i + 1 in row reading word of the tableau
@ Successively "bracket” pairs of the form (i 4 1, 1)
© Left with word of the form i"(i + 1)°

ir-1( 15—1 if
e (i 1+ 1)) {/ (i+1) if s >0

0 else

fi(i"(i +1)°)

i+ 1) ifr>0
else
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Crystal for Stanley symmetric functions

Outline

@ Crystal for Stanley symmetric functions

Crystal for Stanley symmetric functions

Stable Schubert polynomials F,

restriction: &1, xw — Stanley symmetric functions F,, for w € S,

for 321-avoiding w,

Fow = s,/ = Z SN

symmetric and Schur positive (Stanley 1984, Edelman, Greene 1987)
FW = Z dw S\
A

coefficient of x3x» - - - x, counts reduced words of w

— _ — 2 _ ¢
Sn = <51, ce 7S,,_1> SiSj = Sj5j SiSi+1Si = Si+1SiSi+1 sf = id

(3, 2, 1, 4) = 515251 = 525150 = §3535152S51
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Crystal for Stanley symmetric functions

Stable Schubert polynomials

Fo= S x0D.. x40

vievl=w

Decreasing factorization of w
@ w is the product of permutations v’ - - - v1

@ each v/ has a strictly decreasing reduced word
@ ((w) = £(v")+ -+ (V)
= (2, 1, 4, 3) = 5153 = 5351

(s1)(s3)

(s3)(s1) — x1x2
((s3s1) — x7

(

— X1X2

s3s1)() — x5

Fo1,43) = 2x1x2 + x2 4 x3

Crystal for Stanley symmetric functions

Crystal operators on factorizations — residue map

Label cells diagonally

,? pairing ,3_1 e |3—1
1(2(2]|3 — 13(24(25|36 — 151242536
1/1]2]3]3]3] 15]16/27|3s[30P1d 15]16/27(25]30P1d

(109861) (754) P2 (109861) (754)
—_——— N—— —_———— N——
label of 3's label of 2's label of 3's label of 2's

=2,(10961) (8754)
N——— ——

label of 3's label of 2's

operator ¢; J

from big to small:
pair x € 3's with smallest y € 2's that is bigger than x
delete smallest unpaired z € 3's and add z — t to 2's

(986541)(96521) — (9854 1)(965421)
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Crystal for Stanley symmetric functions

Crystal Theorem

Definition
Fix w e S,.
Graph B(w)

@ vertices are decreasing factorizations of w

@ edges are imposed and colored by f;, €;

© highest weights are vertices with no unpaired entries

Theorem (with Morse; 2016)
B(w) is a crystal graph of type Ay

Proof )

Checking Stembridge local axioms

Crystal for Stanley symmetric functions

Examples
00(31) 0()3) 00(21)
| 1 2 | 1
03)(1) (1OG) 0@

\ /
/2 \ 1 1 / 1\2
\\\ */
(3)()\(1) 0G0

3100 2100
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Schur expansion

Fix w € S,

Theorem (with Morse; 2016)

FW:ZQW)\S)\
A

awx counts highest weights v' - -- vl of B(w) with (/(v),...,¢(v")) = A

0(42) (2)(4)

(42)()

Edelman-Greene insertion

Theorem (with Morse; 2016)

For any permutation w € S,,, the crystal isomorphism

B(w) = @ B(A) P2
A

is explicitly given by the Edelman-Greene insertion gng(vg vl

SOICE?G O€ — € o SOEQG




Integrable Systems and Quantum Groups 87

Crystal for Stanley symmetric functions

Emi]

i Lanneherga

Crystal for Grothendieck polynomials

Outline

© Crystal for Grothendieck polynomials
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Crystal for Grothendieck polynomials

Motivation: Schubert Calculus

Polynomial Representatives for Schubert Cells

Grassmannian G, , | Flag Varieties F/,
Cohomology S\ Sw — Fu
K-theory (3% Sy,

Grassmannian Grothendieck polynomials: &) Lascoux, Schiitzenberger 1982
Stable Grothendieck polynomials: &, Fomin, Kirillov 1994

Combinatorial Approach?
Combining:

@ Crystal structure on decreasing factorizations for F,,
(Morse, S. 2016)

@ Crystal structure for &) on set-valued tableaux
(Monical & Pechenik & Scrimshaw 2018)

Crystal for Grothendieck polynomials

0-Hecke Monoid

Definition
0-Hecke monoid Ho(n):
monoid of all finite words in [n] :={1,2,..., n} such that
pp=p, pgp=qpq forall p,qc[n]
pq = qp if |p—q|l>1
Examples
@0 2112 =212 =121
e 2121 =1211 =121 =212
@ 31312 = 3132 =312 =132
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Crystal for Grothendieck polynomials

Decreasing factorizations in Hq(n)

Definition
A decreasing factorization of w € Hp(n) into m factors is a product of

decreasing factors
h=h".. hhH

such that h = w in Ho(n).

.7 = set of decreasing factorizations of w in Ho(n) with m factors

Example

Decreasing factorizations for 132 € Hg(3) of length 5 with 3 factors:
BLHELHE2)  BL)(32)(2)  (31)(1)(32)
B1E)(32)  (1)EL)(32)  (3)(31)(32)

Crystal for Grothendieck polynomials

Stable Grothendieck polynomials for w

Definition
Stable Grothendieck polynomial (or K-Stanley symmetric function):

Bux )= Y U Ot
hm. R RLEHD

where ¢(w) is the length of any reduced word of w.

Example

w = 132 € Ho(3)
Reduced Hecke words 132,312
Decreasing factorizations for constant term:

(31)(2), (1)(32) (3)(1)(2), (1)(3)(2)

2 2 2 2 2 2
B (xPxo + xPx3 + X3x3 4 X1X5 + X1X5 + x0X3) 4 2x1X0X3 = Sp1
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Crystal for Grothendieck polynomials

Schur positivity

Schur positivity (Fomin, Greene 1998)
Gu(x, 8) =D BN Mghs(x)

A
g = |{T € SSYT"(\)| column reading of T=w}|

Example

G132(x, B) = 501 + B(25011 + 522) + B*(350111 + 25001) + - - -

Crystal for Grothendieck polynomials
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Crystal for Grothendieck polynomials

321-avoiding Hecke words (braid-free)

Definition
w € Ho(n) is 321-avoiding if none of the reduced expressions for w
contain a consecutive subword of the form i i+ 1 i for any i € [n — 1].

Examples
@ 1321 = 3121 = 3212 is not 321-avoiding
@ 22132 = 2132 = 2312 is 321-avoiding

Definition
H'™* = set of decreasing factorizations into m factors for 321-avoiding w

Example

o ()(1)(21) € H3, ¢ H3*
o (31)(2) € H?>*

o (2)(21)(32) € H3*

Crystal for Grothendieck polynomials

*-Crystal on H™* (Morse, Pan, Poh, S.)

Bracketing rule on h™ ... A"t hT .. A

@ Start with the largest letter b in At pair it with the smallest a > b
in h'. If there is no such a, then b is unpaired.

@ Proceed in decreasing order in h'*1, ignore previously paired letters.

Crystal operator f*, x : largest unpaired letter in A’

o If x+1e hnNAh*L then remove x + 1 from h’, add x to h'tL.

@ Otherwise, remove x from h' and add x to h't!.

Example

*

o (1)(32) ™t (1)(32) 5 (31)(2)
o (7532)(621) P2kt (7532)(621) ~Ls (75321)(61)
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Crystal for Grothendieck polynomials

Vertices and edges
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Properties and results

Outline

@ Properties and results

Properties and results

Grothendieck polynomials for skew shapes

S, nxB) = > p(Txl) (Buch 2002)
TeSVT(v/A)

SVT(v/\) = set of semistandard set-valued tableaux of shape v/
Excess in T is ex(T)

Semistandard set-valued tableaux SVT(v/)\)

Fill boxes of skew shape v/A with nonempty sets. Semistandardness:

C
Al B

max(A) < min(B), max(A) < min(C)

Example (Which one is a valid filling?)

% 34145 34135 235
12|25 121456 14|56




94 OCAMI Reports Vol. 5 (2023)

Properties and results

Crystal structure on SVT (Monical, Pechenik, Scrimshaw)

Signature rule

Assign — to every column of T containing an i but not an i + 1.
Assign -+ to every column of T containing an i + 1 but not an /.
Successively pair each + that is adjacent to a —.

Crystal operator f;
@ changes the rightmost unpaired i — to i + 1, except

@ if its right neighbor contains both i, i + 1, then move the i over and
turn it into i + 1

Example
+ - - —~ —
34|45 f_z> 34|45 3445 7‘_4> 345 5
12|25 12|35 12|25 12|25

Properties and results

Residue map as a crystal isomorphism

Theorem (Morse, Pan, Poh, S. 2020)

The crystal on skew semistandard set-valued m res -
tableaux and the crystal on decreasing factor- SVIT{(Mp) —— #

izations H™* intertwine under the residue map. lfk lfk*
That is, the following diagram commutes: SVT™(\/ 1) res g mx

Example

31 res

> (31)(3)(32
e (31)(3)(32)

lf f

31 res

> (31)(32)(2
e (31)(32)(2)
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Properties and results

*-Insertion

Insert x into row R of a transpose of a semistandard tableau
@ Try to append x to the right of R (terminate and record)
@ x ¢ R, bump the minimal z > x (proceed to the next row)

© x € R, proceed to next row with y minimal such that [y,x] C R

Example
332211
h:(42)(42)(31):[4 2 4 2 3 1]
1[2] 1]2[4] 1 1|4
1/2]4] 1(2]4]
= — 2] = B — E = 3]
1]1] 1[1]2] 2 2|3
1[1]2] 1[1]2]

Properties and results

Association with x-crystal

Theorem (Morse, Pan, Poh, S. 2020)

pm= —2, sSyTm
The following diagram commutes: l - lf'

ymx L ggyTm

Example
. B [
(42)(42)(31) y (1[4 213
124 [1]1]2]
k
. B3
(42)(421)(3) » |14 2|3
1]2]4]|[1]2]2]
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Uncrowding SVT

Uncrowding operator Lenart 2000; Buch 2002; Bandlow, Morse 2012;
Patrias 2016; Reiner, Tenner, Yong 2018

@ ldentify the topmost row in T containing a multicell.
@ Let x be the largest letter in that row which lies in a multicell.

@ Delete x and perform RSK algorithm into the rows above. Repeat.
@ Result is a single-valued skew tableau.

Example

(6]
NEE
NEE
S[wl =] o]

3445] ., 34[4] _.[3[4] _.[3]4]5

12|25 12|25 12|25 12| 2 1]2

Connection to uncrowding map

Theorem (Morse, Pan, Poh, S. 2020)

Let T € SVT™(}), (P, Q) = uncrowd(T), and (P, Q) = x o res(T).
Then Q = P.

Example

31

uncrowd
<
N

res >(

|—\|\>oo|
w

31)(3)(32) ——

—
—
N

1233

T[]
(68)
i—‘l\.)w|
(6V)
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Hecke insertion (Buch 2008, Patrias, Pylyavskyy 2016)

Insert x to row R of an increasing tableau
@ Try to append x to the right of R (record and terminate)
@ Try to bump the smallest letter that is bigger (proceed to the next

row)
H™ «— (P, Q)
Example
4 3 311
h:(2)(31)()(32):[2 31 3 2]
— — 2] — 2] — [2[3]=pP,
2[3 1]3] 1[3] 1]2
N S B3] & [8] & [B]4]l=0
11 1]1] 1]13] 1]13

Properties and results

Hecke insertion and the residue map

Theorem (Morse, Pan, Poh, S. 2020)

Let T € SVT()) and [k, h]* = res(T). Apply Hecke row insertion from the
right on [k, h]! to obtain the pair of tableaux (P, Q). Then Q = T.

Example
2414 res 4 3 2 21
r=z —>(2)(3)(31)(2)=[
— Z—> 2] — |2 - [2]3]=pP.
1] 1]3] 1]3] 1]2
Sol2ls 2l 5 2] B
1] 1]2] 123 1[23
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Properties and results

Future Work

@ Crystal structure for the non-321 avoiding case (beyond skew shapes)

@ Demazure crystal structure to compute the intersection number?

Properties and results

Thank you !
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109

331 222 111 000
220 111 000 111
311 220 111 222
200 111 200 311
111 220 311 422
000 111 220 331
000 111 222
000 111

000

000 111 222 311 422
000 111 200 311
000 111 222

000 111

000

(1) We apply promotion a total of n = 8 times, to obtain the full orbit.

000
111 000
200 111
311 222
220 311
111 220
000 111

111 222

111
200 111
111 220
200 311
311 422

000

111 000

220 111 000

331 222 111 000

(1) We apply promotion a total of n = 8 times, to obtain the full orbit.

000 111 222 311 422
000 111 200 311

000 111 222

000 111

000

331
220
3
200
111
000

220

000

222 111
111 000

111 200
220 311
111 220

000

000
111
222
311
422
331
222 111
111 000
000 111

000
111
200
311
220

111 000

111 000
222 111
311 200
220 111
111 200

222 311

000
111
220
311
422

000

111 000

220 111 000

331 222 111 000

111

(2) We group the results into the promotion matrix and fill the cells of the
square grid according to ®. For better readability we omitted zeros.

000 111 222 311 422 331 222 111

111 000 111 200 311

2 1
222 111 000 111 222 311 220 111

2 1
311 200 111 000 111 200 111 200

2 1
311 222 111 000 111 220 311

2 1
220 311 200 111 000 111 220

1 1 1
111 220 111 220 111 000 111

222
1 1 1
111 000 111 200 311 220 111 000

3
000 111 222 311 422 331 222 111

3
220 111 000

000

111

222

111

000
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(2) We group the results into the promotion matrix and fill the cells of the
square grid according to ®. For better readability we omitted zeros.

000 111 222 311 422 331 222 111 000
3
111 000 111 200 311 220 111 000 111
2 1
222 111 000 111 222 311 220 111 222
2 1
311 200 111 000 111 200 111 200 311
2 1
422 311 222 111 000 111 220 311 422
2 1
331 220 311 200 111 000 111 220 331
' 3 1 1
222 111 220 111 220 111 000 111 222
1 1 1
111 000 111 200 311 220 111 000 111

3
000 111 222 311 422 331 222 111 000

(3) Regard the filling as the adjacency matrix of a graph, the chord diagram.

.

—

WO OO OoOOoOOoO O

Mg(F) =

AN
N\
o>

=00 O NO O
CSCO=O OO NO
SC=ONOOOCOC
SO~ O NOOO
QMO MO =OO
SO OoCOoCOoOoOoOWw

1y 8

CO=Om=Om=O0O

gear=

/ntrocluced éj Kener, Stan fou A Zoo#
Gao jcnera/l 2ation o,( f:—//odcmmman ég
glcméh

X #m'vtc .S'c-\L

C =<c> o/;o Mf? ac-//h on X

Lande |t /roe 7' ’l

-/(7)6271:5!3
Then (%, C, ,r) exhbits the
if />< - £(3%) yol2o

/,xcol }alt set tndlo- C
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Lecture 3: Diagram algebras, insertion algorithms, and
plethysm

Anne Schilling

Department of Mathematics, UC Davis

based on joint work with Rosa Orellana (Dartmouth), Franco Saliola (UQAM),
Mike Zabrocki (York), Algebraic Combinatorics (2022)
0OSSZ, Laura Colmenarejo (NCSU) arXiv:2208.07258
COSSZ J. Algebra (2020)

Integrable systems and quantum groups
Osaka, Japan
March 8, 2023

Goal

@ Exploration of variants of RSK

» Insertion of multisets instead of integers
» Enumerative manifestations of double centralizer theorem:

V = @ V), = @ Uy @ W, operators A, B acting
A A

A only acting on Uy, B only acting on W,
@ Applications to partition algebras

> Insertion

partition diagrams — (standard tableau, multiset-valued tableau)
» Well behaved with respect to subalgebras
» dimensions of irreducibles = number of tableaux

@ Uniform block permutation algebra — plethysm



116 OCAMI Reports Vol. 5 (2023)

RSK

Outline

@ RSK algorithm and representation theory (review)

RSK

The Robinson—-Schensted—Knuth correspondence

@ Robinson 1938: permutations in S,
— Une,, SYT(A) x SYT(X)

@ Schensted 1961: words of length nin [k] = {1,2,..., k}
— Unen SSYT (M) X SYT(A)

@ Knuth 1970: generalized permutations over [n] and [k] of length ¢
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RSK

Generalized permutations

A, B ordered alphabets (i.e. A= [n], B = [k])

Definition
A generalized permutation is a two-line array w = (1}, 42 . &) such that
@ a1,...,ay €A by,....bp B
@ aj<pajppforl <i<i—1
@ b; <p bj11 whenever a; = aj;1
Example
Generalized permutation from [6] to [5]:
1 112233 3 3 466 6
1 552313551123

RSK

Row insertion

N
N

|—\I\J-l>U'IO\|
[ ROSANG RN
(@)

2[2[3]5] ¢ 2

w
S

I
=N o|o
=l |o]~

o
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RSK

RSK correspondence

. . ai a2 -+ a
generalized permutation w = (5, pa .. bf;)

Row insert by, by, ..., by one by one
Record new box when inserting b; by a;

Theorem (Knuth 1970 )
3 bijection

generalized permutation from A to B — (P, Q)

@ shape(P) = shape(Q)
@ P is semistandard tableau with entries in B

@ @ is semistandard tableau with entries in A

RSK

RSK and representation theory

Schensted 1961
@ Combinatorial bijection

{words of length nin [k]} — U SSYTpq(A) x SYT(A)
An

@ Enumerative result

K" = " #SSYT(q(A) - #SYT(N)
AFn

@ Representation theory interpretation
GLy x Sp-module V&7 where V = CK (commuting actions)

ver =~ G wWp @ S
An

W,f‘ is a simple left GL,-module
S* is a simple right S,-module
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Application: Diagram algebras

Outline

© Application: Diagram algebras

Application: Diagram algebras

Variant

Encoding of partition diagrams as generalized permutations with
multisets

RSK algorithm gives pairs of standard multiset tableaux

Well behaved with respect to subalgebras

Matches the representation theory and dimensions of Halverson and
Jacobson (2018)

New map from standard multiset tabelaux to Bratteli diagrams
(different from Benkart and Halverson (2017))
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Application: Diagram algebras

Partition diagrams

Partition of two alphabets [k] and [k]

Example

m=1{{1,2,4,2,5},{3},{5,6,7,3,4,6,7},{8,8}, {1}} represented by:
@ e @ @ © @ ©

Pi(n) = spanc{m | = b [K] U [K]}

Partition algebra

Application: Diagram algebras

(Non)propagating blocks

Example

m=1{{1,2,4,2,5},{3},{5,6,7,3,4,6,7},{8,8}, {1}} represented by:
@ @ @ @ © @ ©

A block is propagating if it contains vertices from both [k] and [K].

Example
{1,2,4,2,5} is propagating. J

Otherwise, the block is non-propagating.
Example
{3} and {1} are non-propagating. J
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Application: Diagram algebras

The correspondence

7 = {m,m,..., T} set partition of [k] U [K]
Order: last letter order
® T, T, .,7j, propagating blocks of 7 ordered as 7r;1r < < 7rjg,
where 7rj+ =miN[kland 7" =m; N [k]
® 0j,...,0;, C [k] non-propagating blocks in [k] ordered as

op << 0j,
® 7j,...,Tj C [k] non-propagating blocks in [k] ordered as
Th << Tj

7Tjr W}L 7TJTL
(P,Q)=RSKk| =* = ’
Ty Tj o T
T = P by adjoining row containing n — p — b empty cells followed by

7','1, e ,’7’,‘b
S = @ by adjoining row containing n — p — a empty cells followed by
Tiyyeves 0

a

Application: Diagram algebras

The correspondence — example

Example
m=1{{2,3,4,4,5},{5,2,3},{1,6,7,8},{7,8},{9,6}, {1},{9}} € Py(18)

T T T\ ({234 {5 {16} {9}
Tomy ow (3,5} {2,3} {1.8} {6}

Apply RSK:

p_478 o _|5]9
6 23416

Adjoin new rows:

45(78 5(9
T:Zg S: 234|116
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Application: Diagram algebras

The correspondence — Theorem

SMT,(A) = set of standard multiset tableaux over alphabet [k]

Theorem (COSSZ'20)
Let n > 2k. 3 bijection

V: {set partitions of [k] U [k]} — U SMT 7 (A) x SMT,(A)

AEn

Enumerative result

B(2k) =)~ #SMT ()

AFn

Application: Diagram algebras

Restriction to subalgebras

Subclasses of set partitions

permutation perfect matching
Qo 0 o ;Q)Y@
@ ® @ @ G
planar planar matching

@ @ ® @
partial permutation

a0 0 0

planar perfect
matching

@ @ 6
matching

@ @
planar partial
permutation
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Application: Diagram algebras

Subalgebras of the partition algebra Py (n)

Subalgebra Ag ‘ Diagrams spanning the subalgebra ‘ Dimension
Partition algebra Py (n) all diagrams B(2k)
Group algebra of symmetric group CSy permutations k!
Brauer algebra By(n) perfect matchings (2k — 1)1
Rook algebra Ry(n) partial permutations Ekjo(’,‘y il
i=
Rook-Brauer algebra RBy(n) matchings io (%) (2i — 1)1
i—=
Temperley—Lieb algebra TLy(n) planar perfect matchings ﬁ (2,(“)
Motzkin algebra M (n) planar matchings ’Zk%’il (3) (3%)
Planar rook algebra PRy (n) planar partial permutations (2kk
Planar algebra PP(n) planar diagrams 2k1+1 (‘2";)

Application: Diagram algebras

Properties under W

Ay subalgebra of partition algebra
SMT 4, () set of standard multiset-valued tableaux under W for Ay

Definition
T € SMTAk ()\)

@ T is matching if the first row contains sets of size less than or equal
to 2 and all other rows contain only sets of size 1.

@ Two sets S and S’ are non-crossing if there do not exist elements
a,beSandc,de S'suchthata<c<b<dorc<a<d<b.

@ We say that ¢ € [k] is between a set S if there exist a,b € S such
that a < c < b.

@ T is planar if
it has two rows

the sets in the first row are pairwise non-crossing

no element belonging to one of the sets in the second row is between
any set in the tableau
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Application: Diagram algebras

Tableaux for subalgebras

Under the bijection W, the tableaux are characterized as follows:

properties characterizing SMT 4,

Ax diagrams spanning Ak sizes of entries other properties
in first row

Pr(n)  all diagrams — —

PPy(n) planar diagrams — planar

CSk permutations 0 matching

Bk(n)  perfect matchings 0,2 matching

Rk(n)  partial permutations 0,1 matching

RBk(n) matchings 0,1,2 matching

TLix(n) planar perfect matchings 0,2 matching & planar
My(n)  planar matchings 0,1,2 matching & planar
PRi(n) planar partial permutations 0,1 matching & planar

Application: Diagram algebras

Tableaux for subalgebras

Corollary

Let n > 2k and A+ n. For each of the algebras Ay let ng be the
irreducible Aj-representation indexed by . Then

dim (vjk> = #SMT 4, (V).

Corollary

If n > 2k, then for each subalgebra Ay of the partition algebra Py(n), we
have

dim(Ax) = Y (#SMT4, (V)%

AEn
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Application: Diagram algebras

Diagram algebras

@ Restrict diagonal action of GL, on V& to S, C GL,: for o € S,

o(Vi @V, ®--@Vv,) =0V, @ - Q0ov

@ What commutes with this action?
Answer: Partition algebra Py (n) Martin, Jones 1990s

@ Basis: set partitions of {1,2,...,k}U{L,2,...,k}

Remark
@ S, and GL, form a centralizer pair

@ Py(n) and S, form a centralizer pair

Application: Diagram algebras

Martin and Jones
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Application: Diagram algebras

See-Saw pairs

Roe (oodman « Nodan R Wallach

Symmetry,
Representations,

and Invariants
(See book by Goodman, Wallach)

Application: Diagram algebras

See-Saw pairs

A< B algebra embedding  Res§ V3 = @D (V4)
1%

oA and D centralizer pair

B D
4 eB and C centralizer pair
A C

© Indices for the simple modules for B and C are the same.
© Indices for the simple modules for A and D are the same.

@
Res? Vs = D (v2) o
A



Integrable Systems and Quantum Groups 127

Application: Diagram algebras

Our See-Saw pair

W
S

n
=

ResgnLn V();\Ln _ GB (Vi)earm
R Py(n) VH _ VA Drau
€Ss, Pi(n) — @ Sk

|dea: Restrict representations of Py(n) to S

Application: Diagram algebras

The approach

Uy uniform block permutation algebra

Sk = Ui —  Py(n)
N—— . ~~ 7/
special cases of plethysm generalized LR coefficients

Goal: Combinatorial model for the representation theory of U
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Uniform block permutation algebra

Outline

© Uniform block permutation algebra

Uniform block permutation algebra

Uniform block permutations

Tanabe 1997, Kosuda 2006

Party algebra, centralizer algebra for complex reflection groups
Definition

The set partition d = {dy, da, ..., d;} of [K]U [k] is uniform if
|di N [k]| = |di N [K]| for all 1 <7< /. Let

Uy = {d I [k] U[K] : d uniform}.

Example

d = {{27 ZI-}’ {57 7}? {1’ 37 1? 2}7 {47 67 37 6}7 {77 87 97 57 é? g}}

Think of d as a size-preserving bijection

({2} {5} {1,3} {4,6} {778,9}>
{4} {7} {1,2} {3,6} {5389}

= Elements of U are called uniform block permutations
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Uniform block permutation algebra

Uniform block permutations — continued

Example
Diagram for {{17 3? Ia i}? {27 Z"}v {47 6? :_37 6}7 {57 ?}7 {77 8? 97 57 ga g}}

The product of

is obtained by stacking the diagrams of d and d:

@ﬁ%

Uniform block permutation algebra

|dempotents

For every set partition 7 of [k] we define:
e, ={AUA:Acn} el

where A = {i:i € A}. For example,

[o] (o]
€2|7|14/36|589 — ﬁ
[o] o]

Lemma I

The set E(Uy) = {e; : mF [k]} is a complete set of idempotents in U.
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Uniform block permutation algebra

Maximal subgroups

Definition
M finite monoid, e idempotent
Maximal subgroup: Ge = unique largest subgroup of M containing e

Lemma
The maximal subgroup of U, at the idempotent e, is

Ge, = {d € Uy : top(d) = bot(d) = 7}

Example

For m = {{1},{2},{3,4}, {5,6}}

“=JIRR TS KRR KR

Uniform block permutation algebra

Maximal subgroups — continued

Example
For m = {{1}, {2}, {3,4}, {5,6}} with type(m) = (1°2?)

=R [T KRR KR

Theorem
For m t= [k] with type(m) = (1%12%2 ... k%)

Gew2531><532><."><53k
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Uniform block permutation algebra

Representation theory of U

[

Beegamin Stinberg

Representation
Theory of Finite
Monoids )
(See book by Steinberg 2016)

£} springer

Indexing set of simple modules

k
I, = {()\(1)7 A2 )\(k)) - A) are partitions such that Z iAD| = k}
i=1

Example l

I3 ={((3),0,0),((2,1),0,0),((1,1,1),0,0), (1), (1), 0), (0, 0, (1)) }

Uniform block permutation algebra

Characters, symmetric functions, and plethysm

Theorem (OSSZ 2022)

Multiplicity of Vg‘k in Res@’: ng is (s\w[silsy [s2] - - - sy [sk], su)
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The plethysm problem

Outline

@ The plethysm problem

The plethysm problem

Plethysm via representations of GL,

Definition ’

GL,(C) = invertible n x n matrices

@ GL,-representation p: GL, — GL,
@ GL,,-representation 7: GL,, — GL,

@ Composition is GL,-representation

Top: GL, — GL,

Definition
Character of composition is plethysm:

char(7 o p) = char(7)[char(p)]
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The plethysm problem

Frobenius map

R" space of class functions of GL,
A" ring of symmetric functions of degree n

Power sum symmetric function p)

p)\:p)\lp)\Q"'p/\g
pr:X{+X2r+"‘

Schur function s,

s= Y

TESSYT())

The plethysm problem

Frobenius map — continued

Definition
The Frobenius characteristic map is ch”: R" — A"
ch’(x) =) o
~ XuPu

pkEn K

where z,, = 191311292351 ... for py = 171292 ...

Remark

The irreducible character x* indexed by A under the Frobenius map is
ch(x) = s

by the identity

1 A
S\ = Z Z_Xp,p,u
uw M
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The plethysm problem

Plethysm problem

Problem
Find a combinatorial interpretation for the coefficients a¥ L€ N in the

expansion
14
sxlsul = ) a5
v

Problem

Find a crystal on tableaux of tableaux which explains a¥ "

The plethysm problem

Thank you !

Remark (Take away)
Plethysm is hard!

Remark (Take away)

Integrable systems, representation theory and combinatorics all play hand
in hand!
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QUIVER HALL-LITTLEWOOD FUNCTIONS AND
KOSTKA-SHOJI POLYNOMIALS

MARK SHIMOZONO

These lectures are dedicated to Prof. Masato Okado on the occasion of his 60-th
birthday conference “Integrable Systems and Quantum Groups”, March 4-8, 2023
at Osaka City /Metropolitan University.

They are based on joint work with Dan Orr [0S22]. They are inspired by Shoji’s
work [Sho04] on Green’s polynomials for complex reflection groups and the paper
of Finkelberg and Ionov [FI18] which according to Finkelberg was intended to be a
coherent sheaf version of Shoji’s construction.

There are two main constructions for Kostka-Shoji polynomials.

(I) Quiver Hall-Littlewood (QHL) series: these are multigraded characters of
modules given by the Euler characteristic of global sections of a family of
vector bundles on Lusztig’s convolution diagram.

(II) QHL symmetric functions: these are elements of the tensor product of
symmetric functions that are obtained by vertex operators.

In each case the Kostka-Shoji polynomials arise as coefficients of the irreducible
character basis.

The QKS polynomials also appear as structure constants of Schur functions in
a K-theoretic Hall algebra [0S22, §5].

1. PART I: GEOMETRY

1.1. Lusztig’s convolution diagram W. Let Q = (Qo, Q1) be a quiver (directed
graph); Qo is the set of nodes and @ is the set of arrows. For our purposes (see
[0S22, Subsection 20]) there is no loss of generality in assuming that for every
(i,§) € Q3 there is at most one arrow from i to j. If b € Q; is an arrow from i to j
we say ¢ = ta and j = ha (tail and head of b).
Lusztig’s convolution diagram W [Lu90] is specified by @ and the following data:
e A sequence i = (41,12, ...,%m) of quiver nodes ix for 1 < k < m.
e A sequence a = (a1,as,...,an) of positive integers ay, € Zo.
In our notation a superscript as in V(@ refers to data at node i € Qy. An index k
as in ai or pu(k) refers to data at the k-th position in a filtration.
Given (i, a), define a Qg-graded C- vector space V*® = $i€Qo V® and a decreas-
ing partial flag of Qg-graded subspaces
Ve=v(0)>*oV(0)*D---DV(m)*=0
as follows. Let V(m)® = 0 be the zero Qg-graded vector space. Then for k from m
down to 1, let V(k — 1) be obtained from V (k) by adding dimension aj at vertex
ik. Let V* =1(0)*® be the final result.
For i € Qg let aY) = (ay | i, =) be the sequence of dimension jumps at vertex

i. Let B® ¢ PO ¢ GL(V®) be the standard lower triangular Borel, standard
1
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lower triangular parabolic with diagonal block sizes given by a(?), and the general
linear group on V.

Ezample 1. Let Qg = {0,1}. Letting ¢ and a be as below, we give the tuples a®
and the dimension vectors of the spaces V (k).

E 123
ir 1O[1]0]1(1
ar || 1372 1
@1 2
a® 3 211
a® =(1,2) oM =(3,2,1)
|k Jof1[2]3]4]5]

dmV (k)@ [3]2]2]0]0
dim V(&) D [6][6[3]3][1]0

A flag of type (i,a) is a sequence F(+) of Qp-graded vector spaces
VE=F0)*D>DF1)*D>---DF(m)*=0
such that for all 1 < k < m:
ar ifip =1
0  otherwise.

dim(F(k — 1)V /F(k)®) = {

Let Fl; , be the space of flags of type (i, a).
Let G = [ieq, GL(V?) and FI = [[;c, GL(V®)/P® the product of partial
flag varieties. There is an isomorphism

Fli, 2 Fl:= [] F1?
1€Qo

Let £ = EBbte Homg (V) V() be the space of representations of @Q, the
space of linear maps associated with V'*.

Let T9 = (C*)@. It acts on E such that the copy of C* for a € Q; acts on
Hom(V () V(ha)) by scaling. The group G = G x T acts on E.

Say that F'(-) € Fl; , is strictly ¢-stable for ¢ € E if

(1) op(F(k—1)®)) c F(k)™  forallbe @, 1<k <m.
Define the convolution diagram [Lu90]

W= {(F(:),¢) € Fl, o x E | F(-) is strictly ¢-stable}.

1a><E<—W

ST

The map ¢ is G-equivariant.
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Ezample 2. Let @ be the one loop quiver and n = >_}" | ay. Then W = T*(GL,,/P,)
is the cotangent bundle on the partial flag variety where P, is the lower triangu-
lar parabolic with block sizes a. The space E = gl,, affords the adjoint action of
G = GL(n). Let n, be the nilradical of Lie(P,). The map ¢ is the parabolic Springer
resolution. Its image is the nilpotent adjoint orbit closure X, = Ad(G) -n, C E.

1.2. Oyy modules W*() and quiver HL series. In [0S22] we consider a family
of G-equivariant Oyy-modules WH(),
Given (i,a) we require one more input, namely, a sequence of dominant weights

p() = (), u(2), .., p(m)) - p(k) € X4 (GLay).

At each vertex i € Qg let u(? € X(GL(V™)) be the concatenation of the (k)
for i, = 1.

Ezample 3. Let Qo = {0,1} with i,a as in the previous example. We choose a
sequence of weights p(-) below.

k 1 2 3 4 5
it || O 1 0 1 1
ar || 1 3 2 2 1
p(k) | (2) 13,2,2) | (1,1) | (2,1) | (1)
p©@ 2 11
p@ 322 21 | 1

We have p(®) = (2,1,1) and p™) = (3,2,2,2,1,1).

Say that (i,a, u(-)) is dominant if each (V) is dominant.

In [OS22] a vector bundle W,y on W is defined as follows. Let L, be the
standard line bundle of weight u(Y on GL(V®)/B® and £ = Mieq, L, the outer
tensor product, which is a line bundle on the product of complete flag varieties
Hier GL(V®)/B®  and let 7 be the projection to Fl.

L
[Ticg, GL(V®)/BY lig X E 45— W

\/\

Define W,y = p*m.(£); it is a vector bundle on W. Define the Quiver Hall-
Littlewood (QHL) series to be the T@t-equivariant Euler characteristic of global
sections of W,,(,.

X = D (= 1)Pehg HP OV, Wy)
p>0

X, (GL(V®)) let x*" be the irreducible character of G. We define
(tg,) € R(T) = Z[tF' | b e

For A* € [[icq,

the quiver Kostka-Shoji (QKS) polynomial IC(, 10)
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Q1] as the coefficient of x** in ij(g))

(i,a) _ (i,a) A°
Xu(y = ;K”,u(')(%l)x

Since W,(.y may be viewed as a bundle over the product F1 of partial flag va-
rieties, the QKS polynomials can be computed using Bott’s formula for the Euler
characteristic of a standard line bundle on the flag variety. We refer the reader to
[0S22, Subsection 2L] for an explicit alternating sum formula for the QKS polyno-
mial.

Ezxample 4. Let @ be the single loop quiver and n = >, ax. Let p = (n —
1,...,1,0) € Z" = X(GL(n)) and let J =} ¢ (—1)”w be the antisymmetrizer
over the symmetric group S,. Let u € X(GL,) be the concatenation of all the
(k). We have

1
1—tzo

XS(Q)) = J(P)T T | 2P H
a€PT (ng)
Here the QKS polynomials are parabolic (also called generalized) Kostka polyno-
mials [SWO00].
Ifn=2 a=(11) and pu(-) = ((0),(0))

(i,a) _ —1 zr
Xu(y = I <1 - txl/x2>

= Ztk<$1xz)_k5(2k,o) (z1,72).
k>0

There are always two main problems to solve. The first is geometric.
Conjecture 1. [0S22, Conjecture 2.14] Vanishing: If (i,a, 1(+)) is dominant then
(2) HP(W, W, y) =0 for p>0.

Corollary 2. ICg\l.”QZ(_)(th) € Zsoltf | b € Q).

The second is to obtain an explicit combinatorial formula for the positive poly-
nomials.

In all the following examples we assume dominance holds.

We say the data (i,a) is Borel if ar, = 1 for all k. In the Borel case, for any u(-),
each p(k) is a single row weight. We call the data parabolic in the general case.

In discussing the combinatorics of the known cases below it is important to know
the following.

Remark 1. Fix (i,a) and consider u(-) and A* € [[;co, X+(GL(VY)). Let N* €
720 be a tuple of integers, one for each vertex. Denote by u(-)+N*® be the result of
adding N to each of the parts of the weight (k) if i, = i. Similarly let A\* + N°*
be defined by adding N to every part of every weight A() € X (GL(V®)). It is
not hard to see that

(i,a) _ Ga)
(3) IC)\'+N',[L(')+N. (th) = ’CA',y(-)(th)'

In particular every coefficient polynomial IC%.’%)L(_) (to,) is equal to another such in

which all of the weights () are partitions (have all nonnegative parts) with at most
dim (V@) parts for all i € Q.
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In the Borel case this doesn’t matter much since all weights are single rows.
However in the parabolic case, this adding N® causes a number of “full-sized”
columns to be added to a partition.

Ezxample 5. Let @ be the single loop quiver.

e In the Borel case the QKS polynomials are the Kostka Foulkes polynomials
[Mac79, §II1.6].

— Vanishing was proved in [Bro93].

The Kostka-Foulkes polynomials have a Young tableau formula [L.S78].

— They also have a fermionic formula (rigged configurations) [KR86].

— They give the dimensions of the quotients for the filtration of the action

of a principal nilpotent on a weight space [Bry89].

They are the isotypic components of the one-dimensional sum for the

tensor product ®;BY#* of “single row” type A KR crystals, graded

by the energy function [NY97].

e In the parabolic case the QKS polynomials are known as parabolic or gen-
eralized Kostka polynomials [SWO00].

— Suppose all p(k) are single columns. The QKS polynomials are the
Kostka-Foulkes with grading reversed. They have the following de-
scriptions:

* The intersection cohomology of X, [Lu83].

% A tricky (catabolizable) tableau formula [Las91].

% Via the Tanisaki ideal of C[X, N h] [GP82].

* One dimensional sum for tensor products of single column type
A KR crystals [NY97].

— Suppose all p(k) are rectangles all of which have the same number
of columns. The QKS polynomials are isotypic components of the
coordinate ring of the nilpotent adjoint orbit closure X,.

x Vanishing and the analogue of Lusztig’s formula for weight mul-
tiplicity was proved in [W89].

* The parabolic Kostka polynomials (via [Sh01] and [Sh02]) equals
the sl,,-invariant Demazure characters in the highest weight mod-
ule V(sAg) of sl,, [KMOTUOO].

— Suppose all p(k) are rectangles. Let p(k) be an ay X by rectangle Ry
for all k.

* Vanishing was proved in [Bro93].

* Geometric character has a tableau formula [Sh01].

x The tableau formula equals the one-dimensional sum for any
type A affine KR crystal @;B%* [ScWa99] [Sh02].

* The equality of the above one-dimensional sums with the type
A fermionic formula is proved in [KSS02]. This is the untwisted
type A case of the remarkable X = M conjecture of M. Okado
and collaborators given in [HKOTY02] for the untwisted affine
root systems and in [HKOTTO02] for the twisted affine root sys-
tems. Here X means the one-dimensional sums which are the
energy-graded characters of arbitrary tensor products of KR
crystals of any affine Lie algebra and M is their fermionic for-
mula.
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* In [SWO00] it is conjectured that the rectangular parabolic Kostka
polynomials agree with the rectangle product case of Lascoux-
Leclerc-Thibon functions. It was proved in [GHOT7].

— General case

* The vanishing conjecture in this case is due to [Bro93]. A proof
was announced in [Ka23].

* A catabolizable tableau conjecture was given in [SW00]. It was
proved in [BMP] which considered more general characters by
allowing more general ideals of roots as opposed to just the roots
of the nilradical of a parabolic. They studied (affine Borel) mod-
ules built from tensoring with affine highest weight vectors and
applying Demazure operators.

Ezample 6. Let Q be the cyclic quiver, where Qo = Z/rZ and @1 = {(i,i+1) | i €
Z/rZ}. Borel case:
e The Borel cyclic quiver QKS polynomials were defined in [FI18].
e For 2 nodes they were conjectured in [FI18] to be equal to those defined in
[Sho04]. This was proved by Shoji in [Shol8].
e The cyclic quiver QKS were given in intersection cohomology interpretation
in [AHOS].
Parabolic case: These were defined at the same time as the general case in [0S22]
and specifically studied in [0S22a].

e A tableau formula is given in[0S22a] for the case of rectangles all at vertex
r — 1, and zero weights at other vertices.

e If all are single columns at vertex r — 1 the QHL symmetric function for
the cyclic quiver was shown to be equal to certain wreath Hall-Littlewood
polynomials [Ha03, §7.2.4] which are obtained from Haiman’s wreath H-
Macdonald polynomial by taking the coefficient of the lowest occurring
power of ¢q. This single-columns-at-one-vertex case is not directly related
to the single-rows-at-one-vertex case, unlike the situation for the single node
cyclic quiver, where the two are related by degree reversal (after transpos-

ing).

Example 7. For any quiver whose connected components are directed cycles and
directed paths, a catabolizable tableau conjecture is given in [0S22a]. For the case
of the As-quiver, the answer is a truncated Littelwood-Richardson coefficient [?].

2. PART II: CREATION OPERATORS FOR QUIVER HL FUNCTIONS

The second method of construction of QKS polynomials in [0S22] is by creating
symmetric functions by vertex operators. This was inspired by Jing [?], Garsia and
Procesi [GP82], and a joint work with Zabrocki [SZ01].

Let A be the Hopf algebra of symmetric functions over F = Frac(R(T9)) =
Q(ta | ac Ql)

For a triple (i,a,p) with ¢ € Qo, a € Zsg and p € X (GL,) we define an
operator H,(f’a) € End(A®%?). Then for (i,a,u(-)) we define the Quiver Hall-
Littlewood symmetric function by the sequence of operators acting on 1 € A®o;

(t,a) _ pris,ar) . (im,am) ®Q
Hyly = Hyay oo Hygym (1) € AT,
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2.1. Symmetric function notation. Let A be the Hopf algebra of symmetric
functions over Z. Let X represent a sequence of indeterminates (x1,x2,...). Let
Z[[x; | © € Zsg]] be the formal power series ring. Let Sz_, be the group of per-
mutations of Z~o that move finitely many elements. Then A is isomorphic to the
subring A[X] of Z[[x; | i € Z~¢]] consisting of the series which are symmetric, that
is, fixed by Sz_,, and have bounded degree. Let A[X] consist of symmetric series
with no condition on degree bound.
For indeterminates z,w define

Q[z]zliz

] = 1/9fu] = (1 - )
Qz + w] = Q[2]Q[w]

Q behaves like an exponential.

The negative sign has a special meaning. It does not give the same result as using
a variable and then specializing the variable to —1. For example Q[uw] = (1—uw) ™!
and setting u = —1 yields (1 +w)~!.

We use the suggestive notation X = x; + x5 + ---. For an indeterminate u and
extending the above notation using infinite sums and products we have

o] =[] o] = ] ; _1%_ =3 uFh[X]

i>1 i>1 k>0
O-uX] =[] = uzi) = > (~1)Fuber[X].
i>1 k>0

This is the definition of the homogeneous (hg) and elementary (eg) symmetric
functions.

Az = Z[hy, ha,---] is a polynomial algebra over the integers. To connect with
the usual presentation of the boson-fermion correspondence we define the power
sums and their connection with €:

pT[X]:leT forr>1
i>1

Qfux] = exp | 3 Lpil X

r>1

Of course we must work over Q if using power sums. We have Ag = Q ®z Az =
Qpr,p2, -]

We now give the Hopf structure. Let S : A — A denote the antipode. It is an
involutive algebra automorphism denoted f[X] — f[—X] for f € A. It is enough to
define it on the generating function Q[uX] of algebra generators hy and then take
coefficients of powers of u.

QuX] — Q[—uX] that is,
hi — (—1)key, for all k£ > 0.
Over Q it can be defined by pi[X] — —pg[X] for all k£ > 1.
The tensor product A ®z A can be realized by series in two sets of variables X

and Y which are separately symmetric in X and in Y and are of bounded degree.
If f,g € A then we write f[X]g[Y] for the element f ® g.
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The coproduct A : A - A ® A is an algebra homomorphism and is denoted
f— fIX +Y]. Heuristically, f[X + Y] means to plug both sets of variables X and
Y into f. We do this on the generating function Q[uX] of the hi[X] and then take
the coefficient of powers of u:

A(QuX]) = Qu(X +Y)] = QuX]QuY]
Alhg) = Y hilXIh;[Y]= > hi @by
225 B

For power sums we get

PRIX +Y] =D (af +yf) = pe[X] + pe[Y] = pr @ 1+ 1@ i,
i>1

that is, the pj are primitive algebra generators of Ag.
Define the Hall pairing A® A — Z to be the one with respect to which the Schur
functions s, are orthonormal:

(S5xs Su) = Oxap for A\, p € Y (Young’s lattice of partitions)
By the Cauchy identity, its reproducing kernel is:

S saXlslv] = I ;- = 0[x]
A

1— 2y
i,5>1 i

The counit € : A — Z is taking the coefficient of 1: e(f) = (1, f) for all f € A.

For a symmetric function f € A, define the operator f+ € End(A) (called f
“perp” or “skewing by ) to be the adjoint operator to multiplication by f. It is
defined by (for all g,h € A)

(fl(g)7h>:<g,fh>:<A(g),f®h>

=Y {90y, N9 )
(9)

If f is homogeneous of degree d then f* has degree —d. In particular for any Z we
have

(4) QZXH(1) = 3 sa[Z)s\[X]H(1) = 1
AEY

since s)[X]* has strictly negative degree for A a nonempty partition.
Notation: * is taken with respect to the X variables.

Exercise 1. Show that for all f € A
(5) JIXI-(QIXY)) = FIV]QLXY)
For f[X] = Q[ZX] we have
(6) QX Z1H(Q[XY]) = QZY]Q[XY] = Q[(X + Z2)Y]
Exercise 2. Show that

QIXZIM(fIX]) = fIX + 2] for f € A.
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For any f,g € A we have
(QXZ]* o FIX])(9IX]) = QX Z1* (f[X]gIX))
= fIX + Z)g[X + Z]
= fIX + Z|Q[X Z]* (g X)).

Therefore

(7) QXZ o fIX] = fIX + Z]oQ[XZ]*  in End(A).
If f[X] = Q[XY] then in End(A)

(8) QXZ]*F 0 QIXY] = Q[(X + 2)Y]Q[X Z]*

(9) = Q[ZY]Q[XY] 0 QX Z]*.

2.2. Bernstein operators. We require the Bernstein operators that are used to
create Schur functions. Define {S,, | m € Z} C End(A) as follows.

Let p=(n—1,n—2,...,1,0) € Z" and let Z = (z1,...,2,) be a finite set of
auxiliary variables. Define

2
R = _ ) =P e a Y — P T(P
(2) H (1 Zz> z H (2; — 2z5) = 27 PJ(2F)
1<i<j<n 1<i<j<n
where recall that J is the antisymmetrizer. For A € Z"™ = X(GL(n)) define
sa(Z) = J(2F) LI,

This is the Schur polynomial s)(Z) if A € X1 (GL(n).
Define the Bernstein operators Sy € End(A) by the generating function

> S =S(2) = Qe X]Q[—2 7 X

keZ
=2 #mlX]Y (==Y X]*

i>0 j>0
=3 2 Y (1) hi[X]e; [ X
kEZ ,j>0
i—j=k

We compute the commutation relations using (8).
S(2)S(w) = QX ]Q[—2z ' X QuwX]Q[—w ' X]*
= Q[ X]Q[— 2z 'w])QuwX]Q[ -2 X Q[-w Xt
= (1 —-w/2)Q(z + w)X]Q[—(z7' + w1 X]*.
Multiplying by z we have
28(2)S(w) = (2 — w)Q[(z + w) X|Q[— (' + w™ ) X]*
Exchanging z and w gives
wS(w)S(2) = (w— 2)Q(z + w) X]Q~ ("' + w™ H)X]*+

Note that the term Q[(z + w)X]Q[—(z~! + w™1)X]* (the normal ordering of
S(2)S(w)) is symmetric in z and w. We deduce that

28(2)S(w) = —wS(w)S(z).
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m—+1

Taking the coefficient of z w™ we obtain

SmSn = —Sn—15m+1 for all m,n € Z.

This is the relation seen by switching rows in the Jacobi-Trudi determinantal for-
mula for Schur functions.
Let Z* = zfl + -+ 2z, . We consider the composition of S operators.

S(Z) = 5(z1)S(22) -+ - S(zn)
= Qe X]Q[—2; ' X Q[ X Q[ -2, X

—( H (1—Zj/zi)) Q1 X] - Qe X|Q[—2 XL - Q-2 X E

1<i<j<n
= R(2)Q[ZX)0[-Z* X+
=27 PJ(z")QZX]0[-Z* X .
Let A\; > Ao > --- > )\, > 0. Letting [2*] denote taking the coefficient of 2 we
have
Sy, 008y, (1) = [2S(21) - - S(2,)(1)
= [P I (") ZX]Q[-Z* X]H(1)
= [M)(2") Y sulZ]sulX]

HEY

=[] ()X

:S)\[X].

2.3. Modified Jing operators. We use the modification of Jing’s creation op-
erators [J91] that was popularized by Garsia [GP82]. We define the operators
{Hy | k € Z} C End(A) as follows.

keZ
= S(2)Qtz" 1 X+
= QX[ ' X Q7 X
= QX]Q[(t — 1)z X+

We have
H(2)H(w) = Q[X]Q[(t — 1)z X]FQ[uwX]Q[(t — DNw ' X+
= Q[t — 1)z w]Q[(z + w) X]Q[(t — 1) (27 + w™H X]L.

Note that

Q(t — 1)z w] = 11_‘;’2//2
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We obtain

H()H(z) - Hz) = | [ Q- 1)z/=] | zxiole - 1z X7t

= R(;)B(_Z, HQZX)Q[(t —1)Z*X]t  where

B(zt)= [ (—tz/z)~"
1<i<j<n
Let = (1 > po2 > -+ > py) with g, > 0. We have
Hy, 0 Hy, (1) = [2/]H(z1) -+ H(zn)(1)

= [2"|R(2)B(Z,1) Y _ sx[Z]sA[X]
A

= [*TIB(Z,t) ) (2 P)sa[X]
A

=D s X[ Y (1) O B(Z, ).
A

wES,
Let H, := H,, o---0H,, (1). Taking the coefficient of s5[Z] we have
Kyu(t) = (H,, sx)
= ) (V[ IB(Z, 1)

weSy
- Z (=1 [P = (utp)] H (1—tzi/z)7 !
wE Sy 1<i<j<n

where in the last step we replaced z; by z; 1 everywhere. This last formula is
Lusztig’s t-analogue of Kostant’s weight multiplicity formula.

2.4. Parabolic analogue. Fix a € Z~ and let Z = 21 + 25 + - - - + 2,. We define
operators {H§ | B € Z*} C End(A) by [SZ01]

> PHG=HY(2) =S (2Z)Qtz X]*

ﬂeZ(l
= R(Z2)QZXQ-Z* X Q[tZ* X]*
= R(2)Q[ZX)Q[(t - 1)Z* X]*.

Compare this with the composition of “single row” operators:
H(z1)o---0H(z,) = B(Z,t)H*(2)
Given a and p(-), define the parabolic HL symmetric function
Hyy=Hyhy oo Hypy(1)-

Let a1 + a2+ -+ a, =n, Pg"' the standard upper triangular parabolic with
block sizes a, and n, the nilradical of Lie(P,"). Let ®(ny) be the set of roots of n,.
Let p € Z™ be the concatenation of the weights p(1) through p(m).
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In [SZ01] it was shown that
(H

1
a _ 1w wA+p)—(p+p)
hy s = D (<) S |
wESn a€®(ng)

Exercise 3. Verify the above for a = (1,2).

3. GENERAL QUIVER

Let F = Frac(R(T?)) = Q(t, | a € Q1). Let A be symmetric functions over F
and A®?@° be the |Qo|-th tensor power of A. For f € A and i € Qg write f[X®)]
for1® - -®1®f®1®---®1 in which f occurs in the i-th tensor factor.

For A\* € Y@ define the tensor Schur basis of A®?0 by sye = [Ticq, s [X ).

Let (-, ) : A®@0 ® A®@0 — I be the pairing for which the tensor Schur basis is
orthonormal.

Let f[X®]+ € End(A®%) be the operator that is adjoint with respect to mul-
tiplication by f[X()]. Note that here the L is with respect to the variables X ().

3.1. General quiver parabolic creation operator. Consider a triple (¢, a, )
with i € Qo, a € Zsgp and p € X4 (GL,). Z =21+ -+ + z,. We define an operator
Hff’a) € End(A®%0). For i € Qg let S (Z) be the generating function for the
composition of Bernstein operators acting on the i-th tensor factor:

SO (z) = R(2)Q[ZXV)Q[-z* X D]+

Let Out(i) = {b € Q1 | tb = i} be the set of arrows going out of node i. Define the
quiver creation operator

S A = 00 (2)
BeL™
=50z) [ Qltez=x"")".
beOut(i)

For 1 = (ilaiQa s 7im)a a = (a17a2a s 7am), and ,LL() = (u(l),u(?), s 7/-1’(m))
define the quiver Hall-Littlewood symmetric function

da _ grinaen) (im,am) Q
HM() Hlb(l) 0-++0 Hu(m) 1 e A*.

Theorem 3. [0S22] For any i,a, and p(-) such that all the p(k) are polynomial
weights (that is, all parts are nonnegative) we have

(10) Hyty= D K2 e (ta)sxe

A*€YQ0

Remark 2. Due to Remark 1 every coefficient of a QHL series appears as a coef-
ficient of a QHL symmetric function after shifting the arguments. Thus the two
constructions give the same information.

3.2. True number of torus parameters. In our definition there is a parameter
for every arrow. It was pointed out by Finkelberg that the dimension of dilation
symmetry is not the number of edges in Q7 but rather the dimension of H;(Q),
that is, the dimension of the cycle space of the graph Q.

The edge space of @ is the free Z-module E(Q) with basis e, where a € ;. For
every cycle C' in the underlying undirected graph of @, pick an orientation C. For
every edge a € Q1 whose undirected edge |a| is in C, define sgnz(a) to be 1 or —1
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according as the direction of a € ()1 agrees or disagrees with the direction in C.
Define the cycle vector z5 € E(Q) by

25 = Z sgng(a)a.
a€Q1
|laleC

Define the associated cycle monomial ¢ € R(T9") by

sgng(a)

ta= [ t&".
a€Q:
laleC

Example 8. (1) Let @ be the directed cyclic quiver. Taking the directed cycle

—

C=0—1—2—0 we get the cycle monomial ¢z = to1t12¢20-

(2) Let Qo = {0,1,2} with Q; = {(0,1),(0,2),(1,2)}. Taking C =0 — 1 —
2 — 0 we see that the orientations of the edges (0,1) and (1,2) agree in
)1 and on C while (0,2) € @ disagrees with the direction in C'. Therefore
ta = tortiatys -

The cycle space Z(Q1) C E(Q1) of Q1 is by definition the subspace of E(Q1)
given by the span of z5 as C runs over the cycles of the underlying undirected
graph of Q). Since taking the opposite orientation of C just results in negating
the corresponding cycle vector, the cycle space is independent of the choice or
orientation for the cycles.

Say that a monomial in R(T®!) is acyclic if it is not divisible by any cycle
monomial of Q.

Proposition 4. [0S22] Pick a basis {251""’26p} of Z(Q1). Then for every
K u()(tg,) there is a unique acyclic Laurent monomial m(tq,) and a unique
polynomial Kg’i‘%u(_)(zh <.y 2p) with integer coefficients such that Kye ,)(tg,) =

m(th)ICg\eff’u(.) (tc-;l, ey té )

P

Call the polynomials K;id,u(-)(zlv ..., 2p) the reduced QKS polynomial.

The Shoji-Finkelberg-Ionov polynomials, which have one parameter, are the re-
duced versions of our cyclic quiver Borel quiver Kostka-Shoji polynomials.
In particular for acyclic quivers the reduced QKS polynomial is just an integer.
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Tetrahedron equation 3/25

B Matrix equationon V; @ --- @ Vg (V;: linear space)  [Zamolodchikov'81]
O X;jix (X = A,B,C,D) acts non-trivially only on V; ® V; ® V.

A191B135Ca36 D156 = Dy56Ca3: B35 A124

B 3D analog of Yang-Baxter equation (YBE)
O We can construct a 3D version of transfer matrices similarly to YBE.

B Several solutions are known although less systematic than YBE.

Zamolodchikov, Baxter, Bazhanov, Korepanov, Mangazeev, Sergeev, Stroganoy,
Kapranov, Voevodsky, Kazhdan, Soibelman, Carter, Saito, Kuniba, Okado, ...

RLLL relation 4/25

B Today, we focus on the RLLL type tetrahedron equation:
L1924 L135Logs Hase = HaseLageLigs Lias

B [f we specify the outer lines for 1,2,3-th spaces, this reads as

C
it P
5.« b B 6
~ " \ e
Dby 7] /4\ °Rus6 = Da,pyflase© ./4\|'7 cee(%)
. _AB ta b
i [
k k
) b
Ly ®5) @ k) = ) la) ® |b) ® LTy k) , ab
a,b 1 a = LZ:?
B Foreach (i,j, k,a,b,c), (*) gives linear equations for R. J

B [f we can ansatz "good” Ls, we can then obtain a solution to the RLLL
type tetrahedron equation by solving these equations.

B In fact, it can be done by considering a quantized six vertex model for Ls.
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q-Oscillator algebra valued six vertex model 525

B g-Oscillator algebra 0,
O Genetators: k, a®
O Relations ka®™ = gTatk, ata” =1-k? a a' =1-¢*k?
O Representation m, on Fy = ®mez.,Clm):

1o k|m)=q¢" |m), a¥|m)=|m+1), a”|m)=(1-¢")|m-1)

B L-operator L° € End(C? ® C? ® F,) [Bazhanov-Sergeev'06]

b
lyeek)= 3 loobero(LO)y)k (IO = 2‘1—’ a
a,be{0,1} j
0 1 0 1 0 1 '
0 %’ 0 1 { 1 1 { >1 0 { >0 0 { »1 1 ‘I_' 0
0 1 0 1 1 0
1 1 uk —qu~'k at a”

u: parameter

RLLL relation for 000 6/25

B Thm: [Bazhanov-Sergeev'06]

O Consider the following RLLL relation for L°:
O 1O 7O ROOO 00070 10O 10
LipsLyss Lass Rise = Ryse Liass L1ssL1as

Ha  Hs  He
O R299 ¢ End(F®?) is uniquely determined and given by

i b k
000yabe _ gatbghre (H3Y (K1Y (M2 iksbk—ivr) @+ % g2
(R )” k 61,+] 53+k (“2) ( P’S) (“1) q a q22¢1 q*2a oh ,q ,q 2

(Z;Q)oo = H(l —an) (z,q)m — & 201 ( :q ) Z (a 9)n(8;9) 2"

n>0 (qu; Q)oo ('Ya (Qa

O R999 also satisfies the RRRR type tetrahedron equation:

000 ROVO ROOO ROVO _ ROOO ROOO ROOO ROOO
Ri5i Rizs Ryszg Risg = Risg Raszg Rizs Riaa

B Thm: [Kapranov-Voevodsky'94]
O R999 = intertwiner of irreps of quantum coordinate ring 4,(4;)

R99 o (m @ m2 @ (A (g))) = (m2 ® m @ m2(A(g))) 0 ROOC Vg € Ay(Az)
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Outline 7/25
B Introduction: RLLL relation with g-Oscillator algebra P3~6
B Main part: RLLL relations with g-Weyl algebra P8~16
B Discussion: P18~24

O RRRR equations for R45¢

O R##Z as intertwiner of 4,(4;)
O Root of unity

O Other comments

B Summary

q-Weyl algebra 8/25

B Aim: Generalize the RLLL approach by Bazhanov-Sergeev

W Recall: g-Oscillator algebra 0,
O Genetators: k,a*
O Relations ka®™ = g*a*k, ata” =1-k? a a" =1-¢*k?
O Representation 7y on Fy = @mez.,C|m):
mo :klm)=g¢™|m), a¥|m)=|m+1), a”|m)=(1-¢")|m-1)

B g-Weyl algebra W,
O Generators; X1, z+1
O Relations: XZ = qZX
O Representations my, m; on F' = @,,ezC |m) :
nx : X |m)=q¢"|m), Z|m)=|m+1) (coordinate rep)
Tz : X |m)=Im—1), Z|m)=4q"|m) (momentum rep)

B Anembedding 0, > W,: k= X, a"— 2, a —Z '(1-X?
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q-Weyl algebra valued six vertex model 925

B L-operators L4 (A = X,Z,0) [Kuniba-Matsuike-Y'22]
O L4 € End(C* @ C? ® F) (A =X, Z) and L° € End(C?* ® C* ® F,)

Al elk) =Y la)eb)er(LY)) k) (A=X,Z0)

a,be{0,1}
b 0 1 0 1 0 1
A5 SV SV VNS SO IV B I
J 0 1 0 1 1 0
(LX)Z’; = (Lz)z’f r s twX —qtX Z 7 Yrs—t?wX?)
(LO)Z’;) 1 1 uk —qu~'k a’ a”

B Remark: r,s,t,w, u: parameters

O L for (r,s,t,w) = (1,1, u~1, u?) corresponds to L° via the pullback.
O 17 doesn't have such a correspondence and behaves differently from L°.

O Slightly different but similar L* was introduced in [Bazhanov-
Mangazeev-Sergeev'10] but LZ is new.

Family of RLLL relations 10/25

B Qur Problem:
O Solve the following equation for R48¢ (A, B, C € {X, Z, 0}):

A B C ABC _ pABCrC B A
L124L135L236R456 _R456 L236L135L124

SN T—

T4y Sa, Ly, Wy OF Uy T, S, Loy We OF Ug

s, Ss, tS'WS or us

O Each L has different parameters depending on its tensor compoment.
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Main result 11/25

B [Kuniba-Matsuike-Y’22]:
O We solved RLLL relations for the following ABCs.
ABC | feature locally | 4(sector)

finiteness
777 | factorized no 4
0Z7Z 2 ¢1 no
ZZ0 2 ¢1 no 1

Z0OZ 3 (ﬁg-like no
OO0Z | factorized yes

ZOO | factorized yes 1
0ZO | factorized no
000 2 (}51 yes 1
XXZ | factorized no
ZXX | factorized no 2

XZX | factorized no

O For all cases, R4B¢ are uniquely determined in each sector specified by
appropriate parity conditions.

O We obtained the explicit formulae for them, where their matrix
elements are either factorized or expressed as q-hypergeometric series.

RLLL relation for ZZZ 12/25

B Examples of RLLL relation for ZZZ:
R1X®X)=(1®9X®X)R, RX®X®1)=(X®X®1)R,
—mr3Rl®Z®1)=(ghtszuy XRZQ@X —r2Z®1® Z)R,
R(—qgt1taws X @ ZR@ X +5Z2Q1R Z) = s153(1® Z®1)R,
WR(X ®Z® Z 7 (rass — taws X?) + 50t3Z @ 1@ X) = s3t2(Z ® X @ 1)R,
R(tzwsZ Y (rs) —2unX?) @ Z@ X + sotyun X @ 1® Z) = s1taws(1® X ® Z)R.
7z X|m)=|m—1), Z|m)=q"|m)
B Writing down actions of m,, we obtain recursion relations for R%Z:

ab,c _ pabtletl ab,c _ pa+tlb+le
Ry o = By v R =R

1,7,k 1,7,k
(qa+¢:’,,2 _ qulrs)R:ﬁ'): — q1+bt1t3w1R:;:}c’b'c+l,
(qi+k32 - qu]_Sg)R::;:}: = qlﬂtltawsR:Lbfj,k_l,
qu‘ssath?Lbl'fj,k - qutligwsR?'_bi?j,k_g + qi+k32t3R?“;‘f_1 = qu+k33izRﬁ'ﬂl’c,
qulsltaw?iRg.,;.f—l - q7+2t'“{t3w1w3R?Lb§;fj|k_1 + qi+k32tlw1R?—bl’?j,k = qc+islt2w2R?;;:1'c

B Fact: Recursion relations for ZZZ consists of 4 disjoint sets, which
are specified with the parity pair (d,d,) = (a+c—j,b—i—k).
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RLLL relation for ZZZ 13/25

B Thm: [Kuniba-Matsuike-Y’22]
O R?#% € End(F®?) is uniquely determined in each sector and given by

dy da d3 dg

Robe T2 2 82 2 ity \ * tows 1\ 2
B4k t1t3w1 t1t3w3 Sltg 33t1w1

®a, (522) @, (20) 2 (522)

2
Q—d] (g ’r‘11‘3) ¢d3+d4 (T‘]’r‘g‘u)a

x g% ) a,b,c,i,j,k €Z

T2 8183w

1
o = 3 ((d = do)(dy +da+ dy + d) + dads) — di,

dl o (1+C—j d3 o —a—b+c+i+j—k‘
de)] “\b—i—k)’ ds] a—b—c—i+j+k
1
()= —— - (men),
(=) (24™; ¢%) o ( )
B Features:
O The matrix elements of R%%Z are factorized.

O R?%Z is not locally finite.
O There are 4 sectors specified with the parity pair (dq, d5).

RLLL relation for 0ZZ 14/25

B Thm: [Kuniba-Matsuike-Y’'22]
O R%%Z € End(F, ® F ® F) is uniquely determined and given by

i —b+j —ctk
RO — 0(i > 0) (T—Q)a (E) (tzm) J (_MtS) T
1,5,k = T3 8o (182 T3 (6*:¢%)a

—2i ,—1,2

q q 2 e . .
X 201 (21;2a+2 ;g% ygtt e 2") : a,i € Lo, byc,j,k €Z

2
r3ws y— q2k—2c+2 K52

b=y, y= 2 H
=83 T2w2

B Features:
O The matrix elements of R%%Z are expressed as q—hypergeometric series.
O R9%Z is not locally finite.
O There is only 1 sector.
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RLLL relation for 00Z 15/25

B Thm: [Kuniba-Matsuike-Y’22]
O R99% € End(F, ® F, ® F) is uniquely determined and non-trivial iff
1y /Uy = q% for d € Z. In that case, it is given by

R(d)$7)¢ = 0(e € Z)0(min(i, §) > 0)57;? a,b,i,j € Lso, ¢,k €Z

) J 42 e 242e—2j. 42Y .(p2a+2. 42,
X Sfo,(‘u,ztg)_a (#233) (t3w3) cj—bk (q — 5 g )2J(q2 2aq )’«—ﬂ
taws T353 (a%a%) £(a**7%%q%)e—a

1 1
ezé(a—c+j+k+d), f=§(b+c+i—k—d)

B Features:
O The matrix elements of R99Z are factorized.
O R99Z is locally finite.
O There is only 1 sector but R%%Z is non-trivial if the parity of 2e is even.

RLLL relation for 000 16/25

B Thm: [Bazhanov-Sergeev’'06]
O R290 ¢ End(F®?) is uniquely determined and given by

(ROOO)a,b,c _ gatbgbte p3 i m b o k hAb(k—it1) a-t+b p q—Zb’q—zi. A
gk = Yikd Citk g, 13 1 q @ 22 1\ g2a-2 14,49
q

a,b,c,i,7,k € Z>g
B Features:
O The matrix elements of R999 are expressed as q—hypergeometric series.
O R999 js |ocally finite.
O There is only 1 sector.

O R999 also satisfies the following tetrahedron equation:

000 ROOO POVO ROOO _ POOO POOO POV POOO
Risi Rizs Rgsg Risg = Risg Raszg Rizs Riaa

O R999 = intertwiner of irreps of quantum coordinate ring 4,(4;)
RO99 0 (m1 @ m @ m(A%P(g))) = (m2 @ m @ m2(A(g))) 0 ROPC Vg € Ay(A2)
m; : Ag(As) — End(F)
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Outline 17/25
B Introduction: RLLL relation with g-Oscillator algebra P3~6
B Main part: RLLL relations with g-Weyl algebra P8~16
B Discussion: P18~24

O RRRR equations for R4B¢

O R%%Z as intertwiner of 4,(A4;)
O Root of unity

O Other comments

B Summary

RRRR equation as associaticity 18/25

B If we have Lig4L135Lo36 Ras6 = RaseLozeLiasLi2s, We have
Ri24R135 R236 Ras6 Lage Lavys LgyaLlaszLgsa Lyst
= Ri124R135 R236 LgyaLoys Lage LassLgsaLys1 Rase
= Ri24R135LgyaLays Lgsa Las3Lage Lys1 R236 Rase

= Ri124R135Ly4LgsaLoys LassLiys1 Lapge R236 Rase
= Ri24LgyaLgsa Ly51Las3Lays5LageR135R236 456
= Lys1LgsaLgyaLlaszLoysLagsR124R135Ro36 456
= L s1Lgs2LaszLgyaLloys LageR124R135 Ro36 Rase

. . . LogeLaysLayaLlasaLgsaLyst
B R,ccR,3¢6R135R124 also gives an intertwiner for e !
L761L;362La63LB74La75Laﬂ6

B [f they are irreducible and equivalent, we have

Ri24R135 Ro36 Rase = RaseRose RissRi24  (Up to normalization)
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RRRR equations for R4B¢ 19/25

B For our RLLL relations, we expect the following RRRR equation

holds:
ABD pACE pBCF pDEF DEF pnBCF pACE pABD
R124 R135 R236 R456 :R456 R236 R135 R124
® Remark: A,B,C,D,E,F € {X,Z,0}

O Each tensor component is assigned with different parameters.
Oeg lfA=B=C=D=E =F =Zthisdependsonr,s; t;,w; (i =1,...,6).
O RABCs except for ABC = 00Z,Z00,000 are not locally finite, so the
convergence of RRRR equation is non-trivial for such cases.

O LZ is not irreducible because (Lz)ff}.b does not include X 1.

b 0 1 0 1 0 1
p a 0 { >0 1 { »1 1 I »1 0 } >0 0 } »1 1 { > ()
J 0 1 0 1 1 0
( Z)?,’;) r s twX —qtX Z I Y(rs-—t*wX?
Tz : X|m)=|m—1), Z|m)=q"|m)

RRRR equations for R4BC¢ 20/25

B Conjecture: [Kuniba-Matsuike-Y’22]
O The following RRRR equations are valid:

000 ROOO RZOO RZOO _ RPZOO PRZOO ROOO ROOO
Ris Riyze Riss Riza~ = Rizy Riss Razg Rise ROQORIZORVZORYIC = ROQO ROZO ROZO ROQO
ZOO pOOO ROOO ROOZ __ POOZ ROOO ROOO RZOO VA YA A Z ZZ Z
Riss Rase Riss Riza~ = Ripy Rizs Rgse Risg R$IORJZORZZORZS°C = RZQO RZZC ROZC RYZ0
00Z pOOZ pOOO ROOO _ RpOOO ROOO ROOZ ROOZ Z ZOZ pZ Z ZO0Z Z
RESZREJ? ROZC R0 = RO RSO REG RIS REZORIZORTZ? RTGC = RIO RIS ROZOREZC
00Z pOOZ pZ0OO RZOO _ pZOO RpZOO RpOOZ pOOZ 000 PZZO0 POZO POZO 0Z0O pOZO RZZO pOOO
Ris6” Ryss” Riss Riza~ = Rizy Riss Rase” Risg” - Ryss Rase Riss Rizs = Rizg Riss Risg Rasg
ROOZ pZ0Z ROOO ROZO _ ROZO ROOO RZ0Z RO0Z
ROOORZOOROOOROZO — ROZOROOORZOOROOO 456 236 135 124 — fY124 135 236 456
456 236 135 124 124 135 236 456 RZOOROZOROZOROOZ _ ROOZROZOROZORZOO
ROZOROOOROOZROOO _ OOOROOZROOOROZO 456 236 135 124 — “Y124 135 236 456
456 1236 “'135 “l124 124 M35 71236 1456 ROZO ROZO RpOZZ RO0O _ [RO0O ROZZ ROZO ROZO
ROOORZOORZOORZZO _ RZZORZOORZOOROOO 456 236 135 124 — 124 135 236 456
456 236 135 124 — fl124 135 236 456 ROOZROZZROZOROOO _ ROOOROZOROZZROOZ
RZ00 ROOO RZ00 RZOZ _ RZOZ RZO0 ROOO RZOO 456 1236 ‘U135 {li2a = flyog  fl135 {l236 Ll456
456 236 135 124 — “l124 135 236 456 Rozo Rozo RZ2% Rzoo _ Rzoo RZZZROZO ROZO
RZ00 RZ00 pOOO ROZZ _ ROZZ ROVO RZO0 RZO0 456 1236 4l135 ft124 = Il14 [Iry35 fig3e  Ilg56
4 2 1 124 = fty4 £l 2 4
56 36 35 35 36 56 ROOZRZZZROZOROZO — RlozioRﬂgoRgzazszR%%Z

ZZ0 pO00 pOOZ pOOZ _ pOOZ ROOZ ROOO RZZO 456 71236 “M135 “M124
Rise Rase Rizs” Riza~ = Ripy Riss” Ryszg Rise

Z0Z pO0Z pOO0 RpO0Z _ pOOZ pO0O RpOOZ RpZOZ . .
Ris6” Ry36” Rizs Riz1~ = Rioa” Riss Rgse” Risg Rermark: Each equatlon is checked for
Rig” Ry Riss”Riza© = RiiORiig “Raso Rizs”  over 10000 outer lines by computer.

ZOO RpZOO RZOO RZZZ _ pZZZ RZ00 RpZOO0 pZOO
R456 R236 R135 R124 _R124 R135 R236 R456 s

227 p00Z pO0Z pOOZ _ pOOZ ROOZ ROOZ RZZZ
Riz6” Raze” Rizs” Riza~ = Riza” Riss” Rayze” Rase™ -
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R#%% as intertwiner of A;(A4;) 21/25

B Proposition: [Kuniba-Matsuike-Y’'22]
O R?#% € End(F®?) satisfies the following intertwining relation of the
quantum coordinate ring 4,(45):
R77% o (m @ ma @ m(A%(g))) = (m2 @ m @ ma(A(g))) 0 7?7 Vg € Ag(A2)

O n; = m; 0 0;, where p; and g, are respectively given by t;;: generators of 4,(4;)

t11 tiz ti3 Z7 uy —g1hiX?) ¢ X 0 “2_1 0 0
ta1 too toz | — —qh X Z 0 |, 0 Z 'uz—g2hoX?) goX

t31 l32 t33 0 0 ul_1 0 —qhy X Z
O m;s are not irreducible.  7z: X |m)=|m—1), Z|m)=4q"|m)
O Identification of parameters is done as follows:
uy = ug(=:u) g1hy = gaha(=:p)
r_1=r_2, 5_2=3_3’ 1"_2=u, %=u2’ t§w1=t§wg=t§w3=g_)l
t1 t2 ta t3 T17T3 52 151 7282 T383 U

Root of unity 22/25

B |f we specialize q to a root of unity, the Fock spaces F, F, become
finite dimensional. If we can formulate R45¢ in such cases...

B Extension of family of RRRR equations:

O Getting over its non locally finiteness, we obtain more family of RRRR
equations.

B Connection with physical models:

O Finite dimensional solutions to tetrahedron equations are quite
important because they can be used to construct tractable 3D transfer
matrices.

O [Bazhanov-Mangazeev—Sergeev’10] introduced (L*)’ which is slightly
different from L* and solved (R**X)" at N-th root of unity. They found

(R¥*XY" = Bazhanov-Baxter model
(spectral parameter dependent solution to tetrahedron equation)

‘ reduction [Bazhanov-Baxter'92]

generalized chiral Potts model
= 2D R matrices associated with U, (Ai}_)l) at root of unity
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Other comments 23/25

B Boundary integrability in 3D:

R(LLL) = (LLL)R ‘ RRRR=RRRR
(Yang-Baxter equation up to conjugation) (Tetrahedron equation)

K(LGLG) = (GLGL)K » RKRRKKR=RKKRRKR
(reflection equation up to conjugation) (3D reflection equation)

O a g-Weyl algebra version of [Kuniba-Pasquier’18], [Kuniba-Okado-Y'19]?

B Reduction to 2D:

O Generally, infinitely many solutions to the Yang-Baxter equation are
obtained from one solution to the tetrahedron equation.

O For R999, they are identified with R matrices associated with

reduction R matrices [Kuniba{Okado'14]
by trace Uq (Agll_)l), symmetric tensor rep.
by boundary 2 2 1
vector Ug(DL)), U (A2, U (€M), Fock rep.

Other comments 24/25

B Characterization in terms of PBW bases:

O Let us consider the transition matrix y for PBW bases of quantum
enveloping algebra U, (4,):

el = S e - (x) i kyabye € Zg
i,5,k

O el.(a): divided power given by el.(a) = el /[a]!

O Theorem: [Sergeev'07], [Kuniba-Okado-Yamada'13]

b 000\ a,b,
Yosk = (BEOO)0K

O Can we formulate R4B€ in this context?
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Summary 25/25

B We considered three kinds of L-operators LX,1%,1° and RLLL
relations which they satisfy. They can be regarded as g-
Oscillator or g-Weyl algebra valued six vertex models.

B We solved these RLLL relations and obtained explicit formulae
for RABC, For all cases, R4B¢ are uniquely determined in each
sector specified by appropriate parity conditions and their
matrix elements are either factorized or expressed as g-
hypergeometric series.

B By computer experiments, we conjectured RRRR equations for
RABC_ This is motivated by earlier results about representation
theoretic origin of R999,

B We found R%%Z satisfies an intertwining relation for reducible
representations of 4,(45).



