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Preface

This is the proceedings of the international conference “Integrable Systems and Quan-
tum Groups” held at Osaka Metropolitan University, Sugimoto Campus, General Educa-
tion Building, Room 810, during March 4th–8th, 2023, in honor of Masato Okado’s 60th
birthday. The conference was held as a part of OCAMI Joint Usage/Research Project.

One of the central problems in integrable systems is to solve the Yang-Baxter equa-
tion, which describes collisions of particles in statistical mechanics. Quantum group (also
known as quantized enveloping algebra), which is a purely mathematical object, was in-
vented to attack the problem in physics above. As a result, studies of quantum group and
related areas such as representation theory, (quantum) Lie superalgebra, quantum sym-
metric pair, crystal base, orthogonal polynomial, and symmetric function, have provided
remarkable results relevant to integrable systems.

The aim of the conference was to seek new developments in branches of mathematics
and physics above. It is quite difficult to become deeply familiar with all of these fields,
which have been developing at a remarkable pace in recent years. Hence, for new progress,
we need to bring together experts in both integrable systems and quantum groups to
exchange state-of-the-art information.

We invited seven experts of integrable systems or/and quantum group from both home
and abroad to the conference as speakers. The talks were broadcasted via Zoom. Some of
them are available on OCAMI’s YouTube channel (https://www.youtube.com/@ocami_
math4918/videos).

During the conference, we had approximately 20–30 participants in person and 30–40
online for each day. There were lively discussions among participants.

We are grateful to the participants of the conference for their contribution. The
conference was supported by JSPS KAKENHI Grant Numbers JP18K03250, JP20K14286,
and JP21H04993.
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A BRIEF INTRODUCTION TO QUANTUM SYMMETRIC PAIRS

STEFAN KOLB

Abstract. The present notes are an extended version of an introductory talk

on quantum symmetric pairs given at the OCAMI conference ‘Integrable Sys-

tems and Quantum Groups’ held at Osaka City University from 4-8 March
2023 in honor of Masato Okado’s 60th birthday.

1. Introduction. A Lie algebra g together with a Lie algebra automorphism θ :
g ! g such that θ2 = idg is called symmetric. If (g, θ) is symmetric then we have
g = k⊕ p where k and p are the +1 and the −1 eigenspace of θ, respectively. Here
k is a Lie subalgebra of g while p is a k-module. Hence the universal enveloping
algebra U(k) is a Hopf subalgebra of U(g). We refer to the pair (g, k) as a symmetric
pair. If g is a complex semisimple Lie algebra then k is reductive and we can think
of the symmetric pair (g, k) as an infinitesimal realization of a compact Riemannian
symmetric space.

Throughout these notes we assume that g is a symmetrizable Kac-Moody al-
gebra. Hence there exists a Drinfeld-Jimbo quantized enveloping algebra Uq(g).
However, even if both g and k are complex simple Lie algebras there is in general
no Hopf algebra embedding of Uq(k) into Uq(g), see [Bra94]. For g of finite type this
problem was first addressed in the early nineties by the groups around T. Koorn-
winder in Amsterdam and M. Noumi in Kobe, see [Nou96], [Dij96], [NS95], with
the aim to construct quantum group analogs of compact symmetric spaces. In
the late nineties, G. Letzter independently developed a comprehensive theory of
quantum symmetric pairs of finite type [Let99], [Let02]. Letzter’s approach can be
formulated as follows:

Goal: Given (g, θ), find all subalgebras B ⊂ Uq(g) with the following properties:

L1) B is a right coideal of Uq(g), that is ∆(B) ⊂ B ⊗ Uq(g), where ∆ denotes
the coproduct of Uq(g).

L2) The non-restricted specialization of B coincides with U(k).
L3) The subalgebra B ⊂ Uq(g) is maximal with respect to properties 1) and 2).

We call subalgebras B ⊆ Uq(g) with the above properties quantum symmetric
pair coideal subalgebras (QSP coideal subalgebras), and we refer to (Uq(g),B) as a
quantum symmetric pair. For finite-dimensional g, Letzter constructed and classi-
fied all QSP coideal subalgebras of Uq(g), see [Let99], [Let02]. Her constructions
were extended to the Kac-Moody case in [Kol14].

The theory of quantum symmetric pairs has seen an explosion of activity since
the appearance of the preprint versions of the the papers [BW18] and [ES18] in
October 2013. It turned out that many constructions for Drinfeld-Jimbo quantum

2020 Mathematics Subject Classification. 17B37, 17B67.
Key words and phrases. Kac-Moody algebras, involutions, symmetric pairs, quantum groups,

coideal subalgebras.
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2 STEFAN KOLB

groups allow analogs for quantum symmetric pairs. H. Bao and W. Wang refer
to QSP coideal subalgebras as ıquantum groups and to the program of finding
quantum symmetric pair analogs of results for Uq(g) as the ı-program. Over the
past decade, W. Wang, his collaborators, and others have made fantastic progress.
Constructions which have been addressed in the ı-program, at least partially, in-
clude the classification of representations, canonical and crystal bases, the universal
R-matrix, Lusztig’s braid group action on modules and on Uq(g), Hall algebra inter-
pretations of Uq(g), the Drinfeld-Kohno theorem, categorification, Drinfeld’s second
realization and more. There would be too many papers to cite for the present short
set of notes. Instead we refer the reader to W. Wang’s survey article in the pro-
ceedings of the ICM 2022, [Wan21], and references therein.

The aim of the present notes is to give a brief account of the construction of
QSP coideal subalgebras and of their fundamental algebraic properties. To this
end we revisit the paper [Kol14] which was built on Letzter’s work [Let99], [Let02].
We attempt to provide explanations and proofs but refer to the literature for more
technical arguments. We hope that this will provide the novice reader with an easy
entry point into the world of quantum symmetric pairs.

Even foundational aspects of the theory of quantum symmetric pairs are still
in flow. In the present notes we modify or amend the constructions in [Kol14] in
several ways, which we list in the following for the expert reader:

I) In the present notes we mostly work in the setting of generalized Satake dia-
grams proposed in [RV20]. This is a minor technical generalization of the setting
of Satake diagrams (or admissible pairs) considered in [Kol14] and does not affect
the proofs in the quantum group setting. Generalized Satake diagrams provide
additional examples of QSP coideal subalgebras, which are no longer related to in-
volutive Lie algebra automorphisms. An underlying classical theory was developed
in [RV22].

II) Proposition 5.1 offers an alternative proof of the coideal property for QSP
coideal subalgebras. This proof relies on the description of the coproduct of Lusztig’s
braid group operators in terms of quasi R-matrices. The original proofs in Letzter’s
work and in [Kol14] rely on the interplay between Lusztig’s braid group automor-
phisms and the adjoint action of Uq(g) on itself.

III) The QSP coideal subalgebras Bc,s as defined in [Kol14] depend on two fam-
ilies of parameters c ∈ C, s ∈ S for explicitly described parameter sets C, S. In
[Kol14], following [Let99], [Let02], the QSP coideal subalgebras Bc,s were intro-
duced in one go, in terms of generators inside Uq(g). It seems more natural to first
introduce the standard QSP coideal subalgebra Bc = Bc,0. The additional parame-
ters s can then be added by a uniform procedure which works for any right coideal
subalgebra C of a Hopf algebra H over a field K with coproduct ∆(h) = h(1)⊗h(2)

for h ∈ H. Namely, if χ : C ! K is a character, that is a one-dimensional represen-
tation, then Cχ = {χ(c(1))c(2) | c ∈ C} is a right coideal subalgebra of H. As a right
H-comodule algebra, Cχ is a homomorphic image of C, see Section 10 for details.
For quantum symmetric pairs, this perspective immediately implies that Bc and
Bc,s are isomorphic as right Uq(g)-comodule algebras. Moreover, this construction
suggests a detailed analysis of the characters of Bc which we indicate at the end of
Section 10. It turns out that there are non-standard QSP coideal subalgebras for
slightly more parameters than considered in [Let02] and [Kol14]. This phenomenon
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A BRIEF INTRODUCTION TO QUANTUM SYMMETRIC PAIRS 3

had already been observed elsewhere, see e.g. [BB10], [RV20], however, the general
perspective of twisting by a character allows a uniform treatment of these examples.
Many properties of quantum symmetric pairs are easier to prove in the standard
case s = 0, and twisting by a character often supports translation into properties
of Bc,s.

IV) In [Kol14], building on Letzter’s work [Let99], [Let02], we proved several
desirable properties of the QSP coideal subalgebra Bc under the condition c ∈ C.
These properties include triangular decompositions of Bc and Uq(g), in particular
a q-analog of the Iwasawa decomposition, the specialization property L2), and the
fact that (Uq(g),Bc) is a quantum homogeneous space in the sense of, say, [Krä12].
In Theorems 7.2 and 8.2 of the present notes we show that each of these properties
is indeed equivalent to the property c ∈ C. This underscores the importance of the
choice of the parameter set C for the parameters c.

The talk underlying the present notes was originally planned as part of a three-
hour lecture series. A second talk covered the ∗-product interpretation of quantum
symmetric pairs, quasi K-matrices and defining relations along the lines of [KY21].
A third talk on universal K-matrices and braided module categories unfortunately
had to be cancelled. I hope to extend the present notes to include these topics
at some point in the future. The present notes already lay some of the necessary
groundwork.

Acknowledgements. I owe much gratitude to the organizers of the OCAMI
conference ‘Integrable Systems and Quantum Groups’, and to H. Watanabe in
particular, for the generous invitation and for their patience when I failed to deliver
to deadline.

2. Satake Diagrams. Letzter’s theory is based on the combinatorial description of
involutive automorphisms θ : g ! g in terms of Satake diagrams. Let I be an index
set and let (aij)i,j∈I be the generalized Cartan matrix for g. Let Π = {αi | i ∈ I}
be a set of simple roots, Q = ZΠ the root lattice with positive cone Q+ = N0Π,
and let W be the Weyl group with simple reflections {σi | i ∈ I}. A Satake diagram
for g is a pair (X, τ) where X ⊂ I is a subset of finite type and τ : I ! I is a
diagram automorphism with τ(X) = X such that the following three properties are
satisfied:

S1) τ2 = idI ;
S2) τ |X = −wX , that is ατ(i) = −wX(αi) for all i ∈ X;
S3) If i ∈ I \X and τ(i) = i then αi(ρ

∨
X) ∈ Z.

Here wX denotes the longest element in the parabolic subgroup WX ⊂ W and
ρ∨X is the half-sum of the positive coroots corresponding to X. Let h ⊂ g be a
Cartan subalgebra, and let ei, fi, hi for i ∈ I be the Chevalley generators of g. Let
ω : g ! g be the Chevalley involution defined by

ω|h = −idh, ω(ei) = −fi, ω(fi) = −ei, for all i ∈ I.(2.1)

For i ∈ I define an automorphism Ad(σi) of g by

Ad(σi) = exp(ad(ei)) exp(ad(−fi)) exp(ad(ei)).(2.2)

The map σi 7! Ad(σi) defines a braid group action on g. Hence, for any w ∈ W
we obtain a well-defined automorphism Ad(w) of g. Let s = s(X, τ) : Q ! {±1}
be a group homomorphism such that s(αj) = 1 if j ∈ X or τ(j) = j, and s(αj) =

Integrable Systems and Quantum Groups 7



4 STEFAN KOLB

(−1)αj(2ρ
∨
X)s(ατ(j)) if j /∈ X and τ(j) ̸= j. Define an automorphism Ad(s) : g ! g

by Ad(s)(x) = s(β)x for all x in the root space gβ .
A Lie algebra automorphism φ : g ! g is said to be of the second kind if the

standard Borel subalgebra b+ ⊂ g satisfies dim(φ(b+)∩b+) <∞. For example, the
Chevalley involution given by (2.1) is of the second kind. The following theorem
provides the main conceptual idea behind the construction of QSP coideal subal-
gebras in terms of Satake diagrams. Any diagram automorphism τ can be lifted to
a Lie algebra automorphism of g, see [KW92, 4.23].

Theorem 2.1. ([KW92], see also [Kol14, Theorem 2.7]) The map

(X, τ) 7! θ(X, τ) := Ad(s(X, τ)) ◦Ad(wX) ◦ τ ◦ ω(2.3)

defines a bijection between the set of Satake diagrams (up to the action by diagram
automorphisms) and the set of involutive Lie algebra automorphisms of the second
kind of g (up to conjugation by automorphisms of g).

The involutive Lie algebra automorphism θ = θ(X, τ) defined by (2.3) maps the
Cartan subalgebra h to itself and the restriction to h can by expressed in terms of
the Weyl group action as

θ|h = −wX ◦ τ.
Hence, θ induces a map on h∗ which in the following we also write as θ = −wX ◦ τ .

For any subset X ⊂ I of finite type let gX ⊂ g be the semisimple Lie subalgebra
algebra generated by {ei, fi, hi | i ∈ X}. If (X, τ) is a Satake diagram and θ =
θ(X, τ) then θ(x) = x for all x ∈ gX . Moreover, one checks that the Lie subalgebra
k is generated by gX , hθ = h ∩ k and the elements

fi + θ(fi) = fi −Ad(s) ◦Ad(wX)(eτ(i)) for all i ∈ I \X,(2.4)

see [Kol14, Lemma 2.8]. In Section 5, we will define the QSP coideal subalge-
bra B ⊂ Uq(g) corresponding to the Satake diagram (X, τ) as the subalgebra of
Uq(g) generated by suitable quantum group analogs of gX , hθ and the elements in
Equation (2.4).

For finite-dimensional or affine g the information of a Satake diagram can be
encoded in the Dynkin diagram of g. The nodes corresponding to X are colored
back and the diagram automorphism τ is indicated by arrows in the diagram. With
this convention, a complete list of Satake diagrams for finite-dimensional g can be
found in [Ara62, pp. 32/33]. The rank of a Satake diagram is the number of τ -
orbits in I \ X. A rank 1 subdiagram of a Satake diagram is the τ -orbit of a
connected component of {i} ∪ X containing i for some i ∈ I \ X. The notion of
rank 1 subdiagrams makes sense for any pair (X, τ) with τ(X) = X which satisfies
conditions S1) and S2).

It was observed by V. Regelskis and B. Vlaar that, for the purpose of quantum
symmetric pairs, condition (S3) in the definition of a Satake diagram can be replaced
by the weaker condition

S3’) If τ(i) = i and aji = −1 for i ∈ I \X, j ∈ X, then θ(αi) ̸= −αi − αj ,

see [RV20]. The condition S3’) is equivalent to (X, τ) not having a rank 1 subdia-
gram of the following form:

As explained in [RV20, Section 4], the construction of quantum symmetric pairs
and much of their theory remain valid for generalized Satake diagrams.

8 OCAMI Reports Vol. 5 (2023)



A BRIEF INTRODUCTION TO QUANTUM SYMMETRIC PAIRS 5

Remark 2.2. Every Satake diagram is a generalized Satake diagram, but the con-
verse does not hold. Indeed, even in finite type, the diagram

is a generalized Satake diagram but does not satisfy condition S3).

3. Quantum group preliminaries. By construction (h,Π,Π∨) with Π∨ = {hi | i ∈
I} is a minimal realization of the symmetrizable, generalized Cartan matrix A. We
extend Π∨ to a basis Π∨

ext of h such that αi(d) ∈ Z for all i ∈ I, d ∈ Π∨
ext\Π∨ and we

set Q∨
ext = ZΠ∨

ext. Define the weight lattice by P = {λ ∈ h∗ |λ(Q∨
ext) ∈ Z}. In this

situation the abelian groups Y = Q∨
ext and X = P together with the embeddings

I ! Y , i 7! hi and I ! X, i 7! αi form an X-regular and Y -regular root datum
in the sense of [Lus94, Section 2.2].

Let D = diag(ϵi |, i ∈ I) be a diagonalizing matrix for A. There exists a non-
degenerate, symmetric bilinear form on h such that (hi, h) = αi(h)/ϵi for all h ∈ h,
i ∈ I and (d′, d′′) = 0 for all d′, d′′ ∈ Π∨

ext \ Π∨. This pairing induces a pairing on
h∗ which we denote by the same symbol.

In the present notes we work over the field of rational functions K(q) where K is
a field of characteristic 0. We define the quantized enveloping algebra Uq(g) as the
associative K(q)-algebra generated by elements Ei, Fi,Kh for all i ∈ I, h ∈ Q∨

ext

and relations given [Lus94, 3.1.1]. In particular, the generators Ei, Fi satisfy the
quantum Serre relations

Sij(Ei, Ej) = 0 = Sij(Fi, Fj)

for all i, j ∈ I, where

Sij(x, y) =

1−aij∑

ℓ=0

(−1)ℓ
[
1− aij

ℓ

]

qi

x1−aij−ℓyxℓ(3.1)

with qi = qϵi denotes the (non-commutative) quantum Serre polynomial [Lus94,
Corollary 33.1.5]. We will use the notation Ki = Kϵihi

for all i ∈ I. With this
notation, Uq(g) is a Hopf algebra with coproduct ∆ given by

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ∆(Fi) = Fi ⊗K−1
i + 1⊗ Fi, ∆(Kh) = Kh ⊗Kh

for all i ∈ I, h ∈ Q∨
ext. Let U = Uq(g

′) be the Hopf subalgebra of Uq(g) generated

by the elements Ei, Fi,K
±1
i for all i ∈ I. As usual, let U+, U− and U0 be the

subalgebras of Uq(g) generated by the elements of the sets {Ei | i ∈ I}, {Fi | i ∈ I}
and {Kh |h ∈ Q∨

ext}, respectively, and define U≥ = U+U0, U≤ = U−U0. We also

write U0′ for the subalgebra of U0 generated by {Ki | i ∈ I}. For any U0-module
M and any λ ∈ P we write Mλ = {m ∈M |Khm = qλ(h)m for all h ∈ Q∨

ext}. This
notation can be applied in particular to U+, U− and U≥, U≤ under the left adjoint
action of U0. For any subset X ⊆ I of finite type, define Uq(gX) ⊂ U to be the

Hopf subalgebra of U generated by Ei, Fi,K
±1
i for i ∈ X. Moreover, we write U+

X ,

U−
X and U0

X to denote the subalgebras of Uq(gX) generated by the elements of the

sets {Ei | i ∈ X}, {Fi | i ∈ X} and {K±1
j | j ∈ X}, respectively.

By [Lus94, Chapter 1] there exists a unique K(q)-bilinear pairing ⟨ , ⟩ : U≤ ⊗
U≥ ! K(q) such that for all x, x′ ∈ U≥, y, y′ ∈ U≤ and g, h ∈ Q∨

ext the following

Integrable Systems and Quantum Groups 9



6 STEFAN KOLB

relations hold

⟨y, xx′⟩ = ⟨∆(y), x′ ⊗ x⟩ , ⟨yy′, x⟩ = ⟨y ⊗ y′,∆(x)⟩ ,

⟨Kg,Kh⟩ = q−(g,h), ⟨Fi, Ej⟩ = δij
−1

qi − q−1
i

,

⟨Kh, Ei⟩ = 0, ⟨Fi,Kh⟩ = 0.

Here we follow the conventions used in the finite case in [Jan96, 6.12]. The restric-
tion of the pairing ⟨ , ⟩ to U−

−µ ⊗ U+
ν vanishes if µ ̸= ν and is non-degenerate if

µ = ν. For any µ ∈ Q+ let {Fµ,j} ⊂ U−
−µ and {Eµ,j} ⊂ U+

µ be dual bases with
respect to the pairing ⟨ , ⟩ and define Θµ =

∑
j Fµ,j ⊗ Eµ,j . For simplicity, we

usually suppress that summation and write formally Θµ = Fµ ⊗ Eµ. The quasi
R-matrix for Uq(g) is defined by

Θ =
∑

µ∈Q+

Fµ ⊗ Eµ,(3.2)

see [Lus94, 4.1.2]. For any µ =
∑

i∈I niαi ∈ Q we write Kµ =
∏

i∈I K
ni
i . With

this notation we can use the properties of the skew-pairing ⟨ , ⟩ to determine the
coproducts

(∆⊗ id)(Θµ) =
∑

λ+ν=µ

Fλ ⊗ FνK
−1
λ ⊗ EνEλ

(id⊗∆)(Θµ) =
∑

λ+ν=µ

FλFν ⊗ EλKν ⊗ Eν

for all µ, see [Lus94, 4.2.2].

4. Completions of Uq(g). The quasi R-matrix for Uq(g) defined by (3.2) belongs

to a larger algebra U
(2)
0 which contains Uq(g) ⊗ Uq(g) as a subalgebra. To define

U
(2)
0 let Oint denote the category of integrable Uq(g)-modules in category O, see

[BK19, Section 3.1] for our conventions. The category Oint is semisimple, sim-
ple objects in Oint are irreducible highest weight modules with dominant integral
highest weights. If g is finite-dimensional then Oint coincides with the category of
finite-dimensional Uq(g)-modules of type 1.

Let For : Oint ! Vect be the forgetful functor into the category of K(q)-vector
spaces and define U = End(For). Elements of U are families (fM )M∈Ob(Oint)

of vector space endomorphisms fM : M ! M such that for any Uq(g)-module
homomorphism φ : M ! N the relation φ ◦ fM = fN ◦ φ holds. Multiplication by
elements of Uq(g) gives us such a family of vector space endomorphisms, and hence
Uq(g) may be considered as a subalgebra of U .

Example 4.1. For any map ξ : P ! K(q) and M ∈ Ob(Oint) define a linear
map ξM : M ! M by ξM (m) = ξ(λ)m for all m ∈ Mλ, λ ∈ P . The family
(ξM )M∈Ob(Oint) defines an element in U which we also denote by ξ.

Example 4.2. For any i ∈ I and M ∈ Ob(Oint) let Ti,M : M ! M be the linear
automorphism denoted by T ′

i,M in [Lus94, 5.2]. The family Ti = (Ti,M )M∈Ob(Oint)

defines an invertible element in U . By [Lus94, 39.4.3] the elements Ti ∈ U for
i ∈ I satisfy the braid relations of W .

10 OCAMI Reports Vol. 5 (2023)



A BRIEF INTRODUCTION TO QUANTUM SYMMETRIC PAIRS 7

Moreover, conjugation by Ti leaves the subalgebra Uq(g) ⊂ U invariant. Hence
there exist algebra automorphisms TU

i : Uq(g) ! Uq(g) such that

Ti,M (um) = TU
i (u)Ti,M (m) for all M ∈ Ob(Oint),m ∈M,u ∈ Uq(g),

see [Lus94, 37.1.2]. The automorphism TU
i is a quantum group analog of the action

Ad(σi) defined by Equation (2.2). By construction the algebra automorphisms TU
i

also satisfy the braid relations of W . In particular, for each element w ∈ W there
exists a uniquely determined element Tw = (Tw,M )M∈Ob(Oint) ∈ U and a uniquely

determined algebra automorphism TU
w : Uq(g) ! Uq(g), and TU

w coincides with
conjugation by Tw. Following common practice, we omit the superscript U from
now on and use the same symbol for the braid group action on modules in Oint and
on Uq(g).

The algebra U is no Hopf algebra. To define a larger algebra containing Uq(g)⊗
Uq(g), consider the forgetful functor For(2) : Oint × Oint ! Vect given on objects

by (M,N) 7! M ⊗ N and define U
(2)
0 = End(For(2)). Elements of U

(2)
0 are

families (fM1,M2)M1,M2∈Ob(Oint) of linear maps fM1,M2 : M1⊗M2 ! M1⊗M2 such
that for any two Uq(g)-module homomorphism φ1/2 : M1/2 ! N1/2 the relation
(φ1 ⊗ φ2) ◦ fM1,M2 = fN1,N2 ◦ (φ1 ⊗ φ2) holds.

Example 4.3. Any infinite sum Φ =
∑

µ∈Q+ bµ ⊗ uµ with uµ ∈ U+
µ and bµ ∈

Uq(g) defines an element U
(2)
0 . Indeed, the element Φ has a well-defined action on

M1⊗M2 for M1,M2 ∈ Ob(Oint) as only finitely many terms survive on the second
tensor factor. In particular, we can consider the quasi R-matrix Θ defined by (3.2)

as an element of U
(2)
0 .

We can now define an algebra homomorphism

∆ : U ! U
(2)
0 , ∆((fM )M∈Ob(Oint)) = (fM⊗N )M,N∈Ob(Oint).

This algebra homomorphism restricts to the usual coproduct on Uq(g) ⊂ U . Let
X ⊆ I be a subset of finite type. Recall that wX ∈W denotes the longest element
of the parabolic subgroup corresponding to X. As discussed above, we have a

corresponding braid group operator TwX
∈ U . The coproduct ∆(TwX

) ∈ U
(2)
0 can

be expressed in terms of the quasi R-matrix by the formula

∆(TwX
) = (TwX

⊗ TwX
) ◦Θ−1

X(4.1)

where ΘX denotes the quasi R-matrix of Uq(gX), see for example [Lus94, Proposi-
tion 5.3.4], [CP94, Lemma 8.3.11], [BK19, Lemma 3.8].

5. Construction of QSP coideal subalgebras. Let (X, τ) be a generalized Sa-
take diagram and let c = (ci)i∈I\X ∈ K(q)I\X be a family of parameters. Recall
from the comments below Theorem 2.1 that we write θ = −wXτ : h∗ ! h∗. With
this notation we set Qθ = {α ∈ Q | θ(α) = α}. Define U0

θ
′
= K(q)⟨Kα |α ∈ Qθ⟩

and observe that

U0
θ
′
= K(q)⟨KiK

−1
τ(i),Kj | i ∈ I \X, j ∈ X⟩.

Define Bc = Bc(X, τ) ⊂ Uq(g
′) to be the subalgebra generated by Uq(gX), U0

θ
′
and

the elements

Bi = Fi − ciTwX
(Eτ(i))K

−1
i for all i ∈ I \X.(5.1)

Integrable Systems and Quantum Groups 11
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Observe that Uq(gX) and U0
θ
′
are quantum group analogs of gX and k ∩ g′ ∩ h,

respectively. Hence Bc may be considered as a quantum group analog of U(k′)
for k′ := g′ ∩ k. In the following we will show that the subalgebra Bc ⊂ Uq(g

′)
satisfies the desired properties L1) and L2) formulated in Section 1, for a suitable
choice of parameters c. The coideal property holds independently of the choice of
parameters.

Proposition 5.1. The subalgebra Bc is a right coideal of Uq(g
′), that is

∆(Bc) ⊂ Bc ⊗ Uq(g
′).

Proof. As Uq(gX) and U0′
θ are Hopf subalgebras of Uq(g

′) it suffices to check that
the elements Bi defined by (5.1) satisfy ∆(Bi) ∈ Bc ⊗ Uq(g

′) for all i ∈ I \X. To
this end consider TwX

as an element of the algebra U discussed in Section 4. In U
we can hence write

Bi = Fi − ciTwX
Eτ(i)T

−1
wX

K−1
i .

The coproduct formulas for Uq(g) and (4.1) hence give us

∆(Bi) = Fi ⊗K−1
i + 1⊗ Fi

− ci(TwX
⊗TwX

)Θ−1
X (Eτ(i)⊗1+Kτ(i)⊗Eτ(i))ΘX(TwX

⊗TwX
)−1(K−1

i ⊗K−1
i )

in U
(2)
0 . Similar to (3.2), we write formally ΘX =

∑
Q+

X
FX,µ ⊗ EX,µ with FX,µ ∈

U−
X and EX,µ ∈ U+

X . As ΘX commutes with Eτ(i) ⊗ 1 in U
(2)
0 we obtain

∆(Bi) = Bi ⊗K−1
i + 1⊗ Fi(5.2)

− ci(TwX
⊗TwX

)Θ−1
X (Kτ(i)⊗Eτ(i))ΘX(TwX

⊗TwX
)−1(K−1

i ⊗K−1
i ).

The above formula implies that Θ−1
X (Kτ(i) ⊗ Eτ(i))ΘX ∈ Uq(g

′) ⊗ Uq(g
′). Given

the specific form of ΘX we hence obtain

Θ−1
X (Kτ(i) ⊗ Eτ(i))ΘX ∈ U−

XKτ(i) ⊗ U+.

As TwX
(U−

XKτ(i)) ⊂ U+
XU0

XKτ(i), we obtain

∆(Bi)−Bi ⊗K−1
i − 1⊗ Fi ∈ U+

XU0
θ
′ ⊗ Uq(g

′).

This implies ∆(Bi) ∈ Bc ⊗ Uq(gX) and concludes the proof of the proposition. □

Remark 5.2. The element TwX
(Eτ(i)) can be expressed in terms of the left-adjoint

action of Uq(gX) on Eτ(i). This allows an alternative proof of the coideal property
for Bc, see [Kol14, Proposition 5.2] .

To simplify notation define H = H(X, τ) = Uq(gX)U0
θ
′
and H≥ = U+

XU0
θ
′
. We

callH(X, τ) the partial Levi factor corresponding to the generalized Satake diagram
(X, τ). As noted previously, H(X, τ) is a Hopf subalgebra of Uq(g

′).
It is convenient to set Bi = Fi for i ∈ X. With this notation the generators of

Bc satisfy the relations

EjBi −BiEj = δij
Kj −K−1

j

qj − q−1
j

for all i ∈ I, j ∈ X,(5.3)

KβBi = q−(β,αi)BiKβ for all i ∈ I, β ∈ Qθ.(5.4)
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For any multi-index J = (j1, . . . , jm) ∈ Im we write FJ = Fj1 . . . Fjm and BJ =
Bj1 . . . Bjm . The relations (5.3) and (5.4) imply that

Bc =
∑

J

H≥BJ =
∑

J

BJH≥

where we sum over all multi-indices J of any length. Let J ⊂ ⋃ℓ∈N0
Iℓ be a subset

such that {FJ | J ∈ J } is a linear basis of U−.
Define a set of nonzero parameters C ⊂ (K(q)×)I\X by

C = {c ∈ (K(q)×)I\X | ci = cτ(i) for all i ∈ I \X with (αi, θ(αi)) = 0}.(5.5)

We will see in Theorem 7.2 that the coideal subalgebras Bc show good behaviour if
and only if c ∈ C. For example, we will see that in this case {BJ | J ∈ J } is a left
and right H≥-module basis of Bc.
Definition 5.3. Let (X, τ) be a generalized Satake diagram and c ∈ C. Then the
subalgebra Bc is called a standard quantum symmetric pair coideal subalgebra (QSP
coideal subalgebra) of Uq(g

′).

We will discuss non-standard QSP coideal subalgebras in Section 10.

6. Triangular decompositions of Uq(g
′). Recall that the algebra U = Uq(g

′)
has a triangular decomposition

U− ⊗ U0′ ⊗ U+ ∼= U(6.1)

in the sense that the multiplication map from the left to the right is a linear iso-
morphism. We recall some related tensor product decompositions. For any sub-
set X ⊆ I of finite type let LX = K(q)⟨Fj , Ej ,K

±1
i | i ∈ I, j ∈ X⟩ denote the

corresponding Levi factor, and let P+
X = K(q)⟨Fj , Ej ,K

±1
i | i ∈ I, j ∈ X⟩ and

P−
X = K(q)⟨Fi, Ej ,K

±1
i | i ∈ I, j ∈ X⟩ be the corresponding positive and nega-

tive standard parabolic subalgebras of U , respectively. Let adl and adr denote
the left and right adjoint action of U on itself, defined in Sweedler notation by
adl(u)x = u(1)xS(u(2)) and adr(u)(x) = S(u(1))xu(2). Let R+

X ⊂ U+ be the sub-
algebra generated by the subspaces adl(LX)(Ei) for i ∈ I \ X, and similarly, let
R−

X ⊂ U− be the subalgebra generated by the subspaces adr(LX)(Fi) for i ∈ I \X.

The standard parabolic subalgebras P±
X are Radford biproducts of LX and R±

X ,

[Rad85]. Moreover, R±
X can be described in terms of Lusztig’s braid group action.

The following Lemma is well-known, see for example [KY21, 2.2] for a detailed
proof of the statements about R−

X .

Lemma 6.1. Let X ⊂ I be a subset of finite type. Then

R+
X = U+ ∩ TwX

(U+), R−
X = U− ∩ TwX

(U−)

and the multiplications maps LX ⊗R±
X ! P±

X are linear isomorphisms.

Comparing the triangular decomposition (6.1) with the above lemma, we obtain
linear isomorphisms

R−
X ⊗ U−

X
∼= U−, U+

X ⊗R+
X
∼= U+(6.2)

via multiplication, and therefore

R−
X ⊗ LX ⊗R+

X
∼= U.(6.3)

Integrable Systems and Quantum Groups 13
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7. The standard filtration of Bc. We call the subalgebra A = A(X, τ) :=
U−H(X, τ) ⊂ U the partial parabolic subalgebra corresponding to the general-
ized Satake diagram (X, τ). The triangular decomposition (6.1) for U implies the
triangular decomposition

U− ⊗ U0
θ
′ ⊗ U+

X
∼= A(7.1)

for the partial parabolic subalgebra A. Let Iτ ⊂ I \ X denote any fixed set of
representatives of all τ -orbits in I \X and define

U0
τ
′
= K(q)[K±1

i | i ∈ Iτ ].

Multiplication gives a linear isomorphism

U0
θ
′ ⊗ U0

τ
′ ∼= U0′.(7.2)

Hence, by (6.1) and (6.2) we obtain a triangular decomposition

A⊗ U0
τ
′ ⊗R+

X
∼= U.(7.3)

The algebra A is N0-graded via a degree function on the generators given by

deg(u) = 0 if u ∈ H,
deg(Fi) = 1 if i ∈ I \X.

Let Upoly = Upoly(X, τ) be the subalgebra of U generated by A and the elements

Ẽi = EiK
−1
i ,K−1

i for all i ∈ I\X. As TwX
(Eτ(i))K

−1
i ∈ U+

XEτ(i)K
−1
τ(i)U

+
XKτ(i)K

−1
i

we have Bc ⊂ Upoly. The triangular decomposition (6.1) of U implies that

U0
θ
′ ⊗K(q)[K−1

i | i ∈ Iτ ] ∼= Upoly ∩ U0′.(7.4)

Recall that we write Kα =
∏

i∈I K
ni
i for α =

∑
i∈I niαi ∈ Q. The following lemma

will be needed to prove the implication 5) ⇒ 4) of the main Theorem 7.2 below.

Lemma 7.1. If Bc ∩U0′ ̸= U0
θ
′
then there exists a nonzero α ∈ −∑i∈Iτ

N0αi with
Kα ∈ Bc.

Proof. Assume that
∑

α∈Q aαKα ∈ Bc ∩ U0′ \ U0
θ
′
for some aα ∈ K(q). Then, by

the coideal property of Bc, there exists a non-zero α ∈ Q \Qθ such that Kα ∈ Bc.
By the decomposition (7.4), we can write α = αθ + α′ with αθ ∈ Qθ and α′ ∈
−∑i∈Iτ

N0αi \ {0}. Multiplication by K−αθ shows that Kα′ ∈ Bc. □

Define a degree function on the generators of Bc by

deg(u) = 0 if u ∈ H,
deg(Bi) = 1 if i ∈ I \X.

This degree function defines a filtration F∗ on the algebra Bc. An element of Bc
belongs to FnBc if it can be written as a polynomial in the generators, involving
at most n of the generators Bi for i ∈ I \X in each monomial.

Let p = p(xi |i ∈ I) be a homogeneous, non-commutative polynomial of degree m
in the variables xi for i ∈ I with coefficients inH≥. Here ‘homogeneous of degreem’
means that each monomial contains precisely m factors xi with i ∈ I \X. Let p(B)
denote the element of Bc obtained by evaluating xi at Bi for all i ∈ I. Similarly,
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let p(F ) denote the element of A obtained by evaluating xi at Fi for all i ∈ I. The
triangular decomposition (6.1) implies that

p(B) ∈ Fm−1(Bc) =⇒ p(F ) = 0.

Hence we obtain a surjective homomorphism of graded algebras

φ : gr(Bc) ! A(7.5)

satisfying φ(Bi) = Fi for all i ∈ I and φ(u) = u for all u ∈ H. We would like to
know under which conditions the map φ is an isomorphism. Recall that we write
U = Uq(g

′) and recall the definition of the set of multi-indices J given at the end
of Section 5.

Theorem 7.2. Let (X, τ) be a generalized Satake diagram and c = (ci)i∈I\X ∈
K(q)I\X . The following statements are equivalent:

1) The map φ given by (7.5) is an isomorphism of algebras.

2) The multiplication map multc : Bc⊗U0
τ
′⊗R+

X ! U is a linear isomorphism.
3) The set {BJ | J ∈ J } is a basis of Bc as a right (or left) H≥-module.

4) Bc ∩ U0′ = U0
θ
′
.

5) U is a free left Bc-module.
6) The coefficients c = (ci)i∈I\X satisfy the relation

ci = cτ(i) for all i ∈ I \X with (αi, θ(αi)) = 0.

Proof. 1) ⇔ 2): Via the triangular decomposition (7.3), the grading of A induces
a filtration of U as a vector space. On the other hand, the filtration on Bc induces

a filtration on Bc⊗U0
τ
′⊗R+

X . The multiplication map multc is filtered with respect
to these two filtrations. The associated graded map is (φ⊗ id⊗ id) composed with

the multiplication multA : A ⊗ U0
τ
′ ⊗ R+

X ! U . As multA is an isomorphism by
(7.3), we see that gr(multc) is an isomorphism if and only if φ is an isomorphism.
1) ⇔ 3): Consider the subspace WJ =

∑
J∈J BJH≥ of Bc. The filtration F on

Bc induces a filtration on WJ and we have an inclusion

gr(WJ )
igr

↪−! gr(Bc)

By the triangular decomposition (7.1) the algebra A is a free right H≥-module with
basis {FJ | J ∈ J }. As φ◦ igr(BJ) = FJ for all J ∈ J , the map φ◦ igr is a bijection.
Hence igr is a bijection if and only if φ is a bijection. Moreover, as {FJ | J ∈ J }
is a basis of the right H≥-module A, the set {BJ | J ∈ J } is a basis of the right
H≥-module Bc if and only if φ is bijective.

2) ⇒ 4): By definition of Bc we have U0
θ
′ ⊂ Bc. If 2) holds, then the decomposition

(7.2) implies that Bc cannot contain any element of U0′ \ U0
θ
′
.

4) ⇒ 5): The Hopf algebra U is pointed with coradical U0′. If 4) holds then

Bc ∩ U0′ is invariant under the antipode S of U . By [Mas91, Proposition 1.4] this
means that U is free as a left (and right) Bc-module.

5) ⇒ 4): Assume that Bc ∩ U0′ ̸= U0
θ
′
. Lemma 7.1 implies that there exist a

nonzero α ∈ −∑i∈Iτ
N0αi with Kα ∈ Bc. As Kα is not invertible in Bc ⊂ Upoly,

we obtain that KαBc is a proper right submodule of Bc. However, the induced map
KαBc⊗Bc U ! Bc⊗Bc U is surjective. Hence U cannot be free as a left Bc-module.
4) ⇒ 6): Let i ∈ I \ X such that τ(i) ̸= i and (αi, θ(αi)) = 0. By [Kol14,

Integrable Systems and Quantum Groups 15
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Lemma 5.3] we have θ(αi) = −ατ(i) and (αi, ατ(i)) = 0 in this case, and hence

Bi = Fi − ciEτ(i)K
−1
i and Bτ(i) = Fτ(i) − cτ(i)EiK

−1
τ(i). A direct calculation gives

[Bi, Bτ(i)] = cτ(i)
Ki −K−1

i

qi − q−1
i

K−1
τ(i) − ci

Kτ(i) −K−1
τ(i)

qi − q−1
i

K−1
i .(7.6)

Hence, if ci ̸= cτ(i) then K−1
i K−1

τ(i) ∈ Bc. This would be a contradiction to 4).

6) ⇒ 2): This is the statement of [Kol14, Proposition 6.3] up to a reordering of
factors. □

Remarks 7.3. 1. If we assume ci ̸= 0 for all i ∈ I \X, then the theorem states that
Bc has any of the properties 1)–5) if and only if Bc is a QSP coideal subalgebra as
defined in Definition 5.3.
2. The triangular decomposition in part 2) of the theorem is commonly known as
the quantum Iwasawa decomposition.
3. The final implication 6) ⇒ 2) is the hardest part of the proof. It hinges on a
subtle argument involving the evaluation of q-Serre polynomials on the generators
Bi for i ∈ I, see [Let02, Section 7] and [Kol14, Corollary 5.17].

4. By Lemma 7.1 and the decomposition 7.4, the subalgebra U0′
θ is the maximal

subalgebra of U0′ ∩Bc which is closed under the antipode S. Hence condition 4) in

Theorem 7.2 is equivalent to the statement that U0′ ∩ Bc is a Hopf subalgebra of
U . As U is pointed with coradical U0′ , this condition is equivalent to the faithful
flatness of U as a left (or right) Bc-module, see [Mas91]. A right coideal subalgebra
C of a Hopf algebraH such thatH is faithfully flat as a right C-module is commonly
called a quantum homogeneous space, see [Krä12]. Statements 4) and 5) of Theorem
7.2 hence express the desirable fact that the pair (U,Bc) is a quantum homogeneous
space.

8. The specialization property. We briefly recall non-restricted specialization
as outlined in [CK90, 1.5]. As in [Kol14, Section 10] we follow the presentation in
[HK02]. Let A = K[q](q−1) be the localization of the polynomial ring K[q] at the

prime ideal (q − 1). For any i ∈ I we set (Ki; 0)q = Ki−1
q−1 . The A-form U ′

A of

U = Uq(g
′) is the A-subalgebra of U generated by the elements Ei, Fi,K

±1
i , and

(Ki; 0)q for all i ∈ I. The field K is an A-module via evaluation at 1. The algebra
U ′
1 = K⊗A U ′

A is called the specialization of U at q = 1.
For any x ∈ U ′

A we write x to denote its image in U ′
1. The following result is

well-known.

Theorem 8.1. ([CK90, Proposition 1.5], see also [HK02, Theorem 3.4.9]) There
exists an isomorphism of algebras U ′

1 ! U(g′) such that Ei 7! ei, Fi 7! fi and

(Ki; 0)q 7! ϵihi.

For any Satake diagram (X, τ) recall the signs s(αi) in the construction of the
involution θ(X, τ) in Theorem 2.1. We say that a set of parameters c = (ci) ∈ AI\X

is specializable if ci(1) = s(ατ(i)). If c ∈ AI\X is specializable then the generators

Bi of Bc belong to U ′
A and satisfy Bi = fi + θ(fi) for all i ∈ I \ X, see [Kol14,

Corollary 10.3].
For any subspace W ⊂ U we define W = K⊗A (W ∩ U ′

A) ⊂ U ′
1. We call W the

specialization of the subspace W . The subalgebra Bc has the desired specialization
if and only if the parameters satisfy the conditions in Theorem 7.2. Indeed, let
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(X, τ) be a Satake diagram and write k′ = k∩ g′ where k is the Lie subalgebra fixed
under the involution θ(X, τ). By [Kol14, Theorem 10.8] we know that condition 6)
in Theorem 7.2 implies that Bc = U(k′). Conversely, if condition 6) in Theorem
7.2 fails, then we have seen in the proof of the implication 4) ⇒ 6) of the Theorem
7.2 that K−1

i K−1
τ(i) ∈ Bc for some i ∈ I \ X with i ̸= τ(i) and hence K−2

i ∈ Bc.
This implies that hi ∈ Bc, however, hi /∈ k. We summarize the discussion in the
following Theorem.

Theorem 8.2. Let (X, τ) be a Satake diagram and c ∈ AI\X specializable. Then
Bc = U(k′) if and only if the equivalent conditions in Theorem 7.2 hold.

Remark 8.3. It is natural to ask how Theorem 8.2 extends to generalized Satake
diagrams and general parameters in AI\X . In [RV20], [RV22] V. Regelskis and
B. Vlaar introduced the notions of pseudo-involutions and associated pseudo-fixed-
point subalgebras. We expect that the above theorem extends to this setting.

9. Generators and relations for Bc. Let (X, τ) be a generalized Satake diagram,
c ∈ C and Bc the corresponding QSP coideal subalgebra. For i, j ∈ I we can
evaluate the quantum Serre polynomial Sij(x, y) defined by (3.1) on the generators
Bi, Bj of Bc. By definition, we have Sij(Bi, Bj) ∈ Fdeg(i,j)(Bc) where

deg(i, j) =





2− aij if i, j ∈ I \X,

1− aij if i ∈ I \X, j ∈ X,

1 if i ∈ X, j ∈ I \X,

0 if i, j ∈ X.

By the equivalence 1)⇔ 6) of Theorem 7.2 there exist elements Cij(c) ∈ Fdeg(i,j)−1(Bc)
such that

Sij(Bi, Bj) = Cij(c) for all i, j ∈ I, i ̸= j..(9.1)

Comparison with the defining relations of the partial parabolic subalgebra A then

implies the following result. Recall that we write H≥ = U+
XU0

θ
′
.

Theorem 9.1. [Let02, Theorem 7.4], [Kol14, Theorem 7.1] Let c ∈ C. The algebra
Bc is generated over H≥ by the elements Bi for i ∈ I subject to the defining relations
(5.3), (5.4) and (9.1).

The deformed quantum Serre relations (9.1) can be made explicit, see [KY21]
and references therein.

Examples 9.2. We write down the relations (9.1) for three explicit examples.

(1) Let A =

(
2 −1
−1 2

)
with I = {1, 2}, that is g = sl3(C), and choose

(X, τ) = (∅, id). In this case, C = (K(q)×)2 and Bc ⊂ Uq(sl3(C)) is the

subalgebra generated by the elements Bi = Fi − ciEiK
−1
i for i = 1, 2. The

relations (9.1) are given explicitly by

B2
i Bj − (q + q−1)BiBjBi +BjB

2
i = −qciBj(9.2)

for {i, j} = I.

(2) Let A =

(
2 −2
−2 2

)
, that is g = ŝl2(C), and choose (X, τ) = (∅, id). To

account for the affine situation, we write I = {0, 1}. The generators of Bc

Integrable Systems and Quantum Groups 17
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are again given by Bi = Fi−ciEiK
−1
i for i = 0, 1, but the defining relations

(9.1) now read

B3
i Bj − [3]qB

2
i BjBi + [3]qBiBjB

2
i −BjB

2
i = q(q + q−1)2ci(BjBi −BiBj)

for {i, j} = {0, 1} where [3]q = q2 + 1 + q−2, see [Kol14, Example 7.6].

(3) Let A =

(
2 −2
−2 2

)
as before but now choose (X, τ) = (∅, (01)) for I =

{0, 1}. The generators of Bc are given by Bi = Fi−ciEjK
−1
i for {i, j} = I,

and the defining relations (9.1) read

B3
i Bj−[3]qB2

i BjBi + [3]qBiBjB
2
i −BjB

2
i =

ciq
−1(1− q6)(1 + q2)B2

i KjK
−1
i + cjq

−1(1− q−6)(1 + q−2)B2
i KiK

−1
j

again for {i, j} = I.

10. Non-standard QSP coideal subalgebras. Let k be a field. For any unital

k-algebra A we write Â to denote the set of unital k-algebra homomorphisms χ :

A ! k. We refer to elements of Â as characters of A. If H is a Hopf algebra over

k then Ĥ is a group. If C ⊂ H is a right coideal subalgebra then the group Ĥ acts

on Ĉ from the right via

χ ◁ µ(c) = χ(c(1))µ(c(2)) for all χ ∈ Ĉ, µ ∈ Ĥ and c ∈ C.

Moreover, for any χ ∈ Ĉ the set

Cχ = {χ(c(1))c(2) | c ∈ C}
is a right coideal subalgebra of H, and the map ρχ : C ! Cχ defined by

ρχ(c) = χ(c(1))c(2) for all c ∈ C(10.1)

is a surjective homomorphism of rightH-comodule algebras. Taking the perspective
of quantum homogeneous spaces, we refer to the right coideal subalgebra Cχ ⊂ H
as the shift of basepoint of C by the character χ.

We return to the specific setting of these notes. Let (X, τ) be a generalized

Satake diagram and c ∈ C. For any χ ∈ B̂c there exists a character µ ∈ Û such that

(χ ◁ µ)|Uq(gX) = ε|Uq(gX). In the following we hence restrict to characters χ ∈ B̂c
with χ|Uq(gX) = ε|Uq(gX). Define a subset Ins ⊂ I by

Ins = {i ∈ I \X | τ(i) = i and αi(hj) = 0 ∀j ∈ X}.

Proposition 10.1. Let c ∈ C and χ ∈ B̂c a character such that χ(u) = ε(u) for
all u ∈ Uq(gX). For any i ∈ I \X define ti = χ(KiK

−1
τ(i)) and si = χ(Bi). Then

the following hold:

(1) If τ(i) = i then ti = 1.
(2) If τ(i) ̸= i and (αi, θ(αi)) = 0 then ti = ±1.
(3) If i /∈ Ins then si = 0.

Proof. If τ(i) = i there is nothing to prove. If τ(i) ̸= i and (αi, θ(αi)) = 0 then the
condition c ∈ C, Equation (5.4) and Equation (7.6) imply that

KiK
−1
τ(i)Bi = q2iBiKiK

−1
τ(i), KiK

−1
τ(i)Bτ(i) = q−2

i Bτ(i)KiK
−1
τ(i),

BiBτ(i) −Bτ(i)Bi = ci
KiK

−1
τ(i) −K−1

i Kτ(i)

qi − q−1
i

.
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A BRIEF INTRODUCTION TO QUANTUM SYMMETRIC PAIRS 15

Hence the subalgebra of Bc generated by Bi, Bτ(i) and (KiK
−1
τ(i))

±1 is isomorphic to

Uqi(sl2(C)). Hence KiK
−1
τ(i) acts as ±1 in any one-dimensional representation of Bc.

Finally, if τ(i) ̸= i then KiK
−1
τ(i)Bi = q

−2+aiτ(i)

i BiKiK
−1
τ(i). Hence, any character χ

of Bc satisfies χ(Bi) = 0 in this case. Similarly, if αi(hj) ̸= 0 then (αi, αj) ̸= 1 and

hence the relation KjBi = q−(αi,αj)BiKj implies that χ(Bi) = 0. □

Examples 10.2. (1) Consider Example 9.2.(1). In this case Ins = I. Assume

that χ ∈ B̂c and write χ(Bi) = si for i = 1, 2. If sj ̸= 0 then the relation
(9.2) implies that (2− (q + q−1))s2i = −qci where {i, j} = {1, 2}.

(2) Consider Example 9.2.(2). In this case there exist χ ∈ B̂c with χ(Bi) = si
for all s0, s1 ∈ K(q).

(3) Consider Example 9.2.(3). By Proposition 10.1.(3) any χ ∈ B̂c satisfies

χ(Bi) = 0 for i = 0, 1. However, there exists a unique χ ∈ B̂c with
χ(K0K

−1
1 ) = t0 for any t0 ∈ K(q)×.

Any χ ∈ B̂c with χ|Uq(gX) = ε|Uq(gX) is uniquely determined by two parameter

families s = (si)i∈I\X ∈ K(q)I\X and t = (ti)i∈I\X ∈ (K(q)×)I\X defined by

χ(Bi) = si, χ(KiK
−1
τ(i)) = ti.

For s ∈ K(q)I\X and t ∈ (K(q)×)I\X we denote the correspond character by χc
s,t,

if it exists. In this case we define ρcs,t = ρχc
s,t

to be the corresponding map defined

by (10.1).

Definition 10.3. Let c ∈ C and assume that χc
s,1 ∈ B̂c exists for some non-

vanishing s ∈ K(q)I\X and 1 = (1, 1, . . . , 1). Then we call Bc,s := (Bc)χc
s,1

=

ρcs,1(Bc) a non-standard quantum symmetric pair coideal subalgebra.

It follows from the coproduct formula (5.2) that the non-standard QSP coideal

subalgebra Bc,s is generated by H≥ = Uq(gX)U0
θ
′
and the elements

Bi = Fi − ciTwX
(Eτ(i))K

−1
i + siK

−1
i .

for all i ∈ I \X.

Proposition 10.4. Let c ∈ C and χ = χc
s,t ∈ B̂c for some s ∈ K(q)I\X , t ∈

(K(q)×)I\X . Then (Bc)χc
s,t

= Bc′,s with c′ = (c′i) ∈ C defined by c′i = cit
−1
i .

Proof. By Equation (5.2) we have

ρcs,t(Bi) = Fi − citτ(i)TwX
(Eτ(i))K

−1
i + siK

−1
i .(10.2)

Moreover, by Proposition 10.1.(2), the element c′ = (c′i) given by c′i = cit
−1
i lies in

the parameter set C. As tτ(i) = t−1
i we get (Bc)χc

s,t
= Bc′,s. □

By the above proposition, the additional parameter family t does not produce
additional coideal subalgebras and may hence be ignored.

Proposition 10.5. Let c ∈ C and s ∈ K(q)I\X such that there exists a character

χc
s,1 ∈ B̂c. The map ρcs,1 : Bc ! Bc,s is an isomorphism of right U -comodule

algebras.

Integrable Systems and Quantum Groups 19
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Proof. By construction, the map ρcs,1 is a surjective homomorphism of right U -
comodule algebras. Assume that b ∈ Bc \{0} lies in the kernel of ρcs,1. By Theorem

7.2 we can write b =
∑

J∈J BJaJ for uniquely determined elements aJ ∈ H≥.
Choose J = (j1, . . . , jℓ(J)) ∈ J of maximal length ℓ = ℓ(J) such that aJ ̸= 0.
Then the explicit form of ρcs,1 in (10.2) and the triangular decomposition (6.1)
imply that

∑
J∈J

ℓ(J)=ℓ
FJaJ = 0, in contradiction to the linear independence of the

set {FJ | J ∈ J } over H≥. □

We would like to know all s ∈ K(q)I\X for which there exists a character

χc
s = χc

s,1 ∈ B̂c. By Proposition 10.1, any such s = (si)i∈I\X needs to satisfy
the condition

si ̸= 0 =⇒ i ∈ Ins.(10.3)

However, as example 10.2.(1) illustrates, condition (10.3) is not sufficient for the

existence of a character χc
s,1 ∈ B̂c. Consider the set

S = {s ∈ K(q)I\X | si ̸= 0⇒ (i ∈ Ins and aji ∈ −2N0 ∀j ∈ Ins \ {i})}.
The following proposition can be deduced from [KY21, Thm. 1.2 and Prop. 4.4].

Proposition 10.6. Let c ∈ C and s ∈ S. Then there exists a character χc
s,1 ∈ B̂c.

Remark 10.7. The character χ in Example 10.2.(2) is of the form described in

Proposition 10.6. However, Example 10.2.(1) shows that not all characters in B̂c
are of the form described in the proposition.

A careful analysis of the defining relations in [KY21] shows that if χc
s,1 ∈ B̂c and

si ̸= 0 for i ∈ Ins with odd aji for some j ∈ Ins then
s2j
cj

must satisfy a certain

algebraic equation related to the q-Serre relations. This algebraic equation can
be explicitly described in terms of continuous q-Hermite polynomials. The family

of all algebraic equations in
s2j
cj

obtained in this way for all i, j ∈ Ins provides a

necessary and sufficient condition for the existence of the character χc
s,1. It would

be interesting to find a simple description of these algebraic equations. See [RV20,
End of Section 1.1] for a related conjecture.
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Crystal bases for 
general linear Lie superalgebras

Integrable systems and quantum groups
In honor of Masato Okado’s 60th birthday

Jae-Hoon Kwon ( Seoul National University )

March 2023

#1

· The notion of Lie super algebra was introduced by Kas ('Mo's)

together with the classification of simple lie super algebras.

· Its representation theory has been developed very much for the

last couple ofdecades (irr.char.'s & KL theory and so on (

· The goal ofthis lecture is to give an introduction to

crystal base for the quantum group assoc. to ge(min).
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#2

1. Quantum super algebra Uq (ge(m(n))

(Crystal base of

2. Polynomial representation v (x)

3. Kac module ((x)

4. The negative half ofUg(ge(m(n))

#3

1. Quantum superalgebra

· Assume that the base field:K

A super space: a X2-graded space v =V. & V,

even odd

ge(v) = =Enda (v)

:a super space gl(v).-7:Vi > Vi+E

a lie superalgebra w.r.t. [7,g]=fog-(-1)*119'got

called a general linear Lie super algebra
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#I

·
m.n0 I(min) =31 x2 > ...sm<m+1s ... smtn 3

even odd

GmIn=9M10 &GOM =ADva
I(m(n)

even odd

· gl(m(n): =gl(cm)
m n

- -

- -

I the set of (m+n) x (m+2) matrices m I A B

n I
>

C D

->

ge(mIn)o = ge(m) +ge(n) A.D:even

B.2:odd

3 =

span ofEaa (Cartan subaly)

#5

·(X,Y): = str(Y):non-deg in super symm. bilinear form

38a1a = I (m/n) 3:a basis of 3* dual to 3Eaa]

(8a60( I I a
=bs m

- S - I a
=b > m

induced

bilinear form
⑧ otherwise

· It =8a-Sp a =b):the set ofpositive moots
a< b

I= =38a-acbm,m<asb] even

&i =38a-8paxm <b3 odd (isotropic)
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#6

-=S Sa-Sat 1 a < m+n):the set of simple moots

... X ...

8,-8282 - 83 8m8m+ 1 Se-iSe

-

(212) > 0 (C1) =0 (212) < 0

even odd even

I =m+n

· U(ge(mIn)):the enveloping algebra of ge(m(n)

2(ge(min)) =2(ge(mial!) x 2(ge(m/n))
SII

1(ge(m/n)) as a D-alg.

#I

· 8:indeterminate, 1k =G(q)

2q(ge(mIn)):the g-analogue of2(gelm/n) introduced by

Yamane (99)

generators:Ea. FC, Kaika"(a+, acI(m(n))

relations:

Ka*:commutative KEcK" =g(CalE KFcK"=gl2,alFc

EaF-(-1)Kll'EEa = fa.sgn(k)
Ka-Ka

(Ka =kakai)
q - g-1

usual Serve relations for EC. Ex (C(C) >0,s0

+ odd serve relation for Ec.FC (212) =0

Integrable Systems and Quantum Groups 25



#

Runk

~(212) 30 (Ea.Fa.ka*' = 2g(ste)

<O >Ea,Fa,ka*' =2gi(s()

2 Iq(91/mIn)):Xc-graded deg(Ec) =deg(Fc) =1 (C1) =0

3 Instead of super representations, we consider a rep of

2g(ge(m(n)) [w] =21q(ge(m(n)) + 4g(ge(m(n)) o

22 = 7.

5K* =K5 Xc=(-1)Xca(X =E,F)

#9

W:a 2q(ge(min)) [0] - module of

· V =V +V: Xigraded Mq(ge(mIn)) -module

· -V =(-1)v

1 - a super representation of Ug(g(m(n)) (

Hopf algebra structure of Ug(ge(m(n)) [o]

DK* =Ka* Ka*

DEc=EceKa" + NE, Fx =Fc7 +5Ka*Fa
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#10

·P =

tX6a
· Aweight space of V with xtP

V =Sw knw = g(MIXw for MeP3

We assume I has a wt. space decomposition

Runk We may consider another version ofUSA

I due to Kuniba. Okado-Sergeer 75

q(1a- m)

ga
=(

-g-1(m<axm +n)

#11

&(x,M) =4gana for i =Safa, M= Mafa

defining relations
· g(xM) m 1(x,M)
O

weight space ques - q1
Ion odd space)

It is almost isomorphic to 2q(ge(m/n)) in the sense;

2g(ge(mIn)) [ra] =<2q(ge(m(n)),)

5a(atI(mIn)):a:Ba = 1

(8a(2)

K =kyaXc=(falSa) Xaa (x =E,F)
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#12

I
E

20S [a] >28 [ra] as a lk-alg.

Xa I > Xax (productof5's) X =E,F, K

G(X) res q(x(r)
M-wt sp M-c+ sp

From now on, we use 2min=2q(ge(mIn) by KOS w/

DK* =Ka* Ka*

DEc=EceKa" + 7&E, Fx=Fc7 +Ka*Fa

in usual &G
W

Many arguments can be applied directly we above change of convention

#13

2.Polynomial representations

Unlike Hq(ge(m+r)), a fin-dimil 2min-module

is not semisimple in general.

· But, there is a good family of semisimple mepe's

closed under x (due to Schwe-Weyl-Jimbo duality (

·P =

+7,06a:the set ofpolynomial weights.70

atI(m/n)

· Oso:the category ofUminModules w/ wt's in Pyo
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#14

· V = +Ik va:the natural representation of 2min
min

a tI(m(n)

Fa
s > gr (a =fa-8a+1)
a 2 a+1

Ea

Sa Satt

Ved =0,ruln

Moreover, I analog ofJimbo's duality on Umind

2 ~ed ↳ Hy:Heck algo of type A p-1m/n min

Is
semisimple

#15

· i =(x,3,x2x...): a partition w/ xm+i* (=Pmlu)

12 =x,f,+ ... +2m8m +M,8m++...
+MaSm+n

where M
=(2m+Yxm+a>...)

m =2

n=5

· Vin (2):the irreducible h.w. module we how. Ma
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# 16

Then

~ Umin*d= I Vmin(i) x ga
-

12 =d

= Every irreducible module (0,0 =Vmin(X)

(Benkart-Kang-Kashiwara 00)

· I
a combinatorial model for chVmin(i)

SSTmin()
=the set of(mIn) -hook semistandard tableaux

chVmin(x) =I T =>h5q(x) hook Schwe poly.
Te SSTmin() (srper)

#M

· (Benkart-Kang-Kashiwara 00

Vmin(4) has a "crystal base" w/ a cun. crystal str. on
SSTmin(2)

66 99

What is a crystal base here?

Itis defined in a similar way wirt. crystal operators .

lower crystal operator (212) >0

Ec - E upper crystal operator (212) s0 (a =4)

multiplication by Fa (C1) =0

30 OCAMI Reports Vol. 5 (2023)



#I&

Rank at (212) < 0

↑

<Ea, Fa.Ka*') E 2_q(s) C-alg.

Ex -1 e

Ea -I

ka - E

q d 1 - g=P
-

- m Y: lowerco-mult. -3: upper +flip
47

crystal base atp =x

CB at4 =0

-

Fr so E: upper crystal operator Sy upper crystal
+ tensor product mule

(in reverse order)

#Id
a =d(ak) < 0

3

(Ea,Fa.Ka*') =Hg(see) Kralg.

Ex -- e

Fax-I

Kate G
-

X mux 3: Upper co-mult. + flip

e1 2 x k +1ee

I 1 > F&1 +k"xf

Emen E: upper crystal operator
+ tensor product mule

(in reverse order)
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#19

· V -> 0x0 (2,B):a crystal base ofV if

1 2:As-lattice of V + wt sp. decomp.

2 B =Bul-1B) BBC2/q2: G-basis.
+wt. sp. decomp.

32 C2. [BcBu3oY =e,f ae

where Ao =5h =K) regular at 9 =03

· (BKK) (1:,Bi):a crystal base ofVi -> 0x0

=>(2,412, B, *B2):a crystal base of V, Ve

+explicitdescription ofEa

#20

for a= W/ (K) =0

E,b, *b2 if (w+(b,) a) +0
Fr(b,xb2) = E

b, eFabz if (w+(b) a) =0

Rik Vim(2) x ->Prin

2min(x) = to.... on x (rso,itb,x =e,1

Bmin(x) =(I, ... on x (modq2min(x)); 1203

:a crystal base.
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#21

2 Bmin(x) can be realized as a subgraph of Bruin
*(2)

where Bmin:Crystal of Vila

&IX
=>BmIn (x) =SSTmin(n) C Bonin

3 Bmin (2) may have an element by sit

b =Ux butEcUx =0 for all at

4 Unlike Bm(x), Ino natural crystal embedding

BmIn (i) - Brin (M) for x,Me Prain

which yields an inverse limit.

#21 - 1

Example

m
=3, n =4

I 4 5 6

B :1 -2 =32,4 >56>72

314

T = - SSTs)5,3,2,2

> w =6,414525364 -B
How

reading
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#21-2

E. (9,12.)>0 632414525364 =

W.
- -t ->

>

↳

632217525364

> - -

Ep (2,24) >063241442536 4
- I

2

↳

632217525364 =W

-- I

#21 - 3

Es (23143) =0 63241425364
=

I

↳

642414425364
-

T =T's cw (x) =e,f).
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#22

Applications/problem

1 (non-standard Borel)

One can consider Umin wirt, a non-sed Boil

X 1 < 2<354 <5: 6 standard

I 23 4 5 odd ever

X X X X X 1 - 2-354-5-6

I 23 45

The (non-standard) crystal structure on Brinda

has a connection with quasi-symmetric functions. (K09)

#23

2 I affine case

One can define the RSAof affine type A

X

X

I 2 3 I 5

I
Kirillor-Reshetikhin type module his with a crystal base

for (r)=(r,...,r) -> Pmln (K-Okado 21)
-

and BrisE SSTmin((rs) as a crystal of finite type
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#24

3 E other crystal realization?

I combinatorial model e.g. LS-pathmodel?)

E
4 global cystal basis (canonical basis) ofUmin(r)?

#I

3.Kac modules.

·

I
crystal base of a Verma module for 2min?

·
I
natural inverse system on [Bmin(x)/x-Pmin]?

No presentation for Vin (2) is known, so far.

m We do not know a natural partial order on Pain

· How to take a limitof Brin (x)?
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#2

· In reps theory of ge(m/),

=>an important family of fin-dim in decomp h.w. modules

- a parabolic Verma module w.r.t gl(min).~

⑧
... X ...

2, 22 2m am+n - 1

Ei:= EC: Fi=Fai

Umn=(EisFi,ka*i =m)

#3

· p
t
=3x =24a8a -Pxx...xxm, xm+Y ...x xm+n3

x =p
+x

==2 Nada i=aisana1 asm

Vm,n(x) = =Vmo(it) xVan(x " P (Em: trivially)
11

<Hm,n, Em

K(x) = =

UmmVm,n(x)

indecomposable h.w. module w/ h.w. i

Vmin(x) = the max. quotient of K(X)
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#4

(K(4)

i K(x) has a crystal base (2(K(x)), B(k(x)))

where B(k(2)):connected

2 x =Pmin 1x
x11

x(x) > V (i
min

W W

I(k(x)) - 2min(X)

B(K(x)) > BmsnIX) w303 2
=

0

Rik We should define em, Em.

#5

· To construct a crystal base ofK(x)

we use a PBN type basis of 2min

· I= 8a- acb(m,m<a(b] even

&i =38a-8paxm <b3 odd

· We take a particular convex order on It assoc. to

a reduced expression of woeSmtn adapted to

3 > ... 3 >1 [ ... [

2, 22 2m am+n - 1
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#6

M
=3

n
=4

+:(B(B) > 0 - :((B)<0 X:(B(B) =0

a << > 2.

# M.

· BeIt, define a mootvector F by

using Lustig's transf. Ti's (itm) if BeE!

applying q-adjointadqlEi)'s (itm) to Fr i BEE

F =adq(Fj) o...oadq)Fm+) · adq(Fi) o...oadq(Fm-i) (Fm)

(B =2i +. .. +Gm+.. +xj)

where adq(x)(y) =(x,y]
=

xy
- q(kx),(y)) yx
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#8

·We also have the Levenduski-Soibelman type relation

(91q)FrFg(2<23849 +B =x+6)

S[F, FcIa*Fr (r =x +B)

⑧
·er

&

⒗

+F=0(a +Ei) B

even
·I

odd

even

#9

· (FER,0.C =0.1. (8eE)3:IK-basis of Umin

· x
=(F/Be E) =span of Fr
:the subalg, generated by add moot vectors.

Umin=Kx Umin=KxHmio Hon as Ik-spaces

· K(x) =2in* Vm.n (x) =KxVmiolit xVonIX as Il-spaces
IR IR
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#10

· K(x):fin-dimensional &

chK(x) =chK.chVm,n(x) =I(1 +vivj) Sx+(n) S,x+(w)
·im

1sj =x

which can be viewed as a g-deformed Kac-module

· Define E: E:an K(x) by

lower crystal operator for ix:<m(((:) < 0)

S upper crystal operator for msi < m+n-1((x,(di) < 0)

Im (multiplication) where em=em(leftderivation)

#11

Sketch ofproof (Existence

4

k
E

> M.(Ik**1k"):g-deformed exterie alg.

↑ N
gen. by * Wi

F I 3 Wi xwj (B =8i - fj)B

I
an action of 2,(gen) x 2p(gen) on Mell") p =

- g-

SI

2m,n

Imin-module K induced by 4 = k(0) =keVmin(0)
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#12

=>K(x) =18(1k*x16") x Vmin(ias 2min-module

2(k) = = A.F B(K): ==IF (mod q2(k))3
(g)

=>I(k(x))= =2(k) & 1 (Umin(x))

B(x(x)) = =B(x) xB(Umin(x))

Forms a crystal base of K(X) as a Uminmodule

#13

Finally, one can check in 2 (K(N) ( 2(k(x)) (x) =e.7)

Em TFs is given by Cancn (2m=0)
T E

O (Cm=1)

B(K) P(E):power set

We may regard

B(k(x) =P(Ei) x B(Umo(x+)) xB(Va (i))
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#14

B(K(x) can be described explicitly since

Umin-crystal structure is well-known to tensor product mule

This implies the following

i the connectedness of B(K(x))

2 I(K(x) = As...in(i.r. -e,f)

B(k(x) = [E;... inx (modq2(k(x)) 3 90b

3 Uniqueness ofa crystal base of K(X)

#15

(Compatibility with Umin(x) for x=Pmin)

· K(2):irreducible 1) I:typical

i.e. (2+ PmIn/) =0 for all Be E

where min=I -t

1 Itfollows from the fact atq= 1 due to Kad

In particular,

x ->Pmin 1x:typical =-> (nm) ( i

s> ((x) =Umin(2)

I (nx)
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#16

· RePmsn (identifying w/ (x)

6 +
=0, +... +8m x +ld+:typical for >0.

Consider the following comm. diagram:

Tx +la+

k(x +18+) -> Vmin(2+e8+) Ex., Vmin(x) x Vmin(eat)
4 Xr

x+18+
2 x vest
I

Be Ol
Sx,

W 2

ii.
Y IX

> Umin(
2 horizontal:Umin-linear

W

vertical:Umin-linear

#17

Tx +la+

k(x +18+) -> Vmin(2+e8+)
E

SII Se Ol

W

Y X Umin(
Tx

each map sends crystal base to crystal base

->is sends 2(k(x) > Imin(x)

B(1(x)) > Bm(x) 0303

M
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#I0

Rik

& We have a combinatorial description ofcrystal embedding

Bmin(2) > P(E) xBmo(iY) xBoin(i
It 11

11

SSTmin(X) SSTrio)m SSToin) -m

T =(T (m, y <m) 1 x IS, T' Tom

7

-

x<m= /T*m, Y,m)
Sagan. Stanley's skew RSK.

pairofskew SST's in 3m, ..., yy,5m+1, . . . . m+n- 13
of shame inner shape

#19

= Crystal structure of B(K(x))

B(k(x) =P(E) xBmo(it) xBoin(i

x

=P(E) x BMo(Y) xBoin(it as Umio-crystal

=P(E) xBoolit)"Boi(it as Hom-cystal

=P(E) xBmo(iY) xBoin(i For Em. Em

So it suffices to consider B(K(0)) =P(E)
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#20

Example of B(K(0)) ar P(IT) m =

3 n
=4Ga-Sp

Isin convex order ( = ((y) -> P(5i)

Cij
=

0, 1

#21

e(a,12.) >0

H
~

I, 5
& =( =(cy)

3 6

1 A

2

& =(924,414,925,4,5....) is a sag. of tics.

(8) -> +

(9) ->-

&, D obtained by applying "signature mule"
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#22

2(65125) >0

6

Es 5 4
=( =(cy)

3 2

1

& =(9,5146,5:)3 a sag. of tics.

(8) -> +

(9) -> -

I5Dobtained by applying "signature mule"

#23

Example of embedding Emin(x) -B(x(x))

m
=3, n =4,x =(5,3,2,2) =

58, +382 +

283 +8x +85

it x

T =
- SSTs)5,3,2,2

3 (5, T,T > 3
=P(E) xBo(it) - Bosklit
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#24

T43 =

+1236
+33 =46

257

35

1123 17233"

+43 - 2
2 2532" =(T,3)*0

3

~ 3 2yr yv qV

tense product

Bmio(det")
*5

* Baiole
V

3 32s yV

#25

V

3 6

3"3"="2" 571
2V yryVqV 5

c) applying the inverse RSK.
V

3 63

3"3"="2" 5 Tal
insection recording

I tab tab.

2V yryVqV 5
2
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#26

V

3 63

34 zV 2" Tal 2
V

5, 82 - 85
2V yryVqV 5

2

V

3 63

3"za" Tal +V52 8, -55
zV yu qV

3"za" Tal 3"63 85 - 86.
zV yu qV

#27

V

3"2 I 34 74 83 - fi
zV yu qV

11123

za" S 223 zV 2" - I
/

zV yu qV 33 ayr yv

~
tense product

Bmio(det(*5
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#28

S I
/

7>3

582-858, -8585-86.85-8,}, 7 11 23 46

223 3

33

e P(E) xBo(Y) xBo(it

#29

Rak

x =(m= -m

/

Xx =nS+: typical V(x) =k(x)
Min

k

B (x) >B(k(x))
min

T =((T xm)*, T,m)" 3 (S, Hns+'4)

K is nothing but RSK (binary)

& morphism ofUmin-crystals.
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#1

4 The negative part of Umin

· Now, we can take a limit of

B(k(x)) =P(ET) x Bmo(x) xBoin(it

D P(8) x BMIola) xBoinld) (x=xa)
· We will

I describe the crystal structure of the limit (& cancomponents)
a construct a crystal base ofImin no the above crystal.

3 compatibility we crystal base ofK(X).

#2

· Recall

(im Bm1o(x) =BMo(2) (1: gem-dominant)
i >2

i < M ( ) m - 1: dominant integral

⑭
X,M

Bm1o(x) >BM1o(M)

Xux I >Xv
u (X:podof Is

:well-defined directed system of embedding ofcrystals

whose limitis iso. to crystal Bro(2) ofUmio.
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#3

def

· i <Ms > x= ME (2,ucPt)

b =(5.b + ,b)e B(k(x))) =P(Ei) xBoolnt)"Bos (it

b =Y)So,Xvx+, wx) for some

X =TEY =t isit. Soxw:Kain-maximali

Define

B(k(x)) -x.M, B(k(M))
b =(5,b + ,b.) 1 , Y(So,XUn+, wal

#4

· is
X.M

i injective (w/ limit P(Ei) xBmo(d) xBoin(2) as a set)

2 an embedding of Umin-crystals (i.e. for gentgen

66 99
3 locally an embedding of Umin-crystal i.e.

F
b =(br) P(ET) xBmio() xBoin12) (as a limit)

7
ic pt such that

b
X
m, bi S>bu, bi for all Mi
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#5

· The limit ofthe directed system (90x,m3. 3B(K(x)(3)
has a well-defined abstract Umin-crystal structure

P(8) x BMIola) xBoinld)

=P(y) x BMIola) xBoin) for Em. Em

=P(8) x BMIola) xBoinld) as a Umlo-crystal
Inence Umi)

=P(8) x BMIola) xBoinld) as a Hom-crystal

where the crystal operators for Umly, how commute.

#6

· Bmin(2): = P(I) xBMiola) xBoin) UmIn-cystal

·Bmin(x) is NOT connected in general.

· To describe a connected component ofBrin)2), reall

For A:dominant into t for gem, we have

Bm(x) xBmI = HBmK) x Tw+(b)
-

beBm(x)

I a crystal version of Verma Filtration V (x) & M(0)(
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#i

Pf.) (Kashiwara)

By =Bq(99):the alg. ofg-bosonsassoc. to gem

=(:fi i =1, . . .,m- 1 I possibly + Cartan part

I!

I simple Bq-module Va (up to h.w)

V =Malgem)=Hq?:g-derivation
Ei:multiplication

with a crystal base = (2m1d).Bmld)

#

2 M: Fin-dim Ug(gtm) -module

=

Bo-module structure on Mx V, where the action is

given by a Ug-comodule str. on By

:Bq >q Bq

e! x(q1q)k:2:1 +kie

Ii > Fie1 + kix Fi

& MxV, is a semisimpleBq-module = +V
&

54 OCAMI Reports Vol. 5 (2023)



#9

3 (2,B):crystal base of M as a Ug-module

(2 x2(d), B xB(x)):a crystal base ofM x V

= + (2(a),B(c))

E, Iact on BxB(1) following the tensor product mule

A By D - 3
-

-

Bm(x)&Bm(2) 3 1 Bm(x) x Tw+(b)
Bm()

4 x & b > 4xx tw+(b*)
maximal

ei(b) - (x(xi) 1

#10

Thin (Jang-K-Uruno 22)

~ Each can component = Bmx() xBoin (2)

m(n-1)

2Bmin(2) =Bmil2) xBoin(a)
+2

In particular, Bmin(*):connected () n = 1

Ruk

i.i ~Bm() xBoin (9): (ixm+1)
(1i =m)
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#11

47) P(E) =B(kmin(0)) = B(kmin(o)) x &

as Umi-crystals

3 =[(c) c =0 far: odd rootofgem3 (P(E)

-4
-

1, Mmx(n - 1) ([z)

3 =I1Bm(x) x Ba-i(xt): (92m.94-1) -bicrystal
f(x)m

via skew RSK.
e(x) <u

I 11 Bmo(x)+mx mxTBoin-xY)
e(X) -m

e(xt) sn

#12

Bmin(2)

=B(kmin(0)) x Bmo(d) x Bain (a)

=B(kmin(0)) x 9 x Bmold) x Bain (a)

=B(kmin(0)) x 11 Bro(x)
+mx

X Bmo(a)x Bain (a)
e(X) -m

e(xt) sn

+mx

E 11 B(kmin(0)) x Bmo(x) x Bold) x Boin (a)
e(X) -m

e(xt) sn
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#13

+mx

E 111 B(kmin(0)) x (Brold) x Twins) " Boin(a)
e(1) -m Bid)
e(xt) sn

E 111 (Build) x Boin (a) x Tw+Cb)
+mx

e(X) -m Brid)
e(xt) sn

= Build) x Ban(a)
+121

where 121 =2min-1

·a e I"Mmxcr-is(Re) 11 Bro(x)
mx

e(X) -m

e(xt) sn

#

#14

· Now, we want to construct

a crystal base (2(2),B()) of Umin such that

B(a) =Bmin(a) & itis compatible w/ (1(k(N)), B(K(x)

· One may take

2(2) =2(K(0)) · 2m1o/2). 2an(4)

where 2mo12):the crystal lattice of Umi = Uq(94m) at q
=0

Loin12): 1/ 'L VoinI2plgen) atp=a
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#15

· Ei i the associated crystal operatorson Umio, Hoin (itm)

·Im defined in the same way as in K(X)

E
· 2minK Umio* coin

U,UzUs < 1 U,U2 &Us

For u =u,UzUse 2min & i. define

-(In,ne) us (ex()

Eu =

2,4z(E,4s) (ism)

- Fr4,Uz4s (i =m)

#16

Thin ( Jang-K-Uruno22)

e e

(2(2),B(2)): a crystal base of Umin w.r.t. eif:

Rik

↑

I(K(x) on(x) < > an upper crystal lattice for Up(ge) atp
=a

-

koin >Von (X)

Loin19) X > Loi (x)

i does not preserve the crystal lattices.!
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#117

Recall 2:dominant integral for gen

I()-

How(x)
q=

d r
-

·2(a)#, 210w(x)9 =0
X A

Aa-dual
As-dual Adual As-dual
(...)

s ↳ (e)

212)s 24P(x) q =0

-
e

W D
P

W

r(2(a))" E

TY
-

24(x) q
=x

# Id

For It Pmin, we have the following correspondence:

2m1(2) ~ Imo(it) lower at9 = 0

2(a)*210w(xt)

r(1(a)) -14(i) uppet atg =
&

d -

↑ ↑
2

↳

Loin (2 & Lan(x)
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#19

· X (2):Ummx Vocalxt where & = (Umin.Wan)
&

=> Ix Umio Von(i) as Ik-space

· We have

- +

Umin/(x) > K(z)

· X(x) has a crystal base (2(X(x)), B(X(X))) where

2(X(x)) =2(k(0)) · 2m10(2)- Ion (2)

B(X(x)) =4(EI) x Bm10(2) - Bom(x

#20

· Consider

V
- +

↳min C /(x)- K(z)

" &Yumio*T

Then we have

T.V +

↳min /(x) - K(z)

2(8) s f(X(x)) >I(k(x))

B(x) < 1B(X(x)) >B(k(x))0303
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#21

Rek

I
=
a categorification ofUmi (Khovanov-Sussan 16)

A (pseudo) canonical basis ofUmin (Clark-Hill-Wang 16)
via quantum shuttle alg

3 Acanonical basis of Umin (Du, Gu 15)

via quantum Schwe superalg.
&uestions

I a categorical realization of Brilla)

2
I
a canonical basis ofUmin? (compatible w/ irr.Meph's

& its crystal
I

3 a categorification ofUmin?)of odd serve relation)

#22

Related works

1 q(n):queen his superaly

crystal base of an in polynomial Meph (m Sengeer duality
/ Grantcharov -Jung-Kang-Kashiwara-Kim 15)

labstract) Crystal B1-2) (Salisbury - Scrimshaw (2)

2 osp(m/2n):orthosymplectic

crystal base of an in. g-oscillator Meph (k15)

C S >integrable h.w. module ofclassical types)
super duality

crystal base of a parabolic Verma/Ug
(in progress w/ Jang & Umund
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Relations among the q-characters of simple modules over
quantum loop algebras of several Dynkin types

Hironori Oya

Tokyo Institute of Technology

Based on a joint work with
Ryo Fujita, David Hernandez, and Se-jin Oh

arXiv:2304.02562

Integrable Systems and Quantum Groups
–In Honor of Masato Okado’s 60th Birthday–

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 1 / 30

Plan

1 Introduction

2 Brief review of the monoidal categorification of cluster algebras

3 Main result: Substitution formulas

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 2 / 30
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Quantum loop algebra Uq(Lg)

Representation theory of the quantum loop algebra Uq(Lg)

g a fin. dim. simple Lie alg. / C,
– C = (cij)i,j∈I the Cartan matrix of g, type An,Bn, . . . ,G2

– D = diag(di)i∈I s.t. di ∈ Z>0, gcdi∈I(di) = 1 and DC is symmetric.

Uq(Lg) the Drinfeld–Jimbo quantum loop alg. / C. q ∈ C×, |qZ| =∞.

Cg := the category of fin. dim’l reps of Uq(Lg) of type 1
(i.e. the eigenvalues of the actions of {ki | i ∈ I} are of the form qm, m ∈ Z).

Cg is an abelian rigid ⊗-category, but non-semisimple and non-braided

Fix a map ε : I → {0, 1} (parity function) satisfying

εi ≡ εj +min{di, dj} mod 2 whenever cij < 0.

Î := {(i, p) ∈ I × Z | p ≡ εi mod 2}.
Cg ⊃ Cg,Z the abelian monodal subcategory “supported on” Î.

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 3 / 30

q-character

The q-character gives an injective alg. hom. [FR99].

χq : K(Cg,Z) ↪→ Z[Y ±1
i,qp | (i, p) ∈ Î] =: Yg, [V ] 7→ χq(V ).

The simple modules in Cg,Z is parametrized by dominant monomials in Yg:

ℓ-highest weight theory [CP91, CP95, CP]

Irr Cg,Z/ ∼ bij.←→ Mg := {Monomials in Yi,qp ’s, (i, p) ∈ Î},

∈ ∈

[L(m)](= [Lg(m)]) ↔ m

Here we have
χq(L(m)) = m+ lower terms.

e.g.
g = sl4, I = {1, 2, 3}

χq(L(Y1,q−5)) = Y1,q−5 + Y2,q−4Y −1
1,q−3 + Y3,q−3Y −1

2,q−2 + Y −1
3,q−1 .

g = so5, I = {1, 2}
χq(L(Y1,q−7)) = Y1,q−7 + Y2,q−6Y2,q−4Y −1

1,q−3 + Y2,q−6Y −1
2,q−2 + Y1,q−5Y −1

2,q−4Y
−1
2,q−2 + Y −1

1,q−1 .

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 4 / 30
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q-character

The q-character gives an injective alg. hom. [FR99].

χq : K(Cg,Z) ↪→ Z[Y ±1
i,qp | (i, p) ∈ Î] =: Yg, [V ] 7→ χq(V ).

The simple modules in Cg,Z is parametrized by dominant monomials in Yg:

ℓ-highest weight theory [CP91, CP95, CP]

Irr Cg,Z/ ∼ bij.←→ Mg := {Monomials in Yi,qp ’s, (i, p) ∈ Î},

∈ ∈
[L(m)](= [Lg(m)]) ↔ m

Here we have
χq(L(m)) = m+ lower terms.

Fundamental problem

For m ∈Mg, χq(L(m)) =??．

e.g.
g = sl4, I = {1, 2, 3}

χq(L(Y1,q−5)) = Y1,q−5 + Y2,q−4Y −1
1,q−3 + Y3,q−3Y −1

2,q−2 + Y −1
3,q−1 .

g = so5, I = {1, 2}
χq(L(Y1,q−7)) = Y1,q−7 + Y2,q−6Y2,q−4Y −1

1,q−3 + Y2,q−6Y −1
2,q−2 + Y1,q−5Y −1

2,q−4Y
−1
2,q−2 + Y −1

1,q−1 .

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 4 / 30

Our result (Recall from Fujita-san’s talk)

Theorem [FHOO22]

Let g1, g2 be simple Lie algebras / C such that the “unfoldings” of g1 and g2 are
the same. Then there exists an isomorphism of Z[t±1/2]-algebras

Ψg1,g2
: Kt(Cg1,Z)

∼−→ Kt(Cg2,Z)

satisfying

Ψg1,g2

(
{Lg1

t (m) | m ∈Mg1}
)
= {Lg2

t (m) | m ∈Mg2}.

Notation

Kt(Cgi,Z) the quantum Grothendieck ring of Cgi,Z in the sense of Hernandez
[H04].

Lgi
t (m) the (q, t)-character of Lgi(m).

Applications

Proof of several positivity properties for non-symmetric case.

Proof of the Kazhdan–Lusztig type conjecture (Hernandez’s conjecture) for
type Bn.

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 5 / 30
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Our result (Recall from Fujita-san’s talk)

Theorem [FHOO22]

Let g1, g2 be simple Lie algebras / C such that the “unfoldings” of g1 and g2 are
the same. Then there exists an isomorphism of Z[t±1/2]-algebras

Ψg1,g2
: Kt(Cg1,Z)

∼−→ Kt(Cg2,Z)

satisfying

Ψg1,g2

(
{Lg1

t (m) | m ∈Mg1}
)
= {Lg2

t (m) | m ∈Mg2}.

Remark
Our isomorphism Ψg1,g2

can be constructed according to the choice of Q-data
Q(i) = (g̃i, σi, ξ

(i)) of gi (i = 1, 2). Hence, precisely speaking, we should write
Ψg1,g2 as

Ψg1,g2
(Q(2),Q(2)).

The Q-datum is a generalization of height function ξ : I → Z for simply-laced case
[FO21].

Applications

Proof of several positivity properties for non-symmetric case.

Proof of the Kazhdan–Lusztig type conjecture (Hernandez’s conjecture) for
type Bn.
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satisfying
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(
{Lg1
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)
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Applications

Proof of several positivity properties for non-symmetric case.
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type Bn.
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Folding/Unfolding

The Folding/Unfolding correspondence is given as follows:

g g̃ σ

An An id

Dn Dn id

E6,7,8 E6,7,8 id

Bn A2n−1 ∨
Cn Dn+1 ∨
F4 E6 ∨
G2 D4 ∨̃

(A2n−1,∨)
n+ 1n+ 22n− 22n− 1

n− 1n− 2
· · ·

· · ·

21
n

Bn

1 2 n− 2 n− 1 n· · ·

(Dn+1,∨)
1 2 · · ·

n− 2 n− 1
n

n+ 1

Cn

1 2 · · ·
n− 2 n− 1 n

(E6,∨)
24

56

31

F4

1 2 3 4

(D4, ∨̃)

1

2
3

4

G2

1 2
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Example of the correspondence under Ψg1,g2

e.g. g1 = sl4, g2 = so5 (type A3/B2) :

Ψg1,g2(L
sl4
t (Y1,q0)) = Lso5

t (Y1,q0), Ψg1,g2(L
sl4
t (Y1,q−2)) = Lso5

t (Y2,q−5),

Ψg1,g2(L
sl4
t (Y1,q−4)) = Lso5

t (Y2,q−3), Ψg1,g2(L
sl4
t (Y2,q−1)) = Lso5

t (Y2,q−1),

Ψg1,g2
(Lsl4

t (Y2,q−3)) = Lso5
t (Y2,q−5Y2,q−3), Ψg1,g2

(Lsl4
t (Y3,q−2)) = Lso5

t (Y1,q−2).

This correspondence preserves neither dimension nor degree of `-highest weight.
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What to do next

Suppose that
Ψg1,g2

(Lg1
t (m)) = Lg2

t (m′).

Actually, we can calculate m′ from m explicitly (although we need the
case-by-case calculation for the explicit computation).
← This can be seen as the explicit correspondence between “highest terms”.

Question

Can we calculate “lower terms” of Lg2
t (m′) from those of Lg1

t (m)?

We will give an answer to this question by looking at

the (quantum) cluster algebra structure

on the quantum Grothendieck rings!
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Cluster algebra

Cluster algebra A(Γ, J) is defined associated with a quiver Γ = (Γ0,Γ1) without
loops and 2-cycles, and a subset J ⊂ Γ0 of its vertex set Γ0 [FZ02]1.
The input datum (Γ, J) has an information of the “seed” of the cluster algebra
A(Γ, J).

Let F := Q(zj | j ∈ Γ0). A pair (Υ,X = (xj)j∈Γ0
) is called a seed in F if

1 Υ = (Υ0,Υ1) is a quiver without loops and 2-cycles such that Υ0 = Γ0.

2 X = (xj)j∈Γ0
⊂ F is a Γ0-tuple of elements of F which are algebraically

independent and F = Q(xj | j ∈ Γ0).

Next, we explain the “mutation” of seeds, which is a procedure of producing
generators of A(Γ, J).

1Here we explain the cluster algebras of skew-symmetric type
Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 10 / 30

Mutation of seeds

Let (Υ,X ) be a seed in F and k ∈ Γ0.
The mutation

µk(Υ,X ) = (Υ′,X ′ = (x′
j)j∈Γ0)

of the seed (Υ,X ) in direction k is defined as follows:
Definition of Υ′

1:

(i) Add one arrow j → ` for each subquiver of the form j → k → ` in Υ1.

(ii) Reverse the arrows in Υ1 which are connected with the vertex k.

(iii) Remove all 2-cycles generated as a result of (i) and (ii).

Definition of x′
j :

x′
j =





∏

α∈Υ1;s(α)=k

xt(α) +
∏

α∈Υ1;t(α)=k

xs(α)

xk
if j = k,

xj if j 6= k.
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Cluster algebra

The cluster algebra A(Γ, J) is a Z-subalgebra of F generated by the set X̃ of
cluster variables defined as follows:
Denote by

(Γ,Z) mut∼ (Υ,X )
when (Υ,X ) is obtained from the initial seed (Γ,Z = (zj)j∈Γ0) of F by a finite
number of mutations in direction indexed by J(⊂ Γ0). Then

X̃ :=
⋃

(Υ,X )
mut∼ (Γ,Z)

X .

Remark

µk(µk(Υ,X )) = (Υ,X ).

e.g.

A(1→ 2, {1}) = 〈z1, z2,
1 + z2
z1
〉Z-alg.

(
' Z

[
z1,

1 + z2
z1

])
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Cluster algebra

The cluster algebra A(Γ, J) is a Z-subalgebra of F generated by the set X̃ of
cluster variables defined as follows:
Denote by

(Γ,Z) mut∼ (Υ,X )
when (Υ,X ) is obtained from the initial seed (Γ,Z = (zj)j∈Γ0

) of F by a finite
number of mutations in direction indexed by J(⊂ Γ0). Then

X̃ :=
⋃

(Υ,X )
mut∼ (Γ,Z)

X .

e.g.

A(1→ 2, {1}) = 〈z1, z2,
1 + z2
z1
〉Z-alg.

(
' Z

[
z1,

1 + z2
z1

])

Remark

X̃ is an infinite set in general, and A(Γ, J) may not be finitely generated.
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Comments on quantum cluster algebras

By definition, cluster algebras are commutative algebras. A quantum cluster
algebra is a non-commutative deformation of cluster algebras [BZ05].
For the definition of a quantum cluster algebra, we need an additional data

Λ = (λi,j)i,j∈Γ0
∈ ZΓ0×Γ0 ,

satisfying certain conditions, which encodes the non-commutativity of variables:

ZiZj = tλijZjZi. (λij = −λji, t: indeterminate)

⇝
T (Λ) a quantum torus over Z[t±1/2] in the variables Zt = (Zj)j∈Γ0

F(T (Λ)) the skew field of fractions of T (Λ)
The quantum cluster algebra At(Γ, J,Λ) is defined as a Z[t±1/2]-subalgebra of
F(T (Λ)) generated by the quantum cluster variables.

At(Γ, J,Λ) ⊂ T (Λ) (Laurent phenomenon)

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 13 / 30

Monoidal categorification

Monoidal categorification of cluster algebras [HL10]

An abelian monoidal category C is said to be a monoidal categorification of
A(Γ, J) if it satisfies the following:

∃ι : A(Γ, J) ∼−−−→
Z-alg.

K(C ) satisfying ι(M̃) ⊂ {[simple objects]}.

Here
M̃ :=

⋃

(Υ,X )
mut∼ (Γ,Z)

{Monomials in X} (cluster monomials).

Many subcategories of Cg are known to give examples:

Cℓ, ` ∈ Z>0 [Hernandez–Leclerc ’10 –, Nakajima ’11, Qin ’17,...]

CQ [Hernandez–Leclerc ’15 + Kang–Kashiwara–Kim–Oh ’18,...]

C≤ξ [Kashiwara–Kim–Oh–Park ’21]

⇝ It produces an algorithm for calculating q-characters of simple modules which
correspond to cluster monomials (“reachable simple modules”).
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Example of monoidal categorification

g = sl2

In Csl2,Z, there exists a (non-split) short exact sequence

0→ L(Yq−1Yq)→ L(Yq−1)⊗ L(Yq)→ L(1)→ 0.

In particular, we have

χq(L(Yq−1))χq(L(Yq)) = χq(L(Yq−1Yq)) + 1.

On the other hand, in A(1→ 2, {1}), we have

z′1z1 = z2 + 1

Here we write µ1(1→ 2, (z1, z2)) = (1← 2, (z′1, z2)).
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Example of monoidal categorification

If we write the Serre subcategory of Csl2,Z generated by L(Yq) and L(Yq−1)
(“supported” on {(1, 1), (1,−1)} ⊂ I × Z) as C1, then

∃ι : A(1→ 2, {1}) ∼−−−→
Z-alg.

K(C1)

∈ ∈

z1 7→ [L(Yq)]
z2 7→ [L(Yq−1Yq)]
z′1 7→ [L(Yq−1)]

Moreover,

L(Yq)
⊗a ⊗ L(Yq−1Yq)

⊗b, L(Yq−1)⊗a ⊗ L(Yq−1Yq)
⊗b (a, b ∈ Z≥0)

are simple modules.

The relation

χq(L(Yq−1))χq(L(Yq)) = χq(L(Yq−1Yq)) + 1.

is a special case of T -system, for Kirillov–Reshetikhin modules.
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T -system

For each (i, p) ∈ Î and k ∈ Z≥0, set

W
(i)
k,p := L(m

(i)
k,p), m

(i)
k,p :=

k∏

s=1

Yi,qp+2(s−1)di .

These simple modules are called Kirillov–Reshetikhin modules (or KR modules).

T -system [N03, H06]

For (i, p) ∈ Î, we have the following equality in K(Cg,Z):

[
W

(i)
k,p

] [
W

(i)
k,p+2di

]
=

[
W

(i)
k+1,p

] [
W

(i)
k−1,p+2di

]
+
[
S
(i)
k,a

]
,

where S
(i)
k,a is also an explicit simple tensor products of Kirillov–Reshetikhin

modules.

Remark

There exists a quantum analog of T -system (=T -system for (q, t)-characters of
KR-modules) [HL15, FHOO22, FHOO23+].
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The subcategory C≤ξ

Fix a Q-data Q = (g̃, σ, ξ) of g.

The essential datum of Q is the height function ξ : Ĩ → Z (Ĩ=index set for g̃).

Moreover, we have I
identify

Ĩ/〈σ〉 and π : Ĩ → I can. proj.

Set
Î≤ξ := {(π(ı), p) ∈ Î | ξı − p ∈ 2dπ(ı)Z≥0}.

Let C≤ξ be a monoidal abelian subcategory of Cg,Z “supported” on Î≤ξ.
Associated to C≤ξ, Hernandez–Leclerc [HL16] found the quiver Γ≤ξ which
“encodes” the T -system for KR-modules in C≤ξ, and proved that

There exists a Z-algebra isomorphism

A(Γ≤ξ, (Γ≤ξ)0)
∼−→ K(C≤ξ)

which sends the initial cluster variables to certain KR-modules.

Moreover,

Theorem [KKOP21+]

C≤ξ is a monoidal categorification of A(Γ≤ξ, (Γ≤ξ)0).
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Examples of Γ≤ξ

Type A5:

(i \ p) −24 −23 −22 −21 −20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1

1 · · · //
dd • //dd • //dd • //dd • //dd • //dd • //dd • //dd • //dd • //dd • //dd • //dd ?

2 · · · // • //dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz

?
zz

3 · · · //
dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz

?
zz

4 · · · // • //zz
dd • //zz

dd • //zz
dd • //zz

dd • //zz
dd • //zz

dd • //zz
dd • //zz

dd • //zz
dd • //zz

dd ?
zz

5 · · · //zz • //zz • //zz • //zz • //zz • //zz • //zz • //zz • //zz • //zz
?
zz

Type D5:

(i \ p) −23 −22 −21 −20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1

1 · · · //
dd • //dd • //dd • //dd • //dd • //dd • //dd • //dd • //dd • //dd • //dd ? dd

2 · · · // • //dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz

?

3 · · · //
dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz

? dd
zz

4 · · · // • //zz • //zz • //zz • //zz • //zz • //zz • //zz • //zz • //zz • //zz • //zz
?

5 · · · // • //�� �� • //�� �� • //�� �� • //�� �� • //�� �� • //�� �� • //�� �� • //�� �� • //�� �� • //�� ��
?
�� ��
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Examples of Γ≤ξ

Type B3:

(i \ p) −24 −23 −22 −21 −20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1
1 · · · //hh • //hh • //hh • //hh • //hh • //hh ?

2 · · · // • //ffvv • //ffvv • //ffvv • //ffvv • //ffvv ? vv

3 · · · / / • //ll • //rr • //ll • //rr • //ll • //rr • //ll • //rr • //ll • //rr ?

2 · · · //hh
xx • //hhxx • //hhxx • //hhxx • //hhxx ?

xx

1 · · · // • //vv • //vv • //vv • //vv ? vv

Type C4:

(i \ p) −24 −23 −22 −21 −20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1

1 · · · //
dd • //dd • //dd • //dd • //dd • //dd • //dd • //dd • //dd • //dd • //dd ? dd

2 · · · // • //dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz • //dd

zz • //dd
zz

? dd

3 · · · //gg
zz • //kkzz • //gg

zz • //kkzz • //gg
zz • //kkzz • //gg

zz • //kkzz • //gg
zz • //kkzz • //gg

zz • //zz
?

4 · · · // • //zz • //zz • //zz • //zz • //zz
?
zz

4 · · · // • //�� • //�� • //�� • //�� • //��
?
��

Type G2:

(i \ p) −24 −23 −22 −21 −20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1

1 · · · // • //dd • //dd • //dd ? dd

2 · · · //qq • //jj • //mm • //qq • //jj • //mm • //qq • //jj • //mm • //qq • // • // ?

1 · · · // • //zz • //zz • //zz
?
zz

1 · · · // • //�� • //�� • //��
?
��
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Plan

1 Introduction

2 Brief review of the monoidal categorification of cluster algebras

3 Main result: Substitution formulas
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Application of cluster structures

Easy observation

If two seeds (Υ,X ), (Υ′,X ′) in F satisfies

(Υ,X ) mut∼ (Υ′,X ′),

then there exists a Z-algebra isomorphism

A(Υ,X ) ' A(Υ′,X ′)

⊂ ⊂

M̃ ↔ M̃′.

A parallel statement holds for quantum cluster algebras.

⇝ This type of isomorphisms produces a non-trivial isomorphism in our situation!

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 22 / 30
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Main result

Theorem [FHOO23+]

Let

gi be a simple Lie algebra / C
Q(i) = (g̃i, σi, ξ

(i)) be a Q-datum of gi

for i = 1, 2. Assume that g̃1 = g̃2. Then

(1) Kt(C≤ξ(i)) ' At(Γ≤ξ(i) , (Γ≤ξ(i))0, ∃Λ≤ξ(i)) which specializes to HL’s isom.
at t = 1,

(2)

(Γ≤ξ(1) ,Λ≤ξ(1))
mut∼ (Γ≤ξ(2) ,Λ≤ξ(2))

(3) The following isomorphism induced from (1) & (2)

K(C≤ξ(1)) ' At(Γ≤ξ(1) , (Γ≤ξ(1))0,Λ≤ξ(1))

' At(Γ≤ξ(2) , (Γ≤ξ(2))0,Λ≤ξ(2)) ' K(C≤ξ(2))

coincides with the Ψg1,g2
|K(C≤ξ(1)

).
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Substitution formulas

Remark
The mutation sequence required for

(Γ≤ξ(1) ,Λ≤ξ(1))
mut∼ (Γ≤ξ(2) ,Λ≤ξ(2))

is of infinite length. However, it is well-defined since it is “locally finite”.

Moreover, by investigating the mutation sequence above, we can obtain the
following;

Theorem (Substitution formulas [FHOO23+])

With the assumption above, ∃ an explicit birational transformation between the
variables Yi,qp , which makes the (q, t)-characters of simple modules in Cg1,Z into
those in Cg2,Z.

Hironori Oya (Tokyo Institute of Technology) Integrable Systems and Quantum Groups Based on arXiv:2304.02562 24 / 30

Integrable Systems and Quantum Groups 75



Sketch of the proof

The essential part of the construction of substitution formulas can be explained by
the following commutative diagram:

F(Y ′
t,≤ξ′)

Substitution formula

++
F(T (Λ≤ξ′))

∼oo ∼ // F(T (Λ≤ξ))
∼ // F(Yt,≤ξ)

Y ′
t,≤ξ′
?�

OO

T (Λ≤ξ′)∼
monom. transf.oo

?�

OO

T (Λ≤ξ) ∼
monom. transf. //

?�

OO

Yt,≤ξ

?�

OO

Kt(C ′
≤ξ′)≤ξ′
?�

OO

Kt(C ′
≤ξ′)

(·)≤ξ′
gg

∼oo

Ψ|Kt(C′
≤ξ′ )

∼

66
A′

t
∼oo ∼ //

?�

OO

At
∼ //?�

OO

Kt(C≤ξ)

(·)≤ξ

77

∼ // Kt(C≤ξ)≤ξ

?�

OO

Kt(C ′
≤D′−1ξ′)
?�

OO

Ψ|Kt(C′
≤D′−1ξ′

)

33
Kt(C ′

≤D′−1ξ′)
id ?�

OO

Kt(C≤D−1ξ)
?�

OO

id
Kt(C≤D−1ξ)

?�

OO
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Example of Substitution formulas

Substitution formula from B
(1)
2 to A

(1)
3 (t = 1):

Yi,p 7→





Y1,−3−8mY1,−1−8m if (i, p) = (1,−3− 12m),

Y1,−5−8m if (i, p) = (1,−7− 12m),

Y1,−7−8m if (i, p) = (1,−11− 12m),

Y2,−8m if (i, p) = (2,−12m),

Y2,−2−8mY −1
1,−1−8m + Y1,−3−8m if (i, p) = (2,−2− 12m),

1

Y −1
1,−1−8m + Y −1

2,−2−8mY1,−3−8m

if (i, p) = (2,−4− 12m),

Y2,−4−8m if (i, p) = (2,−6− 12m),

Y3,−7−8m + Y2,−6−8mY −1
3,−5−8m if (i, p) = (2,−8− 12m),

1

Y −1
2,−6−8mY3,−7−8m + Y −1

3,−5−8m

if (i, p) = (2,−10− 12m),

Y3,−1−8m if (i, p) = (1,−1− 12m),

Y3,−3−8m if (i, p) = (1,−5− 12m),

Y3,−7−8mY3,−5−8m if (i, p) = (1,−9− 12m).

Here Yi,p := Yi,qp .
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Example of Substitution formulas

Applying the formula above to

χq(L
so5(Y1,−7)) = Y1,−7 + Y2,−6Y2,−4Y

−1
1,−3 + Y2,−6Y

−1
2,−2 + Y1,−5Y

−1
2,−4Y

−1
2,−2 + Y −1

1,−1,

we obtain

Y1,−5 +
Y2,−4

(Y −1
1,−1 + Y −1

2,−2Y1,−3)Y1,−3Y1,−1

+
Y2,−4

Y2,−2Y
−1
1,−1 + Y1,−3

+
Y3,−3(Y

−1
1,−1 + Y −1

2,−2Y1,−3)

Y2,−2Y
−1
1,−1 + Y1,−3

+ Y −1
3,−1

= Y1,−5 + Y2,−4

Y −1
1,−3Y

−1
1,−1 + Y −1

2,−2

Y −1
1,−1 + Y −1

2,−2Y1,−3

+ Y3,−3Y
−1
2,−2 + Y −1

3,−1

= Y1,−5 + Y2,−4Y
−1
1,−3 + Y3,−3Y

−1
2,−2 + Y −1

3,−1 = χq(L
sl4(Y1,−5)).
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Further direction

Relation with integrable systems?

– q-characters ≈ transfer matrices (Frenkel–Reshetikhin)
– We have a family of simple modules in Cg1 whose q-characters give a solution

of T -system of type g2.
(∼ Fermionic type formula?)

– Extend this story to the category O for quantum affine Borel algebra?

Categorical/conceptual understanding of substitution formulas?

Thank you for your attention & Happy Birthday, Okado-sensei!
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Lecture 1: Crystals for stable Grothendieck polynomials

Anne Schilling, University of California at Davis
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Osaka, March 5, 2023
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This is based joint work with
Jennifer Morse (2016) & Jennifer Morse, Jianping Pan, Wencin Poh (2020)
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Crystal graphs
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The generating function
∑

vertex b
xweight(b)

is the character of the
crystal.
The character of each
connected component is a
Schur function

sλ(x) =
∑

T∈SSYT(λ)
xweight(T )

where λ is the weight of
the highest element.
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Crystal operators

Action of crystal operators ei , fi on words/tableaux:
1 Consider letters i and i + 1 in row reading word of the tableau
2 Successively “bracket” pairs of the form (i + 1, i)
3 Left with word of the form i r (i + 1)s

ei (i r (i + 1)s) =
{

i r+1(i + 1)s−1 if s > 0
0 else

fi (i r (i + 1)s) =
{

i r−1(i + 1)s+1 if r > 0
0 else

Motivation Crystal for Stanley symmetric functions Crystal for Grothendieck polynomials Properties and results
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Stable Schubert polynomials Fw

restriction: S1m×w −→ Stanley symmetric functions Fw for w ∈ Sn

for 321-avoiding w ,

Fw = sν/µ =
∑

λ

cνλµ sλ

symmetric and Schur positive (Stanley 1984, Edelman, Greene 1987)

Fw =
∑

λ

awλ sλ

coefficient of x1x2 · · · xr counts reduced words of w
Sn = 〈s1, . . . , sn−1〉 sisj = sjsi sisi+1si = si+1sisi+1 s2

i = id

(3, 2, 1, 4) = s1s2s1 = s2s1s2 = s3s3s1s2s1

Integrable Systems and Quantum Groups 83
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Stable Schubert polynomials

Fw =
∑

v r ···v1=w
x `(v

1)
1 · · · x `(v r )

r

Decreasing factorization of w
1 w is the product of permutations v r · · · v1

2 each v i has a strictly decreasing reduced word
3 `(w) = `(v r ) + · · ·+ `(v1)

w = (2, 1, 4, 3) = s1s3 = s3s1:
(s1)(s3) −→ x1x2
(s3)(s1) −→ x1x2
()(s3s1) −→ x2

1
(s3s1)() −→ x2

2

F(2,1,4,3) = 2 x1x2 + x2
1 + x2

2

Motivation Crystal for Stanley symmetric functions Crystal for Grothendieck polynomials Properties and results

Crystal operators on factorizations – residue map
Label cells diagonally

3
1 2 2 3

1 1 2 3 3 3

pairing−→
31

13 24 25 36
15 16 27 38 39 310

e2−→
31

13 24 25 36
15 16 27 28 39 310

(10 9 8 6 1)︸ ︷︷ ︸
label of 3’s

(7 5 4)︸ ︷︷ ︸
label of 2’s

pairing−→ (10 9 8 6 1)︸ ︷︷ ︸
label of 3’s

(7 5 4)︸ ︷︷ ︸
label of 2’s

e2−→ (10 9 6 1)︸ ︷︷ ︸
label of 3’s

(8 7 5 4)︸ ︷︷ ︸
label of 2’s

operator ei

from big to small:
pair x ∈ 3’s with smallest y ∈ 2’s that is bigger than x
delete smallest unpaired z ∈ 3’s and add z − t to 2’s

(9 8 6 5 4 1)(9 6 5 21)→ (9 8 5 4 1)(9 6 5 4 21)

84 OCAMI Reports Vol. 5 (2023)



Motivation Crystal for Stanley symmetric functions Crystal for Grothendieck polynomials Properties and results

Crystal Theorem

Definition
Fix w ∈ Sn.
Graph B(w)

1 vertices are decreasing factorizations of w
2 edges are imposed and colored by fi , ei
3 highest weights are vertices with no unpaired entries

Theorem (with Morse; 2016)
B(w) is a crystal graph of type A`

Proof

Checking Stembridge local axioms

Motivation Crystal for Stanley symmetric functions Crystal for Grothendieck polynomials Properties and results

Examples

(1)()(3)()(3)(1)

(31)()()

()()(31)

(1)(3)()()(31)()

()(1)(3)

(3)(1)()

(3)()(1)

2

21

1

1

2

12

()()(21)

()(21)()

()(2)(1)

(2)(1)()

(2)()(1)

(21)()()

2

1

1 2

12
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Schur expansion

Fix w ∈ Sn

Theorem (with Morse; 2016)

Fw =
∑

λ

awλ sλ

awλ counts highest weights v r · · · v1 of B(w) with (`(v1), . . . , `(v r )) = λ

In S5: ()(42) (2)(4)

(42)()

(4)(2)

1

1

=⇒ Fs2s4 = s2 + s11

Motivation Crystal for Stanley symmetric functions Crystal for Grothendieck polynomials Properties and results

Edelman-Greene insertion

Theorem (with Morse; 2016)
For any permutation w ∈ Sn, the crystal isomorphism

B(w) ∼=
⊕

λ

B(λ)⊕awλ

is explicitly given by the Edelman-Greene insertion ϕQ
EG(v ` · · · v1) = Q:

ϕQ
EG ◦ ei = ei ◦ ϕQ

EG
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Motivation: Schubert Calculus

Polynomial Representatives for Schubert Cells
Grassmannian Gm,n Flag Varieties Fln

Cohomology sλ Sw → Fw
K -theory Gλ Gw

Grassmannian Grothendieck polynomials: Gλ Lascoux, Schützenberger 1982
Stable Grothendieck polynomials: Gw Fomin, Kirillov 1994

Combinatorial Approach?
Combining:

Crystal structure on decreasing factorizations for Fw
(Morse, S. 2016)
Crystal structure for Gλ on set-valued tableaux
(Monical & Pechenik & Scrimshaw 2018)

Motivation Crystal for Stanley symmetric functions Crystal for Grothendieck polynomials Properties and results

0-Hecke Monoid

Definition
0-Hecke monoid H0(n):
monoid of all finite words in [n] := {1, 2, . . . , n} such that

pp ≡ p, pqp ≡ qpq for all p, q ∈ [n]
pq ≡ qp if |p − q| > 1

Examples
2112 ≡ 212 ≡ 121
2121 ≡ 1211 ≡ 121 ≡ 212
31312 ≡ 3132 ≡ 312 ≡ 132
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Decreasing factorizations in H0(n)

Definition
A decreasing factorization of w ∈ H0(n) into m factors is a product of
decreasing factors

h = hm . . . h2h1

such that h ≡ w in H0(n).

Hm
w = set of decreasing factorizations of w in H0(n) with m factors

Example
Decreasing factorizations for 132 ∈ H0(3) of length 5 with 3 factors:

(31)(31)(2) (31)(32)(2) (31)(1)(32)
(31)(3)(32) (1)(31)(32) (3)(31)(32)

Motivation Crystal for Stanley symmetric functions Crystal for Grothendieck polynomials Properties and results

Stable Grothendieck polynomials for w

Definition
Stable Grothendieck polynomial (or K -Stanley symmetric function):

Gw (x, β) =
∑

hm...h2h1∈Hmw

β`(h
1)+···+`(hm)−`(w)x `(h

1)
1 . . . x `(hm)

m

where `(w) is the length of any reduced word of w .

Example
w = 132 ∈ H0(3)
Reduced Hecke words 132, 312
Decreasing factorizations for constant term:
(31)(2), (1)(32) (3)(1)(2), (1)(3)(2)

β0 : (x2
1 x2 + x2

1 x3 + x2
2 x3 + x1x2

2 + x1x2
3 + x2x2

3 ) + 2x1x2x3 = s21
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Schur positivity

Schur positivity (Fomin, Greene 1998)

Gw (x, β) =
∑

λ

β|λ|−`(w)gλw sλ(x)

gλw = |{T ∈ SSYTn(λ′)| column reading of T ≡w}|

Example

G132(x, β) = s21 + β(2s211 + s22) + β2(3s2111 + 2s221) + · · ·

Motivation Crystal for Stanley symmetric functions Crystal for Grothendieck polynomials Properties and results
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321-avoiding Hecke words (braid-free)

Definition
w ∈ H0(n) is 321-avoiding if none of the reduced expressions for w
contain a consecutive subword of the form i i + 1 i for any i ∈ [n − 1].

Examples
1321 ≡ 3121 ≡ 3212 is not 321-avoiding
22132 ≡ 2132 ≡ 2312 is 321-avoiding

Definition
Hm,? = set of decreasing factorizations into m factors for 321-avoiding w

Example
( )(1)(21) ∈ H3, /∈ H3,?

(31)(2) ∈ H2,?

(2)(21)(32) ∈ H3,?
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?-Crystal on Hm,? (Morse, Pan, Poh, S.)

Bracketing rule on hm . . . hi+1 hi . . . h1

1 Start with the largest letter b in hi+1, pair it with the smallest a > b
in hi . If there is no such a, then b is unpaired.

2 Proceed in decreasing order in hi+1, ignore previously paired letters.

Crystal operator f ?i , x : largest unpaired letter in hi

If x + 1 ∈ hi ∩ hi+1, then remove x + 1 from hi , add x to hi+1.
Otherwise, remove x from hi and add x to hi+1.

Example

(1)(32) bracket−→ (1)(32) f ?1−→ (31)(2)

(7532)(621) bracket−→ (7532)(621) f ?1−→ (75321)(61)
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Vertices and edges

w = 132, β1

1 (3, 1)(3, 2)( )
2 (3, 1)(1)(2)
3 (3, 1)(2)(2)
4 (3, 1)(3)(2)
5 (1)(3, 1)(2)
6 (1)(3, 2)(2)
7 (3)(3, 1)(2)
8 (3, 1)( )(3, 2)
9 (1)(1)(3, 2)
10 (1)(3)(3, 2)
11 (3)(1)(3, 2)
12 ( )(3, 1)(3, 2)

G132(x, β) = s21+β(2s211 + s22)+β2(3s2111+2s221)+· · ·

(3, 1) (3, 2) ( )

(3, 1) (1) (2)

(1) (3) (3, 2)

(1) (3, 2) (2)

(3, 1) (2) (2)

(3, 1) (3) (2)

(3, 1) ( ) (3, 2)

( ) (3, 1) (3, 2)

(3) (1) (3, 2) (1) (3, 1) (2)

(1) (1) (3, 2)

(3) (3, 1) (2)

1

1

1

2

2

1

2

2

2 1

Motivation Crystal for Stanley symmetric functions Crystal for Grothendieck polynomials Properties and results
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Outline

1 Motivation

2 Crystal for Stanley symmetric functions

3 Crystal for Grothendieck polynomials

4 Properties and results

Motivation Crystal for Stanley symmetric functions Crystal for Grothendieck polynomials Properties and results

Grothendieck polynomials for skew shapes

Gν/λ(x;β) =
∑

T∈SVT(ν/λ)
βex(T )xwt(T ) (Buch 2002)

SVT(ν/λ) = set of semistandard set-valued tableaux of shape ν/λ
Excess in T is ex(T )

Semistandard set-valued tableaux SVT(ν/λ)
Fill boxes of skew shape ν/λ with nonempty sets. Semistandardness:

C
A B

max(A) 6 min(B), max(A) < min(C)

Example (Which one is a valid filling?)

X 34 45
12 25

34 35
12 456

2 35
14 56
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Crystal structure on SVT (Monical, Pechenik, Scrimshaw)

Signature rule
Assign − to every column of T containing an i but not an i + 1.
Assign + to every column of T containing an i + 1 but not an i .
Successively pair each + that is adjacent to a −.

Crystal operator fi
changes the rightmost unpaired i − to i + 1, except
if its right neighbor contains both i , i + 1, then move the i over and
turn it into i + 1

Example
+ − −

34 45
12 25

f2−→ 34 45
12 35

− +

34 45
12 25

f4−→ 345 5
12 25

Motivation Crystal for Stanley symmetric functions Crystal for Grothendieck polynomials Properties and results

Residue map as a crystal isomorphism

Theorem (Morse, Pan, Poh, S. 2020)

The crystal on skew semistandard set-valued
tableaux and the crystal on decreasing factor-
izations Hm,? intertwine under the residue map.
That is, the following diagram commutes:

SVTm(λ/µ) Hm,?

SVTm(λ/µ) Hm,?.

fk

res

f ?k
res

Example

31

12 1233
(31)(3)(32)

31

122 233
(31)(32)(2)

res

res

f1 f ?1
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?-Insertion

Insert x into row R of a transpose of a semistandard tableau
1 Try to append x to the right of R (terminate and record)
2 x /∈ R, bump the minimal z > x (proceed to the next row)
3 x ∈ R, proceed to next row with y minimal such that [y , x ] ⊆ R

Example

h = (42)(42)(31) =
[
3 3 2 2 1 1
4 2 4 2 3 1

]

1
→

1 3
→ 3

1 2
→ 3

1 2 4
→ 3

1
1 2 4

→ 3
1 4
1 2 4

1
→

1 1
→ 2

1 1
→ 2

1 1 2
→ 3

2
1 1 2

→ 3
2 3
1 1 2

Motivation Crystal for Stanley symmetric functions Crystal for Grothendieck polynomials Properties and results

Association with ?-crystal

Theorem (Morse, Pan, Poh, S. 2020)

The following diagram commutes:
Hm,? SSYTm

Hm,? SSYTm

Q?

f ?i fi
Q?

Example

3
1 4
1 2 4

, 3
2 3
1 1 2

(42)(42)(31)

3
1 4
1 2 4

, 3
2 3
1 2 2

(42)(421)(3)

?

?

f1f ?1

Integrable Systems and Quantum Groups 95



Motivation Crystal for Stanley symmetric functions Crystal for Grothendieck polynomials Properties and results

Uncrowding SVT

Uncrowding operator Lenart 2000; Buch 2002; Bandlow, Morse 2012;
Patrias 2016; Reiner, Tenner, Yong 2018

Identify the topmost row in T containing a multicell.
Let x be the largest letter in that row which lies in a multicell.
Delete x and perform RSK algorithm into the rows above. Repeat.
Result is a single-valued skew tableau.

Example

34 45
12 25

→
5

34 4
12 25

→

5
4
3 4

12 25
→

5
4
3 4 5

12 2
→

5
4
3
2 4 5

1 2

Motivation Crystal for Stanley symmetric functions Crystal for Grothendieck polynomials Properties and results

Connection to uncrowding map

Theorem (Morse, Pan, Poh, S. 2020)
Let T ∈ SVTm(λ), (P̃, Q̃) = uncrowd(T ), and (P,Q) = ? ◦ res(T ).
Then Q = P̃.

Example

31

12 1233
(31)(3)(32)

3
2 3
1 1

2
2 3
1 3

, 3
2 3
1 1

resuncrowd ?
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Hecke insertion (Buch 2008, Patrias, Pylyavskyy 2016)

Insert x to row R of an increasing tableau
Try to append x to the right of R (record and terminate)
Try to bump the smallest letter that is bigger (proceed to the next
row)

Hm ←→ (P,Q)

Example

h = (2)(31)( )(32) =
[
4 3 3 1 1
2 3 1 3 2

]
.

2
→

2 3
→ 2

1 3
→ 2

1 3
→ 2 3

1 2
= P,

1
→

1 1
→ 3

1 1
→ 3

1 13
→ 3 4

1 13
= Q.

Motivation Crystal for Stanley symmetric functions Crystal for Grothendieck polynomials Properties and results

Hecke insertion and the residue map

Theorem (Morse, Pan, Poh, S. 2020)
Let T ∈ SVT(λ) and [k,h]t = res(T ). Apply Hecke row insertion from the
right on [k,h]t to obtain the pair of tableaux (P,Q). Then Q = T.

Example

T = 21 42
12 233

res−→ (2)(3)(31)(2) =
[
4 3 2 2 1
2 3 3 1 2

]

2
→ 2

1
→ 2

1 3
→ 2

1 3
→ 2 3

1 2
= P.

1
→ 2

1
→ 2

1 2
→ 2

1 23
→ 2 4

1 23
= Q.
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Future Work

Crystal structure for the non-321 avoiding case (beyond skew shapes)
Demazure crystal structure to compute the intersection number?

Motivation Crystal for Stanley symmetric functions Crystal for Grothendieck polynomials Properties and results

Thank you !
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rence:Integrable systems &quantumgramps

Crystal bases in statistical mechanics-
representation theory and combinatories

eure1:Crystal bases
Applications to symmetric fats

die2: Virtual crystals
Promotion

Cyclic sieving phenomenon
Lecture 3 ⑧ &

- Diagram algobras, insertion algorithms,
plethyem

are2 Anne Schilling, UC Davis
· Virtual crystals
· Promotion
· Cyclic sieving phenomenon
based on work with

·Okado, Shimozono (-2003)
· Fourier, Shimozono (-2007)
· Pappe, Pfancier, Simone (2022)

arXiv: 2212, 13588
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Ideation
· Invariant subspaces In (Vo ....k)
· dim.(In (V,o...0V)

-> #highest weight elements ofweight o
in B,0... 0Bi -:dimur (B,0...0 Br)

· Symmetric group Sir act on V,...V
by permuting tensor positions

· Action of long cycle on In (40.... Unl
corresponds to promotion on Fur (B, 0 ...Br)Westburn2016

· In (B,0....Br), promotion and

g-deformation isq
E(b)

gives cyclic sievingtheBul
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Wr(10N)type A,
Fn(BON) =highestat elements inweig

BON of weight zero
E 1s Examp
N=4 202010 1 2010201

- -x Dyck
paths
of length N

urBN)type Cr
B
A its .... Isis ... Esfit's it

sample oscillating tableaux
⑰zy:ots4,5,4
In (B;"):Setetgelit I 4, 5, 5,55,4⑮81i ei 4,5,1,5,

⑰let lit 4, 55, 0, $,4
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i)type Br
B
spir

↑Iss type Ba
sample

⑧

8

itix
Peckpata

AX
=

=8=0xYx

itualcrystals
Embedding of algebras X&y
-

lypical example 8 - 10

ano.....- a Cr
123 8 - 1 1 D whin·a-- #

y
III You Are diagrams
8-8.. .

0 +1
20- 120 -22-3

6(i) =Ei,25 - i) (sicr Wi =1 Isi<

6(r) =[r] 50 =2
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Embedding of root and weight lattice:
wit is versiti
2? Unfo
Ycrystal of typewith crystaloperatecrystal-

Virtual crystal ei =Tr Viej
operators jeGij

fi =ibis j Ui

&efinition A virtual crystal VIIis a subsct s.t.
(V)Iis a crystal associated to representation
(v) j(b) =dj) (b) Vj.j'e6(i)

Y;(3) =yj)(b) aligned
Both are multiples of Ji
Define (i(b) =jj(6) Uber

ic1

Y:(x) =jy,(b) je6(i)
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ISS Vu[e] >[r3A isclosed under ei, fi
and :(b) =max(k(ei4(b) +()

4:(b) =max(k/fiR(b) + 13
Example
I =B,*By type As

f =YI
Bis lifts ()cit'sli)type 2

Iz =I
SV issetyetst

Herem VII, WSWvirtual crystals
=>VOW S YOwvirtual crystal
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is
ittype Br
B3 I it

i

↓it 1
13 fi changes i -- i
I i "

62 to change
4o -o

-
. -

1y*I
I

I I
34 /
I

I2
I

Is
E

Boiltype Bvitalcrystal... ->o Be
1 ④a 2.1

p

oneV =Bs oftype Cr II
·
---

.... Cr⑧

12
o-i

Vi2 2 2 21
1

V =component of0yo...ciy eV
-Erovo...er,,If y
under the order 12 ... (r<< ..-(2<T
(i) =(i) =i

fi =Fi,e:= (sicr
fr =Fr,er=er
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is
ittype Br
pa 3by B "

321 -B3 type C3
↓3
52/ fi =I
be ~2

I
-

>231 fa =fz
I

I
I I ↳3-x3

T32 13 =Es
34 / 25/

z 312
+52

I
↓22
T233 ↓ 3
-

T23

promotion

Crystal commuter (Henriques, Kamnitzer 2006)
G: BoB -BnBee
b0c(y(y()0y(b))

Lusztiginvolution
y:Bx

=Bx

y maps highest weight
to lowest weight

maps fi to eis
with wo(ai)=-xi)

-/
long element
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Definition
C crystal, see or highest weight element
Then

pr(z) =Gcon,c(u)
sample

⑦4
2211 E Bis type A,-

B⑧3
i Bis

y(221) =121
=pr(221) =2

z(1) =2 Bis B3

powdonand rotation
cd:Inr(tB8n)-> chord diagrams

ample pr pri
221121

↳

6il )
212121 rot 222(1)

~221211 2122112 /
I I ⑧ ·6

jet -20 6
2 *

I -3
⑧

is - I
⑧ ⑳g - ⑳

4 -
& 6 2 ⑧ ·6

· o/s -!! -4 SE 3 -ssot 4

·

.
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-
colopt =Noto cal

An, Gn Pfanneer,Rubey, Westbcry 2020adjoint rector Peteoson, Pylyarobyy,RLoad 2009EVector LPatrics 2019

Isuperbog web's1996
Bu Pappe, Pfanncio, S., Simone 2022

spin, recor

eof construction

M:Inr(BPM) -> chord diagrams
constructed in two ways:
· fillings of promotion - evacuation diagrams

Lenard 2008 -> pr and not intertwine

· Fomin growth diagrams Femin 1986

Krattenthaler Zoob
-injectivity

using
virtual crystals
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Sample: ee;;j;type Bu

-

&

Iampla
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Geicsieving phenomenon
introduced by Reiner, Stanton, White Look
as generalization of gil phenomenon by
Stembridge.
Def Ifinite set

cyclicgroupacting
e

f(g) cz[q]
Then (X,C,1) exhibits the cyclicsieving phenomenainif 1 x29 =f(34)

filed pt set under ad
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Cyclic sieving phenomenon for
tableaux

· ocillatingof Dyck patsare
using the promotion action.

Polynomial f(9) requires the energy function.
Local energy:

B affine crystal
H:BoB -Z

H(ei(6,0b2)) =H(b,0b) +(+1
=0

do(b.) ;Yo(b)
- I i=0

I -(b) - Yo(b)
o else

sample
(1)C,type Cr order

1 23 ...5 < rc ...
(1)

H(aob) =0a ji E ,s

it
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mple (i)

Bs type Br Mof-cigns
in a

(1) Er t

Ba

8j +(j) (m
-

orgyfunction
E: BON - Z

N- 1

E(b,0...0br) =iiA(bigbix)
E

-> analogue of major index

pagmial
E(b)
ifr,w(q) =g*
jes02m

9

w+(b) =0

ei(b) =0 isr
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isn [PPSS2022]

4set of highest weight elements ofweight
Zero in1902, B minuscule

Can cyclicgroup of side
zw given by action

of promotion on B02n

->(X,Can, fur(g)) exhibits cyclebeenen
Fontains, Kamnitzer 2014
Fourier, Littelmann 2007

Fourier, S., Shimozone 2007

Westbury 2016

Listere (see also Hopkins 2020)
In type Br (X, Cen,gniw(q)) exhibits the
cyclic sieving phenomenon with

gn,w(q) =I
Sw,

isisjam [itj]q

[m]g =1 +q +q2+ ..- +gm
-

q- deformation of A of t-fans of Dych
paths
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mple

+3,z(g) =q+99+298+q4+3q6+q+2q4+q+qt)

95,2(q) =919! +9i+298 +q4 +2q6 +q +2q4+q+q2

=>93,2(g) =20,219) mod196-1)

Thank

you!
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RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

Lecture 3: Diagram algebras, insertion algorithms, and
plethysm

Anne Schilling

Department of Mathematics, UC Davis

based on joint work with Rosa Orellana (Dartmouth), Franco Saliola (UQAM),
Mike Zabrocki (York), Algebraic Combinatorics (2022)
OSSZ, Laura Colmenarejo (NCSU) arXiv:2208.07258

COSSZ J. Algebra (2020)

Integrable systems and quantum groups
Osaka, Japan
March 8, 2023

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

Goal

Exploration of variants of RSK
I Insertion of multisets instead of integers
I Enumerative manifestations of double centralizer theorem:

V =
⊕

λ

Vλ =
⊕

λ

Uλ ⊗Wλ operators A,B acting

A only acting on Uλ, B only acting on Wλ

Applications to partition algebras
I Insertion

partition diagrams −→ (standard tableau, multiset-valued tableau)
I Well behaved with respect to subalgebras
I dimensions of irreducibles = number of tableaux

Uniform block permutation algebra → plethysm
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Outline

1 RSK algorithm and representation theory (review)

2 Application: Diagram algebras

3 Uniform block permutation algebra

4 The plethysm problem

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

The Robinson–Schensted–Knuth correspondence

Robinson 1938: permutations in Sn
−→ ⋃

λ`n SYT(λ)× SYT(λ)

Schensted 1961: words of length n in [k] = {1, 2, . . . , k}
−→ ⋃

λ`n SSYT[k](λ)× SYT(λ)

Knuth 1970: generalized permutations over [n] and [k] of length `
−→ ⋃

λ`` SSYT[k](λ)× SSYT[n](λ)
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Generalized permutations

A,B ordered alphabets (i.e. A = [n], B = [k])

Definition

A generalized permutation is a two-line array w =
( a1 a2 ··· a`
b1 b2 ··· b`

)
such that

a1, . . . , a` ∈ A, b1, . . . , b` ∈ B

ai 6A ai+1 for 1 6 i 6 `− 1

bi 6B bi+1 whenever ai = ai+1

Example

Generalized permutation from [6] to [5]:

(
1 1 1 2 2 3 3 3 3 4 6 6 6
1 5 5 2 3 1 3 5 5 1 1 2 3

)

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

Row insertion

6
5 7
4 5 6
2 3 4 4
1 1 2 2 3 5 ←− 2

=

6 7
5 5
4 4 6
2 3 3 4
1 1 2 2 2 5
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RSK correspondence

generalized permutation w =
( a1 a2 ··· a`
b1 b2 ··· b`

)

Row insert b1, b2, . . . , b` one by one
Record new box when inserting bi by ai

Theorem (Knuth 1970 )

∃ bijection

generalized permutation from A to B 7→ (P,Q)

shape(P) = shape(Q)

P is semistandard tableau with entries in B

Q is semistandard tableau with entries in A

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

RSK and representation theory

Schensted 1961

Combinatorial bijection

{words of length n in [k]} −→
⋃

λ`n
SSYT[k](λ)× SYT(λ)

Enumerative result

kn =
∑

λ`n
#SSYT[k](λ) · #SYT(λ)

Representation theory interpretation
GLk × Sn-module V⊗n where V = Ck (commuting actions)

V⊗n ∼=
⊕

λ`n
W λ

k ⊗ Sλ

W λ
k is a simple left GLk -module

Sλ is a simple right Sn-module
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Outline

1 RSK algorithm and representation theory (review)

2 Application: Diagram algebras

3 Uniform block permutation algebra

4 The plethysm problem

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

Variant

Encoding of partition diagrams as generalized permutations with
multisets

RSK algorithm gives pairs of standard multiset tableaux

Well behaved with respect to subalgebras

Matches the representation theory and dimensions of Halverson and
Jacobson (2018)

New map from standard multiset tabelaux to Bratteli diagrams
(different from Benkart and Halverson (2017))
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Partition diagrams

Partition of two alphabets [k] and [k]

Example

π = {{1, 2, 4, 2, 5}, {3}, {5, 6, 7, 3, 4, 6, 7}, {8, 8}, {1}} represented by:

π =

543

54

21

1 2 3 6

6

7

7

8

8

Partition algebra

Pk(n) = spanC{π | π ` [k] ∪ [k]}

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

(Non)propagating blocks

Example

π = {{1, 2, 4, 2, 5}, {3}, {5, 6, 7, 3, 4, 6, 7}, {8, 8}, {1}} represented by:

π =

543

54

21

1 2 3 6

6

7

7

8

8

A block is propagating if it contains vertices from both [k] and [k].

Example

{1, 2, 4, 2, 5} is propagating.

Otherwise, the block is non-propagating.

Example

{3} and {1} are non-propagating.
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The correspondence

π = {π1, π2, . . . , πr} set partition of [k] ∪ [k]
Order: last letter order

πj1 , πj2 , . . . , πjp propagating blocks of π ordered as π+
j1
< · · · < π+

jp
,

where π+
j = πj ∩ [k] and π−j = πj ∩ [k]

σi1 , . . . , σia ⊆ [k] non-propagating blocks in [k] ordered as
σi1 < · · · < σia
τi1 , . . . , τib ⊆ [k] non-propagating blocks in [k] ordered as
τi1 < · · · < τib

(P,Q) = RSK

(
π+
j1

π+
j2
· · · π+

jp

π−j1 π−j2 · · · π−jp

)

T = P by adjoining row containing n − p − b empty cells followed by
τi1 , . . . , τib
S = Q by adjoining row containing n − p − a empty cells followed by
σi1 , . . . , σia

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

The correspondence – example

Example

π = {{2, 3, 4, 4, 5}, {5, 2, 3}, {1, 6, 7, 8}, {7, 8}, {9, 6}, {1}, {9}} ∈ P9(18)

(
π+
j1

π+
j2
· · · π+

jp

π−j1 π−j2 · · · π−jp

)
=

(
{2, 3, 4} {5} {1, 6} {9}
{4, 5} {2, 3} {7, 8} {6}

)

Apply RSK:

P = 45 78
23 6

Q =
5 9

234 16

Adjoin new rows:

T =
45 78
23 6

1 9

S =
5 9

234 16
78
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The correspondence – Theorem

SMT[k](λ) = set of standard multiset tableaux over alphabet [k]

Theorem (COSSZ’20)

Let n > 2k. ∃ bijection

Ψ: {set partitions of [k] ∪ [k]} −→
⋃

λ`n
SMT[k](λ)× SMT[k](λ)

Enumerative result

B(2k) =
∑

λ`n
#SMT[k](λ)2

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

Restriction to subalgebras

Subclasses of set partitions

43

4

21

1 2 3

43

4

21

1 2 3

43

4

21

1 2 3

43

4

21

1 2 3

permutation perfect matching partial permutation matching

41

4

32

1 32

43

4

21

1 2 3

43

4

21

1 2 3

43

4

21

1 2 3

planar planar matching planar perfect planar partial
matching permutation
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Subalgebras of the partition algebra Pk(n)

Subalgebra Ak Diagrams spanning the subalgebra Dimension

Partition algebra Pk(n) all diagrams B(2k)

Group algebra of symmetric group CSk permutations k!

Brauer algebra Bk(n) perfect matchings (2k − 1)!!

Rook algebra Rk(n) partial permutations
k∑

i=0

(
k
i

)2
i !

Rook-Brauer algebra RBk(n) matchings
k∑

i=0

(
2k
2i

)
(2i − 1)!!

Temperley–Lieb algebra TLk(n) planar perfect matchings 1
k+1

(
2k
k

)

Motzkin algebra Mk(n) planar matchings
k∑

i=0

1
i+1

(
2i
i

) (
2k
2i

)

Planar rook algebra PRk(n) planar partial permutations
(

2k
k

)

Planar algebra PPk(n) planar diagrams 1
2k+1

(
4k
2k

)

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

Properties under Ψ

Ak subalgebra of partition algebra
SMTAk

(λ) set of standard multiset-valued tableaux under Ψ for Ak

Definition

T ∈ SMTAk
(λ)

T is matching if the first row contains sets of size less than or equal
to 2 and all other rows contain only sets of size 1.

Two sets S and S ′ are non-crossing if there do not exist elements
a, b ∈ S and c , d ∈ S ′ such that a < c < b < d or c < a < d < b.

We say that c ∈ [k] is between a set S if there exist a, b ∈ S such
that a < c < b.

T is planar if
I it has two rows
I the sets in the first row are pairwise non-crossing
I no element belonging to one of the sets in the second row is between

any set in the tableau
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Tableaux for subalgebras

Under the bijection Ψ, the tableaux are characterized as follows:

properties characterizing SMTAk

Ak diagrams spanning Ak sizes of entries
in first row

other properties

Pk(n) all diagrams — —

PPk(n) planar diagrams — planar

CSk permutations 0 matching

Bk(n) perfect matchings 0, 2 matching

Rk(n) partial permutations 0, 1 matching

RBk(n) matchings 0, 1, 2 matching

TLk(n) planar perfect matchings 0, 2 matching & planar

Mk(n) planar matchings 0, 1, 2 matching & planar

PRk(n) planar partial permutations 0, 1 matching & planar

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

Tableaux for subalgebras

Corollary

Let n > 2k and λ ` n. For each of the algebras Ak let V λ
Ak

be the

irreducible Ak -representation indexed by λ. Then

dim
(
V λ
Ak

)
= #SMTAk

(λ).

Corollary

If n > 2k, then for each subalgebra Ak of the partition algebra Pk(n), we
have

dim(Ak) =
∑

λ`n

(
#SMTAk

(λ)
)2
.
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Diagram algebras

Restrict diagonal action of GLn on V⊗k to Sn ⊆ GLn: for σ ∈ Sn

σ(vi1 ⊗ vi2 ⊗ · · · ⊗ vik ) = σvi1 ⊗ · · · ⊗ σvik

What commutes with this action?
Answer: Partition algebra Pk(n) Martin, Jones 1990s

Basis: set partitions of {1, 2, . . . , k} ∪ {1, 2, . . . , k}

Remark

Sk and GLn form a centralizer pair

Pk(n) and Sn form a centralizer pair

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

Martin and Jones
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See-Saw pairs

(See book by Goodman, Wallach)

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

See-Saw pairs

A ↪→ B algebra embedding ResBA V λ
B =

⊕

µ

(
V µ
A

)⊕cλµ

B D

V

A C

•B and C centralizer pair
•A and D centralizer pair

1 Indices for the simple modules for B and C are the same.
2 Indices for the simple modules for A and D are the same.

ResDC V µ
D =

⊕

λ

(
V λ
C

)⊕cλµ
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Our See-Saw pair

GLn Pk(n)

V⊗k

Sn Sk

ResGLnSn
V λ
GLn =

⊕

µ

(
V µ
Sn

)⊕rλµ

Res
Pk (n)
Sk

V µ
Pk (n) =

⊕

λ

(
V λ
Sk

)⊕rλµ

Idea: Restrict representations of Pk(n) to Sk

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

The approach

Uk uniform block permutation algebra

Sk ↪→︸ ︷︷ ︸
special cases of plethysm

Uk ↪→ Pk(n)︸ ︷︷ ︸
generalized LR coefficients

Goal: Combinatorial model for the representation theory of Uk
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Outline

1 RSK algorithm and representation theory (review)

2 Application: Diagram algebras

3 Uniform block permutation algebra

4 The plethysm problem

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

Uniform block permutations

Tanabe 1997, Kosuda 2006
Party algebra, centralizer algebra for complex reflection groups

Definition

The set partition d = {d1, d2, . . . , d`} of [k] ∪ [k̄] is uniform if
|di ∩ [k]| = |di ∩ [k̄]| for all 1 6 i 6 `. Let

Uk =
{
d ` [k] ∪ [k̄] : d uniform

}
.

Example

d = {{2, 4̄}, {5, 7̄}, {1, 3, 1̄, 2̄}, {4, 6, 3̄, 6̄}, {7, 8, 9, 5̄, 8̄, 9̄}}

Think of d as a size-preserving bijection
(
{2} {5} {1, 3} {4, 6} {7, 8, 9}
{4} {7} {1, 2} {3, 6} {5, 8, 9}

)

⇒ Elements of Uk are called uniform block permutations
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Uniform block permutations – continued

Example

Diagram for {{1, 3, 1̄, 2̄}, {2, 4̄}, {4, 6, 3̄, 6̄}, {5, 7̄}, {7, 8, 9, 5̄, 8̄, 9̄}}

The product of

d = and d ′ =

is obtained by stacking the diagrams of d and d ′:

dd ′ = =

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

Idempotents

For every set partition π of [k] we define:

eπ = {A ∪ Ā : A ∈ π} ∈ Uk

where Ā = {ī : i ∈ A}. For example,

e2|7|14|36|589 =

Lemma

The set E (Uk) = {eπ : π ` [k]} is a complete set of idempotents in Uk .
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Maximal subgroups

Definition

M finite monoid, e idempotent
Maximal subgroup: Ge = unique largest subgroup of M containing e

Lemma

The maximal subgroup of Uk at the idempotent eπ is

Geπ = {d ∈ Uk : top(d) = bot(d) = π}

Example

For π = {{1}, {2}, {3, 4}, {5, 6}}

Geπ =
{

, , ,
}

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

Maximal subgroups – continued

Example

For π = {{1}, {2}, {3, 4}, {5, 6}} with type(π) = (1222)

Geπ =
{

, , ,
}

Theorem

For π ` [k] with type(π) = (1a12a2 . . . kak )

Geπ ' Sa1 × Sa2 × · · · × Sak
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Representation theory of Uk

(See book by Steinberg 2016)

Indexing set of simple modules

Ik =

{(
λ(1), λ(2), . . . , λ(k)

)
: λ(i) are partitions such that

k∑

i=1

i |λ(i)| = k

}

Example

I3 = {((3), ∅, ∅), ((2, 1), ∅, ∅), ((1, 1, 1), ∅, ∅), ((1), (1), ∅), (∅, ∅, (1))}

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

Characters, symmetric functions, and plethysm

Theorem (OSSZ 2022)

Multiplicity of V µ
Sk

in ResUkSkV
~λ
Uk is

〈
sλ(1) [s1]sλ(2) [s2] · · · sλ(k) [sk ], sµ

〉
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Outline

1 RSK algorithm and representation theory (review)

2 Application: Diagram algebras

3 Uniform block permutation algebra

4 The plethysm problem
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Plethysm via representations of GLn

Definition

GLn(C) = invertible n × n matrices

GLn-representation ρ : GLn → GLm

GLm-representation τ : GLm → GLr

Composition is GLn-representation

τ ◦ ρ : GLn → GLr

Definition

Character of composition is plethysm:

char(τ ◦ ρ) = char(τ)[char(ρ)]
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Frobenius map

Rn space of class functions of GLn
Λn ring of symmetric functions of degree n

Power sum symmetric function pλ

pλ = pλ1pλ2 · · · pλ`
pr = x r1 + x r2 + · · ·

Schur function sλ
sλ =

∑

T∈SSYT(λ)

xwt(T )

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

Frobenius map – continued

Definition

The Frobenius characteristic map is chn : Rn → Λn

chn(χ) =
∑

µ`n

1

zµ
χµpµ

where zµ = 1a1a1!2a2a2! · · · for µ = 1a12a2 · · ·

Remark

The irreducible character χλ indexed by λ under the Frobenius map is

chn(χλ) = sλ

by the identity

sλ =
∑

µ

1

zµ
χλµpµ
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Plethysm problem

Problem

Find a combinatorial interpretation for the coefficients aνλµ∈ N in the
expansion

sλ[sµ] =
∑

ν

aνλµsν

Problem

Find a crystal on tableaux of tableaux which explains aνλµ.

RSK Application: Diagram algebras Uniform block permutation algebra The plethysm problem

Thank you !

Remark (Take away)

Plethysm is hard!

Remark (Take away)

Integrable systems, representation theory and combinatorics all play hand
in hand!
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QUIVER HALL-LITTLEWOOD FUNCTIONS AND

KOSTKA-SHOJI POLYNOMIALS

MARK SHIMOZONO

These lectures are dedicated to Prof. Masato Okado on the occasion of his 60-th
birthday conference “Integrable Systems and Quantum Groups”, March 4-8, 2023
at Osaka City/Metropolitan University.

They are based on joint work with Dan Orr [OS22]. They are inspired by Shoji’s
work [Sho04] on Green’s polynomials for complex reflection groups and the paper
of Finkelberg and Ionov [FI18] which according to Finkelberg was intended to be a
coherent sheaf version of Shoji’s construction.

There are two main constructions for Kostka-Shoji polynomials.

(I) Quiver Hall-Littlewood (QHL) series: these are multigraded characters of
modules given by the Euler characteristic of global sections of a family of
vector bundles on Lusztig’s convolution diagram.

(II) QHL symmetric functions: these are elements of the tensor product of
symmetric functions that are obtained by vertex operators.

In each case the Kostka-Shoji polynomials arise as coefficients of the irreducible
character basis.

The QKS polynomials also appear as structure constants of Schur functions in
a K-theoretic Hall algebra [OS22, §5].

1. Part I: Geometry

1.1. Lusztig’s convolution diagram W. Let Q = (Q0, Q1) be a quiver (directed
graph); Q0 is the set of nodes and Q1 is the set of arrows. For our purposes (see
[OS22, Subsection 2O]) there is no loss of generality in assuming that for every
(i, j) ∈ Q2

0 there is at most one arrow from i to j. If b ∈ Q1 is an arrow from i to j
we say i = ta and j = ha (tail and head of b).

Lusztig’s convolution diagramW [Lu90] is specified by Q and the following data:

• A sequence i = (i1, i2, . . . , im) of quiver nodes ik for 1 ≤ k ≤ m.
• A sequence a = (a1, a2, . . . , am) of positive integers ak ∈ Z>0.

In our notation a superscript as in V (i) refers to data at node i ∈ Q0. An index k
as in ak or µ(k) refers to data at the k-th position in a filtration.

Given (i, a), define a Q0-graded C- vector space V • =
⊕

i∈Q0
V (i) and a decreas-

ing partial flag of Q0-graded subspaces

V • = V (0)• ⊃ V (0)• ⊃ · · · ⊃ V (m)• = 0

as follows. Let V (m)• = 0 be the zero Q0-graded vector space. Then for k from m
down to 1, let V (k − 1) be obtained from V (k) by adding dimension ak at vertex
ik. Let V • = V (0)• be the final result.

For i ∈ Q0 let a(i) = (ak | ik = i) be the sequence of dimension jumps at vertex
i. Let B(i) ⊂ P (i) ⊂ GL(V (i)) be the standard lower triangular Borel, standard

1
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lower triangular parabolic with diagonal block sizes given by a(i), and the general
linear group on V (i).

Example 1. Let Q0 = {0, 1}. Letting i and a be as below, we give the tuples a(i)

and the dimension vectors of the spaces V (k).

k 1 2 3 4 5
ik 0 1 0 1 1
ak 1 3 2 2 1

a(0) 1 2

a(1) 3 2 1

a(0) = (1, 2) a(1) = (3, 2, 1)

k 0 1 2 3 4 5

dimV (k)(0) 3 2 2 0 0 0

dimV (k)(1) 6 6 3 3 1 0

A flag of type (i, a) is a sequence F (·) of Q0-graded vector spaces

V • = F (0)• ⊃ F (1)• ⊃ · · · ⊃ F (m)• = 0

such that for all 1 ≤ k ≤ m:

dim(F (k − 1)(i)/F (k)(i)) =

{
ak if ik = i

0 otherwise.

Let Fli,a be the space of flags of type (i, a).

Let G =
∏
i∈Q0

GL(V (i)) and Fl =
∏
i∈Q0

GL(V (i))/P (i) the product of partial
flag varieties. There is an isomorphism

Fli,a ∼= Fl :=
∏

i∈Q0

Fl(i)

Let E =
⊕

b∈Q1
HomC(V (tb), V (hb)) be the space of representations of Q, the

space of linear maps associated with V •.
Let TQ1 = (C∗)Q1 . It acts on E such that the copy of C∗ for a ∈ Q1 acts on

Hom(V (ta), V (ha)) by scaling. The group G = G× TQ1 acts on E.
Say that F (·) ∈ Fli,a is strictly φ-stable for φ ∈ E if

φb(F (k − 1)(tb)) ⊂ F (k)(hb) for all b ∈ Q1, 1 ≤ k ≤ m.(1)

Define the convolution diagram [Lu90]

W := {(F (·), φ) ∈ Fli,a × E | F (·) is strictly φ-stable}.

Fli,a × E W

Fl E

p q

⊃

The map q is G-equivariant.
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Example 2. LetQ be the one loop quiver and n =
∑m
k=1 ak. ThenW = T ∗(GLn/Pa)

is the cotangent bundle on the partial flag variety where Pa is the lower triangu-
lar parabolic with block sizes a. The space E = gln affords the adjoint action of
G = GL(n). Let na be the nilradical of Lie(Pa). The map q is the parabolic Springer

resolution. Its image is the nilpotent adjoint orbit closure Xa = Ad(G) · na ⊂ E.

1.2. OW modules Wµ(·) and quiver HL series. In [OS22] we consider a family
of G-equivariant OW -modules Wµ(·).

Given (i, a) we require one more input, namely, a sequence of dominant weights

µ(·) = (µ(1), µ(2), . . . , µ(m)) µ(k) ∈ X+(GLak).

At each vertex i ∈ Q0 let µ(i) ∈ X(GL(V (i))) be the concatenation of the µ(k)
for ik = i.

Example 3. Let Q0 = {0, 1} with i, a as in the previous example. We choose a
sequence of weights µ(·) below.

k 1 2 3 4 5
ik 0 1 0 1 1
ak 1 3 2 2 1

µ(k) (2) (3, 2, 2) (1, 1) (2, 1) (1)

µ(0) 2 11

µ(1) 322 21 1

We have µ(0) = (2, 1, 1) and µ(1) = (3, 2, 2, 2, 1, 1).

Say that (i, a, µ(·)) is dominant if each µ(i) is dominant.
In [OS22] a vector bundle Wµ(·) on W is defined as follows. Let Lµ(i) be the

standard line bundle of weight µ(i) on GL(V (i))/B(i) and L = �i∈Q0Lµ(i) the outer
tensor product, which is a line bundle on the product of complete flag varieties∏
i∈Q0

GL(V (i))/B(i), and let π be the projection to Fl.

L

∏
i∈Q0

GL(V (i))/B(i) Fli,a × E W

Fl E

π p q

⊃

Define Wµ(·) = p∗π∗(L); it is a vector bundle on W. Define the Quiver Hall-

Littlewood (QHL) series to be the TQ1-equivariant Euler characteristic of global
sections of Wµ(·).

χ
(i,a)
µ(·) =

∑

p≥0

(−1)pchGH
p(W,Wµ(·))

For λ• ∈∏i∈Q0
X+(GL(V (i))) let χλ

•
be the irreducible character of G. We define

the quiver Kostka-Shoji (QKS) polynomial K(i,a)
λ•,µ(·)(tQ1

) ∈ R(TQ1) ∼= Z[t±1
b | b ∈
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Q1] as the coefficient of χλ
•

in χ
(i,a)
µ(·) .

χ
(i,a)
µ(·) =

∑

λ•

K(i,a)
λ•,µ(·)(tQ1)χλ

•

Since Wµ(·) may be viewed as a bundle over the product Fl of partial flag va-
rieties, the QKS polynomials can be computed using Bott’s formula for the Euler
characteristic of a standard line bundle on the flag variety. We refer the reader to
[OS22, Subsection 2L] for an explicit alternating sum formula for the QKS polyno-
mial.

Example 4. Let Q be the single loop quiver and n =
∑
k ak. Let ρ = (n −

1, . . . , 1, 0) ∈ Zn = X(GL(n)) and let J =
∑
w∈Sn

(−1)ww be the antisymmetrizer
over the symmetric group Sn. Let µ ∈ X(GLn) be the concatenation of all the
µ(k). We have

χ
(i,a)
µ(·) = J(zρ)−1J


zρ+µ

∏

α∈Φ+(na)

1

1− tzα




Here the QKS polynomials are parabolic (also called generalized) Kostka polyno-
mials [SW00].

If n = 2, a = (1, 1) and µ(·) = ((0), (0))

χ
(i,a)
µ(·) = J(xρ)−1J

(
xρ

1− tx1/x2

)

=
∑

k≥0

tk(x1x2)−ks(2k,0)(x1, x2).

There are always two main problems to solve. The first is geometric.

Conjecture 1. [OS22, Conjecture 2.14] Vanishing: If (i, a, µ(·)) is dominant then

Hp(W,Wµ(·)) = 0 for p > 0.(2)

Corollary 2. K(i,a)
λ•,µ(·)(tQ1

) ∈ Z≥0[t±b | b ∈ Q1].

The second is to obtain an explicit combinatorial formula for the positive poly-
nomials.

In all the following examples we assume dominance holds.
We say the data (i, a) is Borel if ak = 1 for all k. In the Borel case, for any µ(·),

each µ(k) is a single row weight. We call the data parabolic in the general case.
In discussing the combinatorics of the known cases below it is important to know

the following.

Remark 1. Fix (i, a) and consider µ(·) and λ• ∈ ∏i∈Q0
X+(GL(V (i))). Let N• ∈

ZQ0 be a tuple of integers, one for each vertex. Denote by µ(·)+N• be the result of
adding N (i) to each of the parts of the weight µ(k) if ik = i. Similarly let λ• +N•

be defined by adding N (i) to every part of every weight λ(i) ∈ X+(GL(V (i))). It is
not hard to see that

K(i,a)
λ•+N•,µ(·)+N•(tQ1

) = K(i,a)
λ•,µ(·)(tQ1

).(3)

In particular every coefficient polynomial K(i,a)
λ•,µ(·)(tQ1

) is equal to another such in

which all of the weights µ(i) are partitions (have all nonnegative parts) with at most
dim(V (i)) parts for all i ∈ Q0.
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In the Borel case this doesn’t matter much since all weights are single rows.
However in the parabolic case, this adding N• causes a number of “full-sized”
columns to be added to a partition.

Example 5. Let Q be the single loop quiver.

• In the Borel case the QKS polynomials are the Kostka Foulkes polynomials
[Mac79, §III.6].

– Vanishing was proved in [Bro93].
– The Kostka-Foulkes polynomials have a Young tableau formula [LS78].
– They also have a fermionic formula (rigged configurations) [KR86].
– They give the dimensions of the quotients for the filtration of the action

of a principal nilpotent on a weight space [Bry89].
– They are the isotypic components of the one-dimensional sum for the

tensor product ⊗kB1,µk of “single row” type A KR crystals, graded
by the energy function [NY97].

• In the parabolic case the QKS polynomials are known as parabolic or gen-
eralized Kostka polynomials [SW00].

– Suppose all µ(k) are single columns. The QKS polynomials are the
Kostka-Foulkes with grading reversed. They have the following de-
scriptions:
∗ The intersection cohomology of Xa [Lu83].
∗ A tricky (catabolizable) tableau formula [Las91].
∗ Via the Tanisaki ideal of C[Xa ∩ h] [GP82].
∗ One dimensional sum for tensor products of single column type
A KR crystals [NY97].

– Suppose all µ(k) are rectangles all of which have the same number
of columns. The QKS polynomials are isotypic components of the
coordinate ring of the nilpotent adjoint orbit closure Xa.
∗ Vanishing and the analogue of Lusztig’s formula for weight mul-

tiplicity was proved in [W89].
∗ The parabolic Kostka polynomials (via [Sh01] and [Sh02]) equals

the sln-invariant Demazure characters in the highest weight mod-

ule V (sΛ0) of ŝln [KMOTU00].
– Suppose all µ(k) are rectangles. Let µ(k) be an ak × bk rectangle Rk

for all k.
∗ Vanishing was proved in [Bro93].
∗ Geometric character has a tableau formula [Sh01].
∗ The tableau formula equals the one-dimensional sum for any

type A affine KR crystal ⊗kBak,bk [ScWa99] [Sh02].
∗ The equality of the above one-dimensional sums with the type

A fermionic formula is proved in [KSS02]. This is the untwisted
type A case of the remarkable X = M conjecture of M. Okado
and collaborators given in [HKOTY02] for the untwisted affine
root systems and in [HKOTT02] for the twisted affine root sys-
tems. Here X means the one-dimensional sums which are the
energy-graded characters of arbitrary tensor products of KR
crystals of any affine Lie algebra and M is their fermionic for-
mula.
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∗ In [SW00] it is conjectured that the rectangular parabolic Kostka
polynomials agree with the rectangle product case of Lascoux-
Leclerc-Thibon functions. It was proved in [GH07].

– General case
∗ The vanishing conjecture in this case is due to [Bro93]. A proof

was announced in [Ka23].
∗ A catabolizable tableau conjecture was given in [SW00]. It was

proved in [BMP] which considered more general characters by
allowing more general ideals of roots as opposed to just the roots
of the nilradical of a parabolic. They studied (affine Borel) mod-
ules built from tensoring with affine highest weight vectors and
applying Demazure operators.

Example 6. Let Q be the cyclic quiver, where Q0 = Z/rZ and Q1 = {(i, i+ 1) | i ∈
Z/rZ}. Borel case:

• The Borel cyclic quiver QKS polynomials were defined in [FI18].
• For 2 nodes they were conjectured in [FI18] to be equal to those defined in

[Sho04]. This was proved by Shoji in [Sho18].
• The cyclic quiver QKS were given in intersection cohomology interpretation

in [AH08].

Parabolic case: These were defined at the same time as the general case in [OS22]
and specifically studied in [OS22a].

• A tableau formula is given in[OS22a] for the case of rectangles all at vertex
r − 1, and zero weights at other vertices.
• If all are single columns at vertex r − 1 the QHL symmetric function for

the cyclic quiver was shown to be equal to certain wreath Hall-Littlewood
polynomials [Ha03, §7.2.4] which are obtained from Haiman’s wreath H-
Macdonald polynomial by taking the coefficient of the lowest occurring
power of q. This single-columns-at-one-vertex case is not directly related
to the single-rows-at-one-vertex case, unlike the situation for the single node
cyclic quiver, where the two are related by degree reversal (after transpos-
ing).

Example 7. For any quiver whose connected components are directed cycles and
directed paths, a catabolizable tableau conjecture is given in [OS22a]. For the case
of the A2-quiver, the answer is a truncated Littelwood-Richardson coefficient [?].

2. Part II: Creation operators for Quiver HL functions

The second method of construction of QKS polynomials in [OS22] is by creating
symmetric functions by vertex operators. This was inspired by Jing [?], Garsia and
Procesi [GP82], and a joint work with Zabrocki [SZ01].

Let Λ be the Hopf algebra of symmetric functions over F = Frac(R(TQ1)) =
Q(ta | a ∈ Q1).

For a triple (i, a, µ) with i ∈ Q0, a ∈ Z>0 and µ ∈ X+(GLa) we define an

operator H
(i,a)
µ ∈ End(Λ⊗Q0). Then for (i, a, µ(·)) we define the Quiver Hall-

Littlewood symmetric function by the sequence of operators acting on 1 ∈ Λ⊗Q0 :

H
(i,a)
µ(·) = H

(i1,a1)
µ(1) ◦ · · · ◦H(im,am)

µ(m) (1) ∈ Λ⊗Q0 .
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2.1. Symmetric function notation. Let Λ be the Hopf algebra of symmetric
functions over Z. Let X represent a sequence of indeterminates (x1, x2, . . . ). Let
Z[[xi | i ∈ Z>0]] be the formal power series ring. Let SZ>0 be the group of per-
mutations of Z>0 that move finitely many elements. Then Λ is isomorphic to the
subring Λ[X] of Z[[xi | i ∈ Z>0]] consisting of the series which are symmetric, that

is, fixed by SZ>0
, and have bounded degree. Let Λ̂[X] consist of symmetric series

with no condition on degree bound.
For indeterminates z, w define

Ω[z] =
1

1− z
Ω[−w] = 1/Ω[w] = (1− w)

Ω[z + w] = Ω[z]Ω[w]

Ω behaves like an exponential.
The negative sign has a special meaning. It does not give the same result as using

a variable and then specializing the variable to −1. For example Ω[uw] = (1−uw)−1

and setting u = −1 yields (1 + w)−1.
We use the suggestive notation X = x1 + x2 + · · · . For an indeterminate u and

extending the above notation using infinite sums and products we have

Ω[uX] =
∏

i≥1

Ω[uxi] =
∏

i≥1

1

1− uxi
=
∑

k≥0

ukhk[X]

Ω[−uX] =
∏

i≥1

(1− uxi) =
∑

k≥0

(−1)kukek[X].

This is the definition of the homogeneous (hk) and elementary (ek) symmetric
functions.

ΛZ = Z[h1, h2, · · · ] is a polynomial algebra over the integers. To connect with
the usual presentation of the boson-fermion correspondence we define the power
sums and their connection with Ω:

pr[X] =
∑

i≥1

xri for r ≥ 1

Ω[uX] = exp


∑

r≥1

1

r
pr[X]ur


 .

Of course we must work over Q if using power sums. We have ΛQ = Q ⊗Z ΛZ =
Q[p1, p2, . . . ].

We now give the Hopf structure. Let S : Λ → Λ denote the antipode. It is an
involutive algebra automorphism denoted f [X] 7→ f [−X] for f ∈ Λ. It is enough to
define it on the generating function Ω[uX] of algebra generators hk and then take
coefficients of powers of u.

Ω[uX] 7→ Ω[−uX] that is,

hk 7→ (−1)kek for all k ≥ 0.

Over Q it can be defined by pk[X] 7→ −pk[X] for all k ≥ 1.
The tensor product Λ ⊗Z Λ can be realized by series in two sets of variables X

and Y which are separately symmetric in X and in Y and are of bounded degree.
If f, g ∈ Λ then we write f [X]g[Y ] for the element f ⊗ g.
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The coproduct ∆ : Λ → Λ ⊗ Λ is an algebra homomorphism and is denoted
f 7→ f [X + Y ]. Heuristically, f [X + Y ] means to plug both sets of variables X and
Y into f . We do this on the generating function Ω[uX] of the hk[X] and then take
the coefficient of powers of u:

∆(Ω[uX]) = Ω[u(X + Y )] = Ω[uX]Ω[uY ]

∆(hk) =
∑

i,j≥0
i+j=k

hi[X]hj [Y ] =
∑

i,j≥0
i+j=k

hi ⊗ hj .

For power sums we get

pk[X + Y ] =
∑

i≥1

(xki + yki ) = pk[X] + pk[Y ] = pk ⊗ 1 + 1⊗ pk,

that is, the pk are primitive algebra generators of ΛQ.
Define the Hall pairing Λ⊗Λ→ Z to be the one with respect to which the Schur

functions sλ are orthonormal:

〈sλ , sµ〉 = δλµ for λ, µ ∈ Y (Young’s lattice of partitions)

By the Cauchy identity, its reproducing kernel is:

∑

λ

sλ[X]sλ[Y ] =
∏

i,j≥1

1

1− xiyj
= Ω[XY ].

The counit ε : Λ→ Z is taking the coefficient of 1: ε(f) = 〈1 , f〉 for all f ∈ Λ.
For a symmetric function f ∈ Λ, define the operator f⊥ ∈ End(Λ) (called f

“perp” or “skewing by f”) to be the adjoint operator to multiplication by f . It is
defined by (for all g, h ∈ Λ)

〈f⊥(g) , h〉 = 〈g , fh〉 = 〈∆(g) , f ⊗ h〉
=
∑

(g)

〈g(1) , f〉〈g(2) , h〉.

If f is homogeneous of degree d then f⊥ has degree −d. In particular for any Z we
have

Ω[ZX]⊥(1) =
∑

λ∈Y
sλ[Z]sλ[X]⊥(1) = 1(4)

since sλ[X]⊥ has strictly negative degree for λ a nonempty partition.
Notation: ⊥ is taken with respect to the X variables.

Exercise 1. Show that for all f ∈ Λ

f [X]⊥(Ω[XY ]) = f [Y ]Ω[XY ].(5)

For f [X] = Ω[ZX] we have

Ω[XZ]⊥(Ω[XY ]) = Ω[ZY ]Ω[XY ] = Ω[(X + Z)Y ](6)

Exercise 2. Show that

Ω[XZ]⊥(f [X]) = f [X + Z] for f ∈ Λ.
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For any f, g ∈ Λ we have

(Ω[XZ]⊥ ◦ f [X])(g[X]) = Ω[XZ]⊥(f [X]g[X])

= f [X + Z]g[X + Z]

= f [X + Z]Ω[XZ]⊥(g[X]).

Therefore

Ω[XZ]⊥ ◦ f [X] = f [X + Z] ◦ Ω[XZ]⊥ in End(Λ).(7)

If f [X] = Ω[XY ] then in End(Λ)

Ω[XZ]⊥ ◦ Ω[XY ] = Ω[(X + Z)Y ]Ω[XZ]⊥(8)

= Ω[ZY ]Ω[XY ] ◦ Ω[XZ]⊥.(9)

2.2. Bernstein operators. We require the Bernstein operators that are used to
create Schur functions. Define {Sm | m ∈ Z} ⊂ End(Λ) as follows.

Let ρ = (n − 1, n − 2, . . . , 1, 0) ∈ Zn and let Z = (z1, . . . , zn) be a finite set of
auxiliary variables. Define

R(Z) =
∏

1≤i<j≤n

(
1− zj

zi

)
= z−ρ

∏

1≤i<j≤n
(zi − zj) = z−ρJ(zρ)

where recall that J is the antisymmetrizer. For λ ∈ Zn = X(GL(n)) define

sλ(Z) = J(zρ)−1J(zλ+ρ).

This is the Schur polynomial sλ(Z) if λ ∈ X+(GL(n).
Define the Bernstein operators Sk ∈ End(Λ) by the generating function

∑

k∈Z
zkSk = S(z) = Ω[zX]Ω[−z−1X]⊥

=
∑

i≥0

zihi[X]
∑

j≥0

(−z−1)jej [X]⊥

=
∑

k∈Z
zk

∑

i,j≥0
i−j=k

(−1)jhi[X]ej [X]⊥.

We compute the commutation relations using (8).

S(z)S(w) = Ω[zX]Ω[−z−1X]⊥Ω[wX]Ω[−w−1X]⊥

= Ω[zX]Ω[−z−1w]Ω[wX]Ω[−z−1X]⊥Ω[−w−1X]⊥

= (1− w/z)Ω[(z + w)X]Ω[−(z−1 + w−1)X]⊥.

Multiplying by z we have

zS(z)S(w) = (z − w)Ω[(z + w)X]Ω[−(z−1 + w−1)X]⊥

Exchanging z and w gives

wS(w)S(z) = (w − z)Ω[(z + w)X]Ω[−(z−1 + w−1)X]⊥

Note that the term Ω[(z + w)X]Ω[−(z−1 + w−1)X]⊥ (the normal ordering of
S(z)S(w)) is symmetric in z and w. We deduce that

zS(z)S(w) = −wS(w)S(z).
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Taking the coefficient of zm+1wn we obtain

SmSn = −Sn−1Sm+1 for all m,n ∈ Z.

This is the relation seen by switching rows in the Jacobi-Trudi determinantal for-
mula for Schur functions.

Let Z∗ = z−1
1 + · · ·+ z−1

n . We consider the composition of S operators.

S(Z) = S(z1)S(z2) · · ·S(zn)

= Ω[z1X]Ω[−z−1
1 X]⊥ · · ·Ω[znX]Ω[−z−1

n X]⊥

=


 ∏

1≤i<j≤n
(1− zj/zi)


Ω[z1X] · · ·Ω[znX]Ω[−z−1X]⊥ · · ·Ω[−z−1

n X]⊥

= R(Z)Ω[ZX]Ω[−Z∗X]⊥

= z−ρJ(zρ)Ω[ZX]Ω[−Z∗X]⊥.

Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Letting [zλ] denote taking the coefficient of zλ we
have

Sλ1
◦ · · · ◦ Sλn

(1) = [zλ]S(z1) · · ·S(zn)(1)

= [zλ]z−ρJ(zρ)Ω[ZX]Ω[−Z∗X]⊥(1)

= [zλ+ρ]J(zρ)
∑

µ∈Y
sµ[Z]sµ[X]

= [zλ+ρ]
∑

µ

J(zµ+ρ)sµ[X]

= sλ[X].

2.3. Modified Jing operators. We use the modification of Jing’s creation op-
erators [J91] that was popularized by Garsia [GP82]. We define the operators
{Hk | k ∈ Z} ⊂ End(Λ) as follows.

∑

k∈Z
Hkz

k = H(z)

= S(z)Ω[tz−1X]⊥

= Ω[zX]Ω[−z−1X]⊥Ω[tz−1X]⊥

= Ω[zX]Ω[(t− 1)z−1X]⊥.

We have

H(z)H(w) = Ω[zX]Ω[(t− 1)z−1X]⊥Ω[wX]Ω[(t− 1)w−1X]⊥

= Ω[(t− 1)z−1w]Ω[(z + w)X]Ω[(t− 1)(z−1 + w−1)X]⊥.

Note that

Ω[(t− 1)z−1w] =
1− w/z
1− tw/z .
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We obtain

H(z1)H(z2) · · ·H(zn) =


 ∏

1≤i<j≤n
Ω[(t− 1)zj/zi]


Ω[ZX]Ω[(t− 1)Z∗X]⊥

= R(Z)B(Z, t)Ω[ZX]Ω[(t− 1)Z∗X]⊥ where

B(Z, t) =
∏

1≤i≤j≤n
(1− tzj/zi)−1.

Let µ = (µ1 ≥ µ2 ≥ · · · ≥ µn) with µn ≥ 0. We have

Hµ1
◦ · · ·Hµn

(1) = [zµ]H(z1) · · ·H(zn)(1)

= [zµ]R(Z)B(Z, t)
∑

λ

sλ[Z]sλ[X]

= [zµ+ρ]B(Z, t)
∑

λ

J(zλ+ρ)sλ[X]

=
∑

λ

sλ[X][zµ+ρ]
∑

w∈Sn

(−1)wzw(λ+ρ)B(Z, t).

Let Hµ := Hµ1
◦ · · · ◦Hµn

(1). Taking the coefficient of sλ[Z] we have

Kλµ(t) = 〈Hµ , sλ〉
=
∑

w∈Sn

(−1)w[zµ+ρ−w(λ+ρ)]B(Z, t)

=
∑

w∈Sn

(−1)w[zw(λ+ρ)−(µ+ρ)]
∏

1≤i<j≤n
(1− tzi/zj)−1

where in the last step we replaced zi by z−1
i everywhere. This last formula is

Lusztig’s t-analogue of Kostant’s weight multiplicity formula.

2.4. Parabolic analogue. Fix a ∈ Z>0 and let Z = z1 + z2 + · · ·+ za. We define
operators {Ha

β | β ∈ Za} ⊂ End(Λ) by [SZ01]

∑

β∈Za

zβHa
β = Ha(Z) = S(a)(Z)Ω[tZ∗X]⊥

= R(Z)Ω[ZX]Ω[−Z∗X]⊥Ω[tZ∗X]⊥

= R(Z)Ω[ZX]Ω[(t− 1)Z∗X]⊥.

Compare this with the composition of “single row” operators:

H(z1) ◦ · · · ◦H(za) = B(Z, t)Ha(Z)

Given a and µ(·), define the parabolic HL symmetric function

H
a
µ(·) = Ha1

µ(1) ◦ · · · ◦H
am
µ(m)(1).

Let a1 + a2 + · · · + am = n, P+
a the standard upper triangular parabolic with

block sizes a, and na the nilradical of Lie(P+
a ). Let Φ(na) be the set of roots of na.

Let µ ∈ Zn be the concatenation of the weights µ(1) through µ(m).
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In [SZ01] it was shown that

〈Ha
µ(·) , sλ〉 =

∑

w∈Sn

(−1)wzw(λ+ρ)−(µ+ρ)
∏

α∈Φ(na)

1

1− tzα .

Exercise 3. Verify the above for a = (1, 2).

3. General quiver

Let F = Frac(R(TQ1)) = Q(ta | a ∈ Q1). Let Λ be symmetric functions over F
and Λ⊗Q0 be the |Q0|-th tensor power of Λ. For f ∈ Λ and i ∈ Q0 write f [X(i)]
for 1⊗ · · · ⊗ 1⊗ f ⊗ 1⊗ · · · ⊗ 1 in which f occurs in the i-th tensor factor.

For λ• ∈ YQ0 define the tensor Schur basis of Λ⊗Q0 by sλ• =
∏
i∈Q0

sλ(i) [X(i)].

Let 〈· , ·〉 : Λ⊗Q0 ⊗ Λ⊗Q0 → F be the pairing for which the tensor Schur basis is
orthonormal.

Let f [X(i)]⊥ ∈ End(Λ⊗Q0) be the operator that is adjoint with respect to mul-
tiplication by f [X(i)]. Note that here the ⊥ is with respect to the variables X(i).

3.1. General quiver parabolic creation operator. Consider a triple (i, a, µ)
with i ∈ Q0, a ∈ Z>0 and µ ∈ X+(GLa). Z = z1 + · · ·+ za. We define an operator

H
(i,a)
µ ∈ End(Λ⊗Q0). For i ∈ Q0 let S(i)(Z) be the generating function for the

composition of Bernstein operators acting on the i-th tensor factor:

S(i)(Z) = R(Z)Ω[ZX(i)]Ω[−Z∗X(i)]⊥

Let Out(i) = {b ∈ Q1 | tb = i} be the set of arrows going out of node i. Define the
quiver creation operator

∑

β∈Za

H
(i,a)
β = H(i,a)(Z)

= S(i)(Z)
∏

b∈Out(i)

Ω[tbZ
∗X(hb)]⊥.

For i = (i1, i2, . . . , im), a = (a1, a2, . . . , am), and µ(·) = (µ(1), µ(2), . . . , µ(m))
define the quiver Hall-Littlewood symmetric function

H
i,a
µ(·) = H

(i1,a1)
µ(1) ◦ · · · ◦H(im,am)

µ(m) · 1 ∈ ΛQ.

Theorem 3. [OS22] For any i, a, and µ(·) such that all the µ(k) are polynomial
weights (that is, all parts are nonnegative) we have

H
i,a
µ(·) =

∑

λ•∈YQ0

Ki,aλ•,µ(•)(tQ1
)sλ• .(10)

Remark 2. Due to Remark 1 every coefficient of a QHL series appears as a coef-
ficient of a QHL symmetric function after shifting the arguments. Thus the two
constructions give the same information.

3.2. True number of torus parameters. In our definition there is a parameter
for every arrow. It was pointed out by Finkelberg that the dimension of dilation
symmetry is not the number of edges in Q1 but rather the dimension of H1(Q),
that is, the dimension of the cycle space of the graph Q.

The edge space of Q is the free Z-module E(Q) with basis ea where a ∈ Q1. For

every cycle C in the underlying undirected graph of Q, pick an orientation ~C. For
every edge a ∈ Q1 whose undirected edge |a| is in C, define sgn~C(a) to be 1 or −1
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according as the direction of a ∈ Q1 agrees or disagrees with the direction in ~C.
Define the cycle vector z~C ∈ E(Q) by

z~C =
∑

a∈Q1

|a|∈C

sgn~C(a)a.

Define the associated cycle monomial t~C ∈ R(TQ1) by

t~C =
∏

a∈Q1

|a|∈C

t
sgn~C(a)
a .

Example 8. (1) Let Q be the directed cyclic quiver. Taking the directed cycle
~C = 0→ 1→ 2→ 0 we get the cycle monomial t~C = t01t12t20.

(2) Let Q0 = {0, 1, 2} with Q1 = {(0, 1), (0, 2), (1, 2)}. Taking ~C = 0 → 1 →
2 → 0 we see that the orientations of the edges (0, 1) and (1, 2) agree in

Q1 and on ~C while (0, 2) ∈ Q1 disagrees with the direction in ~C. Therefore
t~C = t01t12t

−1
02 .

The cycle space Z(Q1) ⊂ E(Q1) of Q1 is by definition the subspace of E(Q1)
given by the span of z~C as C runs over the cycles of the underlying undirected
graph of Q. Since taking the opposite orientation of C just results in negating
the corresponding cycle vector, the cycle space is independent of the choice or
orientation for the cycles.

Say that a monomial in R(TQ1) is acyclic if it is not divisible by any cycle
monomial of Q.

Proposition 4. [OS22] Pick a basis {z~C1
, . . . , z~Cp

} of Z(Q1). Then for every

Kλ•,µ(·)(tQ1
) there is a unique acyclic Laurent monomial m(tQ1

) and a unique

polynomial Kred
λ•,µ(·)(z1, . . . , zp) with integer coefficients such that Kλ•,µ(·)(tQ1) =

m(tQ1)Kred
λ•,µ(·)(t~C1

, . . . , t~Cp
).

Call the polynomials Kred
λ•,µ(·)(z1, . . . , zp) the reduced QKS polynomial.

The Shoji-Finkelberg-Ionov polynomials, which have one parameter, are the re-
duced versions of our cyclic quiver Borel quiver Kostka-Shoji polynomials.

In particular for acyclic quivers the reduced QKS polynomial is just an integer.
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2/25Outline

◼ Introduction: 𝑅𝐿𝐿𝐿 relation with 𝑞-Oscillator algebra

◼

◼









◼

P.3~6
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Tetrahedron equation

◼ Matrix equation on 𝑉1 ⊗⋯⊗𝑉6 (𝑉𝑖 : linear space)

 𝑋𝑖𝑗𝑘 (𝑋 = 𝐴, 𝐵, 𝐶, 𝐷) acts non-trivially only on 𝑉𝑖 ⊗𝑉𝑗 ⊗𝑉𝑘.

◼ 3D analog of Yang-Baxter equation (YBE)
 We can construct a 3D version of transfer matrices similarly to YBE.

◼ Several solutions are known although less systematic than YBE.

3/25

[Zamolodchikov’81]

Zamolodchikov, Baxter, Bazhanov, Korepanov, Mangazeev, Sergeev, Stroganov,

Kapranov, Voevodsky, Kazhdan, Soibelman, Carter, Saito, Kuniba, Okado, …

𝑅𝐿𝐿𝐿 relation 4/25

◼ Today, we focus on the 𝑅𝐿𝐿𝐿 type tetrahedron equation: 

◼ If we specify the outer lines for 1,2,3-th spaces, this reads as

◼ For each (𝑖, 𝑗, 𝑘, 𝑎, 𝑏, 𝑐), (∗) gives linear equations for 𝑅.

◼ If we can ansatz ``good” 𝐿s, we can then obtain a solution to the 𝑅𝐿𝐿𝐿
type tetrahedron equation by solving these equations.

◼ In fact, it can be done by considering a quantized six vertex model for 𝐿s.

=

=
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𝑞-Oscillator algebra valued six vertex model

◼ 𝑞-Oscillator algebra 𝑂𝑞
 Genetators: 𝐤, 𝐚±

 Relations: 

 Representation 𝜋𝑂 on                               :

◼ 𝐿-operator 𝐿𝑂 ∈ End(ℂ2 ⊗ℂ2 ⊗𝐹+)

5/25

1 1 𝜇𝐤 −𝑞𝜇−1𝐤 𝐚+ 𝐚−

=

𝜇: parameter

[Bazhanov-Sergeev’06]

𝑅𝐿𝐿𝐿 relation for 𝑂𝑂𝑂

◼ Thm: [Bazhanov-Sergeev’06]

 Consider the following 𝑅𝐿𝐿𝐿 relation for 𝐿𝑂:

 𝑅𝑂𝑂𝑂 ∈ End(𝐹+
⊗3) is uniquely determined and given by

 𝑅𝑂𝑂𝑂 also satisfies the 𝑅𝑅𝑅𝑅 type tetrahedron equation:

◼ Thm: [Kapranov-Voevodsky’94]

 𝑅𝑂𝑂𝑂 = intertwiner of irreps of quantum coordinate ring 𝐴𝑞(𝐴2)

6/25

___ ___ ___
𝜇4 𝜇5 𝜇6
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7/25Outline

◼

◼ Main part: 𝑅𝐿𝐿𝐿 relations with 𝑞-Weyl algebra

◼









◼

P.8~16

𝑞-Weyl algebra

◼ Aim: Generalize the 𝑅𝐿𝐿𝐿 approach by Bazhanov-Sergeev

◼ Recall: 𝑞-Oscillator algebra 𝑂𝑞
 Genetators: 𝐤, 𝐚±

 Relations: 

 Representation 𝜋𝑂 on                               :

◼ 𝑞-Weyl algebra 𝑊𝑞

 Generators: 𝑋±1, 𝑍±1

 Relations: 𝑋𝑍 = 𝑞𝑍𝑋

 Representations 𝜋𝑋, π𝑍 on :

◼ An embedding 𝑂𝑞 ↪𝑊𝑞:

8/25

(coordinate rep)

(momentum rep)
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◼ 𝐿-operators 𝐿𝐴 (𝐴 = 𝑋, 𝑍, 𝑂)
 𝐿𝐴 ∈ End ℂ2 ⊗ℂ2 ⊗𝐹 𝐴 = 𝑋, 𝑍 and 𝐿𝑂 ∈ End(ℂ2 ⊗ℂ2 ⊗𝐹+)

◼ Remark:

 𝐿𝑋 for 𝑟, 𝑠, 𝑡, 𝑤 = (1,1, 𝜇−1, 𝜇2) corresponds to 𝐿𝑂 via the pullback.

 𝐿𝑍 doesn’t have such a correspondence and behaves differently from 𝐿𝑂.

 Slightly different but similar 𝐿𝑋 was introduced in [Bazhanov-
Mangazeev-Sergeev’10] but 𝐿𝑍 is new.

𝑞-Weyl algebra valued six vertex model 9/25

𝑟, 𝑠, 𝑡, 𝑤, 𝜇: parameters

𝑟 𝑠 𝑡𝑤𝑋 −𝑞𝑡𝑋 𝑍 𝑍−1(𝑟𝑠 − 𝑡2𝑤𝑋2)

1 1 𝜇𝐤 −𝑞𝜇−1𝐤 𝐚+ 𝐚−

[Kuniba-Matsuike-Y’22]

Family of 𝑅𝐿𝐿𝐿 relations

◼ Our Problem: 

 Solve the following equation for 𝑅𝐴𝐵𝐶 (A, B, C ∈ {𝑋, 𝑍, 𝑂}):

 Each 𝐿 has different parameters depending on its tensor compoment.

10/25

___ ___ ___ ___ ___ ___

𝑟4, 𝑠4, 𝑡4, 𝑤4 or 𝜇4

𝑟5, 𝑠5, 𝑡5, 𝑤5 or 𝜇5

𝑟6, 𝑠6, 𝑡6, 𝑤6 or 𝜇6
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Main result

◼ [Kuniba-Matsuike-Y’22]:
 We solved 𝑅𝐿𝐿𝐿 relations for the following 𝐴𝐵𝐶s.

 For all cases, 𝑅𝐴𝐵𝐶 are uniquely determined in each sector specified by 
appropriate parity conditions.

 We obtained the explicit formulae for them, where their matrix 
elements are either factorized or expressed as q-hypergeometric series.

11/25

𝑅𝐿𝐿𝐿 relation for 𝑍𝑍𝑍

◼ Examples of 𝑅𝐿𝐿𝐿 relation for 𝑍𝑍𝑍:

◼ Writing down actions of 𝜋𝑍, we obtain recursion relations for 𝑅𝑍𝑍𝑍 :

◼ Fact:  Recursion relations for 𝑍𝑍𝑍 consists of 4 disjoint sets, which 
are specified with the parity pair (𝑑1, 𝑑2) = (𝑎 + 𝑐 − 𝑗, 𝑏 − 𝑖 − 𝑘).

12/25
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𝑅𝐿𝐿𝐿 relation for 𝑍𝑍𝑍 13/25

◼ Thm: [Kuniba-Matsuike-Y’22]
 𝑅𝑍𝑍𝑍 ∈ End(𝐹⊗3) is uniquely determined in each sector and given by

◼ Features:

 The matrix elements of 𝑅𝑍𝑍𝑍 are factorized.

 𝑅𝑍𝑍𝑍 is not locally finite.

 There are 4 sectors specified with the parity pair (𝑑1, 𝑑2).

𝑅𝐿𝐿𝐿 relation for 𝑂𝑍𝑍

◼ Thm: [Kuniba-Matsuike-Y’22]
 𝑅𝑂𝑍𝑍 ∈ End(𝐹+ ⊗𝐹⊗𝐹) is uniquely determined and given by

◼ Features:

 The matrix elements of 𝑅𝑂𝑍𝑍 are expressed as q−hypergeometric series.

 𝑅𝑂𝑍𝑍 is not locally finite.

 There is only 1 sector.

14/25
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𝑅𝐿𝐿𝐿 relation for 𝑂𝑂𝑍 15/25

◼ Thm: [Kuniba-Matsuike-Y’22]
 𝑅𝑂𝑂𝑍 ∈ End(𝐹+ ⊗𝐹+ ⊗𝐹) is uniquely determined and non-trivial iff

𝜇1 /𝜇2 = 𝑞𝑑 for d ∈ ℤ. In that case, it is given by

◼ Features:

 The matrix elements of 𝑅𝑂𝑂𝑍 are factorized.

 𝑅𝑂𝑂𝑍 is locally finite.

 There is only 1 sector but 𝑅𝑂𝑂𝑍 is non-trivial if the parity of 2𝑒 is even.

𝑅𝐿𝐿𝐿 relation for 𝑂𝑂𝑂

◼ Thm: [Bazhanov-Sergeev’06]

 𝑅𝑂𝑂𝑂 ∈ End(𝐹+
⊗3) is uniquely determined and given by

◼ Features:

 The matrix elements of 𝑅𝑂𝑂𝑂 are expressed as q−hypergeometric series.

 𝑅𝑂𝑂𝑂 is locally finite.

 There is only 1 sector.

 𝑅𝑂𝑂𝑂 also satisfies the following tetrahedron equation:

 𝑅𝑂𝑂𝑂 = intertwiner of irreps of quantum coordinate ring 𝐴𝑞(𝐴2)

16/25
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17/25Outline

◼

◼

◼ Discussion:

 𝑅𝑅𝑅𝑅 equations for 𝑅𝐴𝐵𝐶

 𝑅𝑍𝑍𝑍 as intertwiner of 𝐴𝑞(𝐴2)

 Root of unity

 Other comments

◼

P.18~24

𝑅𝑅𝑅𝑅 equation as associaticity

◼ If we have , we have

◼ 𝑅456𝑅236𝑅135𝑅124 also gives an intertwiner for 

◼ If they are irreducible and equivalent, we have

18/25

(up to normalization)
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𝑅𝑅𝑅𝑅 equations for 𝑅𝐴𝐵𝐶

◼ For our 𝑅𝐿𝐿𝐿 relations, we expect the following 𝑅𝑅𝑅𝑅 equation 
holds:

◼ Remark:

 Each tensor component is assigned with different parameters.

 e.g. If 𝐴 = 𝐵 = 𝐶 = 𝐷 = 𝐸 = 𝐹 = 𝑍, this depends on 𝑟𝑖 , 𝑠𝑖 , 𝑡𝑖 , 𝑤𝑖 (𝑖 = 1,… , 6).

 𝑅𝐴𝐵𝐶s except for 𝐴𝐵𝐶 = 𝑂𝑂𝑍, 𝑍𝑂𝑂, 𝑂𝑂𝑂 are not locally finite, so the 
convergence of 𝑅𝑅𝑅𝑅 equation is non-trivial for such cases.

 𝐿𝑍 is not irreducible because 𝐿𝑍 𝑖,𝑗
𝑎,𝑏

does not include 𝑋−1.

19/25

𝑟 𝑠 𝑡𝑤𝑋 −𝑞𝑡𝑋 𝑍 𝑍−1(𝑟𝑠 − 𝑡2𝑤𝑋2)

𝑅𝑅𝑅𝑅 equations for 𝑅𝐴𝐵𝐶

◼ Conjecture: [Kuniba-Matsuike-Y’22]
 The following 𝑅𝑅𝑅𝑅 equations are valid:

20/25

Rermark: Each equation is checked for 

over 10000 outer lines by computer.
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𝑅𝑍𝑍𝑍 as intertwiner of 𝐴𝑞(𝐴2)

◼ Proposition: [Kuniba-Matsuike-Y’22]
 𝑅𝑍𝑍𝑍 ∈ End(𝐹⊗3) satisfies the following intertwining relation of the 

quantum coordinate ring 𝐴𝑞(𝐴2):

 𝜋𝑖 = 𝜋𝑍 ∘ 𝜚𝑖 , where 𝜚1 and 𝜚2 are respectively given by

 𝜋𝑖s are not irreducible.

 Identification of parameters is done as follows:

21/25

𝑡𝑖𝑗 : generators of 𝐴𝑞(𝐴2)

Root of unity

◼ If we specialize 𝑞 to a root of unity, the Fock spaces 𝐹, 𝐹+ become 
finite dimensional. If we can formulate 𝑅𝐴𝐵𝐶 in such cases…

◼ Extension of family of 𝑅𝑅𝑅𝑅 equations:

 Getting over its non locally finiteness, we obtain more family of 𝑅𝑅𝑅𝑅
equations.

◼ Connection with physical models:

 Finite dimensional solutions to tetrahedron equations are quite 
important because they can be used to construct tractable 3D transfer 
matrices.

 [Bazhanov-Mangazeev-Sergeev’10] introduced (𝐿𝑋)′ which is slightly 
different from 𝐿𝑋 and solved (𝑅𝑋𝑋𝑋)′ at 𝑁-th root of unity. They found

22/25

(𝑅𝑋𝑋𝑋)′ ≅ Bazhanov-Baxter model

(spectral parameter dependent solution to tetrahedron equation)

generalized chiral Potts model

≅ 2D 𝑅 matrices associated with 𝑈𝑞(𝐴𝑛−1
(1)

) at root of unity

reduction [Bazhanov-Baxter’92]
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Other comments

◼ Boundary integrability in 3D:

 a 𝑞-Weyl algebra version of [Kuniba-Pasquier’18], [Kuniba-Okado-Y’19]?

◼ Reduction to 2D:
 Generally, infinitely many solutions to the Yang-Baxter equation are 

obtained from one solution to the tetrahedron equation.

 For 𝑅𝑂𝑂𝑂, they are identified with 𝑅 matrices associated with

23/25

𝑅 𝐿𝐿𝐿 = 𝐿𝐿𝐿 𝑅
(Yang-Baxter equation up to conjugation)

RRRR=RRRR

(Tetrahedron equation)

𝐾 𝐿𝐺𝐿𝐺 = 𝐺𝐿𝐺𝐿 𝐾
(reflection equation up to conjugation)

RKRRKKR=RKKRRKR

(3D reflection equation)

reduction 𝑅 matrices

by trace 𝑈𝑞(𝐴𝑛−1
(1)

), symmetric tensor rep.

by boundary 

vector
𝑈𝑞(𝐷𝑛+1

(2)
), 𝑈𝑞(𝐴2𝑛

(2)
), 𝑈𝑞(𝐶𝑛

(1)
), Fock rep.

[Kuniba-Okado’14]

Other comments

◼ Characterization in terms of PBW bases:

 Let us consider the transition matrix 𝛾 for PBW bases of quantum 
enveloping algebra 𝑈𝑞(𝐴2):

 𝑒𝑖
(𝑎)

: divided power given by 𝑒𝑖
(𝑎)

= 𝑒𝑖
𝑎/[𝑎]!

 Theorem: [Sergeev’07], [Kuniba-Okado-Yamada’13]

 Can we formulate 𝑅𝐴𝐵𝐶 in this context?

24/25
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Summary

◼ We considered three kinds of 𝐿-operators 𝐿𝑋, LZ, LO and 𝑅𝐿𝐿𝐿
relations which they satisfy. They can be regarded as 𝑞-
Oscillator or 𝑞-Weyl algebra valued six vertex models.

◼ We solved these 𝑅𝐿𝐿𝐿 relations and obtained explicit formulae 
for 𝑅𝐴𝐵𝐶 . For all cases, 𝑅𝐴𝐵𝐶 are uniquely determined in each 
sector specified by appropriate parity conditions and their 
matrix elements are either factorized or expressed as q-
hypergeometric series.

◼ By computer experiments, we conjectured 𝑅𝑅𝑅𝑅 equations for 
𝑅𝐴𝐵𝐶 . This is motivated by earlier results about representation 
theoretic origin of 𝑅𝑂𝑂𝑂.

◼ We found 𝑅𝑍𝑍𝑍 satisfies an intertwining relation for reducible
representations of 𝐴𝑞(𝐴2).

25/25
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