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Abstract

In this thesis, we focus on the possibilities to realize a nonvanishing finite quantum
correction to the mass of zero-mode of the Wilson-Line (WL) scalar in flux compact-
ification. We extend Abelian gauge theories to non-Abelian gauge theories and add
some higher dimensional operators, and then we show that the quantum corrections to
WL scalar mass are canceled. To realize a nonvanishing finite WL scalar mass in flux
compactification, we analyze the generalized loop integrals in the quantum correction
to WL scalar mass at one-loop. We further guess and classify the four-point and three-
point interaction terms generating the finite quantum correction to WL scalar mass
at one-loop level. Of these interaction terms, we focus on a simplest interaction term
and illustrate the finite quantum correction to the WL scalar mass in a six-dimensional
scalar QED. Finally, we propose a new inflation scenario in flux compactification as an

application of the above discussion and compare our results to Planck 2018 data.



Contents

1 Introduction

2 Flux Compactification
2.1  Quantum mechanics in magnetic field . . . . .. .. ... ...

2.2 Flux compactification in six-dimensional theory . . . . . ... ... ..

3 Abelian Gauge Theory Analysis in Six Dimensions

3.1 Six-dimensional action . . . . . .. ..o
3.1.1 Gaugefield . ... ..o
3.1.2 Scalar field . ... ...
3.1.3 Fermion field . . .. .. ... oo

3.2  Quantum correction: Without flux . . . .. .. ... ... ... ....
3.2.1 Scalar QED . . . ...
322 QED ...

3.3 Quantum correction: With flux . . . . .. ... ... ... ... ....
3.3.1 Scalar QED . . . ...
332 QED ...

3.4 WL scalar as a Nambu-Goldstone boson . . . . . . ... ... ... ..

4 Non-Abelian Gauge Theory Analysis in Six Dimensions

4.1 Yang-Mills theory . . . . . . . . . ..
4.2 Mass spectrum . . . .. .. L
4.2.1 Gauge field . . ... ..
4.2.2 WL scalar field . . .. .. ... ... ...
423 Ghost field . . . . ...



4.3

4.4

4.5

4.6

4.7

Effective Lagrangian . . . . . . . . .. ... 36

4.3.1 Gauge field . . . ... 38
4.3.2 WL scalar field . .. ... ... ... ... 39
4.3.3 Ghost field . . . . . ... 40
Cancellation of one-loop corrections to WL scalar mass . . . . . . . .. 40
4.41 Gauge bosonloop . . . . . ... 40
442 WLscalarloop . . . .. . ... 42
4.4.3 Ghost fieldloop . . . . . . ... 43
4.4.4 Cancellation between WL scalar loop and ghost loop contributions 44
Fermion . . . . . . . . . 45
451 SU(2) Weyl fermion . . . . . ... ... . 46
4.5.2 Effective Lagrangian . . . . . . . .. .. ... ... .. ... 48
4.5.3 Fermionloop . . . . .. ... 49
Higher dimensional operator . . . . . . . . . .. ... ... ... .... 50
4.6.1 Te[DLDYDyDNFMN] 0o 51
4.6.2 NMNMNST By Fop vy Fapns] - o o o o 51
4.6.3 2Tx[DpFynDEFMNY 00 52
Quantum corrections to WL scalar mass from higher dimensional operators 53
4.7.1  One-loop Corrections from the Quartic Interactions . . . . . . . 54
4.7.2  One-loop Corrections from the Cubic Interactions . . . . . . .. 55

4.7.3  Cancellation of One-loop Corrections to Scalar Mass at O(1/A?) 57

4.7.4 Comments on the Corrections from the Higher Dimensional Op-

erators More Than O(1/A*) . . ... ... ... ... ... ... 58

4.8 WL scalar as a Nambu-Goldstone boson . . . . . ... ... ... ... 58
Nonvanishing finite WL scalar mass 60
5.1 Summary for Kaluza-Klein mass spectrum . . . . . . . ... ... ... 60
5.2 The structure of loop integral: general . . . . . . . . ... ... ... .. 61
5.3 The structure of loop integral: part 1 . . . . . . . . .. ... ... ... 62
5.4 Classification of interaction terms: part 1 . . . . . . . .. ... ... .. 63
5.4.1 Four-point interaction . . . . . . . .. ... 63
5.4.2  Three-point inteaction . . . . . . . .. ... ... L. 64



5.5 The structure of loop integral: part 2 . . . . . . . . . ... ... .. ..
5.6 Classification of interaction terms: part 2 . . . . . . . .. .. ... ...
5.7 The structure of loop integral: part 3 . . . . . . . ... ... ... ...
5.8 Summary of the structure of loop integral . . . . . . .. ... ... ..
5.9 Examples . . . . . ..
5.9.1 Scalar type . . . .. ..
5.9.2 fermion/gauge type . . . . . ...
5.10 Nonvanishing finite WL scalar mass . . . . . . . . .. ... .. ... ..
5.10.1 Diagrammatic computation . . . . . . ... ... ... L.
5.10.2 Effective potential analysis . . . . . . . .. .. ... ... ...
5.10.3 WL scalar as a pseudo Nambu-Goldstone boson . . . . . .. ..

Application to inflationary theory

6.1 Setup and one-loop effective potential . . . . . . . . .. ... ... ...

6.2 Inflationary parameters . . . . . . . . .. ...

6.3 Numerical results . . . . . . . . ..o
6.3.1 ga<<lcase. . . . . ..
6.3.2 gy>lcase. . . . ...

6.3.3 The vacuum energy during inflation . . . . . . . .. ... .. ..
Conclusion
Poisson Resummation
Detail of 2Tr[D Fy;ny DY FMY]
Tr[F]

Hurwiz zeta function

81
81
84
86
86
39
90

91

95

97

99

101



Chapter 1

Introduction

A theory containing elementary particles (quarks, leptons, gauge bosons and Higgs
boson) is called the Standard Model (SM) of particle physics. From the point of view
of gauge theory, the SM is the SU(3)¢xSU(2),xU(1)y gauge theory. SU(3)c group
implies quantum chromodynamics and SU(2),xU(1)y group means electroweak theory.
After Higgs boson was discovered at LHC experiment in 2012 [1,2], the SM has been
established as a theory explaining real phenomena.

However, the SM is not a final destination and has many phenomena which cannot
be explained. Since the SM is just a low-energy effective theory with electroweak scale
as a cutoff scale, the SM cannot explain some ultraviolet (UV) physics. As a guiding
principle of search for the physics beyond the Standard Model (BSM), the hierarchy
problem has been considered [3,4]. In the SM, the quantum correction to the mass of
Higgs field is sensitive to the square of the UV cutoff scale of the theory (for example,
Planck scale or the scale of grand unified theory). Since the cutoff scale is much larger
than an experimental value of the Higgs mass (125 GeV), the solution of the hierarchy
problem requires an unnatural fine-tuning of parameters or exploring a new physics
beyond the SM at order of TeV scale.

Historically, the latter approaches have been mainly studied so far. The origin of
the hierarchy problem is that there are no symmetries forbidding the mass of the scalar
field. As an example of the solution of the hierarchy problem, supersymmetry has
been considered [5,6]. Supersymmetry is the symmetry exchanging boson and fermion.
If we impose supersymmetry on a theory, the quantum corrections from boson loops

and fermion loops are canceled at all order. Although supersymmetry predicts some



superpartners, no signature of them has been found at TeV scale. As another example, a
higher dimensional field theory has been considered [7—10]. In particular, gauge-Higgs
unification has been paid attention in order to solve the hierarchy problem [10-14].
Gauge-Higgs unification is the theory that zero-mode of the scalar field induced from
extra components of higher dimensional gauge field (called as Wilson-line (WL) scalar
field) is identified with Higgs boson. In the gauge-Higgs unification, the finite Higgs
mass is generated by the quantum corrections at one-loop. Higher dimensional field
theory also predicts Kaluza-Klein fields and compact space. Both of them however has
not been found at TeV scale.

Toward the approaches to the hierarchy problem, we consider a higher dimensional
theory with magnetic flux compactification. Magnetic flux compactification has been
originally studied in string theory [15,16]. Even in the field theories, flux compactifica-
tion has many attractive properties: attempt to explain the number of the generations
of the SM fermion [17-19], computation of Yukawa coupling [20—22], and spontaneously
supersymmetry breaking [23]. Recently, it has been considered that the quantum cor-
rections to the masses of zero-mode of the WL scalar are canceled [24-29] and are
finite [30]. The physical reason of the cancellation is that the shift symmetry from
translation in extra spaces forbids the mass term of WL scalar field. In that situation,
the zero-mode of the WL scalar field can be identified with Nambu-Goldstone (NG)
boson (or with pseudo-NG boson in [30]) of spontaneously broken translational sym-
metry. It is not possible for results in [24-29] to apply to the hierarchy problem as it
stands since the WL scalar field is also massless at quantum level. However, even if
the new physics scale (or compactification scale) is much higher than the electroweak
scale and the KK fields are very massive, the hierarchy problem may be solved in the
framework of flux compactification [30].

In this thesis, we focus on a six-dimensional field theory with flux compactification
and mainly investigate the quantum corrections to WL scalar mass. At first, we review
Abelian gauge theories in six dimensions without or with flux and discuss the difference
between the quantum corrections without and with flux [24,25]. Next, we extend to
non-Abelian gauge theories and also calculate the quantum corrections to WL scalar

mass [27]. Moreover, we add higher dimensional operators and compute the quantum



corrections to WL scalar mass [29]. We show that the quantum corrections are canceled
in these theories. To obtain the finite quantum correction, we investigate the loop
integral in the quantum correction to WL scalar mass at one-loop [30]. Then, the
conditions for the loop integral and mode sum to be finite are derived. We further
guess and classify the four-point and three-point interaction terms generating the finite
quantum correction to WL scalar mass at one-loop level. Of these interaction terms, we
focus on a simplest interaction term and illustrate the finite quantum correction to the
WL scalar mass in a six-dimensional scalar QED. Finally, we apply the theory with the
finite quantum correction to inflationary theory [31]. From the effective potential, we
can calculate inflationary parameters. We compare our results to Planck 2018 data [32].

This thesis is organized as follows. We explain the basis of flux compactification
in chapter 2. The idea of flux compactification is based on quantum mechanics in
magnetic field. Thus, after introducing the quantum mechanics in magnetic field, we
consider a six-dimensional field theory with flux compactification. In chapter 3, we
review Abelian gauge theories in six dimensions without or with flux. The quantum
corrections to WL scalar mass in a theory without flux are finite. On the other hand,
the quantum corrections to WL scalar mass in a theory with flux vanish. We discuss
this difference. We also see that the physical reason of the cancellation is that the shift
symmetry from translation in extra spaces forbids the mass term of WL scalar field.
We extend Abelian gauge theories to non-Abelian gauge theories and also calculate
the quantum corrections to WL scalar mass in chapter 4. We also discuss higher
dimensional operators and compute the quantum corrections to WL scalar mass. In
chapter 5, we study possibilities to realize a nonvanishing finite WL scalar mass in flux
compactification by analyzing the generalized loop integrals in the quantum correction
to WL scalar mass at one-loop. In chapter 6, we propose an inflation scenario in
flux compactification. We calculate inflationary parameters and compare our results
to Planck 2018 data. Finally, we devote our conclusion in this thesis. In appendix
A, we review Poisson resummation formula. In appendices B and C, we summarize
the calculations of 2Tr[Dy FyyDEYFMN] and Tr[F*] in chapter 4, respectively. The

properties of Hurwitz zeta function are summarized in appendix D.
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Chapter 2

Flux Compactification

Magnetic flux compactification is a compactification with nontrivial magnetic back-
ground. Originally, flux compactification has been studied in string theory and related
with D-brane (see [16]). Higher dimensional theory with flux compactification has
also many attractive properties: attempt to explain the number of the generations of
the standard fermion [17-19], realization of four-dimensional chiral fermion zero-mode
and computation of four-dimensional Yukawa coupling from higher dimensional the-

ory [20-22]. In this chapter, we give a basic idea for magnetic flux compactification.

2.1 Quantum mechanics in magnetic field

Before considering flux compactification, let’s remind us of quantum mechanics in mag-
netic field [33]. We consider that a charged particle with a charge e and a mass m

moves in a uniform magnetic field B. The two-dimensional Hamiltonian is given by

1
H = o {5 — eAd(e. ) + (0, — eAy(2,9))}
1 . .
=5 (iD,)?* + (sz)2} , (2.1)
where p, = —i0,, p, = —i0, are momenta and D; = 0; —ieA;(i = x,y) are the covariant

derivatives. Eq.(2.1) is similar to the Hamiltonian of harmonic oscillators. Computing

the commutation relation between :D, and ¢D,, we obtain

[iD,,iD,] = ie(0,A, — 8,4,) = ieB, (2.2)
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where we use a magnetic field B = 0,4, — d,A,. When eq.(2.2) is normalized by eB,
the commutation relation is rewritten by

iD, iD,

, Pl =1, = P = 2.3

@r=n e=UgE = (2.3
Once creation and annihilation operators are defined by
P _p

aEQ+Z aTEQ ! (2.4)

V2 V2

the Hamiltonian (2.1) is expressed by

H=w (a*a+%>, (2.5)

where w = eB/m. From eq.(2.5), the energy level is discrete and is called as Landau
level.
Next, we focus on eigenvalues of momentum. For simplicity, we choose the gauge

fields (called Landau gauge) as follows
A, =0, A,=Buz. (2.6)
Eq.(2.1) is expressed by

1
H = . {pi + (ky — eBx)Q}

1 ky )’
_ 2 op2f Ry
=35 {pm +e°B (x . ) } : (2.7)

where p, is replaced by k,, which is the eigenvalue of p,. Note that an eigenvalue £,
is arbitrary and has no relation to energy eigenvalue n. To deal with arbitrary k,, we
impose periodic boundary conditions in the z direction with length L, and in the y
direction with length L,. This is the same as periodic boundary conditions of torus.
From the periodic boundary condition of y direction, k, is discretized as follows

k= i—jz (lez). (2.8)
On the other hand, we find that the center of wavefunction in the x direction is k,/eB
from eq.(2.7). To locate the center of this wavefunction between 0 and L,, it needs
satisfying the inequality

¢BL,L,

<[ <
O<is 2T

12



Since the eigenvalue k, has no relation to the energy eigenvalue, the quantity
eB

N = L, (2.9)

means the number of the degeneracy.

o]l
|
o

Particle pe

Cs

Figure 2.1: The setup for Aharonov-Bohm effect. Magnetic field only exists in the
shadow region.

To discretize the degeneracy N, we consider the gauge transformation for wavefunc-

tion ¢ (z) (Aharonov-Bohm effect):

Y(x) = XD (a), (2.10)

where x() is a degree of freedom of gauge transformation A}, = A, — 9, x. Figure 2.1
is the setup for the Aharonov-Bohm effect. A particle can pass through two paths C}
and Cy. Wavefunction has a phase difference explie(xc, — xc,)] between path C; and
path C5. By using a gauge field A, e(xco, — Xo,) is represented by

Oa = e(Xcy, — Xc)
:e[/CIA(s)-ds—/CQA(s)-ds} :ejl{A(s)-ds
— e/B -dS = e® = eBL,L,, (2.11)

where we use the Stoke’s theorem and ® is a magnetic flux in this section. 04 is called

Aharonov-Bohm phase. Since the wavefunction must be single-valued, we get
eBL,L,=2rN (N €Z). (2.12)
Thus, the degeneracy N is discretized.
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2.2 Flux compactification in six-dimensional theory

We consider a higher dimensional field theory with flux compactification. In general,
magnetic flux can be introduced into a compact space. In superstring theory which
implies ten-dimensional spacetime with six-dimensional compact space, there are many
ways to introduce the magnetic flux [16]. In higher dimensional field theories, the
magnetic flux can be introduced into a torus 72 [20,24] or a sphere S? [34,35]. Although
the flux compactification on S? is interesting, we consider the flux compactification on
T? hereafter.

We assume the six-dimensional spacetime M® is a product of four-dimensional
Minkowski spacetime M* and two-dimensional torus 7%: M% = M* xT?. In this thesis,
the six-dimensional spacetime index is given by M, N = 0,1, 2, 3, 5, 6 and the Minkowski
spacetime M*? index is p,v = 0,1,2,3 and compact space T2 index is m,n = 5,6. We
follow the metric convention as 7,, = (—1,+1,---,4+1). In general, a torus can be
defined on a complex plane C (or two dimensional real plane R?) by modding out a
Ao, which is two-dimensional lattice generated by two vectors {€, €»}. The size of T?
is parametrized by the length L,, Ly and the shape is 7 € C. For simplicity, we set
L =1L,=1Ly=1and 7 =i (square torus).

We introduce the magnetic flux. The magnetic flux is given by the nontrivial back-
ground (or vacuum expectation value (VEV)) of the fifth and the sixth component of

the gauge fields A5¢. We choose the background of As¢ as

1 1
(A5) = —§f$67 (Ag) = §f3757 (2.13)
which is called symmetric gauge. This background introduces a constant magnetic flux
density (Fss) = f with a real number f. Note that this solution breaks an extra-
dimensional translational invariance spontaneously. The degeneracy is obtained from

. . 2
5
(Fs6) integrating over T as follows

i dlL’5dl’6 <F56> = iLQf =N € Z, (214)

21 Jpe 2m

where ¢ is a gauge coupling. Eq.(2.14) is the same as eq.(2.9) and means that the

magnetic flux is quantized.
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We take a kinetic term for six-dimensional charged scalar field ® as an example:
S, = /d%( ~ (Dy®)" D), (2.15)

where Dy, = 0y — igAyy is the covariant derivative. Decomposing this into the part of

Minkowski spacetime and that of compact space, we have
Se = /d%( —n"(D,®)"D,® — (Ds®)*"D5P — (D6<I>)*D6<I>>
~ /d%( — (D, ®)* D, ® — &*(—D? — Dg)cp), (2.16)

where we drop the surface terms in performing an integration by parts in the second
line. The second term in eq.(2.16) will be a mass term in terms of four-dimensional
effective theory. As in the previous section, we recall the commutation relation, which
was defined in eq.(2.4). Replacing D,,, Dy, e, B by D5, D, g, f respectively, creation and

annihilation operators in the present case are given by

a:,/ﬁ(wg)—z%), a*:,/%(mﬁpﬁ), la,a] = 1. (2.17)

By using these creation and annihilation operators, the mass term can be rewritten by
1
—D} - D} =2gf (aTa - 5) : (2.18)

This mass spectrum becomes a Landau level.
We denote Landau level by n (n = 0,1,2,---) and the degeneracy by j (j =
0,1,---,N —1). If the zero mode function in compact space is expressed by & ;,

the zero mode function is determined by [20]
at; =0, a'&,;=0. (2.19)

By using creation and annihilation operators, the higher mode function &, ; can be
obtained by [36]

1 n c _ 1 ne
€ = ﬁ(ah gy Enj = ﬁ(co €0, (2.20)

The higher mode function &, ; also satisfies an orthonormality condition

/T2 d2xgn’,j’€n,j = n,n’(;j,j“ (221)

15



To derive a four-dimensional effective Lagrangian by Kaluza-Klein reduction, we
need to expand @ in terms of mode functions &, ; (Kaluza-Klein expansion, KK expan-

sion):

(aM)&o i (m), (2.22)

o = Z@n]xufmwm Z@n]xﬂ
Z@ ()05 () = Z@ T (0)"&0.5(m). (2.23)

3\

By using this KK expansion and the orthonormality condition, the four-dimensional

effective action is obtained as

S, = /d%c (/T2 2z ( " (D, ®)* D, ® — &*(—D? —Dg)cb)>
/d%Z( (D,®, ;) D"®, ; — (29f) (n—|— %) q);’j@n,j) . (2.24)

16



Chapter 3

Abelian Gauge Theory Analysis in
Six Dimensions

In this chapter, we review an Abelian gauge theory in six dimensions. In particular, we
see a quantum electrodynamics (QED) in six-dimensional theory [24-26]. First, we will
calculate a four-dimensional effective Lagrangian from the six-dimensional Lagrangian.
Then, we will calculate the quantum corrections to Wilson-line scalar mass without or

with magnetic flux, and discuss their properties.

3.1 Six-dimensional action

3.1.1 Gauge field

Before considering a six-dimensional action for gauge field, it is useful to define 0, z and

¢ as

1 1
¢: E(A6+ZA5), Z = §($5+i$6), 8:85—i86. (31)

Since VEV is given by eq.(2.13), (#) = fz/\/2 is obtained, and then we expand ¢
around the flux background (¢) as

_ _ .
¢—<¢>+w—\/§ +¢. (3.2)

To distinguish ¢ from a bulk scalar ®, which we will introduce later, we call ¢ Wilson

line (WL) scalar field.

17



Six-dimensional action for gauge field is expressed by

1
Seg = /dﬁx <—ZFMNFMN)
1
= / dSz (71) {FWFW +2(F* F 5 + F'F,¢ + F56F56)}, (3.3)

where Fyyny = Oy An — On Ay is the field strength. Terms from the second term to the
fourth term in eq.(3.3) are expressed in terms of ¢ and the result is
6 1 v * 1 * a, \2 1 2
Seg = [ d x(—ZF“ F,— 0" “go—z(ago + 0p)° — §f
1~ 1 ~
~25AR9A, — 9, AMDp* — B ) 3.4
9 @ \/5 © (O ©) (3.4)

Note that eq.(3.4) only contains quadratic terms for gauge and WL scalar fields, but

eq.(3.4) does not contain the interaction terms.

3.1.2 Scalar field

Six-dimensional action for the scalar field is the same as eq.(2.15) in the section 2.2:
Se. = /d%( - (DM<1>)*DM<1>)
- /d%( — (D, ®)* D"® — (Dm<1>)*Dm<I>>. (3.5)

The second term in eq.(3.5) involves the mass term and the interaction terms between

WL scalar ¢ and bulk scalar ®. The second term in eq.(3.5) is calculated as

1 1, -
(D @)D" ® = (D5®)" D°® + (Ds®)" D°® = S D*"D® + - D** D

~ —%CI)*(DTD +DD)D — V299 B DD + V2990 DD + 2¢% 0" pd* O
(3.6)
where the covariant derivatives D, D in the complex coordinates are defined by
D =Ds—iDg=0—V296 =D —2g0p, (3.7)
D = D5 +iDg = 0 + V299" = D + V2g¢", (3.8)
D =Ds —iDs =0 —V2g(¢), (3.9)
D =Ds+iDg =0+ V2g (¢*) . (3.10)

18



Note that D,, means the covariant derivatives with VEV (A4,,), and D*(D*) is not
D(D) since D* = 0 — v/2g¢* and we drop the surface terms in performing integration
by parts in the second line. Thus, eq.(3.5) is rewritten by
1 L
S = /d%( — (D,@)"D"® — 5| — (DD + DD)] o

V20 3 DD — 2900 DD — 29290*@@*(1)). (3.11)

3.1.3 Fermion field

Before considering a six-dimensional action for fermion fields, we introduce our conven-

tion of gamma matices [5,37]. First, o is defined as

0" =1y =0", o' =-0, (3.12)

where o' are Pauli mattices. Gamma matrices in four dimensions are given by
0 ot -1 0
po_ 5_ _:.0.1.2.3_
v—(au 0)’ V==Y <0 1)- (3.13)

When ¢, and ¢ is expressed by

m:(}f), sz(g), (3.14)

Yy, and ¥ are satisfied with 59, = —1;, and v r = i as the eigenfunction of +°.
Note that the Weyl fermion v and y have charges —g and +g¢g respectively. Gamma

matrices in six dimensions are given by

”7“ 0 5 O Z’YS 6 0 —’y5
wo__ _ —

Thus, a six-dimensional Weyl fermion V¥ is defined as

Yr ) 7 O 12131576 ( v 0 )
U= , D= =-T°TT“I°T°T° = : 3.16
( YR 0 —9° (3.16)
In this convention, "0 = —W is satisfied.
Six-dimensional action for fermion is given by
Sep = / doz iWTY Dy
= /d% i(UT*D, ¥ + UI° D5V + WD ). (3.17)

19



Calculating the second and third terms in eq.(3.17), one has
i(UT° D50 + UT9DW) = —xDstp + 1 D5y + i(xDet) + 1 DgX)
~ —x(0 = gfz = V2g9)0 — X(9 = gf 2 — V290" ). (3.18)
Thus, eq.(3.17) is expressed as
Sef = /d%( — i@/)a“D;@/_J —aixo"D,x

—X(0 — gfz —V2g0) — x(0 — gf 2 — ﬁgw*)i)- (3.19)

3.2 Quantum correction: Without flux

It is meaningful to compare quantum correction to WL scalar mass with flux to quantum
correction without flux. First, we consider the quantum correction to WL scalar mass
without flux. In the case without flux, KK expansion of scalar field ® and fermion fields

Y, x are given by

= Py (2) Anan (), (3.20)
U= () A (Tm). (3.21)

where n,m € Z. The mode functions of compact space A\, () are determined as

1 271
A (Tm) = T exp {%Z(n% + ma:(;)} , (3.23)

from the periodic boundary condition of torus. The mode function )\, ,, also satisfies

an orthonormality condition

/ d2x/_\n/7m/)\n7m = §n,n/5m7m/. (324)
T2

20



3.2.1 Scalar QED

Noting that the covariant derivatives D and D become the normal partial derivatives

0 and 0 without flux respectively, eq.(3.4) and eq.(3.11) have

1
Seomp = / d%:( — 1 F Fy = 0" ¢

‘|‘Z ( D (I)nm D'uq)n,m - |Mn,m|2q):<l7mq>"m

+ ﬂgM;,qu)Z,m(bn,m + ﬁgMn,mSO*q)Z,m(I)n,m - 29290*90(1)277”@”’7”))7

(3.25)

by using eq.(3.20) and eq.(3.23). In eq.(3.25), we omit KK gauge fields. KK modes
for A,, (or ¢, ¢*) are absorbed into the longitudinal part of KK gauge fields. Here,
M, = 2w (m +in)/L is the KK mass spectrum and we ignore the constant term. In

eq.(3.25), we deal with WL scalar ¢ as zero-mode.

Figure 3.1: Scalar loop correction

We are ready to calculate the quantum correction to WL scalar mass from eq.(3.25).
Two Feynman diagrams from the scalar field ®,, ,, loop contributions are depicted in
figure 3.1. Denoting lps,: and Iy, as the contributions from the four-point interaction
0 p®} , Pnm and the three-point interaction ¢®; @, .+ h.c. respectively, Iy, and

Ip3p: are obtained as

d*k 1
Ib4pt = —@29 Z Z / or 4k2+ |M m|27 (3'26)

Bk My )?
Iigpt = +i2g* Z Z/ T D (3.27)
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where Wick rotation is applied in momentum integrals. Thus, the quantum correction

to WL scalar mass has

5mlg - i(Ib4pt + IbSpt)
d*k 1 | M,y 1 |?
— 2 _ )
g Z/ (k Mo (2 |Mn,m|2>2>

2

, d4l<;

Since the contribution to quantum correction from scalar loop (3.28) is similar to the

contribution from fermion loop, which we will calculate in the next subsection, the
momentum integral and summation for KK mode m,n will be performed in the next

subsection.

3.2.2 QED
Eq.(3.4) and eq.(3.19) have
4 1 uy ow . *
SQED: dl’(—ZF FW—E)go ,U'QD
+ Z ( - “pn,mo-#D;d_}n,m - an,mauDan,m

by using eq.(3.21), eq.(3.22) and eq.(3.23) without flux. We also omit KK gauge fields
in eq.(3.29).

Xn,m

Figure 3.2: Fermion loop correction

As in the previous subsection, we calculate the quantum correction to WL scalar

mass from the action (3.29). A Feynman diagram from the fermion field loop contri-
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bution is depicted in figure 3.2. Denoting Iy by the contribution from the three-point

interaction QX m¥n,m, If is obtained as

d'k  Tr[ota¥]k,k,
ne0xa S S [

n=—00 m=——0o0

2

d'k
= tidg? Z Z/ N EEN e (3.30)

n=—oo m—=——0oQ

where we employed the relation Tr[o#5"] = —2n"”. Note that this quantum correction
is applied by two-component spinor techniques [38]. Thus, the quantum correction to

WL scalar mass has
d*k k2
om2 = il; = —4g> / . 31
=il =490 | Gy G (b (3:31)

Note that eq.(3.31) has a relation' dm} = —2mj.

We continue to compute eq.(3.31):

d* k 2 dt
2 —_— —t k + M7 ,m - Mn m t
omy = —44° E / dtt/ (k™ " = 27T2 g / | i

g 42t
B _ﬁZ/O 72 ©Xp {— 73 (m? —i—nZ)} : (3.32)

n,m

where we used Schwinger representation
I'(s o
) _ / e MLt (3.33)
As 0
The summation for KK mode m,n in eq.(3.32) are performed by using Poisson resum-

mation (see appendix A):

[e.e]

(TL + a) 27mma 77r2lm2R2
3 e { U0k R\/_m;me (3.34)
Replacing R and [ for L/27 and 1/t respectively and set a = 0, the summation part in
eq.(3.32) is rewritten as

Z Z exp[ A 2)} - (%)? 3 e {—Z—;(TZ%—SQ)}

(3.35)

'If we impose supersymmetry, the quantum correction to WL scalar mass from bosonic loop and
fermionic loop are canceled (see [24]).
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Thus, dm7 is calculated as

--= ’73 Z/ dtexp{—:@" +3)}
:_292 ) —— (3.36)

3L 2 2
mL g TS

In the second line of eq.(3.36), we have performed the integral for ¢. Note that we
subtracted a zero-mode (r,s) = (0,0) from the summation for winding mode r, s since
om7 is diverged at (r,s) = (0,0). Since the zero mode part is just the constant part
from the point of view of the one-loop effective potential, it is possible to subtract the

zero-mode part. Computing eq.(3.36) numerically, one has

92

2
omj = ~0.39 x 7.

(3.37)
and we find dm? has a finite value. In [24], dm7 (or dmj) is calculated by using Jacobi
theta function and is also derived from one-loop effective potential.

3.3 Quantum correction: With flux

3.3.1 Scalar QED

In the case with flux, we regard the covariant derivatives D and D as creation and

annihilation operators by

1 1
a= @D al

V29f V297

which satisfy the commutation relation [a,a’] = 1. In this thesis, we denote o = 2¢gf.

iD, (3.38)

By using eq.(3.38), eq.(3.11) is rewritten as
\ 1
Ses = /d%( —(D,®)"D'® — « <n + 5) o P
— VRigy/ag*d*at® + V2igy/apd ad — 2g2g0*g0(13*(13). (3.39)

As we have seen in quantum mechanics, creation and annihilation operators af, a act

on mode functions &, ; as
Wny = VN1, '€y = V41604, (3.40)
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The third and fourth terms in eq.(3.39) can be calculated by using eqs.(2.22), (2.23)
and (3.40)

_\/_Zg\/—gp*q)* o = \/_zggo ZZ an+ 1) " ,(I)njgn/j/gnﬂj, (3.41)

n,g n',j’

V2igy/apd ad = v/2igp Z Z \/an@,j,’j,@n,jén,’jlgn_l’j. (3.42)

il il
n,J n.,j

Thus, eq.(3.4) and eq.(3.39) have
4 1 uv * O
SsQED = d95<—ZF Fl — 0,070"p
1
+Z( (D@ ;)" D' P, ; — (n+§> B,
—V2ig\/a(n + 1) @)y Py + V2igy/a(n + 1)p® ;nin

- 2g2so*<p<1>2,j<1>n,j)> (3.43)
by using eq.(2.21).
(I)n+1,m
/// (I)n,J \\\ /// \\\
\ \
: e _—
\ / \ !
\ / \ /
S s/ * N n,m
Pomm=" T~ -

Figure 3.3: Scalar loop correction with flux

The quantum correction to WL scalar mass can be calculated from eq.(3.43). Two
Feynman diagrams from the scalar field loop contributions are depicted in figure 3.3.
As in the subsection 3.2.1, Iy, and Ips,, which are denoted by the contributions from

the four-point interaction and three-point interaction respectively, are obtained as

d*k
]b4pt - 7’29 Z/ 271’ 4.2 + Oé n+ é)v (344)

an+1)
i = +i2¢° Z/ k2+a(n—|— )) (kQ—i-a(n—i—%))' (3.45)
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Thus, the quantum correction to WL scalar mass has

(5777% = i(]b4pt + ]b3pt)

d*k 1 a(n+1)
2% [ G (erapry - wrama e
=29 |N|Z/ <k2—|—04(TL+%) _(n+1) <k2+a(n+%) _k2+a(n+%)>>

9 d*k n—+1 n
= |N|nZ::/(27T)4 <k2+a(n+§)_k2+a(n+%)>' (3.46)

By the shift n — n+1 in the second term of eq.(3.46), the quantum correction vanishes:

dmi = 0. (3.47)

3.3.2 QED

Eq.(3.4) and eq.(3.19) have

1 N ) T _
SoED = /d6x< - ZLFMVFW — 0" Oup — MQU“DMLD —ixo"D,x

—X(0— gfz — V2gp) — x(0 — gfz — ﬁgw*)tﬁ)- (3.48)

As in the previous subsection, we regard the covariant derivatives in the complex
coordinates as creation and annihilation operators in the case of fermion. To derive the

mass-squared operators, we find Dirac equation for ¢ or y from eq.(3.48):

ig"9, + (0 + gfz)x =0, (3.49)

it x + (0 —gfz)y =0, (3.50)

where we ignore the interaction terms since we focus on the mass-squared operators.

Acting io"0), or i"0, on eq.(3.49) or (3.50) and using the relation o#g"+0"c* = —2n"",
Klein-Gordon equations

O — (9 +gf2)(0 — gf2)¥ = 0, (3.51)

Ox — (0 —gf2)(0+gf2)x =0, (3.52)
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can be obtained. If creation and annihilation operators are defined as

o - %(0 —gf?), a = (a +gf2), (3.53)

ay = ﬁ(a—ng), ai =

we can read the mass-squared operators M? = aal a_ from eq.(3.51) or j\/l%r =

a(al a4 1) from eq.(3.52). The difference between M? and M?Z is a feature of flux

(8 +9fZ2), (3.54)

S8l

compactification, which means that a zero-mode of chiral fermion in four dimensions
can be obtained from . Denoting the mode functions as &, ; and &, ;, the mode func-
tions on the ground state satisfy a_&; = 0 and a, & ; = 0. As we have seen eq.(2.20),

the mode functions are expressed as

Y ;1

- (aT—)ng[),ja gn] :

N \/n—()

where ¢" is convention. Acting creation and annihilation operators on the mode func-

§nj =

€0/, (3.55)

tions, one has

a_&nj = ivVn&n-1, CLT_&n,j = —ivVn + 1§11, (3.56)
ar&nj = ivné, 1, airi-gn,j = —ivn+ 1&,41, (3.57)

like eq.(3.40). KK expansion for ¢ and y are expressed as

) = Zwm i (@™), (3.58)
x=2xn,j )& (a™). (3.59)

Using KK expansion (3.58), (3.59) and the orthonormality condition (2.21), eq.(3.48)

has
SoED = /d%( - EF“”FW — 0" 0 — iwa“D;& —aixo"D,x
— X(=ivaa- = V2ggh - X(~ivaa, — V2ge )
= /d4x< — iFWFW — 0" 0, + Z < — iwn,ja“D;@nJ — iXn,;0" DyXn,;
n,J

-V O‘(n + 1)Xn,j¢n+1,j + ﬂg@Xn,jwn,j + hC)) (360)
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Xn,j

Figure 3.4: Fermion loop correction with flux

As in the previous subsection, we compute the quantum correction to WL scalar
mass from eq.(3.60). A Feynman diagram from fermion field loop contribution is de-

picted in figure 3.4. As in the subsection 3.2.2, I is obtained as

. Ak K’
I; = +idg’|N| Z/ (2m)1 (R + an) (%2 + a(n 1 1))

— d*k n+1 n
— 1 iAq2 E _
= HigIN] n:O/ (2m)* (k2 +an+1) K2+ om) ‘ (3:61)

As in the subsection 3.3.1, the quantum correction 5mfe vanishes by the shift n — n+1

in the second term of eq.(3.61):
5mfc = 0. (3.62)

Thus, the cancellation of the quantum correction to WL scalar mass at one-loop level is
shown 2. These results (3.47), (3.62) are also shown by dimensional regularization [26].

We compare the result (3.37) without flux to the result (3.62) with flux. In the case
without flux, the inverse of the compactification radius L~! plays a role of cutoff scale.
This means that the result (3.37) is finite if the compactification radius L has a finite
length. Finiteness of the quantum correction has been seen in higher dimensional gauge
theory, in particular in gauge-Higgs unification ( [10,11,14]). On the other hand, the
quantum correction to WL scalar mass with flux (3.62) is canceled at one-loop level®.
The physical reason of this cancellation is that the shift symmetry from translation

in compact spaces forbids the mass term of WL scalar field. In that situation, the

2It is shown that the quantum correction to WL scalar mass is canceled at two-loop level [28].
31t will be interesting that this cancellation mechanism is similar to the quantum correction in 52
compactification without flux [11].
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zero-mode of WL scalar field ¢ can be identified with Nambu-Goldstone (NG) boson of
spontaneously broken translational symmetry. This issue will be seen in next section.
We comment on the results (3.47) and (3.62). These results imply that the quantum
corrections to WL scalar mass from bosonic contribution (3.47) and fermionic contri-
bution (3.62) are separately canceled even if a theory involves scalar fields and fermion
fields. These results are not changed if supersymmetry is imposed [24]. The cancella-
tion of the quantum correction by introducing magnetic flux is a new attractive feature

and this feature might be a hint of the alternative solution of the hierarchy problem.

3.4 WL scalar as a Nambu-Goldstone boson

Six-dimensional actions (3.39) or (3.48) are invariant under the translation on torus
dr = €0 + €0, where € and € are infinitesimal parameters. This translation acts on WL

scalar ¢ = (¢) + ¢ as

Srd = (8 + &)

Ef + (€0 + €0)p. (3.63)

Since we regard ¢ as zero-mode of WL scalar, dp = 0,0¢ = 0 are satisfied, and then

V2

Eq.(3.64) means that dr¢ is a constant shift. We find that the symmetry of translation

5r¢p = —Ff. (3.64)

on torus is spontaneously broken because of the constant shift (3.64). Eq.(3.64) is
understood as follows. In order for four-dimensional effective Lagrangian to be invariant
under the shift transformation, the Lagrangian must involve only the derivative terms
of WL scalar, and the mass term of WL scalar has to be forbidden. Therefore, WL

scalar ¢ behaves as a NG boson under shift symmetry of the translation on torus.
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Chapter 4

Non-Abelian Gauge Theory
Analysis in Six Dimensions

To realize more realistic model, we extend an Abelian gauge group to a non-Abelian
gauge group, and calculate the quantum correction to WL scalar mass [27]. As a non-
Abelian gauge group, we choose an SU(2) group. Extending to non-Abelian gauge
group, self-interactions of non-Abelian gauge fields are included, and an analysis of the
quantum corrections in the case of non-Abelian gauge group is non-trivial compared
to the analysis in the case of Abelian gauge group. Moreover, we refer to [29] for an

analysis of quantum corrections in a theory with higher dimensional operators.

4.1 Yang-Mills theory

We consider a six-dimensional SU(2) Yang-Mills theory with a constant magnetic flux,

and the Lagrangian is

1

Lyu = —ZF&NF“MN
1 a apyv 1 a a 1 a a ]' a a
— _Z_LFMVF e _ §FN5F p5 - §F,u6F 16 - 5 56F 56, (41)

where the field strength and the covariant derivative are defined by

Fyn = 0mAY — OnASY —ig9lAur, AN, (4.2)
DAY = Oy A% + ge™ A% A
= 8MA§‘V — Zg[AM, AN]Q, (43)
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and a,b,c = 1,2, 3 are gauge indices.
Following the way to introduce a constant magnetic flux in the Abelian theory

(2.13), we introduce a constant magnetic flux as

()= —3fwe (AN =fws (A2 = (42 =0 (14)

Note that this background satisfies classical equation of motion D™ (F,,,) = 0 since
the background of the field strength becomes (Fi) = f&*'. The degeneracy can be
obtained as eq.(2.14) in the direction of gauge index a = 1.

In this chapter, we also use the notation (3.1) except for the gauge index of WL
scalar: ¢”. In analogy to eq.(3.2), we expand ¢® around the flux background (¢“) as

o
a = a —I— a = _25(1 —|— a. 45
¢* = (") + ¢ 5 v (4.5)
Eq.(4.1) is expressed in terms of WL scalar ¢:
1 1 _
Lya == 7Fo B = 09" 0"¢" — SDAIDA™ + 97 [Ap, ] [A*, o)

é( " DA™ — 0, DA™)
+ig{ D" (A%, 17 + 0" Ay, 01" |

g a *la N AQ, a
- E{ — DAGAY, ©"|* + DA"™[A,, ¢] }

— E(Dwa* + D" — V2g[p, ¢*]" + ﬁf5“1)2, (4.6)

where D and D are the covariant derivatives in the complex coordinates and are defined

as
= (D5 —iDg) X" = 0X* — V2g[¢, X]* = DX — V290, X]*, (4.7)
= (D5 +iDg)X* = X +V2g[¢*, X]* = DX + V2g[p", X]°, (4.8)
= (D5 — iDg) X" = 0X" — V2g[(9) , X]", (4.9)
= (Ds +iDg) X = 0X* + V29[(¢*) , X]°. (4.10)
The second line in eq.(4.6) is removed by the following gauge-fixing terms:
1
Ly = 25(D LA 4 €D, A2
1 ¢ _ i _
— — — DA™MD, A" + 2(Dp™ — Dp®)? + — (8,0" DA™ — 3,0 DA™, (4.11
2% +1(Dy @)+ ﬂ(auso Oup ), (4.11)
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where £ is called a gauge parameter.
Once we have gauge-fixed, we need to introduce the ghost fields by following Faddeev-

Popov procedure to quantize gauge fields. The ghost Lagrangian reads
‘Cghost = —c" (D'uD/l + fDmDm)Ca. (412)

Then, the total Lagrangian is

1 1
£t0tal - - ZFSIIFQMV — i‘DMAaMDVAaV o 6M90a*8u(pa

1 aTy Aa a *xla g a *la = . u
— 5 DAIDA™ + g*[A,, o] [A, ¢7" — E{ DAY, ]+ DA[A, o]}
* ig{aWQ[A“a 01" + 0™ A, w]a}

1 ax* N .a 1a al 2 f " o
_Z(DQO + Dy —\/59[90790 ] +V2f5 ) —i—Z(IDgp — Dy
_ Ca*(D“DH + fDm'Dm)ca. (4'13)

4.2 Mass spectrum

In this section, we find mass eigenstates and eigenvalues of the fields A7, ¢, c*.

4.2.1 Gauge field

First, we find mass eigenvalue and eigenstate of the non-Abelian gauge field. The mass

term of gauge field corresponds to the first term in the second line in eq.(4.13) as
1 ay Aap 1 a » ap
Lonass = —§DAHDA = —§AH[—DD]A . (4.14)

In the section 2.2, we have seen that —DD corresponds to the Hamiltonian of the
harmonic oscillator. We regard the covariant derivatives D and D as creation and

annihilation operators like the subsection 3.3.1. Expressing them in a matrix form as

) 0 0 o 0 0

D*=| 0 0 —V2ie®Bg ") | = 0 0 dgfz |, (4.15)
0 —2ie%%g (o) %) 0 —igfz O
0 0 0 o0 0 0

D= | 0 0 V2ie?Bg ey | = 0 0 —igfz |, (4.16)
0 V2ie2g (¢1*) d 0 igfz 9
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their commutation relation can be calculated as

. 0 0 0
[iD,iD*=| 0 0 —2igf | =2igfe"’. (4.17)
0 2igf 0

Thus, the creation and annihilation operators can be defined as

1 - 1

and the commutation relation can be rewritten as [a, a']%¢ = ig?!c.

Since these expressions are non-diagonal, we diagonalize D and D as

3, 0 0

Dyiag =U'DU=| 0 0—gfz 0 ; (4.19)
0 0 0+ gfz
0 0

Dyiag =U"'DU=| 0 O+gfz 0 , (4.20)
0 0 d—gfz

with a unitary matrix

A2
U=—| o
V2 g

S0 = O

0
i . (4.21)
1

From diagonalization of D and D, the mass eigenstates of gauge fields are defined by

Al = AU, A =U A" (4.22)

The commutation relation is also diagonalized:

00 0
[a,a]=[ 01 0 |. (4.23)
00 —1

Each component of creation and annihilation operators are summarized as follows.

( = 1 P ( T:L
alz\/aza a, = az@
= Lo+ gf) = Lio-gf2) 424
<a2—\/a2 gz ) a’2_ o g . ( )
a Iii(é— fz) aTzLi(a—l— fz)
\ 3—\/a g \ 3 — o g
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We note that a; and aJ{ play no role of annihilation and creation operators. Although
as and a; are ordinary annihilation and creation operators, the role of annihilation
and creation operators for asz and ag are inverted because of [ag, ag] = —1. The mode

functions on the ground state are determined by Aoy = ()(5)\070 = 0), agwaj = 0,

aé@bgvj =0, where j =0,--- ,|N| — 1 labels the degeneracy of the ground state. Higher
mode functions are constructed as
Alm 0 0
U= 0 |, @,=1| &us | ¢¥i,=| 0 |, (4.25)

where A, and &, j, &,; are given by eq.(3.23) and eq.(2.20) respectively. These mode

functions satisfy a orthonormality condition

/T 2 d2® (Vs 1) L = S G /T 2 da® (W2, )% = 0" 0,615, (4.26)

where a,a’ in the right equation of eq.(4.26) mean a = 2,3. When creation operators
ag and as or annihilation operators a, and ag act on the mode function, the relation

can be obtained as

a2¢312,j =V ”21/’7212—14‘ a;d}?zg,j =vng+ 1¢22+1,j
, (4.27)
A3ty 5 = V3 + 1o i akui, ;= Vi, 1
The mass-squared operator for gauge field is diagonalized as
) B2 +m?* 0 0
m%,M = _dengiag = 0 (0715} 0 s (428)
0 0 a(ng+1)

where [,m € Z and ng3 =0,1,2--- are Landau level and § = (27/L)%.

It seems that there are two massless gauge bosons in eq.(4.28). If the commutation
relation of adjoint representation for gauge boson is calculated, we understand that a
massless gauge boson is appeared. Concretely, we can check the commutation relation
of the representation (t')q = €'? for gauge field A} ¢ and the representation (¢¢)q;, = €*®

for gauge field A7:

[tht' ] =0forc=1, [t't]#0forc=2,3. (4.29)
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Thus, the (1,1) component of eq.(4.28) is a massless gauge boson. On the other hand,
the (2,2) component of eq.(4.28) is a fictitious massless gauge boson. This component
is removed by shift symmetry as we will see in the subsection 4.4.1 or the section 4.8.

We conclude that the SU(2) gauge symmetry is broken to U(1) by the flux background.

4.2.2 WL scalar field

Next, we find mass eigenvalues of WL scalar fields. Extracting quadratic terms for ¢®
from eq.(4.13), we obtain
1 ax* ax axqy, a N, AQ ax N, ATy, A *
Lop=— Z@w D™ + D™ Dy + Dy D™ + D" Dyp® — 4g flp, ¢ ]1>

+ i(Dgp‘”Dgpa* — D™ Dp® — D" D™ + @gp“@gp“). (4.30)

As the discussion in the previous subsection, we need to diagonalize them. In order to
justify that WL scalar masses can be simultaneously diagonalized by the same unitary

rotation
@a = _1@0" @a* = ('DQ*U, (431)

as that of non-Abelian gauge field, we give some arguments below. Because of Dp®*Dy? =
—»* DDy, the second and the third terms in the first line of eq.(4.30) can be diago-
nalized by the unitary matrix U.

Next, we focus on the first term in the first line of eq.(4.30)

Dgpa*pﬁpa* — —gOa*DDgOa*

— @(&1*(a1)2&1* . Z‘(,AOQ*(GQ)Q&S* . i353*(&3)2@2*>. (432)

Integrating these forms out on the square torus, the second and third terms in eq.(4.32)
vanish thanks to the orthogonality of the mode functions. The first term in eq.(4.32)
also vanishes since we will consider the zero mode of @'* independent of z,z. This
argument can be also applied to Dp?Dp®. The last term in the first line of eq.(4.30)

can be also diagonalized by the unitary matrix U

o O

—4gfle, "]t = 2000 (i)’ = 2 x P> % (4.33)

o O O
S = O

35



Note that the complex conjugate of adjoint representation (t*)* becomes (t*)* = —t*
since the structure constants are real and totally antisymmetric. Applying the same
argument to WL scalar mass terms from the gauge fixing terms in the second line of

eq.(4.30), the mass eigenvalues of WL scalar can be finally obtained as

(1+&)B(* +m?) 0 0
miy, = gf 0 (1 +E)ny+1) 0 L (4.34)
0 0 S(1+8&ns +¢€)

4.2.3 Ghost field

Finally, we find mass eigenvalues of the ghost field. Extracting the quadratic terms for

¢, one has
L..=—c"ED,, D™ (4.35)

Rewriting the differential operator D,, D™ in terms of creation and annihilation opera-

tors, we obtain

(D, D) = (D} + DY)
= ~[(D)D)* - 5D, D]

1
= —a {(aTa)ab + §i6“1b] : (4.36)

where we used [Ds, Ds] = [D, D]/2i. Note that eq.(4.36) is an non-Abelian extension of
eq.(2.18). Thus, the ghost mass matrix is diagonalized as

B(1* + m?) 0 0
M2host = & 0 a(ny+ 1) 0 : (4.37)
0 0 o (n3 + %)

Mass eigenstate of the ghost field is defined as

&t =c"U, F=U"t (4.38)

4.3 Effective Lagrangian

To derive the effective Lagrangian in four dimensions from the Lagrangian in six di-

a

¢, % c* in terms of KK mode except for '

mensions by KK reduction, we expand A
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because we are interested in the quantum corrections to the mass for zero-mode of .
In other words, the components of KK modes running in the loop are a = 2,3 in the

quantum corrections.

Z A = A e (a=2,3), (4.39)

Na,J

ZAW” b AL=D AL (a=2,3), (4.40)
Na,J

Z Sona,] na,]7 &a* = Z 6zz,ngi,j (CL = 27 3)7 (441)
Na,J Na,J

¢t = Ell,m@bll,m7 Z Cng.j na,] 2’3)’ (4'42)
Lm Na,]

A= AWl = W (a=12.3). (4.43)
Im Na,jJ

Notice that eq.(4.39), the first equations of eq.(4.41) and eq.(4.42) are regarded as col-
umn vector and eq.(4.40), the second equations of eq.(4.41) and eq.(4.43) are regarded
as row vector. Using the KK expansion from egs.(4.39) to (4.43), the total Lagrangian
(4.13) is given as

l =0 = e ey~
Etotal = ZFSVFG'LW - 3Mg0a*@“90“ — Ea*DuD“Eu

Aa, 2 Aau ~ax, 2 xa ~ax, 2 ~a
_§AumYMA —¢Y My —C mghostc

+ ig{é’uw“[A“, ©*]* + O™ [Ay, 90]“} + g°[AL, )" [A*, 04

g a *1a N AQ, a
_E{_DAM[A'uaSD] +DA M[AH,QO] }

+ %(Dso* + Do), ¢*]* — %92 [, "0, "]
gg a .a * _*la a
\/5<[g0, D — [p*, "D ) (4.44)

In eq.(4.44), only the quadratic terms in the first and second lines are written in terms
of mass eigenstate. To read vertices for Feynman diagram calculations, we must rewrite
the remaining interaction terms in terms of the corresponding mass eigenstate, which

will be done below.
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4.3.1 Gauge field

First, we consider the interaction terms including the non-Abelian gauge fields. It is

easy to expand the quartic term,
2 * gleabl vl AYE St Y
g [AM’ ¢]G[AM790 ]a et Z ZAM ny,J n“]/gp b NpsJ ¥ my,g' (4'45)
nb:.] nb:,]
Then, the orthonormality condition for the mode functions leads to
Lopan = _9277”” Z A ,nb,jAI;,nb,j<P1‘;01*a (4.46)
nb7j

where b means b = 2,3 in the above expression. Next, we calculate the cubic term of

pAA in a mass eigenstate. Expanding DAf[A*, ¢*]* by KK modes, we have

<< . _ "
DALIA", %] D AU D giagU " (i€an) UU A%
= 'DdiagAvZU_l(—Z'Ealb)UAvbugol*
= —\/—,aaggiﬁm‘gpl* + ﬁagﬁzg3“wl* (4.47)
1 1
where a symbol D in the first line means that only the non-vanishing terms by the

orthonormality condition are left and %diag means it acts on AZ not A% . Using the

relation eq.(4.27) and the orthonormality condition for mode functions, we obtain

+ng n2+ A2 A2 Zg\/ n3+1A3 o

QOAA _ H7n2+17.7 n2,j N7n37] TL3+1,‘790
ng,j n3,j
gy o n2 + 1 gyaong +1) ”3 +1 A3
+ N
Z Mynz,J n2+1 J 90 Z M,TL3+17] ng,j
n2,j ng,j

(4.48)

As for the cubic terms 0,9 [A*, p*]* or O*p**[A,, ], these terms turn out to be van-
ished thanks to the orthogonality condition for mode functions. Thus, there is no con-
tribution to the cubic terms in the third line of eq.(4.44) in four-dimensional effective

Lagrangian.
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4.3.2 WL scalar field

Next, we calculate the cubic and quartic terms for the WL scalar field. It is also easy

to compute the quartic term.

1 *la *la 1 a C ao C C*
—592[90,90] [p, 0*]* = 2926” Y b o
=2 X g2 abegab’e ZZQOWQOHIJ,QO P nw o (449)
nbv] ncv]

The reason why a factor 2 appears is that there are two ways to choose a pair of KK

b, *xc'

expansions: @’p* or ¢ p*¢ since one of the two ¢(p*) is taken to be ¢'(p*!). Thus,

we obtain
Ecpcpcpcp _ g2€abc€ab c 5bc Z @b SOnb,jSO (,0 (450)
np,J

Next, we calculate the cubic term of ¢ in a mass eigenstate. Expanding Dp™|[p, ¢*|*

by KK modes, we have

ax b _c*

D™ [p, *|* = icap D™ ¢’
D D™ (iga1) (") 0" — D™ (icarn) "
= Daiag? U (i€a1s) (U™ (") 0" + Dyiog 2™ U™ (—igars) U 0",

where we add the transpose T' to ¢** to compute the first term. U~ (igq1)(U~1)T has

no diagonalized component, thus one has

ax *1a \/_ * * \/_ * *
D™, "]* D ——ais'é’z P+ Y20l GBpl, (4.51)

As in the subsection 4.3.1, the cubic terms of WL scalar can be obtain as

g/ o n—l—l . g\/n+1~*N
Lopp = Z - N7212+1 JS/E?ZIZ,]SO Z . 90%5 ]9023-1-1,390

7127] n37]

gy a(ng +1) n2+1 . gvems+1) 50
Z /\%2 ]Spng-‘rl ]90 + Z \/— i3+1 j(pig, ]90 (452)
n2,j n3,j
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4.3.3 Ghost field

Finally, we compute the cubic terms for the ghost and WL scalar fields, which include
a single ¢'. Expanding [, ¢*]*Dc® by KK modes, we have
[0, "D = e P Dl D ¢ (—iqy) Dbt
=yt (—igalb)U@dngJOgol
\/aﬂ* \/_ ~3%  ~3 (4'53)

=——= Y _Fasc ol
1

Using the relation (4.27) and the orthonormality condition for mode functions, we find

Zggv ”2+ ~2* 2 Zggv n?ﬂL ~3* 3

ccgo n2+1 J ng j "13 J n3+1 JQO
n2,j n3,jJ
gf VvV & 712 +1 AQ* 95 \VAe 77,3 + 1 ~3* 8 (4 54)
n2] n2+lj TL3+1] n3 JQO :
n2 .7 n3 J

4.4 Cancellation of one-loop corrections to WL scalar
mass

In this section, we calculate the quantum corrections to WL scalar mass at one-loop for
the zero mode of ¢! and show that they are exactly canceled. In this section, we omit

the symbol of tilde for mass eigenstate (for example, we write AVZ as Af, for simplicity).

4.4.1 Gauge boson loop

@, 1© 12, 1

A2

Ix_ 1

Figure 4.1: Gauge boson loop corrections 1221’3) and 1;22’3).

As shown in figure 4.1, there are two diagrams from the gauge boson loop contri-

butions. Superscript (2), (3) means the contributions from A2, A% loops, respectively.
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Denoting 15‘21’3) and Iﬁé’g) as the contribution from the four-point interaction and the

three-point interactions respectively, these are obtained as

= —2ig*|N| Z / (p Tan fomg) : (4.55)
3 §
- 2mUW§:/ <ﬁ+am+if+ﬁ+am+iﬁ)’ (4.56)
@) _ o2 'p 3a(n +1) a(n +1)&
b =2 Z/ (2n)! (<p2 Fan)(p?+aln+1) (7 + an)(p + aln+ 1>£>) |
(4.57)

B) o 2 d'p 3a(n +1)
fe =2 Z/ (27)’ <<p2 +a(n+1)(p? + a(n +2))
a(n + 1)
TP ol t DEE +aln + 2>e) |

(4.58)

where Wick rotation is applied in momentum integrals and the symmetry factor is
(2,3)

involved. To obtain 1,5, we use a partial fraction decomposition

(1-¢&p° 1 3

= — : 4.59
(P> +an)(p* +anf) p*+an  p>+an (4.59)
We now consider the sum of Ifl) and [1(32) or 11(431) and [g :
a(n+1)
It 1% = N
A1+ A2 — 6ig” |Z/ <p +an (P2 +an)(p? +a(n+1))
d*p a(n+1)&2 )
— 2ig°|N
i 'Z/ (7o - T bt en D
(4.60)
d*p a(n+1) )
1+ 18 = —6ig?|N
Al + Ly == 0" '2/ <p2+a TP el D) +aln+2)
a(n+1)& )
— 9N :
d 'Z/ ( Pl + DOE* +a(n+2)6)
(4.61)
The integrand of the first line in 11(421) + 15,22) can be deformed as
I a(n+1) 1 —(n+1)( I 1 )
pP+an  (pP4+an)(p*+a(n+1)) p2+an pP+an  p’+a(n+1)
n n+1

= — 4.62
p2+om+p2+a(n—|—1)’ (4.62)

41



and we thus find a crucial result

Z/ (p +an (P> + Omo)zg;trli(n + 1))>

_Z/ ( 2 ~7;om * p? —l—na—é_nl—l— 1)) =0 (4.63)

by the shift n — n + 1 in the first term. The same result holds for the integrand of the

first line in 1;31) + 15‘32) . As for the integrand of the second line in I (2) +1¢) A9 1 a T 1232) ,
the same structure can be easily found after the change of variable p? = £¢2. Thus, we

conclude
19 +130 =0 19419 =0, (4.64)

which implies that the quantum corrections from the gauge boson loop are canceled.

We emphasize that this cancellation holds for an arbitrary &.

4.4.2 WL scalar loop

(2) (3) (2) (3)
I(pl, I I<p2’ I
//'_\\ //-F_\\
/ N / N
/ A / \
i \ 1% | ' 1
| | ¥ - F---®
3 ! y !
\ /! \ 7
1* \\ // 1 \\ //
(70___-;_——___90 -~ -

Figure 4.2: WL scalar loop corrections I ) and I (23),

As shown in figure 4.2, there are also two diagrams from the WL scalar field loop

contributions. Superscript (2), (3) means the contributions from ¢?, 3 loops, respec-

(2,3

tively. Denoting 1., ) and I, (2 %) as the contribution from the four-point interaction and
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the three-point interactions respectively, we have

__WHWEZ/‘ liQn+U (4.65)
ﬁ?——wﬂﬂ}j/‘ 11@n+®, (4.66)
]*5’22):292|N| / éw]; TPrs <<1+5>n+1)3(5;211%)«1+5><n+1>+1>>’ (4-67)
1= Z/ ST+ on+ f)C;EZ?++1%)<<1 Fomrnro) 0

4.4.3 Ghost field loop

Ic(2) Ic(3)

I

o Lo

Figure 4.3: Ghost field loop correction 16(2’3)

As for the ghost loop contributions, we have only to consider a diagram shown in

figure 4.3. Superscript (2), (3) means the contributions from c?, ¢® loops, respectively.

Denoting 1% as the contribution from the interaction including ghost fields, 1% are

o IINIE S [ db a(n + 1)

I, 2 / (2m)* (p® + a(n + %))(pQ +a(n—+ %))7 (4.69)
(3) _ ig |]\7|§2 - a(n+1)

1, Z/ L(p*+aln+ %))(pQ +aln+ %))7 (4.70)

where a change of variable p? — £p? is performed in momentum integral. Notice that

we need to consider an overall sign (—1) for the ghost loop.
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4.4.4 Cancellation between WL scalar loop and ghost loop
contributions

As you have seen in subsection 4.4.1, one-loop corrections to the zero mode WL scalar
mass are canceled between two diagrams of gauge boson loop. In this subsection, we
show the cancellation between the corrections from the WL scalar field and the ghost
field loops.

First, let us consider the case £ = 0 (Landau gauge). In this case, the contributions
from the ghost field (4.69) and (4.70) trivially vanish since they are proportional to £2:
1 = 1Y = 0. These results in the ¢ = 0 case can be understood that ghost fields have
no interaction with WL scalar fields (see eq.(4.54)). Thus, we have only to calculate
the remaining contributions from the WL scalar field loop from eq.(4.65) to (4.68) in

the £ = 0 case. The summation of WL scalar field contribution can be found

() __Z 1 B %(n—l—l)
Iy - QHWE:/ (ﬁ+%@+&) @”+%n+DXﬁ+%W+2»>’
(4.71)

]( ](3 %(n =+ 1)

2 WUWE:/ (p+-n (ﬁ+%m@”+yn+no‘ (4.72)

Using the results (4.62) and (4.63), we can easily find that these contributions are

canceled:
9 +1% =0, 18 +18 =0 (4.73)

Next, we consider a more non-trivial case ¢ = 1 (Feynman gauge), in which we
expect non-trivial cancellations between the corrections from the WL scalar field and
ghost field loops. The summation of the WL scalar and ghost field contributions can
be found

1
1D+ 18) +1? = —ig?|N /ﬁ (
a1 =i 'Z Prait)

a(n+1) 1

/\

a(n+1)

1
2@ ta( )P ta(td) 5(p2+a(n+ 3) (7 +a(n+3))

=i - d*p 1 B a(n+1)
- gw‘%/@wﬂ <p2+a<n+%) (P +a(n+3))p* +aln +3))

(4.74)
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- d*p 1
el ©2 c g | |nZO (27_(_)4 p2 + a(n + %)

1 a(n+1) 1 a(n+1)

(
2 +an+3))P*+an+3)  2(0°+aln+3)p*+aln+3))

)

o o gt 1 B a(n+1)
- g|N|nZ—o/(27r)4 <p2+a(n+%) (p2+a(n+%))(p2+a(n+§)))'

(4.75)

Using the results (4.62) and (4.63) again, we conclude that these contributions are also

canceled:

D+189+1® =0, 19 +19+19=0. (4.76)

® ® c ®

It would be also interesting that the cancellation between the WL scalar and the ghost
loop contributions is shown in an arbitrary gauge parameter ¢ as in the case of the

gauge field loop contributions.

4.5 Fermion

In the above sections, we have shown that the quantum corrections to WL scalar mass
from the gauge, the WL scalar and the ghost field loops are canceled at one-loop level.
In this section, we will see the quantum corrections from fermion loop. For simplicity,

we introduce a constant magnetic flux in the direction of SU(2) Cartan part as
1 1
(A = 3 fwe, (A =5z (AL = () =0, (1.77)

and we calculate the quantum corrections to WL scalar ¢ not ¢'. Even though the
direction introducing the magnetic flux is different from eq.(4.4), the cancellations of
the quantum corrections to WL scalar ¢! or ¢ in Yang-Mills theory are also satisfied.

Thus, we will investigate the quantum corrections from fermion loop *.

IThe calculations in this section are unpublished results
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4.5.1 SU(2) Weyl fermion

We consider a six-dimensional SU(2) Weyl fermion ¥, interacting with SU(2) gauge
fields. The Lagrangian is given by

L;=i®, MM DyP,
= W'D, W, + iU D5, + W, 00 Dy, (4.78)

where the covariant derivatives are Dy, = Oy — igA$,T* and T are SU(2) generators.

W, is constructed by

we(u) owe(in) () e

where 911, 1r and Yy or are given by

Yipor = ( ¢(1),2 > . Y1r2R = ( 2?72 ) (4.80)

as eq.(3.14). Note that ¥y, satisfies I70; 5 = — Wy 5.
To derive the mass-squared operators, we need to find Dirac equations for ¥y 1r

and 9, or. The results are

VO + (0 + gf2)ir =0, (4.81)
V' Oubir — (0 — gf )i = 0, (4.82)
V4 Ouibar, + (0 — gf 2)bar = 0, (4.83)
V' Outhar — 1(0 + gf2)bar, = 0, (4.84)

where we ignore the interaction terms. Acting v*d, on egs.(4.81) to (4.84), Klein-

Gordon equations

Ot — (04 gf2)(0 = gf2)¢rr =0, (4.85)
Oibir — (0 — gf2)(0 + gf2)¢ir =0, (4.86)
Dibar, — (0 — gf2)(0 + gf2)ibar = O, (4.87)
Oipor — (0 + gf2)(0 — gf2)iar = 0 (4.88)
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can be obtained. From these Klein-Gordon equations, we define creation and annihila-

tion operators as

s = 7(@ +9f2). al, = ﬁ(a —of2), (4.89)
an=—=(0+0f2), olp=—=(0-9f2) (4.90)
o= =0+ 9f2). ol = =0 g]2). (4.91)
an = J=(0+0f2). ay = —=(0— a2 (4.92)

Note that a,;, = aspg, al . =al , a1r = agr, and al ., = al, are satisfied. The commuta-
1L 2R 1R 2L

tion relations are computed as

[@iL,z’Rv @IL Z-R] =1, [aiL,z'R, aiL,iR] =0, [aiL,iRa ajL,jR] =0, [aiL,iRa GT-R ‘L] =1,
, JR,j ( )
4.93

where i,j = 1,2, i # 7, and the corresponding subscripts (iL, iR, etc.) are ordered.
Using these creation and annihilation operators, we can read the mass-squared operators
as
M3, = aalLaiL, M3, = Oéa,;LCLQL, (4.94)
M3, = aalpaip, M3, = aagraly,. (4.95)

The mode functions on ground state satisfy aiLfég =0, amfég = 0 and higher mode

functions are represented as

i ? ne(d =(i na(i
@S)J = ﬁ(ajﬁ fc(),;-, 5,(1)3 = ﬁ(alz-z) &(),;-, (4.96)

and the orthonormality condition is satisfied. The relation between the higher mode

functions and creation (annihilation) operators has

angn] = Z\/_Sn 1,50 aILST(LZ,)j = —1vn+ 5n+1]> (497)
ainn,j = Z‘\/ﬁfnfl,]ﬁ GIRES,)]' = —1vn+ 5n+1; (4.98)
Thus, KK expansions for 1,1, 1;r(i = 1,2) can be obtained by
i = Z Yir, n,jgn J? 1/_}2'R = Z '(EiR,n,j _7(:)] (499)
n,J n,J
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4.5.2 Effective Lagrangian

We represent the four-dimensional effective Lagrangian in terms of v, ;z. Noting that
we are not interested in the interaction of fermion and non-Abelian gauge fields and we
ignore these interactions. We extract necessary terms from the Lagrangian (4.78) for

our purpose as

Ly D iy Outhir + i1 ry* Outbir + ihar V" Optbar, + ithap Y Opthor

— @&malmﬂm + @@mahﬂ)m - \/Tal/_JQLGEL%R + @ﬂ_}mawﬂﬁu
— V290" (Y1001 R — Yartar) — V200 (Yrrirs — artbar). (4.100)

Using the relation eq.(4.97), eq.(4.98) and the orthonormality condition, the four-

dimensional Lagrangian for fermion can be obtained by

Ly D) [“/_flL,n,ﬂ“aM/JlL,n,j + 1RV OutLRng
n’j

+ iiZQL,n,ﬂ“amﬂzL,n,j + ME2R,n,j’)/“a,uw2R,n,j:|

+ Z [ —vVan+ D Virn, + Van+ Dior ui1 jtbora; + hec.
n7j

- Z [\/59903* (&IL,n,j@Z)lR,n,j - 1/_}2L,n,jw2R,n,j)
n?j

+ \/59903(1;112@,]‘1/)1;71,3' — QZQR,n,j@Z)ZL,n,j)} . (4.101)

For the reason that different KK modes are mixed in the mass terms, we rewrite

eq.(4.101). Using eq.(4.80), we decompose eq.(4.101) into the following form:
Laf D Z [ - iwl,n,quaﬂan,j - Wz,n,jauau?/_fz,n,j — X100 OuX1nj — in,n,jU“aM_@,nJ}
’j
+ Z [\/ a(n + D1 n1, X — Va(n + D)1 iXon + h-C-}
n,J

+ Z [\/59<P3*(1/_11,n,j>_(1,n,j — PamiXamg) + V200 (X1 mj¥img — X2,n,jw2,n,j>i| :
n,J

(4.102)

For Dirac fermion, we define ¥, ,, ; as

Wiy = (). (4.103)
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where we understand y; —1; = 0 for n = —1. Thus, we rewrite eq.(4.102) in terms of

\Iji,n,ja

oo N1
£4f D Z Z [i@lvn,jv“ﬁulllm’j +i\1127n7j7“8u\1127n’j}
n=—1 j=0
oo [N|-1
+ Z Z |: — a(n + 1) \Pl,n,jwl,n,j + a(n + 1) \Ijg’n,j\lfg’n’j]
n=—1 j5=0
oo |N|—1
+ Z Z [\/§9¢3*(—‘I’1,n,jPR‘~I’1,n+1,j + Vo i PrY2 5 11,5)
n=-—1 j5=0

+ V290 (U1 g1 PV + E2,n+1,jPL\If2,n,j)] ; (4.104)
where P, = (1 —~°)/2, Pr = (1 +7°)/2 are the projection operators.
4.5.3 Fermion loop

I Igo
‘I’l,n+1,j \112,n+1,j

Figure 4.4: Fermion loop correction /¢ and [¢s.

As shown in figure 4.4, there are two diagrams from the fermion loop contributions.

Denoting I and Iy, as the contribution from ¥, , ; and ¥, ; respectively, we obtain

dik 2
Iy = Ip9 = +4ig?|N . 4.1
n=1p=+iig] |zn:/(27r)4(k2+an)(k2+a(n+1)) (4.105)

Eq.(4.105) is the same form for eq.(3.61), and these contributions vanish by the shift

n — n + 1. Thus, we conclude

Iy = Iy = 0. (4.106)
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4.6 Higher dimensional operator

Since the higher dimensional gauge theory is non-renormalizable, the higher dimensional
operators which are consistent with symmetry of the theory should be considered. The
main purpose of this section is to show that the quantum corrections to the masses
of WL scalar fields !, p!* at one-loop are canceled even if we take into account the
contributions from the higher dimensional operators. Before going to the calculation in
detail, we classify the higher dimensional operators based on a dimensional analysis.
In general, we can add the gauge invariant higher dimensional operators to La-
grangian (4.1).
L= —EF&NF“MN + i(91(D, F)+ i(OQ(D, F)+ i(93(19, F)+---, (4107
4 A? A4 AS
where O, (D, F) is a set of gauge invariant operators with covariant derivatives and field
strengths. A is a cutoff scale of the theory and n is a degree of 1/A?. For O, (D, F), we
can determine the form of operators allowed in O,,(D, F) by considering mass dimension

in four dimensions of O, (D, F). In the case of n = 1 (the first order in 1/A?), the

following three operators are allowed.
O\(D,F) = D'F + D*F? + F>. (4.108)

Similarly, in the case of n = 2 (the second order in 1/A?%), the following four operators

are allowed.
Oo(D,F) = D°F + D'F? + D*F° + F*. (4.109)
More explicitly, the operators O1(D, F) and Oy(D, F) are written by?

O\(D, F) = Tr[DyD* Dy Dy FMN] + 2Tx[ Dy Fpyn DY MY
+ éMlNlMQNQMBNSTI[FMlNlFM2N2FM3N3], (4110)
Oy(D, F) = Tr[Dg D* D, D* Dy Dy FMN| + Tr[ Dy Dy Fpyny D DY FMY

+ Tr[eMNMNMsNs (D) 1y V(DY Fogyng ) Farsng ] + Tr[Fayn FMN Fap FAP),
(4.111)

2For convenience of the calculation, a factor “2” is included in the second term of O;(D,F) to
cancel a factor 1/2 coming from the normalization condition of the generators.
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where MiNiM2N2MsNs g 5 totally anti-symmetric tensor.

In this thesis, we mainly focus on the operators (4.110), which are the leading terms
of the higher dimensional operators. Since only the second term in eq.(4.110) will be
found to be non-vanishing, we derive the cubic terms with a single ' or ¢!* and the
quartic terms involving two ¢! and ¢ from it, which are necessary for calculations
of one-loop corrections to WL scalar mass. In the following calculations, we fix the

parameter £ = 1.

4.6.1 TI‘[DLDLDMDNFMN]

This operator vanishes because of the traceless condition for SU(2) generators.
Tr[DyD* Dy Dy FMN] = (D D* Dy Dy FMV)*Tr[t] = 0. (4.112)
Thus, we need not to calculate the first term in eq.(4.110).

4.6.2 €M1N1M2N2M3N3TI‘[FM1N1FMQNQFMgNg]

The third term in eq.(4.110) also vanishes because of properties of totally anti-symmetric
tensor eMiNiM2N2MsNs and the trace of product of three generators. We first note that

the trace of t%t%t¢ is written as
apbyc 1 abc
Tr [tt°t°] = e (4.113)
Using this result, we can find the third term in eq.(4.110) to take the following form.

1
€M1N1M2N2M3N3TI'[FM1 _ _eabceMlNlMgNzMgNg 17](\141

b c
NIFMQNQFM3N3] - 4 NlFMgNzFMgNg
7
= ——¢€

4

abc M1 N1MsNoMsN3 1ha b c
€ FMlNlFMQNQFM3N37

(4.114)

where we interchanged the indices a <+ b and M7, N1 <+ My, Ny in the second equality,

abc and €M1N1M2N2M3N3 .

and use the properties of two anti-symmetric tensors e Then we

conclude

€M1N1M2N2M3N3Tr[FM1N1 FMQNQFM3N3] — O (4115)
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4.6.3 2Tr[DpFynDEFMY]

This operator can be decomposed into the fields with four-dimensional and extra two-

dimensional indices as follows.

2Tr[ Dy Fryy D*FMN) = D F, DY MY
= D,F,D’F* + 2D, F¢ DPF™™ 42D, F D F**°

+ Dy Fj, D'F* + 2Dy, D'F™ 4+ 2D, F D' F**°.
(4.116)

Since the first term has no terms with ¢!, ¢, it is irrelevant to our calculations.
We then decompose the remaining terms in eq.(4.116). Detail computations of the
remaining terms in eq.(4.116) are described in appendix B. In this subsection, we show

the final result,
Lopan =8¢0 ! Za AVHJQ“A% + 820! Za Aynjg/.LAfil/
+ 16¢%p l*gol ZanAHmAQ“ + 16¢%p l*cpl Z (n+1 #MA?]“], (4.117)
Loos = 8 1*9012 HSOM ‘Png +8¢%0 1*¢lzau903* 8“(,0”]

+16g%p 1*s01 Z an@,, ;@ + 16970 1*901 Z a(n+ 1)@ G0, (4.118)

Loaar = +4\/_zgz \/Tﬂﬁ AIQ,MO“AQJrl]cp
—4\/_292 Va(n+1)9,43, . 0" A.p
—4\/_292 Va(n +1)9,4%,,, 0rA%.p!
+4\/_zgz Va(n +1)9,43, 0r A%, | ol (4.119)
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—_

Loane = +4\/_ng (n+ )\/ (n+1) #nH]A%
(v+2) VAT A
_4\/§i92a( Valn + DAL Al
n.j
+4\/§z'gza( ) aln + 1A AN ol (4.120)
n.j

Lopp1 = +4\/_ng va(n+ 10,85, ;0% ;o™
_ 4\/_ng \/Tﬂﬁﬂgoma“gonﬂjgo
_ 4\/_zgz \/Tﬂﬁﬂwnﬂj n’fjgol
+4\/_ng \/Taﬂcpwﬁ gpnﬂjgo (4.121)

N |

DO W

n -+

—4V2ig) "«
n,j

n -+

N | —
N———

. N x
Loppr = —1—4\/5@9 Z a <n - Z) a(n + Uﬁzzﬂ,y‘@%z,j@l

n2,j

. 9 ~3x ~ *
— 4\/§@gz « <n + Zl) a(n + 1)@23,3'90%3“,]‘901

ng,J
) 1 .
— 4\/§@gz o <n — Z) Va(n+ 1)%2734@%2“%01
n2,j
9 " -
+4v2ig Y "o <n + Z) van+10)gr o o', (4.122)
ng,j

where we rewrite the original fields to the fields in the mass eigenstate gfb, ©®. Thus,

the four-dimensional interaction Lagrangian is summarized as

1

£4,z'mt = P(ﬁwz‘m + ‘wa + ﬁwAAl + ﬁwAA2 + Ewwl + £<p<p<p2)- (4-123)

4.7 Quantum corrections to WL scalar mass from
higher dimensional operators

We will explicitly show below that one-loop corrections to the WL scalar masses is

indeed canceled even if the lowest term of the higher dimensional operators is present.
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The statement is straightforward, but the cancellation of quantum corrections to WL

scalar mass is somewhat nontrivial since the cancellation is realized among the terms

with different orders of 1/A2.

4.7.1 One-loop Corrections from the Quartic Interactions

From the interactions in (4.117), there are four types of one-loop corrections to the WL
scalar masses from the gauge boson loop contributions as the left diagram in figure 4.1,

which are expressed as

3229
19) = § / 4.124
| p + an’ ( )

(3) 3229
% = |N|§ :/ = +a 5 (4.125)

64zg
1% = § / 4.126
’ + an’ ( )

64ig* a(n+1
=5y [ o ) (4120

‘P4 an+1)

The superscripts (2), (3) imply the contributions from ﬁi, gi loops respectively. A3
and A4 represent corrections from the interactions in the first line and the second line
of eq.(4.117), respectively. Performing the dimensional regularization 3 for the four-

dimensional momentum integral, we find

e 3 _4g2a2|N| 47\ €
2 €
(2) (3) 89 (8% |N| 471’
IA4_I +]A4 =+ W E P(E—l)C[E—Q,O], (4129)

where ([s, a] is Hurwitz zeta function which is defined by eq.(D.1) in appendix D and €
is defined in the ordinary dimensional regularization as d = 4 — 2¢. We will understand
how to compute from eq.(4.124) to eq.(4.127) by using the dimensional regularization
in next chapter. Summing up (4.128) and (4.129), we obtain the total gauge boson loop

3The reason why we employ the dimensional regularization is to keep the gauge symmetry. In our
discussion, the gauge symmetry is important to forbid a mass term of the WL scalar field at tree level.
Therefore, we should keep the gauge symmetry in the process of computation.
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contributions to one-loop correction due to the quartic interactions.
4g%?|N| ‘
Toppan = Iag+ Tag = +zW - ['(e — 1)¢[e —2,0]. (4.130)

Next, we consider the corrections from the WL scalar quartic interactions (4.118).
There are also four types of one-loop corrections to the WL scalar masses from the WL

scalar loop contributions as the left diagram in figure 4.2, which are expressed as

% _8ig® |N|Z/ P (4.131)
‘iPP+a(n+3) '
2

8ig?

I = =5 !NIZ/ e ) (4.132)
16ig°

2) g

1) = |N|Z/ 2+a Tl (4.133)

2+a (n+1)

where the superscripts (2), (3) mean the contributions from @2, &* loops respectively.

©3 and @4 represent corrections from the interactions in the first line and the second
line of eq.(4.118), respectively. Calculating these corrections similarly to the above
gauge boson loop (also understanding how to compute from eq.(4.131) to eq.(4.134) in

next chapter), one has

( ) (3) g (6] |N’ 471' ¢
Ipy = I3 + I3 = —i" 5 E T(e —1)Cle —2,1/2), (4.135)
2.2 €
_ @ L2077 |N]

Summing up (4.135) and (4.136), we obtain the total WL scalar loop contributions to

one-loop correction due to the WL scalar quartic interactions.

g?a?|N| [47\°©
Lo = Loz + Lo = +Zg7r2/|XQ | <E> L(e—1)Cle —2,1/2]. (4.137)

4.7.2 One-loop Corrections from the Cubic Interactions

In the case of the corrections due to the cubic interactions, we note that one-loop

corrections generate by using both the cubic interactions eqs.(4.48), (4.52) in O(A°)
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and eqgs.(4.119), (4.120), (4.121), (4.122) in O(1/A?%). This is a nontrivial point in
calculating the corrections in the presence of the higher dimensional operators. From
the interactions (4.48), (4.119) and (4.120), there are four types of one-loop corrections
to the WL scalar masses from the gauge boson loop contributions as the right diagram
in figure 4.1. These contributions are expressed as

1 = 3229 |N|Z/ a(n + 1)p? (4.138)

L (p?+an)(p*+a(n+1))

3219 N Z/ a(n+ 1)p? | (4.139)

PP+ an+1)(p?+aln+2))

1 3229 |N|Z/ a(n+ Da (n+1) (4.140)

(P +an)(p® +a(n+ 1))

3219 ‘N‘Z/ a(n+a (n+32) (4.141)

tp?+an+1)(p*+a(n+2))

3

=

U\

Gb

3

=

@

where A5 or A6 represent the contributions from the interactions (4.48) and (4.119)
or the interaction (4.48) and (4.120), respectively. Calculating these corrections by

dimensional regularization, we find

2.2 €
@ , e _  Ag°a?|N| (47
[A5 = [AE') + [A5 = _'_ZW E F(G — 1)([6 — 2, O], (4142)
8g20%|N| ¢
Lo =10 +1¢) = —i=2 =11 S | ) Tle=1)¢le—2,0. (4.143)

Summing up these results of eq.(4.142) and eq.(4.143), we obtain the total one-loop

corrections to the WL scalar masses from the gauge boson loop contributions.

B A4g%a?|N| (47"
‘[S@AA:‘[AE)_'_IAG:_ZW E F(E—l)C[E—Q,O] (4144)

Next, we consider the corrections from eq.(4.52), eq.(4.121) and eq.(4.122), which

also give four types of one-loop corrections from the WL scalar loop contributions as
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the right diagram in figure 4.2. These contributions are represented as

2) B 819 a(n + 1)p?

- ’N’Z/ (P+an+3) @P+a(n+2)) (4.145)
3 _ 819 a(n +1)p?

- 'N'Z/ Prant ) Pramid) (4.146)

3 B 82 a(n + (
- |N|Z/ (P+an+3) @P+a(n+32)) (4.148)

where 5 or @6 represent the contributions from the interactions (4.52) and (4.121) or

T
2_ 8zg (n+1)0¢( _%1)
- T D ey
Do (n+ )
]

the interactions (4.52) and (4.122), respectively. By similar calculations of eq.(4.142)
and eq.(4.143), we find

2 9 €
_ @, 6 _ g |N| (4
I, = I<p5 + [¢5 = 44 Az ; I(e—1)Cle —2,1/2], (4.149)
2 2
=@ 4O 297" |N|
LpG = [ IQOG = W o F(G — 1)C[€ — 2, 1/2] (4150)

Summing up eq.(4.149) and eq.(4.150), we obtain the total one-loop corrections to the

WL scalar masses from the WL scalar loop contributions.

2,2 €
- g°a?|N| (47
Ipo = Ips + Lo = =T (E T(e — 1)¢fe — 2,1/2). (4.151)

4.7.3 Cancellation of One-loop Corrections to Scalar Mass at
O(1/A%)
Summing up all of the results (4.130), (4.137), (4.144) and (4.151), we can verify that

one-loop corrections to the WL scalar masses are indeed canceled at the leading order
of O(1/A?).

Topan+ Ipaa =0, (4.152)
Toppe + 1ppp = 0. (4.153)

As can be seen from the above results, the gauge loop contributions and the WL
scalar loop contributions are independently canceled. In particular, the WL scalar loop
contributions can be canceled without the ghost loop contributions, which is different

from the case of Yang-Mills theory [27].
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4.7.4 Comments on the Corrections from the Higher Dimen-
sional Operators More Than O(1/A?)

We discuss the corrections from the higher dimensional operators more than O(1/A%).
If we use two kinds of cubic interactions (4.119), (4.120), (4.121) and (4.122), we obtain
some one-loop corrections to the WL scalar mass at the second order of 1/A?, that is
1/A*. However these corrections are not canceled because we must take into account
the contributions from the operators of O(1/A%) and O(1/A*). As an example for
O(1/A*), we have seen that operators (4.111) have an order O(1/A*) in the section 4.6.
Of these operators, the first term vanishes because of the traceless condition for SU(2)
generators as was shown in the section 4.6.1 and the third term also vanishes because
of the properties of totally anti-symmetric tensor and the trace of generators as was
shown in the section 4.6.2. Thus, we need to consider the second and the fourth terms

in eq.(4.111):
Oy(D, F) = Tt[DyDp Fyny DX DEFMN] 4 Tr[Fyyn FMN Fap FAP). (4.154)

Although it is relatively easy to calculate the second term in eq.(4.154) (see Appendix
C), the first term in eq.(4.154) is found to have huge number of interaction terms which
are relevant to the one-loop corrections to the WL scalar masses. At higher order than
O(1/A%), we need to consider carefully the variety of combinations among the operators
which are different order of 1/A? and it becomes more complicated. Such an analysis

is very interesting, however it is beyond the scope of this thesis.

4.8 WL scalar as a Nambu-Goldstone boson

As in the section 3.4, the zero mode of WL scalar can be regarded as a NG boson
of translational invariance in extra spaces, which is the physical reason that one-loop
corrections to the WL scalar mass vanish. The transformations of translation in extra

spaces are given by

5TAg = (6585 + 6686) gg — 566(5(11, (4]_55)
Sp AL = (e505 + €606) AL + £e55“1, (4.156)
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where €56 are constant parameters of translation in torus. These transformations can

be rewritten in complex coordinate as

1 .
§T¢a = E((STA(; + ZéTAg))
[

= (e +20)p" + 7

where € = (€5 + i€g) /2. The first term in eq.(4.157) vanishes because we deal with the

5, (4.157)

zero mode of WL scalar o!'. Thus,
€ (4.158)

is obtained and eq.(4.158) is simply reduced to a constant shift symmetry. Eq.(4.158)
means that the zero mode of WL scalar ¢! becomes a NG boson under the translation
in torus. Therefore, only the derivative terms of the zero mode of WL scalar are allowed
in the Lagrangian and it is a natural result that one-loop corrections to the zero mode
of WL scalar mass vanish. It is very interesting to note that the cancellations in the
explicit calculations above have been shown by relying on the shift n — n 4 1, which

is a remnant of the shift symmetry discussed in previous subsections.
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Chapter 5

Nonvanishing finite WL scalar mass

In previous chapters, we have shown that the quantum correction to WL scalar mass
vanishes. In this chapter, we study possibilities to realize a nonvanishing finite WL
scalar mass in flux compactification by analyzing the generalized loop integrals in the
quantum correction to WL scalar mass at one-loop [30]. After finding the conditions for
the loop integrals and mode sums in one-loop corrections to WL scalar mass to be finite,

we guess the four-point and three-point interaction terms satisfying this conditions.

5.1 Summary for Kaluza-Klein mass spectrum

In previous chapters, we have discussed the KK mass spectrums. For scalar field, the

KK mass is obtained by

1
mgcalar = <n + 5) (51)

as eq.(2.18) in subsection 2.2.
For fermion field, the KK mass is given by

fermion a(n + 1) ( )

as M? = aala_ and M2 = a(ala; + 1) in the subsection 3.3.2, or the mass terms of

eq.(4.104) in the subsection 4.5.2.
For non-Abelian gauge field (for example, consider SU(2) gauge field), the KK mass
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is expressed by

B(2+m?) 0 0
mi,, = 0 ang 0 (5.3)
0 0 Oé(ng + 1)

as eq.(4.28) in the subsection 4.2.1.

5.2 The structure of loop integral: general

In this section, we first systematically analyze the divergence structure of the quantum
corrections to WL scalar mass. In general, there are two types of Feynman diagrams
in figure 4.1 or 4.2. From these diagrams and the results of the above subsection, the
general form of loop integral in the quantum correction can be given by

Z/ dik i k2 f(n)

+0z(n+x))

B AT\ TPl (a+2— )T (e+b—a—2)
ozb_a(oz> L'(b)(2 —¢) Z n—i—a:f“’ a=2’ (54)

n=0

where the dimensional regularization was employed for loop integral in the second line.
['(z) is a gamma function, ([s,a] is Hurwitz zeta function which is summarized in
appendix D, and d = 4 — 2¢ dimensions. z is the part of KK mass characterized by
the field running in the loop. = 1/2 corresponds to the KK mass of scalar field (5.1).
xz = 1 or 0 mainly corresponds to the KK mass of fermion field (5.2) or the KK mass
of SU(2) gauge field (5.3), respectively. a denotes the number of derivatives acting on
the single field and b corresponds to the number of the propagator. Note that both «a
and b are non-negative numbers. Since we are interested in the quantum correction as
figure 4.1 or 4.2, we focus on b = 1 or b = 2, that is four-point interaction or three-
point interaction, respectively. f(n) is a coefficient generated by an interaction term
depending on KK mode n.

If we take the complicated form of f(n), it is difficult to express the quantum
correction by using Hurwitz zeta function and the discussion on the finiteness of loop

integral becomes hard. Therefore, we simply take the form f(n) = (a(n + ¢))%(q is a
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real number and ¢ is a non-negative number) in this thesis:

[e.9]

1 4r\ 2T 26T b— —2)
I be.q) = (_71’) (a+ €) (e—I— a Z (n+q)°
n=0

ab=e=c \ « INGINCES (n + z)etb—a—2
(5.5)

5.3 The structure of loop integral: part 1

First, we investigate the divergence structure for the quantum correction (5.5) with

c=0:

I(z;a,b) = I(z;a,b;0,q)

1 (4n\TT(a+2-e)T(e+b—a—2)
N (_> PO)T(2=¢)

(le+b—a—2,2]. (5.6)

ab=e \ «
In order to realize nonvanishing finite WL scalar mass, the loop integral and mode sum
for one-loop correction to WL scalar mass (5.6) must be finite. To clarify this point,
we investigate

'(a+2—€)T(e+b—a—2)

J(z;a,b) = T

Cle+b—a—2z] (5.7)

in eq.(5.6). As was mentioned in the above discussion, we deal with the case b =1 or
b = 2. In the case of b = 1, the Gamma function part of eq.(5.7) is expressed by

I'a+2—¢l'(e—a—1)
['(2—¢)

—(@+2—e—D(a+2—e—2)--2—eT(e—a—1)
= (—1)°T(e — 1). (5.8)
Thus, J(z;a, 1) becomes

J(wia,1) = (—1)"T(e — 1)Cfe —a — 1, ]. (5.9)

In the case of b = 2, the same part of eq.(5.7) is expressed by
Fa+2—¢€)l(e—a)

=(a+2—e—1)a+2—€e—2)---(2—€)'(e — a)

r2-—e
=(-1D)%e—a—1I'(e—1). (5.10)
Thus, J(z;a,2) becomes
J(z;a,2) = (—1)*(e —a— 1)I'(e = 1)([e — a, x]. (5.11)
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Here, Gamma function and Hurwitz zeta function can be expanded in €

r 1
Fle—1)= - Ee)l = — <Z - v+ 1+ O(e)) , (5.12)
C[E - D, l’] = C[_p7 il?] + C(LO)[_pa ZE]G + 0(62)7 (513)
where v = 0.5772--- is the Euler-Mascheroni constant, p is an arbitrary positive

integer, and ((9[s, a] means (0[s, a] = 9¢[s,a]/ds. Calculating I'(e — 1)C[e — p, z],
divergent part will be remained because of 1/¢ in eq.(5.12) and ([—p, z] in eq.(5.13).
However, using eq.(D.5) in appendix D, I'(e — 1)([e — p, 2] becomes finite if we take p

being even. Thus, we summarize the condition for I'(e — 1)([e — p, x] being finite as
['(e — 1)[e — p, x| = finite, if p = even. (5.14)
Applying this result to egs.(5.9) and (5.11), J(z;a,1) takes finite value at odd a,

J(x;a,2) does at even a.

5.4 Classification of interaction terms: part 1

From the condition (5.14), we can classify the interaction terms giving finite one-loop
correction to WL scalar mass. In this section, we consider interaction terms which has
no derivatives acting on ¢ or ¢* because we consider one-loop corrections to WL scalar

mass.

5.4.1 Four-point interaction

Four-point interaction term generates a correction to WL scalar mass of the left one
in figure 4.1 or 4.2. Since the diagram has a propagator, the diagram corresponds to

J(x;a,1) (a: odd), from which we can guess the four-point interaction terms as follows,

e scalar field loop

J(1/2;a,1) = @*pd,, -+ -0, "0 - - 0", (5.15)

e fermion field loop

J(1;a,1) = @ v (P)** ', (5.16)
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e SU(2) gauge field loop

J(0;a,1) = ¢*p0,, - - 0, A0 - - - O AY. (5.17)

We did not consider a four-point interaction with such as ¢*pd,, - - 0,, PO - - - OHar)
since the fermion mass m fermion = \/m appears from a numerator in the fermion
propagator and then the form of Hurwitz zeta function is complicated. On the other
hand, (f)?*~! is obtained by (5.16). Computing quantum correction, the trace of §

2a—1

from a numerator in the propagator of fermion multiplied by (§) is given by k2?.

These terms contribute to quantum correction to WL scalar mass in the case odd a.

5.4.2 Three-point inteaction

Three-point interaction term generates a correction of the right one in figure 3.4, 4.1
or 4.2. The diagram has two propagators and corresponds to J(z;a,2) (a: even), from

which we can guess the three-point interaction terms as follows,

e scalar field loop

J(1/2;0,2) = " 0*® + pd* D, (5.18)
J(1/2;a,2) = @0y -+ Oy, ,, @O - 0M"2® + 00, -+ D), , @TO - D2,
(5.19)

e fermion field loop
J(1;a,2) = ¢™(P)" 'Y + (@), (5.20)
e SU(2) gauge field loop

J(0;a,2) = ¢*0,, -+ 0

Ha /2

A a2 A 4 0D, - D

Ha /2

ACOHL L GHas2 AW
(5.21)

where J(1/2;0,2) is allowed because of ([0,1/2] = 0. We are particularly interested in

the interaction term in (5.18), therefore we will discuss later.
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5.5 The structure of loop integral: part 2

Next, we consider the divergence structure for the quantum correction (5.5) with ¢ # 0

. As a first step, we set ¢ =1 in eq.(5.5):

L 1 AT\ T (a+2— )T (e+b—a—2) — n+q
](:aa,b,l,q):W(E) L(H)T(2 — ) ; (n 4 z)etb—a=2
1 dr\“"Tl(a+2—¢T'(e+b—a—2)
ab=e=1 \ a (b) (2—¢

><<([6+b—a—3,x]+(q—x)([e+b—a—2,x]). (5.22)

If ¢ # z, the divergence will inevitably appears from either (le + b — a — 3, 2] or
C[e+b—a—2,x]. To avoid the divergence and see whether the quantum correction
is finite, we need to choose ¢ = x (equivalent to the choice f(n) = KK mass in ¢ =1
case). Thus, the form of f(n) is fixed by f(n) = (a(n + z))¢ in ¢ # 0 case in order to
be finite for I(x;a,b,c). In the ¢ = = case, eq.(5.5) has

I(z;a,b,¢c) = I(x;a,b;c,q = 1)

_ 1 (4_W)E_2F(a+2—e)F(e+b—a—2)
(B2 — €)

Cle+b—a—c—2,xl.
(5.23)

Oébfafc a

Note that I(z;a,b,0) corresponds to I(z;a,b) (5.6). To investigate the finiteness of

I(x;a,b,c), we see

F'a+2—€¢I'(e+b—a—2)
'@2-—e

K(z;a,b,c) = Cle+b—a—c—2,1, (5.24)

in eq.(5.23). Substituting b = 1 or b = 2 in eq.(5.24) and using eq.(5.8) or eq.(5.10)
respectively, we obtain
K(z;a,1,¢) = (=1)T'(e = 1)¢[e —a— c— 1, 2], (5.25)
K(z;a,2,¢) = (—1)%(e—a—1I'(e = 1)C[e —a — ¢, z]. (5.26)

Applying the result (5.14) to (5.25) and (5.26), K(z;a,1,c) takes finite value at odd

a+c, K(x;a,2,c) does at even a + c.

IThese results in this section are extended results in [30].
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5.6 Classification of interaction terms: part 2

We consider the case of four-point interaction terms (b =1, a+¢: odd) and guess their

form providing finite quantum corrections to WL scalar mass,

e scalar field loop
K(1/2;a,1,¢) = ¢*p0d,, - - - 0, ®* (aTa + %)caﬂl QM (5.27)
e fermion field loop
K(1;a,1,¢) = ¢*o(@)** (a'a + 1) (5.28)
e SU(2) gauge field loop

K(0;a,1,¢) — ¢*p0,, - O, A%(ala) 0" - - ' A™. (5.29)

The case of three-point interaction term is hard to guess because the three-point inter-
action term cannot be expressed in terms of a mass-squared operator. Thus, we do not

consider the three-point interaction terms in this section.

5.7 The structure of loop integral: part 3

Due to the presence of annihilation and creation operators, there are interactions be-
tween the field with different KK mode indices. In this case, we consider the following

divergence structure of the quantum corrections to WL scalar mass 2:

= d*k k% f(n,x)
Z/ ) (2 T a(n + D) (K +a(n T 9) (5:40)

where f(n,z) is a coefficient generated by an interaction term depending on KK mode

n and x, y are the parts of the KK mass characterized by the field running in the loop
and satisfy  # y and y — x € Z. Focusing on the denominator in the above integrand,

we use a partial fraction decomposition:

1 o < 1 - 1 )
(B2 +an+z)(k+an+y) aoly—2) \E+an+z) E+anty)/)’
(5.31)

2These calculations in this section are unpublished results.
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Thus,

2m)t (k2 + a(n+ ) (k2 + a(n+y))

1 d*k k*f( d*k K2 f(
- - Z/ f(n,2) Z/ f(n,z) (5.32)
y—x) 2m)4 k2 4+ a(n+ ) 2m)* k2 + a(n +y)

is obtained. It would be interesting that eq.(5.32) implies that the quantum correction

= / d*k k* f(n,z)
—

from three-point interactions between the fields with different KK mode indices is de-
composed into the ones from four-point interaction. If we assume f(n,z) = (a(n+z))°
(¢ is a non-negative number), the divergence structure of the quantum corrections to

WL scalar mass is expressed as

= d*k k*(a(n + x))°
L(z,y;a,¢) = Z/ 12+ aln+ 2)(k2 + a(n + 1))

- - zia,1,c d*k k}za n—|-;(;)>
_a(y—x)< L) Z/ 2W4k2+an+y)> (5.33)

where we use eq.(5.23). Denoting the second term in eq.(5.33) as X, X is computed as

/ 'k k2 (a(n + 1))°

21)4 k2 4+ a(n +y)
(47r) F(a+2—e)F(e—a—1)iac{(n+y)+($—y)}c

X

3

al=e \ « ['(2—¢) — (n+y)ot
( 1)a 4_7T -’ o = 1 - k .\ k
al-a—c \ o F(E 1) — (n + y)E,a,1 CCk(n + y) (.ZE y)
n= k=0
- c—k, c—k (_1)a dm -’
P ICIC [a (%) - - a-k- 14
= Z Ol — ) I(y;a,1,k), (5.34)
k=0

where eq.(5.8) is used in the third equality and eq.(5.23), eq.(5.25) withb =1 and ¢ = k
are used in the last equality. Note that we define (Cy = 0 if ¢ = 0 is taken. Therefore,
I.(x,y;a,c) has

C

](I’, a,l, C) - Z ch(l' - y)c_kac_k](y; a,l, k) : (535)

k=0

I(z,y;a,c) = ay—2)
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We try to rewrite I(y;a, 1, k) in I.(x, y; a, c). By using eq.(D.4), I(y;a, 1, k) is calculated
by

Iyra 1 k) = =0 (4—”)6_ Tle—1)Cle—a—k—1,2+ (y—2)

Oélfafk: a

= I(z;a,1,k) — % (%ﬂ) : T(e—1) Y (m+a:)1€—a—k—1‘ (5.36)

m=0

Thus, I.(x,y;a,c) is rewritten as

1 &
I(z,y;a,¢) = —— (I(a:; a,1,c) — Zch(JJ — ) *a (20,1, k))

a(y — ) —
1< (=1 [4m\ v 1

+ Oé(y — J]) kZ;CCk(x y) al—a—c (;) F(E 1) mXZ:O (m + x)e—a—k—l
1 c—1

e — Culx — ) a I (z;a,b, k

PR D s (ﬁ)e_Qr(e—l)yf (m+2z -y (5.37)

aly —x)al=+c \ « — (m 4 )t
In order for I.(x,y;a, c) to be finite, the second term in eq.(5.37) needs to be vanished
because it involves the divergent term. In general, it is difficult to vanish the second

term. If we however impose y —z — 1 =0, I.(z,y; a, ¢) is reduced as

—

c—

I(x,z+ 1;a,c) = — C(=1) " (x5 0,1, k)

Il
(]

0

= (41) (e — Da(alx — 1) (5.38)

al=e \ o

—~

1
+ =

Q

To vanish the second term in eq.(5.38), we choose x = 0 which corresponds to the KK
mass of fermion field or x = 1 except for ¢ = 0 which corresponds to the KK mass of
gauge field, respectively.

On the other hand, the second term in eq.(5.38) will remain if we choose x = 1/2,
which corresponds to the KK mass of scalar field. In the x = 1/2 case, we need to
deal with a polynomial in the KK mass of scalar field. We define below the polynomial

version of the divergence structure:

Loy (z50)[Aes -+ s Xo] = Aele(z, 2 + Lia,¢) + Aemqleq (2 + La,c— 1) + - -
+ o+ MO(z, e+ 15a,1) + Nolo(z, 2 + 15a,0), (5.39)
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where we fix b =1and y =+ 1 and \;(i = 1,---¢) are real numbers. We note that
Loy (5 a)[ A, - -+, Ao] 1s expressed by
= d*k k% ooy (n, )
Lo (z:a) e, -+, Ao] = AN
p ly(J?,(l)[ ) ) 0] nZ:O/ (271')4 (kQ +a(n +ZL’))(]€2 —f-oz(n +r+ 1))7
Footy(n,2) = Ac(a(n + 2))° + A1 (a(n +2)) " + -+ Xo(a(n + 2))°.

(5.40)

(5.41)
As an illustration, we consider the following fyoy (7, ):
Trory(n, ) = (a(n + 7)) + alr + s)(a(n + x)) + a’rs
=a((n+2x)+r)a((n+zx)+s), (5.42)

where 7, s are real numbers. From the above example, we read Ay = 1, A\; = a(r +
s), o = &’rs. By using Ao, €q.(5.38) and eq.(5.39), Loy(z;a)[l,a(r + s),a?rs]

involves

—)6_ (e —Daa*{z — (1 -r)Hz - (1 -9} (5.43)

Taking x = 1/2, eq.(5.43) vanishes if we choose r or s for a half. That is, fyoy(n, ) is
represented by

Jpoty(n,7) = a(n + 1)« ((n + %) + s) : (5.44)

The factor a(n + 1) (or (y/a(n + 1))?) implies that creation operators raise KK mode
by one as eq.(3.40) or eq.(4.27). This implication is consistent with the condition of
y—x—1=0.

5.8 Summary of the structure of loop integral

We summarize the structure of loop integral in the previous sections. In general, the
structure of loop integrals has
d4 k ]{32a c
I(x;a,b;¢,q) Z / a(n +9))
Y2+ a(n+a)

1 (471') F(a—|—2—e)F(e+b—a—2 Z (n+q)°

ab=a—c \ o L2 —¢) (n + x)etb—a=2’

(5.45)
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where a, b, ¢ are non-negative numbers. According to the finiteness of loop integral, we

mainly deal with the following loop integral

1 4 €—2
I(z;a,b,c) = I(z;0,b;¢,q = ) = —— (—W) K(z;a,b,c), (5.46)
a7\«
) = 1mab0.g = - () s (5.47)
y Wy V) — 7777q_ab_aa )y M) .

where K(z;a,b,c) and J(x;a,b) with b =1 or b = 2 are expressed as

K(z:a,1,¢) = (=1)°T(e — 1)Cle —a — ¢ — 1, 2] (5.48)
K(z:0,2,¢) = (=1)%(e — a — 1)T(e — 1)¢[e — a — ¢, 2] (5.49)
J(z;a,1) = (=1)°T(e — 1)C[e — a — 1, ] (5.50)
J(25a,2) = (=1)%(e — a — 1)D(e — 1)C[e — a, ] (5.51)

Note that K(z;a,b,0) is reduced to J(x;a,b).

If there are interactions between the field with different KK mode indices, we con-
sider the following divergence structure of the quantum corrections to WL scalar mass
as in section 5.7. The final results are given by

d*k E*(a(n + z))°
(. :.0:6) Z/ T2 T a(n + 0)(F +a(n 1 9)) >:32)

c—1
- Ol — ) a I (x:a,b, k

R T G (g)E‘QF(G_UE (m+2e—yf oo

aly —x)al=ec \ «a — (m + o1

In order for I.(x,y; a,c) to be finite, the following form is used:

1
Ic(l‘wr + Lia, C) = Zcok<_1)c_kac_k](m; a,l, k)
«

(=" <47T) [(e — 1)z a(z — 1)) (5.54)

(07

Note that we define (Cj = 0 if ¢ = 0 is taken.
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Moreover, we define the polynomial version of the divergence structure:

d*k k% f ooy (n, )
I, POV
poly (5 @) Ao Z/ T2 +am+a) (k2 +an+z+1))
=Nl (z,x 4+ L;a,¢) + Aoy leq(z, 2+ L;a,c— 1) + - -
+o+ ML (2,2 + 1a,1) + Nz, 2+ 1;a,0), (5.55)

Fooly(n,2) = Ae(a(n + 2))° + A1 (a(n+2)) "+ + Xo(a(n + 2))°.
(5.56)

5.9 Examples

By using above formula, we can compute the quantum corrections to WL scalar mass
in previous chapters. In this section, we apply the above formula to the quantum

corrections in previous chapters.

5.9.1 Scalar type

The quantum corrections with from the KK scalar field contributions have been seen
in subsection 3.3.1, 4.4.2 with £ = 1 or 4.4.3. By using eq.(5.46) and eq.(5.55), we first

compute Iy, and Is, in subsection 3.3.1:

Iy = —2ig?|N[1(1/2;0,1,0), (5.57)
Ly = +2ig%| N| Loy (1/2; 0)[1, /2]
= 2ig*|N| (11(1/2,3/2:0,1) + S1o(1/2,3/2;0,0))

=2ig*|N| | 1(1/2;0,1,0) — L (4m E_QF( -1)+ L (4n G_QF( —1)
- A da \ « ‘ 4o \ « ‘
= 2ig®|N|I(1/2;0,1,0). (5.58)

For I1(1/2,3/2;0,1) and I5(1/2,3/2;0,0), we used eq.(5.54). Therefore, Iy, and Iz,
are canceled.

Next, we consider eq.(4.135) and eq.(4.136). Eq.(4.135) is the sum of eq.(4.131) and
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eq.(4.132):

162g _ 16ig° :
- |N|Z/ e e I LULICER)
o?|N

where we used eq.(5.47) (or eq.(5.46) with ¢ = 0). Also, eq.(4.136) is the sum of
eq.(4.133) and eq.(4.134):

1629 /dp an+a(n+1)  16ig*
- N _ N| x 21(1/2:0,1,1
MY [ et SN a0 /20.,)

292a2|N |
=i~ (g F(e —1)Cle —2,1/2], (5.60)
where we used eq.(5.46). These results are consistent with eq.(4.135) and eq.(4.136).
Finally, we consider eq.(4.149) and eq.(4.150). Eq.(4.149) is the sum of eq.(4.145)

and eq.(4.146). Using eq.(5.47), eq.(5.54) and eq.(5.55), I 5 is reproduced by

16@9 a(n + 1)p?
TN [ G Gt D)

16zg

— IV ey (1/2; DL, /2]

B 16zg V] (R(1/2.3/2:1,1) + 210(1/2 3/2:1,0))

- 16@9 N (m/z L1+ g (%) Ple=1)- (%)6_2“6 ) ”)

_ Y O‘Q‘M <%ﬂ)er(e —1)C[e—2,1/2]. (5.61)

m2A\?
Also, by using eq.(5.47), eq.(5.54) and eq.(5.55), eq.(4.150), which is the sum of eq.(4.147)
and eq.(4.148), is computed by

B 82g a(n+1)a(2n +2)
- 'Z/ Pra(mni)) (Pramsd)

16
_ Zg 2 N Loy (1/2; 0)[1, o, a2 /4]

16zg

IN| (12(1/2, 3/2;0,2) + al(1/2,3/2;0,1) + %210(1/2, 3/2;0, 0)) .
(5.62)
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Using eq.(5.54), I5(1/2,3/2;0,2), 1,(1/2,3/2;0,1) and Iy(1/2,3/2;0,0) are expressed

as

1,(1/2,3/2;0,2) = —é <a2](1/2; 0,1,0) — 2a1(1/2;0,1, 1)) + é (%)61 T(e—1),

(5.63)
1[4\
1(1/2,3/2;0,1) = 1(1/2;0,1,0) — — ( =) T(e—1), (5.64)
da \ «
I(1/2,3/2:0,1) = — (4 - (e —1) (5.65)
0 ) y Yy — 202 o € . .
Therefore, using eq.(5.46), I is reproduced by
16ig°
Ipo = ——5IN| x 21(1/2,0,1,1)
2¢*?|N| (47 \°

5.9.2 fermion/gauge type

The quantum corrections from the KK fermion or the KK gauge field contributions
have been seen in subsections 3.3.2 or 4.4.1. First, we again calculate eq.(3.4) in the

subsection 3.3.2, which is the contribution from fermion loop.
I; = +4ig*|N|1y(0,1;1,0) = 0, (5.67)

where we used eq.(5.54). Note that I5(0, 1;1,0) vanishes because of (Cx = 0 and = = 0.

Thus, we conclude that the contribution from fermion loop vanishes.

Next, we see 11(421) and 15122) in the subsection 4.4.1 as an example. For simplicity, we

take & = 1 in this subsection.

1) = —8ig?| N|1(0;0,1), (5.68)
1) = 8ig?|N| Loy (0; 0)[1, a] = 8ig?| N| (11(0, 1;0,1) + aly(0, 1; 0, 0))
= 8ig*|N|1(0;0,1). (5.69)

Note that 7;(0,1;0,1) is reduced to 1(0;0,1) (or 1(0;0,1,0)) and Iy(0,1;0,0) vanishes

because of (C, = 0 and z = 0. Thus, 11(421) and ]1(422) are canceled. As above calculations,

we show that If’l) + 15132) vanishes.
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Next, we consider I43 and 44 in the subsection 4.7. We compute eqs.(4.124) and

(4.125) by using eq.(5.47) and eq.(4.126) and eq.(4.127) by using eq.(5.46):

) 32@9 29 20%|N| (47 €

Ty = IN|I(0;1,1) = B e E I'(e — 1)¢le — 2, 0], (5.70)
@) 32@9 29 20| N| B B

[A3 - |N|](1a 17 1) T2A2 O{ F(E 1)C[6 2a ]-]7 (571)

64@9 4g2042|N|

1¢) = INI2(0:0,1,1) = i= o E F(e —1)¢[e — 2,0], (5.72)
@) 6429 492042 IN| [4m\°

Iy = IN|I(1;0,1,1) = oYY - (e —1)C[e —2,1]. (5.73)

Noting that ([s, 1] = ([s, 0] is satisfied, [43 = 11(33) —1—1(3) and [a4 = 1(44) +II(44) are derived.
Finally, we deal with I45 and [ 46 in the subsection 4.7.2. By applying eq.(5.54) and
eq.(5.55) to Ifg and 11(435), we obtain

32 32
JiS "g 22 N Lo (0: 1)[1, ) = Zg yNy<11(0,1,1,1)+a[0(0,1,1,0)>
3219 2zg 20| N|
N( 0:1,1 0) 2TV ) ple—1)¢fe— 2,00 (5.74
(1000 + 0 x0) = 20 (AT e 20 (5.7)
| 32i 2
I = Zg \Nlh(l 2,1,1) 3 Zg IN|I(1:1,1)
_2ig a2|N|

where we apply eq.(5.47) to eq.(5.74) and eq.(5.75) in the last equality. Because of
C[s, 1] = (]s,0], Ia5 = 125) + _75135) is derived. Similarly, [AG and ](6 are

322
150 = =5 IN Lo, (0:0)[1,30/2. 0 /2]

32 3 2
_ Zg IN| (12(0,1;0, 2) + 711(0,1;0,1) + %10(0,1;0,0))

_ _33552 IN| (—é <a2](0; 0,1) — 2a1(0;0, 1, 1)) + 370‘1(0; 0,1) + %2 x o)
- 32@9 V| (21(0 0,1,1) + = I(0;0, 1))
_ —¢29W§‘—/2\‘2M (E) (ZF(E 1)l —2,0] 4+ %F(e —1)Cfe— 1,0]) C(5.76)
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32@9

14 = == IN Loy (1 0)[1, /2, 0]

32@9

IN| (12(1 2:0,2) + 211(1 20, 1))

2 1
_ 3 Zg |N|( a<a21(1;0,1)—2a[(1;0,1,1)> +%I(1;0,1))

32@9

IN| (2[(1 0,1,1) — —1(1 0, 1))
_ —2'290‘—2|N| (2r(e S Cle—2,1] - 5r(e C1)Cle—1, 1]> R

m2A2

where eq.(5.47) and eq.(5.46) are used in the last equality of eq.(5.76) and eq.(5.77).
Although I @ a6 or I A36) have a divergent term, the sum of / 1226) and / fﬁ) cancels the divergent

term because of ([s, 1] = ([s,0] and then eq.(4.143) can be realized.

5.10 Nonvanishing finite WL scalar mass

In the section 5.4, we have classified the interaction terms generating finite quantum
correction at one-loop. In this section, we focus on eq.(5.18) since it has no derivatives
and is the simplest interaction term of all interaction terms in the section 5.4.

We consider the following Lagrangian given by eqs.(3.3), (3.5) and (5.18):

1
r— _Z_lFMNFMN — Dy ®* DM + K(P*P*D + D" D), (5.78)

where k is a dimensionless coupling constant. ¢ involves the flux background (¢) and

the fluctuation ¢ as eq.(3.2). Thus, Lagrangian (5.78) is rewritten as

1
LD _ZLFWF’W - D, ®*"D'd — m2, . P P

scalar

—igV 20" D% ® + igV 2000 a® — 267 p* pD* P
k(D D + pB*®) + k((¢*) B*® + (¢) B*D), (5.79)

where we note that the unnecessary terms are omitted. To derive a four-dimensional

effective Lagrangian by KK reduction, we need to use eq.(2.22) or eq.(2.23). Integrating
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over T2, the four-dimensional effective Lagrangian is obtained by

1
Lip = —ZFWF/W — 0" O

* 1 *
+2 (‘Du‘bn,jD”q’n,j —o (” + 5) ;. Pn.
n7j
—ig\/2a(n + 1) @y Py +igy/2a(n + 1)@ 1P — 20°0" 0, P

+ KSO*@:L,jCDn,j + kp®;, P+ K <¢>1 (P:L,jcbn,j + K <¢*>1 CI);;,j(I)n,j)v (5.80)

n’j

where (¢); and (¢*); are defined by
@1 = [ @0 Estes, )= [ @0V 6 68D

When (¢) = f2/v/2, (¢), and (¢*), lead to zero because of odd function with respect

to integral variables z or Z.

5.10.1 Diagrammatic computation

If kK = 0, we reproduce the result (3.47). On the other hand, we get a new quantum
correction to WL scalar mass in the x # 0 case. Computing the right diagram in figure

3.1, the result has

d*k 1
T = '2§ = ik?|N|1(1/2;0,2
s - /(27)4 (k2+a(n—|—%))2 NI )
V2N /A 2 2IN|In2 [47\¢
_ I (g) F()cle 1/2] = _i% (g) L O), (5.82)
where
Cle,1/2] =0 — 61%2 (5.83)

are used in the last equality of eq.(5.82). This correction (5.82) is finite in € — 0 limit.
Thus, the quantum correction to WL scalar mass at one-loop is given by

|N|In?2 x?
3212 L?

om? =il = (5.84)

Note that we introduced a factor of torus area L?, which comes from the normalization
factors for KK mode function. Obviously, we can also understand that dm? = 0 is re-

produced for eq.(5.84) with x = 0 in six-dimensional scalar QED (see subsection 3.3.1).
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One of the interesting phenomenological applications is that the quantum correction
dm? to WL scalar mass can be interpreted as Higgs mass. This idea is based on gauge-
Higgs unification, namely a zero-mode of WL scalar ¢ is regarded as Higgs field. Even
if the compactification scale is Planck scale 1/L ~ O(Mpjaner), Higgs mass could be
realized by the interaction term (5.18) generated by some dynamics at O(1) TeV scale.
This is analogous to the mass of pion as a pseudo NG boson for chiral symmetry. The
reason why the pion mass is not Planck scale is that chiral symmetry is dynamically
broken at extremely lower energy scale comparing to the Planck scale, namely, QCD
scale.

In this theory, the WL scalar cannot be actually identified with Higgs field in the
SM since the WL scalar in this theory is not an SU(2) doublet. It would be studied that
an SU(2) doublet is realized by the WL scalar field in six-dimensional SU(3) Yang-Mills
theory and SU(3) gauge symmetry is broken to U(1)xU(1) or U(1) [39].

5.10.2 Effective potential analysis

We can calculate the quantum correction to WL scalar mass in terms of effective
potential. In our Lagrangian (5.80), we read the KK mass spectrum of ® to be

a(n+1/2) —k(p); — k (¢*);. Thus, the four-dimensional effective potential is given by

V- i [ (i ra(nsg)—rloh-nien). 65

where we take into account a degree of freedom of complex scalar field ®. To obtain

the quantum correction to WL scalar mass from four-dimensional effective potential,
we differentiate the effective potential with respect to (¢), and (¢*),. Thus, dm? is
obtained as
0?V
om? = AT
9 (), 0(9*);

<¢’>1:0
= d*k 1
" nzzo/@w)“ CENCE (5:86)

This result (5.86) is consistent with eq.(5.82) or eq.(5.84).
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5.10.3 WL scalar as a pseudo Nambu-Goldstone boson

We have seen that the zero-mode of WL scalar ¢ becomes a NG boson of translational
invariance in extra spaces as in section 3.4 or 4.8 if Kk = 0. This is the physical reason
that the quantum correction to WL scalar mass vanishes. If k # 0, @@ .®, ; (or
©* @) @, ;) in eq.(5.80) is expected to break the translational invariance explicitly. To

confirm it, we consider the following local six-dimensional transformation [25]

1
O =p——0N\, & =e"D, =90, (5.87)

V2

where A = f(eZ — €z). Infinitesimal transformations of €, € are expressed as
1
drp = —EGA, AP = gAD, 40" = —gAD". (5.88)

Transformations of ¢ and ® are the combination of translation dr and infinitesimal

transformation d,,

5o = (o0 + 6p)p = V2f€, (5.89)
6O = (67 + 00)® = —iv/alea + €a)®. (5.90)

Using eq.(2.22) and eq.(3.40), we obtain
= —N‘Z@w ca’ +€a)é,; = Zacbmgm, (5.91)
6q)n,j = —Z\/a(E\/ n + (I)n—i—l,j + Eﬁq)n—l,j)- (592)

For 6®*

’llj’

it is given by complex conjugate of eq.(5.92),
00y, ; = +iva@EVn + 10, ; +ev/n®)_y ). (5.93)

Let us confirm the explicit breaking of translational invariance of the interaction

term p®; P, ;. First, a transformation of @, @, ; is

n,j

—evn + 1(1)7*1,j(1)n+1,j — g\/ﬁq):;jq)nfl,])
=0, (5.94)
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by the shift n — n + 1. Thus, the mass term of @, ; is invariant. For ¢®; @, ;, a

transformation is

; (z ) 50 00+ 58 (z )
n,Jj n,j n,j
= V2[e) @, 0, #0. (5.95)

n,j

This result means the explicit breaking of translational invariance in extra spaces. For
k # 0, the zero-mode of WL scalar is identified with a pseudo NG boson of translational
invariance in extra spaces.

One might claim that the interaction terms (5.18) are not gauge invariant since ¢
or ¢* transforms under the gauge symmetry as eq.(5.87). In order to overcome such a
claim, ¢ or ¢* should be expressed by a gauge invariant non-local Wilson line operator
and the interaction terms (5.18) should be regarded as one of the terms of expanding

the Wilson line operators in small ¢ or ¢*. Noting that the Wilson line operators®

Us = exp [ig%/lg,df] ., Us=exp [ig%Aﬁdﬁ] (5.96)

can be written in terms of ¢, ¢* and z, Z as
Us = exp [% j{(godz + @dz — p*dz — go*dz)} : (5.97)
Us = exp [% ]{(gpdz —pdZ + o dz — gp*dz)} : (5.98)

we find that the cubic terms introduced in this thesis can be expressed by the non-local

Wilson line operators
i(Us — UN®*® — i(Us — UHD*D D 2\/§ig7§gpdzq>*q> — Qﬂigj{go*dz(b*(b
= 2V 2igup®*® — 2v/2igu 0 D* D (5.99)
where g4 is a gauge coupling constant in four dimensions. Note that the &*® term
cannot be included in (5.99). If this term is allowed, the WL scalar mass would be
divergent.

We note how the finite WL scalar mass can be expressed in terms of the Wilson

line operators. If the WL scalar mass is generated in the broken phase, where the VEV

3In non-Abelian case, the path ordering must be taken into account, Us ¢ = P explig $ As dz>0].
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of the WL scalar field is non-zero, it is straightforward to express the WL scalar mass
by the Wilson line operators as in the gauge-Higgs unification. As for the WL scalar
field mass in the present thesis, the mass is generated in the unbroken phase and is
independent of the VEV of the WL scalar field. Therefore, we cannot express the WL
scalar field mass by the Wilson line operators explicitly.

Under the constant shift of A5 — As — feg/2, Ag — Ag + fe5/2, the operators
Us — Ul = 2isin {g 7{ A5dx51 , Us— Ul = 2isin {g 7{ Adeﬁ'} (5.100)

are not obviously invariant, which means that the interaction terms (5.99) explicitly
break the shift symmetry. It is not easy to clarify the origin of the interaction terms
eq.(5.99), which is beyond the scope of this thesis. We expect that the origin of the
interaction terms might be connected to the quantum gravity effects, nontrivial back-

grounds such as a vortex, or some non-perturbative dynamics.

80



Chapter 6

Application to inflationary theory

In this chapter, we propose a new inflation scenario in flux compactification [31]. In
this scenario, we identify a zero mode WL scalar field of extra components of the higher
dimensional gauge field with an inflaton. Following the section 5.10, we give an explicit
inflation model in a six-dimensional scalar QED, which is shown to be consistent with

Planck 2018 data.

6.1 Setup and one-loop effective potential

Inflation is a very attractive scenario to expand the space in the early universe exponen-
tially and to solve many problems (for example, Horizon problem and flatness problem)
in the standard Big Bang cosmology. Its existence is supported by observations of cos-
mological parameters [32]. Although inflation has been considered to happen by a
scalar field called as inflaton, there is still no compelling model of inflation. In a slow-
roll scenario of the inflation, the scalar potential is required to be flat and stable under
quantum corrections, which usually causes an unnatural fine-tuning of parameters of
the theory unless we have some dynamics or symmetry to control the inflaton dynam-
ics. For instance, the inflaton in natural inflation [40,41] is identified with the pseudo
Nambu-Goldstone boson of some global symmetry. In extranatural inflation [42], the
inflaton is identified with the WL scalar field of the gauge field in higher dimensions
without magnetic flux. In [43], the inflaton and the curvaton are identified with the
WL scalar fields in a six-dimensional gauge theory.

Our setup in this chapter is the same as the section 5.10. In particular, we follow
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eq.(5.78) or eq.(5.80). By using g4 = g¢/L which is a four-dimensional gauge coupling
constant and k4 = kg/L which is a four-dimensional coupling constant, eq.(5.80) is

rewritten as

1
Lip = —ZFWFMV — 0" O

1
+) (—Ducp;;JDﬂcpw —a (n + 5) ;) D,
n7j

—igay/2a(n + 1)@ @y 4y ;P +igan/2a(n + 1)p®) ®nij — 2950" 0@, ;P
+ Ii4(,0*(1):;,]¢)nj + ’f4<pq)n]q)n] + Ky <¢>I (I):(z,jq)n,j + K4 <¢*>I q)z,j(Pn,j)v (61)

where oo = 2¢f. Following [42], we regard WL scalar ¢ as an inflaton in this chapter.

One-loop effective potential depending on ¢ can be described as

Vg, ¢") Z/ 7)1 In (k2 +a (n+ ;) + M?(p, o )) (6.2)

where we have taken into account loop contributions from the bulk scalar field ®. N
is a number of the degeneracy, and M?(ip, ¢*) is a field-dependent mass for the bulk
scalar field ®.

As for M?*(y, p*), we consider two limiting cases for a free parameter U(1) gauge
coupling, namely g, < 1 and g4 > 1. For that purpose, we read M?(p,p*) from
eq.(6.1) as

M?(p, ¢%) = —Kap™ — Kap + 2930 p. (6.3)

While only the first two terms in eq.(6.3) are considered in the gy < 1 case, the last
term proportional to g7 in eq.(6.3) is also considered in the g, > 1 case in addition
to the first two terms. In the case of g4 ~ O(1), the terms linear in g4 in eq.(6.1)
should be also taken into account in M?(p, ¢*). However, the obtained eigenvalues of
M?(p, ¢*) become complicated and makes the computation of the effective potential
hard. Therefore, we do not discuss this case in this thesis.

We can express the effective potential by using Schwinger representation as

_ _NZ/ = / dte_kzt o(nt§)t =M (00"t

— oy
=—N 1 / ﬁLe—MQ(wm*)t' (6.4)
0

1672 31 — et
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To proceed a calculation of the effective potential further, we focus on an integral

representation of Hurwitz zeta function ?

(s a] = — /Oodtts_le_at Res> 1 (6.5)
S’G_F(s) i [ Res>1 .

Then, the effective potential and its derivatives by ¢ can be expressed by

042 . 1 1 2 *
aK L1 *
/{2 . 1 1 2 *
thtp* = _N167T2 ll_I}éF(e)C €, 5 + EM (907 @ ) ) (68)

where a parameter € is introduced to regularize the integral of t. In particular, we can
check that the ¢ — 0 limit indeed agrees with the results in case of M?(p,p*) = 0
obtained in section 5.10 by diagrammatic calculations using the dimensional regular-
1zation.

In the g4 < 1 case, we ignore 2g3¢*p in eq.(6.3) as mentioned above. For conve-

nience, we define the dimensionless variables in a four-dimensional sense as

¥ K4
— = Mp—2= 6.9
z Mp’ Yy P o ) ( )
M?(p, p*)/a is then expressed by
1
—M?*(p, ") = —(2+ ")y = —22y, Rez=u2. (6.10)
a

Thus, the effective potential is rewritten by

2

ot 1
V= _N167r2 11_{%1_‘(6—2)( {6—2,5—2@/} , (6.11)

and the effective potential is shown in figure 6.1. If L ~ Mz"', the effective potential is
close to flat as y (or k4) takes smaller value. Taking into account for the consistency
with the original theory [24,25], the small value of y is favored. If y < 1, k4 is small,
which is independent of g4. This implies that linear terms in g, can be neglected because

we can always take g4 < KkyL.

'For analysis of the effective potential using Hurwitz zeta function, an interesting study is done
in [39].
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Figure 6.1: Schematic picture of the effective potential in the case of g4 < 1. The blue
and yellow lines shows y = 1.0 x 10°, y = 1.0 x 10! respectively.

In the g4 > 1 case, M?(p, ¢*)/a is expressed by
2172

1 . . giM
EMZ(%SO )=—(z+2")y+ 2%IZI2

= —2uy + 2G(u* 4 v?), (6.12)

where z = u + v and G = g7M%/« are defined in the second equality. Note that G is
almost an order of g? because « is independent of g4. Setting u = v for simplicity, the
effective potential is given by

C]{2

V=-N

1
lim (e — 2)¢ |e — 2, 5~ 2uy + 4Gu*| (6.13)

167‘{'2 e—0

which is shown in figure 6.2. This effective potential in the case of g, > 1 behaves as
V o I'le — 2]C[e — 2, 4Gu?]. Comparing with the potential in figure 6.1, it seems difficult
to apply the potential in figure 6.2 to an inflation model.

6.2 Inflationary parameters

Using the four-dimensional effective potential for the WL scalar field (6.6), we propose
a cosmological inflation model in flux compactifiaction, where the WL scalar field is

identified with an inflaton.

84



Figure 6.2: Schematic picture of the effective potential in the case of g4 > 1. We take
y = 1 for simplicity. The yellow and blue lines shows G = 1.0 x 10?, G = 1.0 x 103

respectively.

Slow-roll parameters ¢ and 7 in our model are given by

2
ezﬁ(ﬁy:@ Fap Tle—1Cle— 15+ M (p 7)) (6.14)
- 9 Vv 2 a6—>0F(€—2)C[6_2’%+§M2<90790*)] ) .
Vogr A D) Cleg+ 3 M (p,¢)]
= M2222 — 2| 24 2T & ; 1
n Py P<a26%F(€_Q)C[€_2,%+§M2 90790*)] (6.15)

Using eq.(D.6), we can further simplify eq.(6.14) and eq.(6.15),

a1\ 2 N 2
RS R R X A (BQ@ £ LM (p,p >>) 6.16)
2 g [_27 % + %Mz(% SO*)] 2 B3(% + $M2(g0, 90*)) 7
C [_27 2 + M2(§07 SO*)] B3(§ + EM2<307 90*)
Slow-roll conditions to realize inflation require € < 1,|n| < 1.
The number of e-folding before the end of inflation is
2 ¢f Ba (L + Lar2 ,o*

s (345 M0 ¢) dep. (6.18)

N, = /% V.
* = — _ ()0 = —
MJ% Pf Vso 3y P B2 (% + éMZ(QOa 90*))

To solve the horizon and flatness problems, the number of e-folding /N, has to be at

least 50 < N, < 60. ¢y is the value of the end of inflation determined by e(¢s) = 1,
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which violates the slow-roll conditions. ¢, is determined so that the e-folding can satisfy
50 < N, < 60.
The spectral index and the tensor-to-scalar ratio are given in a slow-roll approxi-

mation as
ng=1—6e+2n, r = 16e. (6.19)

Planck 2018 data [32] gives constraints on n, = 0.9649 & 0.0042 and r < 0.10.

6.3 Numerical results
In this section, our numerical results are shown.

6.3.1 g4 <1 case

In this case, M?(p,¢*)/a corresponds to eq.(6.10), where the slow-roll parameters e
and 7 are provided by

o (Bz<§—2xy>>2 )
2 Bg(% —2xy))

231(% — 2xy)

Bl omy) (6.20)

To compute the e-folding N, we need to know the value of end of inflation z; = ¢¢/Mp,
which is determined by the condition of the end of inflation €(z;) = 1. The number of

e-folding is

N 2 /wf Bs(3 — 2xy)

- = dr, 6.21
3y Ja, Ba(3 —2zy) (6.21)

where x; = Rep,/Mp. Sample of our numerical solutions x;, z, N, at some points of
y are shown in Table 6.1, where the e-folding N, = 50,60 are taken. One might think
that our results are not reliable since the value of the WL scalar field is quite larger
than the Planck scale, which is beyond an applicability of the effective field theory.
However, the gauge symmetry in our theory is not broken by quantum gravity effects
and forbids any dangerous higher dimensional local operators suppressed by the Planck
scale as well as the non-derivative local operators of the WL scalar field. Therefore, our

results are reliable.
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Y T Zf N,
Asp | 1.0 x 1072 —30.4669 —25.3611 50.002
Ago | 1.0 x 1072 —31.0285 —25.3611 60.0098
Bso | 5.0 x 107° —55.2516 —50.3573 50.0016
Bgo | 5.0 x 1072 —55.7738 —50.3573 60.0004
Cso | 1.0Xx 1077 —255.063 —250.354 50.0144
Ceo | 1.0 x 1073 —255.549 —250.354 60.0162
Dso | 5.0 x 1074 —505.038 —500.354 50.0099
Dego | 5.0 x 107* —505.519 —500.354 60.0087
FEso | 1.0 x 107* | —2505.018 —2500.35 50.0098
Feo | 1.0 x 107* | —2505.495 —2500.35 60.0078

Table 6.1: Sample of our numerical solutions x;, xs, N, at some points of y.

Using the numerical solutions in table 6.1, the slow-roll parameters €, n, the spectral
index n,, and the scalar-to-tensor ratio r are calculated and shown in table 6.2. Com-
paring our results in table 6.2 with ng and r in Planck 2018 data, our results are found

to be relatively good agreement with the data. If y is taken to be a large value such as

y = 1.0 x 102, n, and r cannot be satisfied with Planck 2018 data.

€ Ui N r
Aso 0.00683107 0.00494671 0.968907 0.109297
Ago 0.00582958 0.00444092 0.973904 0.0932733
Bsg 0.00594149 0.00271376 0.969779 0.0950639
Bgo 0.00502904 0.00245613 0.974738 0.0804646
Cso 0.00517205 0.000586594 0.970141 0.0827528
Ceo 0.00432933 0.000534704 0.975093 0.0692693
Dy 0.00507359 0.000296245 0.970151 0.0811775
Dy 0.00423959 0.000270297 0.975103 0.0678334
Exo 0.00499408 0.0000597248 0.970155 0.0799053
Ego 0.00416705 0.0000545352 0.975107 0.0666728

Table 6.2: Inflation parameters €, n, ng, r obtained from our model.

Our results are shown in (ng, ) plot of figure 6.3 from Planck 2018 data [32]. Orange
circles are our results where small and large ones correspond to N, = 50 and N, = 60,
respectively. As the parameter y is decreased, our results in (ng, ) plot go downward.

Our results are within a parameter region indicating the combining data of Planck T'T,
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TE, EE+lowE-+lensing at CL95%.

0.25 A

0.20 W @

10.002

0.10 A

0.05

Planck TT,TE,EE+IlowE
Planck TT,TE,EE+lowE+lensing

+BK14+BAO

Figure 6.3: Our results (table 6.2) in the ng-r plot from Planck 2018 data [32]. Orange
circles are our results, where the small and large ones represent N, = 50 and N, = 60,

respectively.

From the parameter y, we can estimate the value of kg, which provides the com-

pactification scale and the 6D Planck scale Mgp in our model. kgL is determined by y

L [GeV’l](Fa@ = ]_OxL) M6p = 1/ MP/L
y=10x10"2] 3.20941 x 10~%/2710 1.9497 x 10*/4+14
y=>5.0x10"3| 226939 x 10-2/2-10 2.3186 x 10%/4+14
y=1.0x1073 1.0149 x 10—=/2-10 3.46711 x 10%/4+14
y=250x10"*| 7.17646 x 10~*/2~1! 4.12311 x 10*/4+14
y=1.0x10"*| 3.20941 x 10-2/2-1 6.16549 x 10%/4+14

Table 6.3: The value of L, Mgp.
as follows.
Ryq I{G/L MPLI{G
Y T P N2 T T anN
Y
= 47N 6.22
Sre = 4w VoL (6.22)
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where the number of degeneracy is assumed to be N = 10. If we assume kg = Mip fiaton L
and Minfiaton = 10¥ GeV, L is estimated. kgL, L, Mgp are shown in table 6.3.

Now, we discuss how small the gauge coupling g4 is required for a successful inflation.
Although the gauge coupling itself g4 is a free parameter, the constraint from slow-roll
parameter condition can be obtained through the coupling constant kg, which can be

derived from e < 1,

3
—yBy(1/2 — 2x;y) < B3(1/2 — 2x,y),

V2

which implies,

22, + 1
< : 6.23
Y \/4(12953 + 8v/213) (6.23)

In the condition ¢ < 1, y < 1 is immediately found. Therefore, we obtain kg <
1071/ L, which means k¢ < 1 because the maximum value of 107'%/L is at 1/L ~ Mp.
As mentioned in section 6.1, we can always take the free parameter g, less than kg.
For a successful inflation in our model, we have only to take the free parameter gauge

coupling g4 such that g, < kg and this can be always possible.

6.3.2 g4 >1 case

In this case, M?(yp, ¢*) corresponds to (6.12). Under the simplification v = v, ¢ and 7

are expressed by

92 [ Bo(} +4Gu?)\’ ,Bi(} +4Gu?) (6.24)
€ = —— _— — _— .
2 \Bs(L+4cwr)) * "7 By(A v acury
where we ignore —2uy because y is small. The number of e-folding is
2 [ Bs(3 +4Gu?
N, = —/ Bulg +4Gw) (6.25)

As in the g4 < 1 case, we obtain the value of w; and uy for a value of G. Taking
G = 1,0 x 10® as an example, we find u; = —3.8403 and u; = —0.7282. Using these
values, ny, and r are ny, = 0.99569 and r = 0.0206896. r is consistent with Planck
2018 constraint, but n, is not. Thus, comparing with the potential in g4 < 1 case, the

potential in the g, > 1 case is not suitable for the inflation.
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6.3.3 The vacuum energy during inflation

In order for our model to be consistent with inflationary setup, the vacuum energy
during inflation should be smaller than 4D Planck scale and the compactification scale.
We verify this requirement. As you can see from table 6.1,  ;y takes 1/4 during inflation.
Thus, the vacuum energy becomes

2

Viwe = (V) = —~N-2_Tlim (e — 2)C[e — 2,1/2]

167T2 e—0

_ N (%g@m[—z,m])

1672
3N3((3) 1
=2 S\9 6.26
3272 LA ( )
where we take into account in the second equality that the VEV of inflaton field is zero

during inflation, and

C(l,O)[_2> 1/2] _ 2((3)

(6.27)

is used in the third equality. Setting N = 10, V4. is estimated to be O(10) x L™ ~
O(10) x (%)4 Mgp. In large extra dimensions, 6D Planck scale is smallar than 4D
Planck scale Mgp < Mp, unless the compactification scale is the 4D Planck scale.
Therefore, 1/L* < |Vyue| < M} are satisfied as long as the compactification scale is

smaller than 4D Planck scale.
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Chapter 7

Conclusion

In this thesis, we have considered six-dimensional field theories with magnetic flux
compactification toward the approach to the hierarchy problem. In chapter 2, we gave
a basis of flux compactification. Based on quantum mechanics in magnetic field, we
discussed a six-dimensional field theory with flux compactification. The key in flux
compactification is that Kaluza-Klein mass is discretized such as Landau level. It is also
a feature to identify covariant derivatives in extra spaces with creation and annihilation
operators.

In chapter 3, we reviewed Abelian gauge theories in six dimensions without or with
flux [24,25]. We first discussed Abelian gauge theories in six dimensions without flux
(scalar QED and QED), and then we obtained the finite quantum corrections to WL
scalar mass at one-loop (see eq.(3.36) or eq.(3.37)). Next, we considered Abelian gauge
theories in six dimensions with flux (scalar QED and QED). In these theories, the
quantum corrections to WL scalar mass vanished for the sake of magnetic flux (see
eq.(3.62)). At the end of this chapter, we mentioned that the physical reason of this
cancellation is the shift symmetry from translation in compact spaces, which forbids
the mass term of scalar field.

In chapter 4, we extended Abelian gauge theories to non-Abelian gauge theories and
also calculated the quantum corrections to WL scalar mass. Concretely, we consider
a six-dimensional SU(2) Yang-Mills theory with flux compactification. After deriving
the four-dimensional effective Lagrangian, we computed the quantum corrections to
WL scalar mass. As in the previous chapter, we showed that the quantum corrections

to WL scalar mass vanish. Moreover, we added the higher dimensional operators and
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showed that the quantum corrections to WL scalar mass also vanish at the first order
of 1/A? (A is a cutoff scale).

In chapter 5, we studied possibilities to realize a nonvanishing finite WL scalar mass
in flux compactification. We analyzed the generalized loop integrals in the quantum
correction to WL scalar mass at one-loop. Then, the conditions for the loop integrals
and mode sum in one-loop corrections to WL scalar mass to be finite could be ob-
tained. From these conditions, we guessed the four-point and three-point interaction
terms satisfying this conditions. Moreover, an argument was generalized to the quan-
tum corrections from the interactions between the different KK modes. Finally, we
considered the Lagrangian (5.78) and illustrated the finite quantum correction to the
WL scalar mass (see eq.(5.84)).

In chapter 6, we proposed an inflation scenario in flux compactification as an ap-
plication of the result in chapter 5. We identified a zero mode WL scalar field of extra
components of the higher dimensional gauge field with an inflaton in this chapter. We
gave the four-dimensional effective potential and calculated the inflationary parameters.
The spectral index and the tensor-scalar ratio were computed in our model, and then
we compared our results with Planck 2018 data (see figure 6.3).

We cannot directly apply the results in chapter 3, 4 to the hierarchy problem since
the quantum corrections to WL scalar mass are canceled and Higgs mass cannot be
realized at one-loop level. To avoid the feature of this exact cancellation to the hierarchy
problem, we extend NG boson to pseudo NG boson as in chapter 5. By extending
to pseudo NG boson, the quantum correction to WL scalar mass are generated (see
eq.(5.84)) at the scale, where translational symmetry is explicitly broken at a scale
much smaller than the compactification scale. Then, it has a possibility to solve the
hierarchy problem. Concretely, even if the compactification scale becomes Planck scale
1/L ~ O(Mpjaner), Higgs mass could be realized by the interaction p®*® generated by
some dynamics at O(1) TeV scale.

There are still some issues to be explored. First, we do not know a new bulk scalar
®. For example, this scalar field might be the candidate for dark matter. In any case,
we need to study what the bulk scalar ® is. Second, we do not understand the origin

of p®*® (or governing dynamics) and a new coupling . As for the origin of p®*®, we

92



discussed that WL scalar ¢ or ¢* should be expressed by a gauge invariant non-local
Wilson line operator in chapter 5. However, it is not easy to clarify the origin of (p®*®.
We expect that the origin of p®*® might be connected to the quantum gravity effects,
nontrivial backgrounds such as a vortex, or some non-perturbative dynamics. These
issues are left for our future study.

We do not also construct a realistic model with flux compactification. In particular,
we have not succeeded in applying the flux compactification to gauge-Higgs unifica-
tion when the WL scalar field is identified with the SM Higgs field. Recently, as an
application to gauge-Higgs unification, we discuss the gauge symmetry breaking of six-
dimensional theories in flux compactification with a magnetic flux background and a
constant vacuum expectation for the WL scalar fields [39]. In [39], the pattern of the
electroweak symmetry breaking is shown to be realized in Yang-Mills theory. The re-
alistic model is not however constructed in that the theory does not contain fermions.
These issues are also left for our future study.

If we resolve the above issues, we may consider that WL scalar is regarded as Higgs
field and an inflaton (called as Higgs inflation) [44-46]. If Higgs inflation succeeds in
gauge-Higgs unification with flux compactification, we can explain the origin of inflaton.
Although a new coupling (or a corresponding quantity) is constrained by the reheat-
ing temperature and the inflaton energy scale (or compact scale) is guessed by scalar
power spectrum amplitude [32], we will address these issues in future by considering

the unification of WL scalar field, Higgs field and inflaton.
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Appendix A

Poisson Resummation

Poisson resummation is a technique of the calculation for the one-loop effective potential
in higher dimensional field theory. In general, if Fourier inverse transformation is defined

by
F(k) = /_ it () (A1)

the following relation is satisfied:

S fm) =3 femm), (A.2)

n=—oco m=—oc0
where n, m are integer. Eq.(A.2) is the general Poisson resummation. We show this
relation as follows.

We use a periodic function F(z) = f(z + n) and consider Fourier transform of this

function.

0 zk:x . )
> flatn)= Z/ —f(k k)dke™"

_ Z / 27rzk:wf 27Tk’ dkeQﬂzkn
:/ dkekaxf 27Tk' ( Z 627Tzkn) )
Here, using the following formula
D et = Z 5(k —m) (A.3)
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we have

o0

Z flx+n)= Z 27 £ (2rm).

n=—oo m=—0Q

Setting x = 0, we obtain eq.(A.2).

In this thesis, we deal with the following function:

B (m + a)?
f(m) = eXp |: R2l
By applying Fourier inverse transformation to f(m), f(k) can be obtained as
0 2
f(k) = /OO e~k exp [— (:1:;—27) ]dx
[e'e) 1 ) . N a2
= N exp —@{x + (2a + ikRl)x} — T2 dx
> 1 2+ ikR*\? 1,
—/_Ooexp ] {x—l—T} +zka—1k R?l|dx
— RVrle*teiW R,
Therefore, we get
io: exp _(n + a)Q _ Rm io: eQﬂimae—w2lm2R2
n=-—00 RZZ m=-—00 |

Eq.(A.7) is the same as eq.(3.34).
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Appendix B
Detail of 2Tv[D; Fyy v DEFMN

The second term in eq.(4.116) is calculated as

2D, Fy, DPF*™ D +4g€abcauf9ygo“8”z4b“gac* + 4g€abcau&,<,5“6”Ab“gpc
— 2V/2igE a0, DA AP 0% 4 2/2igE 40, D A" A p°
+ 4P 0™ 0, AL AP AW — 4gP o™ 0D, ACDH A, (B.1)

The third term in eq.(4.116) is calculated as

2DMF§6D“F“56 D) —2\/§g8u(Dgpa* + l_)gpa)[@“gp, ©** — 2\/59(9”(@90“* + @goa)[gp, oH*|*
+ 20%[0,0, "1 [0, *]* + 497 (0,0, ™1 [, "1 + 29°[ip, Dup™] [0, OF "]
— 2240, (D™ + Dp®) (D™ + D) A*
+ g*ALAM (D™ + D) (D™ + D)
— AL A (D™ + Dp®) (D™ + D). (B.2)
The fourth term in eq.(4.116) is calculated as
DiF%, D'F™ 5 2v/2ige et (apAf;aﬂAw - 8M25Al;8”AC“>
~ 2V2igeang™ (DAL A — 5, DALY A

+ 497 (8, AL AV — 8, AZ9” A
— 462" (9, AL AW — 9, ALY A, (B.3)
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The fifth term in eq.(4.116) is calculated as

2D, Fy, D'F™™ 5 —2v/29D(8,0" [, 0" ¢"]" + 2V29D(,0") ", 8]
— 46%[p", 0] [, 9" "]" — 4igD(0, "), DAM]® + 4igDD Ay ", 0]
— 4igD(9,")D([A¥, ©*]") 4 4igDD A% [0, 0" "] — 4ig[p*, DA,]*D(0" ™)
— 4igD([A,, ¢]")D(0"¢") — 2V2gDD A%, DA + 2V/2g[p*, DA, J*DDA™
— 4g°[¢*, DA,]"[¢, DA¥]* — 2/2gDDAD([A*, ") + 4g° DD AL [, [A¥, o*]]"
—4g%[¢", DA,"D([A", ¢*]%) + 2V29D([A,,, ¢]") DDA
—46°D([Au, 9], DAY)® + 4g°[", [Ay, )] " DDA
— 49 D([A, #)")D([A", ")), (B.4)

The sixth term in eq.(4.116) is calculated as

2D, F D'F™ 5 —v2gDDp™ D[, ¢*1*) — V29D*0"D([gp, ¢71)
—V29D([p, ") D*0™ — V29D([, ") DDg" + 29°D([, ") D([i0, £1%)
— V2gDDe™ [, D*]* — V29DDy" [, D] + 2¢°DDo™ [0, [0, "]
— V2gD?*¢"p, Dp*]* — V29D [0, Dip)* + 2¢°D([p, ¢7]) [0, Dip*)”
+V2gD*™ (0", D*]* + V29D*0™ ", D] + V2gDDy" (", Dip*)*
+V2gDDe"[p*, Dyl* — 26° DD (9", [, ©*1|* — 29°D ([, 1) ", D]
—2¢%[¢", Dp*|°[0, Dp]* — 29°[¢", D] [, Dy*]*
+2v2¢° fD([0, 1), 6* — 2v29° D ([, 1) [0, 0]*
— 2V2¢° f[0*, D)0, 01 — 2V29° f 0", Do) [ip, 6]
— 2v2¢° flp, D*]"[¢", 0] — 2V2¢° flip, Degl"[gp", 6]°. (B.5)

d is a Kronecker’s delta which appears when F is expanded around the VEV (A5¢)
as eq.(4.13). In these decompositions, we have extracted only the cubic terms with a
single ! or p!* and quartic terms with ! and o'*, which give contributions to one-loop
corrections to the the WL scalar mass. After rewriting the original fields to the fields in
the mass eigenstate EZ, ©”, we expand the terms except for the first term in eq.(4.116)
in terms of KK modes. Using the orthonormality condition for mode functions, we

obtain four-dimensional interaction terms eqs.(4.117)-(4.122).
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Appendix C
Tr[F4]

We consider the operator Tr[F] at the second order of O(1/A?). This operator can be

expressed as
Tr[Fyn FMN Fyp FAP) = B FPMN PSS FAAB Tt b ). (C.1)
Using [t2, %] = i€t and {t, t°} = §%14y5/2, Tr[t?°t°t?] becomes
Tefterbtetd] = ;lTr [([t“, £+ {12, 1) ([, 4] + {¢, td})}

= }lTr Kz'e“bltl + %6ab12x2) (ieCdmtm + %5Cd12x2)]

_ é( gobged _ gacgbd 4 gadghdy,
Thus, Tr[F*] is described as

Te[Fon FMN Fap FAP] = % (69§00 — gacghd | godghdy pa  EOMN e [dAB

_ é Fo, FOMN b pbAB

2
=2 (—EFJ‘\}NF“MN) : (C.2)

Eq.(C.2) means that the interaction between WL scalar and gauge fields is reproduced
from the square of eq.(4.1) or eq.(4.6). Since we are interested in the three-point
intxeraction terms involving ¢ or ¢* and the four-point interaction terms involving ¢

and ¢*, we extract these three-point and four-point interaction terms from eq.(C.2).
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The result is

Tr[Fyy FMN Fy g FAB
92 _i o al An ,~*la D Aak a 2 af A , ~*la
1

+%{’D@a*[9@’ QD*]G + 'Dgpa[go, QO*]G} _ 592&0’ 90*]a[90, QO*](I) . (C3)

Eq.(C.3) is the same structure of the last term of the third line, the fourth and fifth
line in eq.(4.44) except for the coefficients. We have computed the right hand side of
eq.(C.3) in the section 4.3. Thus, we can calculate the quantum corrections to WL
scalar mass from eq.(C.3). The structures of loop integrals in the quantum corrections
are the same as the subsection 4.4.1 and 4.4.2 with £ = 1. These loop integrals vanish as
in the subsection 4.4.1. The quantum corrections are also generated by using the cubic
interactions (C.3), (4.48) and (4.52) in O(1/A*). Since cubic interactions (C.3), (4.48)
and (4.52) are the same structure except for the coefficients, the quantum corrections

by using these interactions also vanish.
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Appendix D

Hurwiz zeta function

In this appendix, we summarize the property of Hurwitz zeta function [47]. Hurwitz

zeta function is defined as

([s,a] = Z 0 j It (D.1)

n=0
It is known that Hurwitz zeta function is related to Riemann zeta function by the

following identical equations

C[S, 1] - <<8)7 (D2)
(s, 1/2) = (28 — 1)¢(s). (D.3)

Hurwitz zeta function also satisfies the following formula

m—1
1
([s,a] = ([s,a+m] + HZ:O T a (D.4)
Note that ([s,1] = ([s,0] is satisfied. Since Riemann zeta function has a property
¢(—2n) =0 (n is a natural number), Hurwitz zeta function also satisfies
([-2n,1] =0, ([~2n,1/2] =0. (D.5)

In particular, ([s, 1/2] satisfies ¢[0,1/2] = 0 in s = 0 case. Furthermore, Hurwitz zeta
function can be expressed by Bernoulli polynomials B, (x) as follows

BnJrl(x)

e (D.6)

C[—TL, ﬂ ==
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