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Abstract
この博士論文では、背景磁場を含むコンパクト化（フラックスコンパクト化）された

高次元理論において、高次元ゲージ場の余剰成分スカラー場（ウィルソンライン (WL)
スカラー場)のゼロモードの質量に関する量子補正が有限でかつ消えない状況を実現す
る可能性について注目する。可換ゲージ理論から非可換ゲージ理論へと拡張し、さらに
非可換ゲージ理論にはある高次元演算子を加えた理論も考える。これらの理論でWLス
カラー場の質量に関する量子補正が相殺していることを示す。フラックスコンパクト化
における有限かつ消えないWLスカラー場の質量を実現するため、質量に関する 1ルー
プレベルの量子補正の中に現れる一般化されたループ積分を解析する。さらに、その解
析から有限な量子補正が得られる 4点相互作用項と 3点相互作用項を推測、分類する。
これらの相互作用項のうち、ある単純な形の相互作用項に着目し、6次元スカラー量子
電磁気学の枠組でWLスカラー場の質量に関する量子補正が実際に有限に得られるこ
とを例証する。最後に、以上の議論の応用として、フラックスコンパクト化された理論
における新しいインフレーション理論を提唱し、Planck 2018の観測データと我々の結
果を比較する。
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Abstract

In this thesis, we focus on the possibilities to realize a nonvanishing finite quantum

correction to the mass of zero-mode of the Wilson-Line (WL) scalar in flux compact-

ification. We extend Abelian gauge theories to non-Abelian gauge theories and add

some higher dimensional operators, and then we show that the quantum corrections to

WL scalar mass are canceled. To realize a nonvanishing finite WL scalar mass in flux

compactification, we analyze the generalized loop integrals in the quantum correction

to WL scalar mass at one-loop. We further guess and classify the four-point and three-

point interaction terms generating the finite quantum correction to WL scalar mass

at one-loop level. Of these interaction terms, we focus on a simplest interaction term

and illustrate the finite quantum correction to the WL scalar mass in a six-dimensional

scalar QED. Finally, we propose a new inflation scenario in flux compactification as an

application of the above discussion and compare our results to Planck 2018 data.
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Chapter 1

Introduction

A theory containing elementary particles (quarks, leptons, gauge bosons and Higgs

boson) is called the Standard Model (SM) of particle physics. From the point of view

of gauge theory, the SM is the SU(3)C×SU(2)L×U(1)Y gauge theory. SU(3)C group

implies quantum chromodynamics and SU(2)L×U(1)Y group means electroweak theory.

After Higgs boson was discovered at LHC experiment in 2012 [1, 2], the SM has been

established as a theory explaining real phenomena.

However, the SM is not a final destination and has many phenomena which cannot

be explained. Since the SM is just a low-energy effective theory with electroweak scale

as a cutoff scale, the SM cannot explain some ultraviolet (UV) physics. As a guiding

principle of search for the physics beyond the Standard Model (BSM), the hierarchy

problem has been considered [3, 4]. In the SM, the quantum correction to the mass of

Higgs field is sensitive to the square of the UV cutoff scale of the theory (for example,

Planck scale or the scale of grand unified theory). Since the cutoff scale is much larger

than an experimental value of the Higgs mass (125 GeV), the solution of the hierarchy

problem requires an unnatural fine-tuning of parameters or exploring a new physics

beyond the SM at order of TeV scale.

Historically, the latter approaches have been mainly studied so far. The origin of

the hierarchy problem is that there are no symmetries forbidding the mass of the scalar

field. As an example of the solution of the hierarchy problem, supersymmetry has

been considered [5,6]. Supersymmetry is the symmetry exchanging boson and fermion.

If we impose supersymmetry on a theory, the quantum corrections from boson loops

and fermion loops are canceled at all order. Although supersymmetry predicts some
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superpartners, no signature of them has been found at TeV scale. As another example, a

higher dimensional field theory has been considered [7–10]. In particular, gauge-Higgs

unification has been paid attention in order to solve the hierarchy problem [10–14].

Gauge-Higgs unification is the theory that zero-mode of the scalar field induced from

extra components of higher dimensional gauge field (called as Wilson-line (WL) scalar

field) is identified with Higgs boson. In the gauge-Higgs unification, the finite Higgs

mass is generated by the quantum corrections at one-loop. Higher dimensional field

theory also predicts Kaluza-Klein fields and compact space. Both of them however has

not been found at TeV scale.

Toward the approaches to the hierarchy problem, we consider a higher dimensional

theory with magnetic flux compactification. Magnetic flux compactification has been

originally studied in string theory [15,16]. Even in the field theories, flux compactifica-

tion has many attractive properties: attempt to explain the number of the generations

of the SM fermion [17–19], computation of Yukawa coupling [20–22], and spontaneously

supersymmetry breaking [23]. Recently, it has been considered that the quantum cor-

rections to the masses of zero-mode of the WL scalar are canceled [24–29] and are

finite [30]. The physical reason of the cancellation is that the shift symmetry from

translation in extra spaces forbids the mass term of WL scalar field. In that situation,

the zero-mode of the WL scalar field can be identified with Nambu-Goldstone (NG)

boson (or with pseudo-NG boson in [30]) of spontaneously broken translational sym-

metry. It is not possible for results in [24–29] to apply to the hierarchy problem as it

stands since the WL scalar field is also massless at quantum level. However, even if

the new physics scale (or compactification scale) is much higher than the electroweak

scale and the KK fields are very massive, the hierarchy problem may be solved in the

framework of flux compactification [30].

In this thesis, we focus on a six-dimensional field theory with flux compactification

and mainly investigate the quantum corrections to WL scalar mass. At first, we review

Abelian gauge theories in six dimensions without or with flux and discuss the difference

between the quantum corrections without and with flux [24, 25]. Next, we extend to

non-Abelian gauge theories and also calculate the quantum corrections to WL scalar

mass [27]. Moreover, we add higher dimensional operators and compute the quantum
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corrections to WL scalar mass [29]. We show that the quantum corrections are canceled

in these theories. To obtain the finite quantum correction, we investigate the loop

integral in the quantum correction to WL scalar mass at one-loop [30]. Then, the

conditions for the loop integral and mode sum to be finite are derived. We further

guess and classify the four-point and three-point interaction terms generating the finite

quantum correction to WL scalar mass at one-loop level. Of these interaction terms, we

focus on a simplest interaction term and illustrate the finite quantum correction to the

WL scalar mass in a six-dimensional scalar QED. Finally, we apply the theory with the

finite quantum correction to inflationary theory [31]. From the effective potential, we

can calculate inflationary parameters. We compare our results to Planck 2018 data [32].

This thesis is organized as follows. We explain the basis of flux compactification

in chapter 2. The idea of flux compactification is based on quantum mechanics in

magnetic field. Thus, after introducing the quantum mechanics in magnetic field, we

consider a six-dimensional field theory with flux compactification. In chapter 3, we

review Abelian gauge theories in six dimensions without or with flux. The quantum

corrections to WL scalar mass in a theory without flux are finite. On the other hand,

the quantum corrections to WL scalar mass in a theory with flux vanish. We discuss

this difference. We also see that the physical reason of the cancellation is that the shift

symmetry from translation in extra spaces forbids the mass term of WL scalar field.

We extend Abelian gauge theories to non-Abelian gauge theories and also calculate

the quantum corrections to WL scalar mass in chapter 4. We also discuss higher

dimensional operators and compute the quantum corrections to WL scalar mass. In

chapter 5, we study possibilities to realize a nonvanishing finite WL scalar mass in flux

compactification by analyzing the generalized loop integrals in the quantum correction

to WL scalar mass at one-loop. In chapter 6, we propose an inflation scenario in

flux compactification. We calculate inflationary parameters and compare our results

to Planck 2018 data. Finally, we devote our conclusion in this thesis. In appendix

A, we review Poisson resummation formula. In appendices B and C, we summarize

the calculations of 2Tr[DLFMND
LFMN ] and Tr[F 4] in chapter 4, respectively. The

properties of Hurwitz zeta function are summarized in appendix D.
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Chapter 2

Flux Compactification

Magnetic flux compactification is a compactification with nontrivial magnetic back-

ground. Originally, flux compactification has been studied in string theory and related

with D-brane (see [16]). Higher dimensional theory with flux compactification has

also many attractive properties: attempt to explain the number of the generations of

the standard fermion [17–19], realization of four-dimensional chiral fermion zero-mode

and computation of four-dimensional Yukawa coupling from higher dimensional the-

ory [20–22]. In this chapter, we give a basic idea for magnetic flux compactification.

2.1 Quantum mechanics in magnetic field

Before considering flux compactification, let’s remind us of quantum mechanics in mag-

netic field [33]. We consider that a charged particle with a charge e and a mass m

moves in a uniform magnetic field B. The two-dimensional Hamiltonian is given by

H =
1

2m

{
(px − eAx(x, y))

2 + (py − eAy(x, y))
2}

=
1

2m

{
(iDx)

2 + (iDy)
2
}
, (2.1)

where px = −i∂x, py = −i∂y are momenta and Di = ∂i−ieAi(i = x, y) are the covariant

derivatives. Eq.(2.1) is similar to the Hamiltonian of harmonic oscillators. Computing

the commutation relation between iDx and iDy, we obtain

[iDx, iDy] = ie(∂xAy − ∂yAx) = ieB, (2.2)
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where we use a magnetic field B = ∂xAy − ∂yAx. When eq.(2.2) is normalized by eB,

the commutation relation is rewritten by

[Q,P ] = i, Q ≡ iDx√
eB

, P ≡ iDy√
eB

. (2.3)

Once creation and annihilation operators are defined by

a ≡ Q+ iP√
2

, a† ≡ Q− iP√
2

, (2.4)

the Hamiltonian (2.1) is expressed by

H = ω

(
a†a+

1

2

)
, (2.5)

where ω = eB/m. From eq.(2.5), the energy level is discrete and is called as Landau

level.

Next, we focus on eigenvalues of momentum. For simplicity, we choose the gauge

fields (called Landau gauge) as follows

Ax = 0, Ay = Bx. (2.6)

Eq.(2.1) is expressed by

H =
1

2m

{
p2x + (ky − eBx)2

}
=

1

2m

{
p2x + e2B2

(
x− ky

eB

)2
}
, (2.7)

where py is replaced by ky, which is the eigenvalue of py. Note that an eigenvalue ky

is arbitrary and has no relation to energy eigenvalue n. To deal with arbitrary ky, we

impose periodic boundary conditions in the x direction with length Lx and in the y

direction with length Ly. This is the same as periodic boundary conditions of torus.

From the periodic boundary condition of y direction, ky is discretized as follows

ky =
2π

Ly

l (l ∈ Z). (2.8)

On the other hand, we find that the center of wavefunction in the x direction is ky/eB

from eq.(2.7). To locate the center of this wavefunction between 0 and Lx, it needs

satisfying the inequality

0 ≤ l ≤ eBLxLy

2π
.
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Since the eigenvalue ky has no relation to the energy eigenvalue, the quantity

N ≡ eB

2π
LxLy (2.9)

means the number of the degeneracy.

Figure 2.1: The setup for Aharonov-Bohm effect. Magnetic field only exists in the
shadow region.

To discretize the degeneracy N , we consider the gauge transformation for wavefunc-

tion ψ(x) (Aharonov-Bohm effect):

ψ′(x) = eieχ(x)ψ(x), (2.10)

where χ(x) is a degree of freedom of gauge transformation A′
µ = Aµ − ∂µχ. Figure 2.1

is the setup for the Aharonov-Bohm effect. A particle can pass through two paths C1

and C2. Wavefunction has a phase difference exp[ie(χC1 − χC2)] between path C1 and

path C2. By using a gauge field A⃗, e(χC1 − χC2) is represented by

θAB ≡ e(χC1 − χC2)

= e

[∫
C1

A(s) · ds−
∫
C2

A(s) · ds
]
= e

∮
A(s) · ds

= e

∫
B · dS = eΦ = eBLxLy, (2.11)

where we use the Stoke’s theorem and Φ is a magnetic flux in this section. θAB is called

Aharonov-Bohm phase. Since the wavefunction must be single-valued, we get

eBLxLy = 2πN (N ∈ Z). (2.12)

Thus, the degeneracy N is discretized.
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2.2 Flux compactification in six-dimensional theory

We consider a higher dimensional field theory with flux compactification. In general,

magnetic flux can be introduced into a compact space. In superstring theory which

implies ten-dimensional spacetime with six-dimensional compact space, there are many

ways to introduce the magnetic flux [16]. In higher dimensional field theories, the

magnetic flux can be introduced into a torus T 2 [20,24] or a sphere S2 [34,35]. Although

the flux compactification on S2 is interesting, we consider the flux compactification on

T 2 hereafter.

We assume the six-dimensional spacetime M6 is a product of four-dimensional

Minkowski spacetimeM4 and two-dimensional torus T 2: M6 =M4×T 2. In this thesis,

the six-dimensional spacetime index is given byM,N = 0, 1, 2, 3, 5, 6 and the Minkowski

spacetime M4 index is µ, ν = 0, 1, 2, 3 and compact space T 2 index is m,n = 5, 6. We

follow the metric convention as ηµν = (−1,+1, · · · ,+1). In general, a torus can be

defined on a complex plane C (or two dimensional real plane R2) by modding out a

Λ2, which is two-dimensional lattice generated by two vectors {e⃗1, e⃗2}. The size of T 2

is parametrized by the length L1, L2 and the shape is τ ∈ C. For simplicity, we set

L = L1 = L2 = 1 and τ = i (square torus).

We introduce the magnetic flux. The magnetic flux is given by the nontrivial back-

ground (or vacuum expectation value (VEV)) of the fifth and the sixth component of

the gauge fields A5,6. We choose the background of A5,6 as

⟨A5⟩ = −
1

2
fx6, ⟨A6⟩ =

1

2
fx5, (2.13)

which is called symmetric gauge. This background introduces a constant magnetic flux

density ⟨F56⟩ = f with a real number f . Note that this solution breaks an extra-

dimensional translational invariance spontaneously. The degeneracy is obtained from

⟨F56⟩ integrating over T 2 as follows

g

2π

∫
T 2

dx5dx6 ⟨F56⟩ =
g

2π
L2f = N ∈ Z, (2.14)

where g is a gauge coupling. Eq.(2.14) is the same as eq.(2.9) and means that the

magnetic flux is quantized.
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We take a kinetic term for six-dimensional charged scalar field Φ as an example:

S6 =

∫
d6x
(
− (DMΦ)∗DMΦ

)
, (2.15)

where DM = ∂M − igAM is the covariant derivative. Decomposing this into the part of

Minkowski spacetime and that of compact space, we have

S6 =

∫
d6x
(
− ηµν(DµΦ)

∗DνΦ− (D5Φ)
∗D5Φ− (D6Φ)

∗D6Φ
)

≃
∫
d6x
(
− ηµν(DµΦ)

∗DνΦ− Φ∗(−D2
5 −D2

6)Φ
)
, (2.16)

where we drop the surface terms in performing an integration by parts in the second

line. The second term in eq.(2.16) will be a mass term in terms of four-dimensional

effective theory. As in the previous section, we recall the commutation relation, which

was defined in eq.(2.4). Replacing Dx, Dy, e, B by D5, D6, g, f respectively, creation and

annihilation operators in the present case are given by

a =

√
1

2gf
(iD5 −D6), a† =

√
1

2gf
(iD5 +D6), [a, a†] = 1. (2.17)

By using these creation and annihilation operators, the mass term can be rewritten by

−D2
5 −D2

6 = 2gf

(
a†a+

1

2

)
. (2.18)

This mass spectrum becomes a Landau level.

We denote Landau level by n (n = 0, 1, 2, · · · ) and the degeneracy by j (j =

0, 1, · · · , N − 1). If the zero mode function in compact space is expressed by ξ0,j,

the zero mode function is determined by [20]

aξ0,j = 0, a†ξ̄0,j = 0. (2.19)

By using creation and annihilation operators, the higher mode function ξn,j can be

obtained by [36]

ξn,j =
1√
n!
(a†)nξ0,j, ξ̄n,j =

1√
n!
(a)nξ̄0,j. (2.20)

The higher mode function ξn,j also satisfies an orthonormality condition∫
T 2

d2xξ̄n′,j′ξn,j = δn,n′δj,j′ . (2.21)
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To derive a four-dimensional effective Lagrangian by Kaluza-Klein reduction, we

need to expand Φ in terms of mode functions ξn,j (Kaluza-Klein expansion, KK expan-

sion):

Φ =
∑
n,j

Φn,j(xµ)ξn,j(xm) =
∑
n,j

Φn,j(xµ)
1√
n!
(a†)nξ0,j(xm), (2.22)

Φ∗ =
∑
n,j

Φ∗
n,j(xµ)ξ̄n,j(xm) =

∑
n,j

Φ∗
n,j(xµ)

1√
n!
(a)nξ̄0,j(xm). (2.23)

By using this KK expansion and the orthonormality condition, the four-dimensional

effective action is obtained as

S4 =

∫
d4x

(∫
T 2

d2x
(
− ηµν(DµΦ)

∗DνΦ− Φ∗(−D2
5 −D2

6)Φ
))

=

∫
d4x

∑
n,j

(
−(DµΦn,j)

∗DµΦn,j − (2gf)

(
n+

1

2

)
Φ∗

n,jΦn,j

)
. (2.24)
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Chapter 3

Abelian Gauge Theory Analysis in
Six Dimensions

In this chapter, we review an Abelian gauge theory in six dimensions. In particular, we

see a quantum electrodynamics (QED) in six-dimensional theory [24–26]. First, we will

calculate a four-dimensional effective Lagrangian from the six-dimensional Lagrangian.

Then, we will calculate the quantum corrections to Wilson-line scalar mass without or

with magnetic flux, and discuss their properties.

3.1 Six-dimensional action

3.1.1 Gauge field

Before considering a six-dimensional action for gauge field, it is useful to define ∂, z and

ϕ as

ϕ =
1√
2
(A6 + iA5), z =

1

2
(x5 + ix6), ∂ = ∂5 − i∂6. (3.1)

Since VEV is given by eq.(2.13), ⟨ϕ⟩ = f z̄/
√
2 is obtained, and then we expand ϕ

around the flux background ⟨ϕ⟩ as

ϕ = ⟨ϕ⟩+ φ =
f√
2
z̄ + φ. (3.2)

To distinguish φ from a bulk scalar Φ, which we will introduce later, we call φ Wilson

line (WL) scalar field.

17



Six-dimensional action for gauge field is expressed by

S6g =

∫
d6x

(
−1

4
FMNFMN

)
=

∫
d6x

(
−1

4

){
F µνFµν + 2(F µ5Fµ5 + F µ6Fµ6 + F 56F56)

}
, (3.3)

where FMN = ∂MAN − ∂NAM is the field strength. Terms from the second term to the

fourth term in eq.(3.3) are expressed in terms of φ and the result is

S6g =

∫
d6x
(
− 1

4
F µνFµν − ∂µφ∗∂µφ−

1

4
(∂φ∗ + ∂̄φ)2 − 1

2
f 2

− 1

2
∂̄Aµ∂Aµ −

i√
2
∂µA

µ(∂φ∗ − ∂̄φ)
)
. (3.4)

Note that eq.(3.4) only contains quadratic terms for gauge and WL scalar fields, but

eq.(3.4) does not contain the interaction terms.

3.1.2 Scalar field

Six-dimensional action for the scalar field is the same as eq.(2.15) in the section 2.2:

S6s =

∫
d6x
(
− (DMΦ)∗DMΦ

)
=

∫
d6x
(
− (DµΦ)

∗DµΦ− (DmΦ)
∗DmΦ

)
. (3.5)

The second term in eq.(3.5) involves the mass term and the interaction terms between

WL scalar φ and bulk scalar Φ. The second term in eq.(3.5) is calculated as

(DmΦ)
∗DmΦ = (D5Φ)

∗D5Φ + (D6Φ)
∗D6Φ =

1

2
D∗Φ∗DΦ +

1

2
D̄∗Φ∗D̄Φ

≃ −1

2
Φ∗(DD̄ + D̄D)Φ−

√
2gφ∗Φ∗DΦ +

√
2gφΦ∗D̄Φ + 2g2φ∗φΦ∗Φ

(3.6)

where the covariant derivatives D, D̄ in the complex coordinates are defined by

D = D5 − iD6 = ∂ −
√
2gϕ = D −

√
2gφ, (3.7)

D̄ = D̄5 + iD̄6 = ∂̄ +
√
2gϕ∗ = D̄ +

√
2gφ∗, (3.8)

D = D5 − iD6 = ∂ −
√
2g ⟨ϕ⟩ , (3.9)

D̄ = D̄5 + iD̄6 = ∂̄ +
√
2g ⟨ϕ∗⟩ . (3.10)
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Note that Dm means the covariant derivatives with VEV ⟨Am⟩, and D∗(D̄∗) is not

D̄(D) since D∗ = ∂̄ −
√
2gϕ∗ and we drop the surface terms in performing integration

by parts in the second line. Thus, eq.(3.5) is rewritten by

S6s =

∫
d6x

(
− (DµΦ)

∗DµΦ− 1

2
Φ∗
[
− (DD̄ + D̄D)

]
Φ

+
√
2gφ∗Φ∗DΦ−

√
2gφΦ∗D̄Φ− 2g2φ∗φΦ∗Φ

)
. (3.11)

3.1.3 Fermion field

Before considering a six-dimensional action for fermion fields, we introduce our conven-

tion of gamma matices [5, 37]. First, σµ is defined as

σ0 = −12×2 = σ̄0, σi = −σ̄i, (3.12)

where σi are Pauli mattices. Gamma matrices in four dimensions are given by

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 = −iγ0γ1γ2γ3 =

(
−1 0
0 1

)
. (3.13)

When ψL and ψR is expressed by

ψL =

(
ψ
0

)
, ψR =

(
0
χ̄

)
, (3.14)

ψL and ψR are satisfied with γ5ψL = −ψL and γ5ψR = ψR as the eigenfunction of γ5.

Note that the Weyl fermion ψ and χ have charges −g and +g respectively. Gamma

matrices in six dimensions are given by

Γµ =

(
γµ 0
0 γµ

)
, Γ5 =

(
0 iγ5

iγ5 0

)
, Γ6 =

(
0 −γ5
γ5 0

)
. (3.15)

Thus, a six-dimensional Weyl fermion Ψ is defined as

Ψ =

(
ψL

ψR

)
, Γ7 = −Γ0Γ1Γ2Γ3Γ5Γ6 =

(
γ5 0
0 −γ5

)
. (3.16)

In this convention, Γ7Ψ = −Ψ is satisfied.

Six-dimensional action for fermion is given by

S6f =

∫
d6x iΨ̄ΓMDMΨ

=

∫
d6x i(Ψ̄ΓµDµΨ+ Ψ̄Γ5D5Ψ+ Ψ̄Γ6D6Ψ). (3.17)
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Calculating the second and third terms in eq.(3.17), one has

i(Ψ̄Γ5D5Ψ+ Ψ̄Γ6D6Ψ) = −χD5ψ + ψ̄D5χ̄+ i(χD6ψ + ψ̄D6χ̄)

≃ −χ(∂ − gf z̄ −
√
2gφ)ψ − χ̄(∂̄ − gfz −

√
2gφ∗)ψ̄. (3.18)

Thus, eq.(3.17) is expressed as

S6f =

∫
d6x
(
− iψσµD∗

µψ̄ − iχσµDµχ̄

− χ(∂ − gf z̄ −
√
2gφ)ψ − χ̄(∂̄ − gfz −

√
2gφ∗)ψ̄

)
. (3.19)

3.2 Quantum correction: Without flux

It is meaningful to compare quantum correction to WL scalar mass with flux to quantum

correction without flux. First, we consider the quantum correction to WL scalar mass

without flux. In the case without flux, KK expansion of scalar field Φ and fermion fields

ψ, χ are given by

Φ =
∑
n,m

Φn,m(xµ)λn,m(xm), (3.20)

ψ =
∑
n,m

ψn,m(xµ)λn,m(xm), (3.21)

χ =
∑
n,m

χn,m(xµ)λ̄n,m(xm) (3.22)

where n,m ∈ Z. The mode functions of compact space λn,m(xm) are determined as

λn,m(xm) =
1

L
exp

[
2πi

L
(nx5 +mx6)

]
, (3.23)

from the periodic boundary condition of torus. The mode function λn,m also satisfies

an orthonormality condition∫
T 2

d2xλ̄n′,m′λn,m = δn,n′δm,m′ . (3.24)
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3.2.1 Scalar QED

Noting that the covariant derivatives D and D̄ become the normal partial derivatives

∂ and ∂̄ without flux respectively, eq.(3.4) and eq.(3.11) have

SsQED =

∫
d4x
(
− 1

4
F µνFµν − ∂µφ∗∂µφ

+
∑
n,m

(
− (DµΦn,m)

∗DµΦn,m − |Mn,m|2Φ∗
n,mΦn,m

+
√
2gM∗

n,mφΦ
∗
n,mΦn,m +

√
2gMn,mφ

∗Φ∗
n,mΦn,m − 2g2φ∗φΦ∗

n,mΦn,m

))
,

(3.25)

by using eq.(3.20) and eq.(3.23). In eq.(3.25), we omit KK gauge fields. KK modes

for Am (or φ, φ∗) are absorbed into the longitudinal part of KK gauge fields. Here,

Mn,m = 2π(m + in)/L is the KK mass spectrum and we ignore the constant term. In

eq.(3.25), we deal with WL scalar φ as zero-mode.

Figure 3.1: Scalar loop correction

We are ready to calculate the quantum correction to WL scalar mass from eq.(3.25).

Two Feynman diagrams from the scalar field Φn,m loop contributions are depicted in

figure 3.1. Denoting Ib4pt and Ib3pt as the contributions from the four-point interaction

φ∗φΦ∗
n,mΦn,m and the three-point interaction φΦ∗

n,mΦn,m+ h.c. respectively, Ib4pt and

Ib3pt are obtained as

Ib4pt = −i2g2
∞∑

n=−∞

∞∑
m=−∞

∫
d4k

(2π)4
1

k2 + |Mn,m|2
, (3.26)

Ib3pt = +i2g2
∞∑

n=−∞

∞∑
m=−∞

∫
d4k

(2π)4
|Mn,m|2

(k2 + |Mn,m|2)2
, (3.27)

21



where Wick rotation is applied in momentum integrals. Thus, the quantum correction

to WL scalar mass has

δm2
b = i(Ib4pt + Ib3pt)

= 2g2
∑
n,m

∫
d4k

(2π)4

(
1

k2 + |Mn,m|2
− |Mn,m|2

(k2 + |Mn,m|2)2

)
= 2g2

∑
n,m

∫
d4k

(2π)4
k2

(k2 + |Mn,m|2)2
. (3.28)

Since the contribution to quantum correction from scalar loop (3.28) is similar to the

contribution from fermion loop, which we will calculate in the next subsection, the

momentum integral and summation for KK mode m,n will be performed in the next

subsection.

3.2.2 QED

Eq.(3.4) and eq.(3.19) have

SQED =

∫
d4x
(
− 1

4
F µνFµν − ∂µφ∗∂µφ

+
∑
n,m

(
− iψn,mσ

µD∗
µψ̄n,m − iχn,mσ

µDµχ̄n,m

− (Mn,m −
√
2gφ)χn,mψn,m − (M∗

n,m −
√
2gφ∗)χ̄n,mψ̄n,m

))
, (3.29)

by using eq.(3.21), eq.(3.22) and eq.(3.23) without flux. We also omit KK gauge fields

in eq.(3.29).

Figure 3.2: Fermion loop correction

As in the previous subsection, we calculate the quantum correction to WL scalar

mass from the action (3.29). A Feynman diagram from the fermion field loop contri-
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bution is depicted in figure 3.2. Denoting If by the contribution from the three-point

interaction φχn,mψn,m, If is obtained as

If = (−1)× 2g2
∞∑

n=−∞

∞∑
m=−∞

∫
d4k

(2π)4
Tr[σµσ̄ν ]kµkν
(k2 + |Mn,m|2)2

= +i4g2
∞∑

n=−∞

∞∑
m=−∞

∫
d4k

(2π)4
k2

(k2 + |Mn,m|2)2
, (3.30)

where we employed the relation Tr[σµσ̄ν ] = −2ηµν . Note that this quantum correction

is applied by two-component spinor techniques [38]. Thus, the quantum correction to

WL scalar mass has

δm2
f = iIf = −4g2

∑
n,m

∫
d4k

(2π)4
k2

(k2 + |Mn,m|2)2
. (3.31)

Note that eq.(3.31) has a relation1 δm2
f = −2δm2

b .

We continue to compute eq.(3.31):

δm2
f = −4g2

∑
n,m

∫ ∞

0

dtt

∫
d4k

(2π)4
k2e−t(k2+|Mn,m|2) = − g2

2π2

∑
n,m

∫ ∞

0

dt

t2
e−|Mn,m|2t

= − g2

2π2

∑
n,m

∫ ∞

0

dt

t2
exp

[
−4π2t

L2
(m2 + n2)

]
. (3.32)

where we used Schwinger representation

Γ(s)

As
=

∫ ∞

0

e−Atts−1dt. (3.33)

The summation for KK mode m,n in eq.(3.32) are performed by using Poisson resum-

mation (see appendix A):

∞∑
n=−∞

exp

[
−(n+ a)2

R2l

]
= R
√
πl

∞∑
m=−∞

e2πimae−π2lm2R2

. (3.34)

Replacing R and l for L/2π and 1/t respectively and set a = 0, the summation part in

eq.(3.32) is rewritten as

∞∑
m=−∞

∞∑
n=−∞

exp

[
−4π2t

L2
(m2 + n2)

]
=

(
L

2π

)2
π

t

∞∑
r=−∞

∞∑
s=−∞

exp

[
−L

2

4t
(r2 + s2)

]
.

(3.35)

1If we impose supersymmetry, the quantum correction to WL scalar mass from bosonic loop and
fermionic loop are canceled (see [24]).

23



Thus, δm2
f is calculated as

δm2
f = −g

2L2

8π3

∑
r,s

∫ ∞

0

dt

t3
exp

[
−L

2

4t
(r2 + s2)

]
= − 2g2

π3L2

∑
(r,s)̸=(0,0)

1

(r2 + s2)2
. (3.36)

In the second line of eq.(3.36), we have performed the integral for t. Note that we

subtracted a zero-mode (r, s) = (0, 0) from the summation for winding mode r, s since

δm2
f is diverged at (r, s) = (0, 0). Since the zero mode part is just the constant part

from the point of view of the one-loop effective potential, it is possible to subtract the

zero-mode part. Computing eq.(3.36) numerically, one has

δm2
f ≈ −0.39×

g2

L2
, (3.37)

and we find δm2
f has a finite value. In [24], δm2

f (or δm2
b) is calculated by using Jacobi

theta function and is also derived from one-loop effective potential.

3.3 Quantum correction: With flux

3.3.1 Scalar QED

In the case with flux, we regard the covariant derivatives D and D̄ as creation and

annihilation operators by

a =
1√
2gf

iD̄, a† =
1√
2gf

iD, (3.38)

which satisfy the commutation relation [a, a†] = 1. In this thesis, we denote α = 2gf .

By using eq.(3.38), eq.(3.11) is rewritten as

S6s =

∫
d6x

(
− (DµΦ)

∗DµΦ− α
(
n+

1

2

)
Φ∗Φ

−
√
2ig
√
αφ∗Φ∗a†Φ +

√
2ig
√
αφΦ∗aΦ− 2g2φ∗φΦ∗Φ

)
. (3.39)

As we have seen in quantum mechanics, creation and annihilation operators a†, a act

on mode functions ξn,j as

aξn,j =
√
nξn−1,j, a†ξn,j =

√
n+ 1ξn+1,j. (3.40)
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The third and fourth terms in eq.(3.39) can be calculated by using eqs.(2.22), (2.23)

and (3.40)

−
√
2ig
√
αφ∗Φ∗a†Φ = −

√
2igφ∗

∑
n,j

∑
n′,j′

√
α(n+ 1)Φ∗

n′,j′Φn,j ξ̄n′,j′ξn+1,j, (3.41)

√
2ig
√
αφΦ∗aΦ =

√
2igφ

∑
n,j

∑
n′,j′

√
αnΦ∗

n′,j′Φn,j ξ̄n′,j′ξn−1,j. (3.42)

Thus, eq.(3.4) and eq.(3.39) have

SsQED =

∫
d4x
(
− 1

4
F µνFµν − ∂µφ∗∂µφ

+
∑
n,j

(
− (DµΦn,j)

∗DµΦn,j − α
(
n+

1

2

)
Φ∗

n,jΦn,j

−
√
2ig
√
α(n+ 1)φ∗Φ∗

n+1,jΦn,j +
√
2ig
√
α(n+ 1)φΦ∗

n,jΦn+1,j

− 2g2φ∗φΦ∗
n,jΦn,j

))
(3.43)

by using eq.(2.21).

Figure 3.3: Scalar loop correction with flux

The quantum correction to WL scalar mass can be calculated from eq.(3.43). Two

Feynman diagrams from the scalar field loop contributions are depicted in figure 3.3.

As in the subsection 3.2.1, Ib4pt and Ib3pt, which are denoted by the contributions from

the four-point interaction and three-point interaction respectively, are obtained as

Ib4pt = −i2g2
∑
n,j

∫
d4k

(2π)4
1

k2 + α
(
n+ 1

2

) , (3.44)

Ib3pt = +i2g2
∑
n,j

∫
d4k

(2π)4
α(n+ 1)(

k2 + α
(
n+ 1

2

)) (
k2 + α

(
n+ 3

2

)) . (3.45)
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Thus, the quantum correction to WL scalar mass has

δm2
b = i(Ib4pt + Ib3pt)

= 2g2
∑
n,j

∫
d4k

(2π)4

(
1

k2 + α
(
n+ 1

2

) − α(n+ 1)(
k2 + α

(
n+ 1

2

)) (
k2 + α

(
n+ 3

2

)))

= 2g2|N |
∞∑
n=0

∫
d4k

(2π)4

(
1

k2 + α
(
n+ 1

2

) − (n+ 1)

(
1

k2 + α
(
n+ 1

2

) − 1

k2 + α
(
n+ 3

2

)))

= 2g2|N |
∞∑
n=0

∫
d4k

(2π)4

(
n+ 1

k2 + α
(
n+ 3

2

) − n

k2 + α
(
n+ 1

2

)) . (3.46)

By the shift n→ n+1 in the second term of eq.(3.46), the quantum correction vanishes:

δm2
b = 0. (3.47)

3.3.2 QED

Eq.(3.4) and eq.(3.19) have

SQED =

∫
d6x
(
− 1

4
F µνFµν − ∂µφ∗∂µφ− iψσµD∗

µψ̄ − iχσµDµχ̄

− χ(∂ − gf z̄ −
√
2gφ)ψ − χ̄(∂̄ − gfz −

√
2gφ∗)ψ̄

)
. (3.48)

As in the previous subsection, we regard the covariant derivatives in the complex

coordinates as creation and annihilation operators in the case of fermion. To derive the

mass-squared operators, we find Dirac equation for ψ or χ̄ from eq.(3.48):

iσ̄µ∂µψ + (∂̄ + gfz)χ̄ = 0, (3.49)

iσµ∂µχ̄+ (∂ − gf z̄)ψ = 0, (3.50)

where we ignore the interaction terms since we focus on the mass-squared operators.

Acting iσµ∂µ or iσ̄
µ∂µ on eq.(3.49) or (3.50) and using the relation σµσ̄ν+σν σ̄µ = −2ηµν ,

Klein-Gordon equations

□ψ − (∂̄ + gfz)(∂ − gf z̄)ψ = 0, (3.51)

□χ− (∂̄ − gfz)(∂ + gf z̄)χ = 0, (3.52)
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can be obtained. If creation and annihilation operators are defined as

a− =
i√
α
(∂ − gf z̄), a†− =

i√
α
(∂̄ + gfz), (3.53)

a+ =
i√
α
(∂̄ − gfz), a†+ =

i√
α
(∂ + gf z̄), (3.54)

we can read the mass-squared operators M2
− = αa†−a− from eq.(3.51) or M2

+ =

α(a†+a+ + 1) from eq.(3.52). The difference betweenM2
− andM2

+ is a feature of flux

compactification, which means that a zero-mode of chiral fermion in four dimensions

can be obtained from ψ. Denoting the mode functions as ξn,j and ξ̄n,j, the mode func-

tions on the ground state satisfy a−ξ0,j = 0 and a+ξ̄0,j = 0. As we have seen eq.(2.20),

the mode functions are expressed as

ξn,j =
in√
n!
(a†−)

nξ0,j, ξ̄n,j =
in√
n!
(a†+)

nξ̄0,j, (3.55)

where in is convention. Acting creation and annihilation operators on the mode func-

tions, one has

a−ξn,j = i
√
nξn−1,j, a†−ξn,j = −i

√
n+ 1ξn+1.j, (3.56)

a+ξ̄n,j = i
√
nξ̄n−1,j, a†+ξ̄n,j = −i

√
n+ 1ξ̄n+1.j, (3.57)

like eq.(3.40). KK expansion for ψ and χ are expressed as

ψ =
∑
n,j

ψn,j(x
µ)ξn,j(x

m), (3.58)

χ =
∑
n,j

χn,j(x
µ)ξ̄n,j(x

m). (3.59)

Using KK expansion (3.58), (3.59) and the orthonormality condition (2.21), eq.(3.48)

has

SQED =

∫
d6x
(
− 1

4
F µνFµν − ∂µφ∗∂µφ− iψσµD∗

µψ̄ − iχσµDµχ̄

− χ(−i
√
αa− −

√
2gφ)ψ − χ̄(−i

√
αa+ −

√
2gφ∗)ψ̄

)
=

∫
d4x
(
− 1

4
F µνFµν − ∂µφ∗∂µφ+

∑
n,j

(
− iψn,jσ

µD∗
µψ̄n,j − iχn,jσ

µDµχ̄n,j

−
√
α(n+ 1)χn,jψn+1,j +

√
2gφχn,jψn,j + h.c.

))
. (3.60)
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Figure 3.4: Fermion loop correction with flux

As in the previous subsection, we compute the quantum correction to WL scalar

mass from eq.(3.60). A Feynman diagram from fermion field loop contribution is de-

picted in figure 3.4. As in the subsection 3.2.2, If is obtained as

If = +i4g2|N |
∑
n

∫
d4k

(2π)4
k2

(k2 + αn)(k2 + α(n+ 1))

= +i4g2|N |
∞∑
n=0

∫
d4k

(2π)4

(
n+ 1

k2 + α(n+ 1)
− n

k2 + αn

)
. (3.61)

As in the subsection 3.3.1, the quantum correction δm2
f vanishes by the shift n→ n+1

in the second term of eq.(3.61):

δm2
f = 0. (3.62)

Thus, the cancellation of the quantum correction to WL scalar mass at one-loop level is

shown 2. These results (3.47), (3.62) are also shown by dimensional regularization [26].

We compare the result (3.37) without flux to the result (3.62) with flux. In the case

without flux, the inverse of the compactification radius L−1 plays a role of cutoff scale.

This means that the result (3.37) is finite if the compactification radius L has a finite

length. Finiteness of the quantum correction has been seen in higher dimensional gauge

theory, in particular in gauge-Higgs unification ( [10, 11, 14]). On the other hand, the

quantum correction to WL scalar mass with flux (3.62) is canceled at one-loop level3.

The physical reason of this cancellation is that the shift symmetry from translation

in compact spaces forbids the mass term of WL scalar field. In that situation, the

2It is shown that the quantum correction to WL scalar mass is canceled at two-loop level [28].
3It will be interesting that this cancellation mechanism is similar to the quantum correction in S2

compactification without flux [11].

28



zero-mode of WL scalar field φ can be identified with Nambu-Goldstone (NG) boson of

spontaneously broken translational symmetry. This issue will be seen in next section.

We comment on the results (3.47) and (3.62). These results imply that the quantum

corrections to WL scalar mass from bosonic contribution (3.47) and fermionic contri-

bution (3.62) are separately canceled even if a theory involves scalar fields and fermion

fields. These results are not changed if supersymmetry is imposed [24]. The cancella-

tion of the quantum correction by introducing magnetic flux is a new attractive feature

and this feature might be a hint of the alternative solution of the hierarchy problem.

3.4 WL scalar as a Nambu-Goldstone boson

Six-dimensional actions (3.39) or (3.48) are invariant under the translation on torus

δT = ϵ∂ + ϵ̄∂̄, where ϵ and ϵ̄ are infinitesimal parameters. This translation acts on WL

scalar ϕ = ⟨ϕ⟩+ φ as

δTϕ = (ϵ∂ + ϵ̄∂̄)ϕ

=
ϵ̄√
2
f + (ϵ∂ + ϵ̄∂̄)φ. (3.63)

Since we regard φ as zero-mode of WL scalar, ∂φ = 0, ∂̄φ = 0 are satisfied, and then

δTϕ =
ϵ̄√
2
f. (3.64)

Eq.(3.64) means that δTϕ is a constant shift. We find that the symmetry of translation

on torus is spontaneously broken because of the constant shift (3.64). Eq.(3.64) is

understood as follows. In order for four-dimensional effective Lagrangian to be invariant

under the shift transformation, the Lagrangian must involve only the derivative terms

of WL scalar, and the mass term of WL scalar has to be forbidden. Therefore, WL

scalar φ behaves as a NG boson under shift symmetry of the translation on torus.
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Chapter 4

Non-Abelian Gauge Theory
Analysis in Six Dimensions

To realize more realistic model, we extend an Abelian gauge group to a non-Abelian

gauge group, and calculate the quantum correction to WL scalar mass [27]. As a non-

Abelian gauge group, we choose an SU(2) group. Extending to non-Abelian gauge

group, self-interactions of non-Abelian gauge fields are included, and an analysis of the

quantum corrections in the case of non-Abelian gauge group is non-trivial compared

to the analysis in the case of Abelian gauge group. Moreover, we refer to [29] for an

analysis of quantum corrections in a theory with higher dimensional operators.

4.1 Yang-Mills theory

We consider a six-dimensional SU(2) Yang-Mills theory with a constant magnetic flux,

and the Lagrangian is

LYM = −1

4
F a
MNF

aMN

= −1

4
F a
µνF

aµν − 1

2
F a
µ5F

aµ5 − 1

2
F a
µ6F

aµ6 − 1

2
F a
56F

a56, (4.1)

where the field strength and the covariant derivative are defined by

F a
MN = ∂MA

a
N − ∂NAa

M − ig[AM , AN ]
a, (4.2)

DMA
a
N = ∂MA

a
N + gεabcAb

MA
c
N

= ∂MA
a
N − ig[AM , AN ]

a, (4.3)
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and a, b, c = 1, 2, 3 are gauge indices.

Following the way to introduce a constant magnetic flux in the Abelian theory

(2.13), we introduce a constant magnetic flux as

⟨A1
5⟩ = −

1

2
fx6, ⟨A1

6⟩ =
1

2
fx5, ⟨A2,3

5 ⟩ = ⟨A
2,3
6 ⟩ = 0. (4.4)

Note that this background satisfies classical equation of motion Dm ⟨Fmn⟩ = 0 since

the background of the field strength becomes ⟨F a
56⟩ = fδa1. The degeneracy can be

obtained as eq.(2.14) in the direction of gauge index a = 1.

In this chapter, we also use the notation (3.1) except for the gauge index of WL

scalar: ϕa. In analogy to eq.(3.2), we expand ϕa around the flux background ⟨ϕa⟩ as

ϕa = ⟨ϕa⟩+ φa =
f√
2
z̄δa1 + φa. (4.5)

Eq.(4.1) is expressed in terms of WL scalar φ:

LYM =− 1

4
F a
µνF

aµν − ∂µφa∗∂µφa − 1

2
DAa

µD̄Aaµ + g2[Aµ, φ]
a[Aµ, φ∗]a

− i√
2
(∂µφ

aD̄Aaµ − ∂µφa∗DAaµ)

+ ig
{
∂µφ

a[Aµ, φ∗]a + ∂µφa∗[Aµ, φ]
a
}

− g√
2

{
−DAa

µ[A
µ, φ∗]a + D̄Aaµ[Aµ, φ]

a
}

− 1

4

(
Dφa∗ + D̄φa −

√
2g[φ, φ∗]a +

√
2fδa1

)2
, (4.6)

where D and D̄ are the covariant derivatives in the complex coordinates and are defined

as

DXa = (D5 − iD6)X
a = ∂Xa −

√
2g[ϕ,X]a = DXa −

√
2g[φ,X]a, (4.7)

D̄Xa = (D5 + iD6)X
a = ∂̄Xa +

√
2g[ϕ∗, X]a = D̄Xa +

√
2g[φ∗, X]a, (4.8)

DXa = (D5 − iD6)X
a = ∂Xa −

√
2g[⟨ϕ⟩ , X]a, (4.9)

D̄Xa = (D̄5 + iD̄6)X
a = ∂̄Xa +

√
2g[⟨ϕ∗⟩ , X]a. (4.10)

The second line in eq.(4.6) is removed by the following gauge-fixing terms:

Lgf =− 1

2ξ
(DµA

aµ + ξDmA
am)2

=− 1

2ξ
DµA

aµDνA
aν +

ξ

4
(Dφa∗ − D̄φa)2 +

i√
2
(∂µφ

aD̄Aaµ − ∂µφa∗DAaµ), (4.11)
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where ξ is called a gauge parameter.

Once we have gauge-fixed, we need to introduce the ghost fields by following Faddeev-

Popov procedure to quantize gauge fields. The ghost Lagrangian reads

Lghost = −ca∗(DµD
µ + ξDmDm)ca. (4.12)

Then, the total Lagrangian is

Ltotal =−
1

4
F a
µνF

aµν − 1

2ξ
DµA

aµDνA
aν − ∂µφa∗∂µφa

− 1

2
DAa

µD̄Aaµ + g2[Aµ, φ]
a[Aµ, φ∗]a − g√

2

{
−DAa

µ[A
µ, φ∗]a + D̄Aaµ[Aµ, φ]

a
}

+ ig
{
∂µφ

a[Aµ, φ∗]a + ∂µφa∗[Aµ, φ]
a
}

− 1

4

(
Dφa∗ + D̄φa −

√
2g[φ, φ∗]a +

√
2fδa1

)2
+
ξ

4
(Dφa∗ − D̄φa)2

− ca∗(DµD
µ + ξDmDm)ca. (4.13)

4.2 Mass spectrum

In this section, we find mass eigenstates and eigenvalues of the fields Aa
µ, φ

a, ca.

4.2.1 Gauge field

First, we find mass eigenvalue and eigenstate of the non-Abelian gauge field. The mass

term of gauge field corresponds to the first term in the second line in eq.(4.13) as

Lmass = −
1

2
DAa

µD̄Aaµ = −1

2
Aa

µ[−DD̄]Aaµ. (4.14)

In the section 2.2, we have seen that −DD̄ corresponds to the Hamiltonian of the

harmonic oscillator. We regard the covariant derivatives D and D̄ as creation and

annihilation operators like the subsection 3.3.1. Expressing them in a matrix form as

Dac =

 ∂ 0 0

0 ∂ −
√
2iε213g ⟨ϕ1⟩

0 −
√
2iε312g ⟨ϕ1⟩ ∂

 =

 ∂ 0 0
0 ∂ igf z̄
0 −igf z̄ ∂

 , (4.15)

D̄ac =

 ∂̄ 0 0

0 ∂̄
√
2iε213g ⟨ϕ1∗⟩

0
√
2iε312g ⟨ϕ1∗⟩ ∂̄

 =

 ∂̄ 0 0
0 ∂̄ −igfz
0 igfz ∂̄

 , (4.16)
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their commutation relation can be calculated as

[iD̄, iD]ac =

 0 0 0
0 0 −2igf
0 2igf 0

 = 2igfεa1c. (4.17)

Thus, the creation and annihilation operators can be defined as

a =
1√
α
iD̄, a† =

1√
α
iD, (4.18)

and the commutation relation can be rewritten as [a, a†]ac = iεa1c.

Since these expressions are non-diagonal, we diagonalize D and D̄ as

Ddiag = U−1DU =

 ∂ 0 0
0 ∂ − gf z̄ 0
0 0 ∂ + gf z̄

 , (4.19)

D̄diag = U−1D̄U =

 ∂̄ 0 0
0 ∂̄ + gfz 0
0 0 ∂̄ − gfz

 , (4.20)

with a unitary matrix

U =
1√
2

 √2 0 0
0 1 i
0 i 1

 . (4.21)

From diagonalization of D and D̄, the mass eigenstates of gauge fields are defined by

Ãa
µ = Aa

µU, Ãaµ = U−1Aaµ (4.22)

The commutation relation is also diagonalized:

[a, a†] =

 0 0 0
0 1 0
0 0 −1

 . (4.23)

Each component of creation and annihilation operators are summarized as follows.

a1 ≡
1√
α
i∂̄

a2 ≡
1√
α
i(∂̄ + gfz)

a3 ≡
1√
α
i(∂̄ − gfz)

,



a†1 ≡
1√
α
i∂

a†2 ≡
1√
α
i(∂ − gf z̄)

a†3 ≡
1√
α
i(∂ + gf z̄)

. (4.24)
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We note that a1 and a†1 play no role of annihilation and creation operators. Although

a2 and a†2 are ordinary annihilation and creation operators, the role of annihilation

and creation operators for a3 and a†3 are inverted because of [a3, a
†
3] = −1. The mode

functions on the ground state are determined by ∂λ0,0 = 0(∂̄λ0,0 = 0), a2ψ
2
0,j = 0,

a†3ψ
3
0,j = 0, where j = 0, · · · , |N | − 1 labels the degeneracy of the ground state. Higher

mode functions are constructed as

ψ1
l,m =

 λl,m
0
0

 , ψ2
n2,j

=

 0
ξn2,j

0

 , ψ3
n3,j

=

 0
0

ξ̄n3,j

 , (4.25)

where λl,m and ξn,j, ξ̄n,j are given by eq.(3.23) and eq.(2.20) respectively. These mode

functions satisfy a orthonormality condition∫
T 2

dx2(ψ1
l′,m′)†ψ1

l,m = δll′δmm′ ,

∫
T 2

dx2(ψa′

n′
a,j

′)†ψa
na,j = δa

′aδn′
anaδj′j, (4.26)

where a, a′ in the right equation of eq.(4.26) mean a = 2, 3. When creation operators

a†2 and a3 or annihilation operators a2 and a†3 act on the mode function, the relation

can be obtained as
a2ψ

2
n2,j

=
√
n2ψ

2
n2−1,j

a3ψ
3
n3,j

=
√
n3 + 1ψ3

n3+1,j

,


a†2ψ

2
n2,j

=
√
n2 + 1ψ2

n2+1,j

a†3ψ
3
n3,j

=
√
n3ψ

3
n3−1,j

. (4.27)

The mass-squared operator for gauge field is diagonalized as

m2
YM ≡ −DdiagD̄diag =

 β(l2 +m2) 0 0
0 αn2 0
0 0 α(n3 + 1)

 , (4.28)

where l,m ∈ Z and n2,3 = 0, 1, 2 · · · are Landau level and β = (2π/L)2.

It seems that there are two massless gauge bosons in eq.(4.28). If the commutation

relation of adjoint representation for gauge boson is calculated, we understand that a

massless gauge boson is appeared. Concretely, we can check the commutation relation

of the representation (t1)ab = ϵa1b for gauge field A1
5,6 and the representation (tc)ab = ϵacb

for gauge field Ac
µ:

[t1, t1] = 0 for c = 1, [t1, tc] ̸= 0 for c = 2, 3. (4.29)
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Thus, the (1,1) component of eq.(4.28) is a massless gauge boson. On the other hand,

the (2,2) component of eq.(4.28) is a fictitious massless gauge boson. This component

is removed by shift symmetry as we will see in the subsection 4.4.1 or the section 4.8.

We conclude that the SU(2) gauge symmetry is broken to U(1) by the flux background.

4.2.2 WL scalar field

Next, we find mass eigenvalues of WL scalar fields. Extracting quadratic terms for φa

from eq.(4.13), we obtain

Lφφ =− 1

4

(
Dφa∗Dφa∗ +Dφa∗D̄φa + D̄φaDφa∗ + D̄φaD̄φa − 4gf [φ, φ∗]1

)
+
ξ

4

(
Dφa∗Dφa∗ −Dφa∗D̄φa − D̄φaDφa∗ + D̄φaD̄φa

)
. (4.30)

As the discussion in the previous subsection, we need to diagonalize them. In order to

justify that WL scalar masses can be simultaneously diagonalized by the same unitary

rotation

φ̃a = U−1φa, φ̃a∗ = φa∗U, (4.31)

as that of non-Abelian gauge field, we give some arguments below. Because ofDφa∗D̄φa =

−φa∗DD̄φa, the second and the third terms in the first line of eq.(4.30) can be diago-

nalized by the unitary matrix U .

Next, we focus on the first term in the first line of eq.(4.30)

Dφa∗Dφa∗ = −φa∗DDφa∗

= α
(
φ̃1∗(a1)

2φ̃1∗ − iφ̃2∗(a2)
2φ̃3∗ − iφ̃3∗(a3)

2φ̃2∗
)
. (4.32)

Integrating these forms out on the square torus, the second and third terms in eq.(4.32)

vanish thanks to the orthogonality of the mode functions. The first term in eq.(4.32)

also vanishes since we will consider the zero mode of φ̃1∗ independent of z, z̄. This

argument can be also applied to D̄φaD̄φa. The last term in the first line of eq.(4.30)

can be also diagonalized by the unitary matrix U

−4gf [φ, φ∗]1 = 2αφa∗(iεa1b)φb = 2× αφ̃a∗

 0 0 0
0 1 0
0 0 −1

 φ̃a. (4.33)
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Note that the complex conjugate of adjoint representation (ta)∗ becomes (ta)∗ = −ta

since the structure constants are real and totally antisymmetric. Applying the same

argument to WL scalar mass terms from the gauge fixing terms in the second line of

eq.(4.30), the mass eigenvalues of WL scalar can be finally obtained as

m2
WL = gf

 (1 + ξ)β(l2 +m2) 0 0
0 α

2
((1 + ξ)n2 + 1) 0

0 0 α
2
((1 + ξ)n3 + ξ)

 . (4.34)

4.2.3 Ghost field

Finally, we find mass eigenvalues of the ghost field. Extracting the quadratic terms for

ca, one has

Lcc = −ca∗ξDmDmca (4.35)

Rewriting the differential operator DmDm in terms of creation and annihilation opera-

tors, we obtain

(DmDm)ab = (D2
5 +D2

6)
ab

= −[(iD)(iD̄)]ab − 1

2
[D, D̄]ab

= −α
[
(a†a)ab +

1

2
iεa1b

]
, (4.36)

where we used [D5,D6] = [D, D̄]/2i. Note that eq.(4.36) is an non-Abelian extension of

eq.(2.18). Thus, the ghost mass matrix is diagonalized as

m2
ghost = ξ

 β(l2 +m2) 0 0
0 α

(
n2 +

1
2

)
0

0 0 α
(
n3 +

1
2

)
 . (4.37)

Mass eigenstate of the ghost field is defined as

c̃a∗ = ca∗U, c̃a = U−1ca. (4.38)

4.3 Effective Lagrangian

To derive the effective Lagrangian in four dimensions from the Lagrangian in six di-

mensions by KK reduction, we expand Aa
µ, φ

a, ca in terms of KK mode except for φ1
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because we are interested in the quantum corrections to the mass for zero-mode of φ1.

In other words, the components of KK modes running in the loop are a = 2, 3 in the

quantum corrections.

Ã1µ =
∑
l,m

Ã1µ
l,mψ

1
l,m, Ãaµ =

∑
na,j

Ãaµ
na,j

ψa
na,j (a = 2, 3), (4.39)

Ã1
µ =

∑
l,m

Ã1
µ,l,mψ

1†
l,m, Ãa

µ =
∑
na,j

Ãa
µ,na,jψ

a†
na,j

(a = 2, 3), (4.40)

φ̃a =
∑
na,j

φ̃a
na,jψ

a
na,j, φ̃a∗ =

∑
na,j

φ̃a∗
na,jψ

a†
na,j

(a = 2, 3), (4.41)

c̃1 =
∑
l,m

c̃1l,mψ
1
l,m, c̃a =

∑
na,j

c̃ana,jψ
a
na,j (a = 2, 3), (4.42)

c̃1∗ =
∑
l,m

c̃1∗l,mψ
1
l,m, c̃a∗ =

∑
na,j

c̃a∗na,jψ
a†
na,j

(a = 2, 3). (4.43)

Notice that eq.(4.39), the first equations of eq.(4.41) and eq.(4.42) are regarded as col-

umn vector and eq.(4.40), the second equations of eq.(4.41) and eq.(4.43) are regarded

as row vector. Using the KK expansion from eqs.(4.39) to (4.43), the total Lagrangian

(4.13) is given as

Ltotal =−
1

4
F̃ a
µνF̃

aµν − ∂µφ̃a∗∂µφ̃a − c̃a∗DµD
µc̃a

− 1

2
Ãa

µm
2
YM Ã

aµ − φ̃a∗m2
WLφ̃

a − c̃a∗m2
ghostc̃

a

+ ig
{
∂µφ

a[Aµ, φ∗]a + ∂µφa∗[Aµ, φ]
a
}
+ g2[Aµ, φ]

a[Aµ, φ∗]a

− g√
2

{
−DAa

µ[A
µ, φ∗]a + D̄Aaµ[Aµ, φ]

a
}

+
g√
2
(Dφ∗ + D̄φ)a[φ, φ∗]a − 1

2
g2[φ, φ∗]a[φ, φ∗]a

− gξ√
2

(
[φ, c∗]aD̄ca − [φ∗, c∗]aDca

)
. (4.44)

In eq.(4.44), only the quadratic terms in the first and second lines are written in terms

of mass eigenstate. To read vertices for Feynman diagram calculations, we must rewrite

the remaining interaction terms in terms of the corresponding mass eigenstate, which

will be done below.
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4.3.1 Gauge field

First, we consider the interaction terms including the non-Abelian gauge fields. It is

easy to expand the quartic term,

g2[Aµ, φ]
a[Aµ, φ∗]a = −g2εab1εab′1

∑
nb,j

∑
n′
b,j

′

Ab
µ,nb,j

Ab′µ
n′
b,j

′φ
1φ1∗ψb

nb,j
ψb′

n′
b,j

′ . (4.45)

Then, the orthonormality condition for the mode functions leads to

LφφAA = −g2ηµν
∑
nb,j

Ãb
µ,nb,j

Ãb
ν,nb,j

φ1φ1∗, (4.46)

where b means b = 2, 3 in the above expression. Next, we calculate the cubic term of

φAA in a mass eigenstate. Expanding DAa
µ[A

µ, φ∗]a by KK modes, we have

DAa
µ[A

µ, φ∗]a ⊃ Aa
µU
←−
D diagU

−1(iεab1)UU
−1Abµφ1∗

= DdiagÃ
a
µU

−1(−iεa1b)UÃbµφ1∗

= −
√
α

i
a†2Ã

2
µÃ

2µφ1∗ +

√
α

i
a†3Ã

3
µÃ

3µφ1∗ (4.47)

where a symbol ⊃ in the first line means that only the non-vanishing terms by the

orthonormality condition are left and
←−
D diag means it acts on Aa

µ not Abµ. Using the

relation eq.(4.27) and the orthonormality condition for mode functions, we obtain

LφAA = +
∑
n2,j

g
√
α(n2 + 1)√

2i
Ã2

µ,n2+1,jÃ
2µ
n2,j

φ1∗ −
∑
n3,j

g
√
α(n3 + 1)√

2i
Ã3

µ,n3,j
Ã3µ

n3+1,jφ
1∗

−
∑
n2,j

g
√
α(n2 + 1)√

2i
Ã2

µ,n2,j
Ã2µ

n2+1,jφ
1 +

∑
n3,j

g
√
α(n3 + 1)√

2i
Ã3

µ,n3+1,jÃ
3µ
n3,j

φ1.

(4.48)

As for the cubic terms ∂µφ
a[Aµ, φ∗]a or ∂µφ∗a[Aµ, φ]

a, these terms turn out to be van-

ished thanks to the orthogonality condition for mode functions. Thus, there is no con-

tribution to the cubic terms in the third line of eq.(4.44) in four-dimensional effective

Lagrangian.
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4.3.2 WL scalar field

Next, we calculate the cubic and quartic terms for the WL scalar field. It is also easy

to compute the quartic term.

−1

2
g2[φ, φ∗]a[φ, φ∗]a =

1

2
g2εabcεab

′c′φbφc∗φb′φc′∗

= 2× 1

2
g2εabcεab

′c′
∑
nb,j

∑
nc,j′

φb
nb,j

φc′∗
nc′ ,j

′φb′φc∗ψb
nb,j

ψc′∗
nc′ ,j

′ . (4.49)

The reason why a factor 2 appears is that there are two ways to choose a pair of KK

expansions: φbφ∗c′ or φb′φ∗c since one of the two φ(φ∗) is taken to be φ1(φ∗1). Thus,

we obtain

Lφφφφ = g2εabcεab
′c′δbc

′∑
nb,j

φ̃b
nb,j

φ̃c′∗
nb,j

φb′φc∗. (4.50)

Next, we calculate the cubic term of φ in a mass eigenstate. Expanding Dφa∗[φ, φ∗]a

by KK modes, we have

Dφa∗[φ, φ∗]a = iεabcDφa∗φbφc∗

⊃ Dφa∗(iεa1b)(φ
b∗)Tφ1 −Dφa∗(iεa1b)φ

bφ1∗

= Ddiagφ̃
a∗U−1(iεa1b)(U

−1)T (φb∗)Tφ1 +Ddiagφ̃
a∗U−1(−iεa1b)Uφ̃bφ1∗,

where we add the transpose T to φb∗ to compute the first term. U−1(iεa1b)(U
−1)T has

no diagonalized component, thus one has

Dφa∗[φ, φ∗]a ⊃ −
√
α

i
a†2φ̃

2∗φ̃2φ1∗ +

√
α

i
a†3φ̃

3∗φ̃3φ1∗. (4.51)

As in the subsection 4.3.1, the cubic terms of WL scalar can be obtain as

Lφφφ = +
∑
n2,j

g
√
α(n2 + 1)√

2i
φ̃2∗
n2+1,jφ̃

2
n2,j

φ1∗ −
∑
n3,j

g
√
α(n3 + 1)√

2i
φ̃3∗
n3,j

φ̃3
n3+1,jφ

1∗,

−
∑
n2,j

g
√
α(n2 + 1)√

2i
φ̃2∗
n2,j

φ̃2
n2+1,jφ

1 +
∑
n3,j

g
√
α(n3 + 1)√

2i
φ̃3∗
n3+1,jφ̃

3
n3,j

φ1. (4.52)
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4.3.3 Ghost field

Finally, we compute the cubic terms for the ghost and WL scalar fields, which include

a single φ1. Expanding [φ, c∗]aD̄ca by KK modes, we have

[φ, c∗]aD̄ca = iεabcφacb∗D̄cc ⊃ c∗a(−iεa1b)D̄cbφ1

= c̃∗aU−1(−iεa1b)UD̄diag c̃
bφ1

= −
√
α

i
c̃2∗a2c̃

2φ1 +

√
α

i
c̃3∗a3c̃

3φ1. (4.53)

Using the relation (4.27) and the orthonormality condition for mode functions, we find

Lccφ = +
∑
n2,j

gξ
√
α(n2 + 1)√

2i
c̃2∗n2+1,j c̃

2
n2,j

φ1∗ −
∑
n3,j

gξ
√
α(n3 + 1)√

2i
c̃3∗n3,j

c̃3n3+1,jφ
1∗

+
∑
n2,j

gξ
√
α(n2 + 1)√

2i
c̃2∗n2,j

c̃2n2+1,jφ
1 −

∑
n3,j

gξ
√
α(n3 + 1)√

2i
c̃3∗n3+1,j c̃

3
n3,j

φ1. (4.54)

4.4 Cancellation of one-loop corrections toWL scalar

mass

In this section, we calculate the quantum corrections to WL scalar mass at one-loop for

the zero mode of φ1 and show that they are exactly canceled. In this section, we omit

the symbol of tilde for mass eigenstate (for example, we write Ãa
µ as Aa

µ for simplicity).

4.4.1 Gauge boson loop

Figure 4.1: Gauge boson loop corrections I
(2,3)
A1 and I

(2,3)
A2 .

As shown in figure 4.1, there are two diagrams from the gauge boson loop contri-

butions. Superscript (2), (3) means the contributions from A2
µ, A

3
µ loops, respectively.
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Denoting I
(2,3)
A1 and I

(2,3)
A2 as the contribution from the four-point interaction and the

three-point interactions respectively, these are obtained as

I
(2)
A1 = −2ig2|N |

∞∑
n=0

∫
d4p

(2π)4

(
3

p2 + αn
+

ξ

p2 + αnξ

)
, (4.55)

I
(3)
A1 = −2ig2|N |

∞∑
n=0

∫
d4p

(2π)4

(
3

p2 + α(n+ 1)
+

ξ

p2 + α(n+ 1)ξ

)
, (4.56)

I
(2)
A2 = 2ig2|N |

∞∑
n=0

∫
d4p

(2π)4

(
3α(n+ 1)

(p2 + αn)(p2 + α(n+ 1))
+

α(n+ 1)ξ2

(p2 + αnξ)(p2 + α(n+ 1)ξ)

)
,

(4.57)

I
(3)
A2 = 2ig2|N |

∞∑
n=0

∫
d4p

(2π)4

(
3α(n+ 1)

(p2 + α(n+ 1))(p2 + α(n+ 2))

+
α(n+ 1)ξ2

(p2 + α(n+ 1)ξ)(p2 + α(n+ 2)ξ)

)
,

(4.58)

where Wick rotation is applied in momentum integrals and the symmetry factor is

involved. To obtain I
(2,3)
A2 , we use a partial fraction decomposition

(1− ξ)p2

(p2 + αn)(p2 + αnξ)
=

1

p2 + αn
− ξ

p2 + αnξ
. (4.59)

We now consider the sum of I
(2)
A1 and I

(2)
A2 or I

(3)
A1 and I

(3)
A2 :

I
(2)
A1 + I

(2)
A2 =− 6ig2|N |

∞∑
n=0

∫
d4p

(2π)4

(
1

p2 + αn
− α(n+ 1)

(p2 + αn)(p2 + α(n+ 1))

)
− 2ig2|N |

∞∑
n=0

∫
d4p

(2π)4

(
ξ

p2 + αnξ
− α(n+ 1)ξ2

(p2 + αnξ)(p2 + α(n+ 1)ξ)

)
,

(4.60)

I
(3)
A1 + I

(3)
A2 =− 6ig2|N |

∞∑
n=0

∫
d4p

(2π)4

(
1

p2 + α(n+ 1)
− α(n+ 1)

(p2 + α(n+ 1))(p2 + α(n+ 2))

)
− 2ig2|N |

∞∑
n=0

∫
d4p

(2π)4

(
ξ

p2 + α(n+ 1)ξ
− α(n+ 1)ξ2

(p2 + α(n+ 1)ξ)(p2 + α(n+ 2)ξ)

)
.

(4.61)

The integrand of the first line in I
(2)
A1 + I

(2)
A2 can be deformed as

1

p2 + αn
− α(n+ 1)

(p2 + αn)(p2 + α(n+ 1))
=

1

p2 + αn
− (n+ 1)

(
1

p2 + αn
− 1

p2 + α(n+ 1)

)
= − n

p2 + αn
+

n+ 1

p2 + α(n+ 1)
, (4.62)
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and we thus find a crucial result

∞∑
n=0

∫
d4p

(2π)4

(
1

p2 + αn
− α(n+ 1)

(p2 + αn)(p2 + α(n+ 1))

)
=

∞∑
n=0

∫
d4p

(2π)4

(
− n

p2 + αn
+

n+ 1

p2 + α(n+ 1)

)
= 0 (4.63)

by the shift n→ n+1 in the first term. The same result holds for the integrand of the

first line in I
(3)
A1 + I

(3)
A2 . As for the integrand of the second line in I

(2)
A1 + I

(2)
A2 , I

(3)
A1 + I

(3)
A2 ,

the same structure can be easily found after the change of variable p2 = ξq2. Thus, we

conclude

I
(2)
A1 + I

(2)
A2 = 0, I

(3)
A1 + I

(3)
A2 = 0, (4.64)

which implies that the quantum corrections from the gauge boson loop are canceled.

We emphasize that this cancellation holds for an arbitrary ξ.

4.4.2 WL scalar loop

Figure 4.2: WL scalar loop corrections I
(2,3)
φ1 and I

(2,3)
φ2 .

As shown in figure 4.2, there are also two diagrams from the WL scalar field loop

contributions. Superscript (2), (3) means the contributions from φ2, φ3 loops, respec-

tively. Denoting I
(2,3)
φ1 and I

(2,3)
φ2 as the contribution from the four-point interaction and
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the three-point interactions respectively, we have

I
(2)
φ1 = −ig2|N |

∞∑
n=0

∫
d4p

(2π)4
1

p2 + α
2
((1 + ξ)n+ 1)

, (4.65)

I
(3)
φ1 = −ig2|N |

∞∑
n=0

∫
d4p

(2π)4
1

p2 + α
2
((1 + ξ)n+ ξ)

, (4.66)

I
(2)
φ2 =

ig2|N |
2

∞∑
n=0

∫
d4p

(2π)4
α(n+ 1)

(p2 + α
2
((1 + ξ)n+ 1))(p2 + α

2
((1 + ξ)(n+ 1) + 1))

, (4.67)

I
(3)
φ2 =

ig2|N |
2

∞∑
n=0

∫
d4p

(2π)4
α(n+ 1)

(p2 + α
2
((1 + ξ)n+ ξ))(p2 + α

2
((1 + ξ)(n+ 1) + ξ))

. (4.68)

4.4.3 Ghost field loop

Figure 4.3: Ghost field loop correction I
(2,3)
c

As for the ghost loop contributions, we have only to consider a diagram shown in

figure 4.3. Superscript (2), (3) means the contributions from c2, c3 loops, respectively.

Denoting I
(2,3)
c as the contribution from the interaction including ghost fields, I

(2,3)
c are

I(2)c =
ig2|N |ξ2

2

∞∑
n=0

∫
d4p

(2π)4
α(n+ 1)

(p2 + α(n+ 1
2
))(p2 + α(n+ 3

2
))
, (4.69)

I(3)c =
ig2|N |ξ2

2

∞∑
n=0

∫
d4p

(2π)4
α(n+ 1)

(p2 + α(n+ 1
2
))(p2 + α(n+ 3

2
))
, (4.70)

where a change of variable p2 → ξp2 is performed in momentum integral. Notice that

we need to consider an overall sign (−1) for the ghost loop.
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4.4.4 Cancellation between WL scalar loop and ghost loop
contributions

As you have seen in subsection 4.4.1, one-loop corrections to the zero mode WL scalar

mass are canceled between two diagrams of gauge boson loop. In this subsection, we

show the cancellation between the corrections from the WL scalar field and the ghost

field loops.

First, let us consider the case ξ = 0 (Landau gauge). In this case, the contributions

from the ghost field (4.69) and (4.70) trivially vanish since they are proportional to ξ2:

I
(2)
c = I

(3)
c = 0. These results in the ξ = 0 case can be understood that ghost fields have

no interaction with WL scalar fields (see eq.(4.54)). Thus, we have only to calculate

the remaining contributions from the WL scalar field loop from eq.(4.65) to (4.68) in

the ξ = 0 case. The summation of WL scalar field contribution can be found

I
(2)
φ1 + I

(2)
φ2 = −ig2|N |

∞∑
n=0

∫
d4p

(2π)4

(
1

p2 + α
2
(n+ 1)

−
α
2
(n+ 1)

(p2 + α
2
(n+ 1))(p2 + α

2
(n+ 2))

)
,

(4.71)

I
(3)
φ1 + I

(3)
φ2 = −ig2|N |

∞∑
n=0

∫
d4p

(2π)4

(
1

p2 + α
2
n
−

α
2
(n+ 1)

(p2 + α
2
n)(p2 + α

2
(n+ 1))

)
. (4.72)

Using the results (4.62) and (4.63), we can easily find that these contributions are

canceled:

I
(2)
φ1 + I

(2)
φ2 = 0, I

(3)
φ1 + I

(3)
φ2 = 0. (4.73)

Next, we consider a more non-trivial case ξ = 1 (Feynman gauge), in which we

expect non-trivial cancellations between the corrections from the WL scalar field and

ghost field loops. The summation of the WL scalar and ghost field contributions can

be found

I
(2)
φ1 + I

(2)
φ2 + I(2)c =− ig2|N |

∞∑
n=0

∫
d4p

(2π)4

(
1

p2 + α(n+ 1
2
)

−1

2

α(n+ 1)

(p2 + α
(
n+ 1

2

)
)(p2 + α

(
n+ 3

2

)
)
− 1

2

α(n+ 1)

(p2 + α
(
n+ 1

2

)
)(p2 + α(n+ 3

2
))

)

=− ig2|N |
∞∑
n=0

∫
d4p

(2π)4

(
1

p2 + α(n+ 1
2
)
− α(n+ 1)

(p2 + α
(
n+ 1

2

)
)(p2 + α(n+ 3

2
))

)
,

(4.74)
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I
(3)
φ1 + I

(3)
φ2 + I(3)c =− ig2|N |

∞∑
n=0

∫
d4p

(2π)4

(
1

p2 + α(n+ 1
2
)

−1

2

α(n+ 1)

(p2 + α(n+ 1
2
))(p2 + α(n+ 3

2
))
− 1

2

α(n+ 1)

(p2 + α(n+ 1
2
))(p2 + α(n+ 3

2
))

)
=− ig2|N |

∞∑
n=0

∫
d4p

(2π)4

(
1

p2 + α(n+ 1
2
)
− α(n+ 1)

(p2 + α(n+ 1
2
))(p2 + α(n+ 3

2
))

)
.

(4.75)

Using the results (4.62) and (4.63) again, we conclude that these contributions are also

canceled:

I
(2)
φ1 + I

(2)
φ2 + I(2)c = 0, I

(3)
φ1 + I

(3)
φ2 + I(3)c = 0. (4.76)

It would be also interesting that the cancellation between the WL scalar and the ghost

loop contributions is shown in an arbitrary gauge parameter ξ as in the case of the

gauge field loop contributions.

4.5 Fermion

In the above sections, we have shown that the quantum corrections to WL scalar mass

from the gauge, the WL scalar and the ghost field loops are canceled at one-loop level.

In this section, we will see the quantum corrections from fermion loop. For simplicity,

we introduce a constant magnetic flux in the direction of SU(2) Cartan part as

⟨A3
5⟩ = −

1

2
fx6, ⟨A3

6⟩ =
1

2
fx5, ⟨A1,2

5 ⟩ = ⟨A
1,2
6 ⟩ = 0, (4.77)

and we calculate the quantum corrections to WL scalar φ3 not φ1. Even though the

direction introducing the magnetic flux is different from eq.(4.4), the cancellations of

the quantum corrections to WL scalar φ1 or φ3 in Yang-Mills theory are also satisfied.

Thus, we will investigate the quantum corrections from fermion loop 1.

1The calculations in this section are unpublished results
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4.5.1 SU(2) Weyl fermion

We consider a six-dimensional SU(2) Weyl fermion Ψd interacting with SU(2) gauge

fields. The Lagrangian is given by

Lf = iΨ̄dΓ
MDMΨd

= iΨ̄dΓ
µDµΨd + iΨ̄dΓ

5D5Ψd + iΨ̄dΓ
6D6Ψd, (4.78)

where the covariant derivatives are DM = ∂M − igAa
MT

a and T a are SU(2) generators.

Ψd is constructed by

Ψd =

(
Ψ1

Ψ2

)
, Ψ1 =

(
ψ1L

ψ1R

)
, Ψ2 =

(
ψ2L

ψ2R

)
, (4.79)

where ψ1L,1R and ψ2L,2R are given by

ψ1L,2L =

(
ψ1,2

0

)
, ψ1R,2R =

(
0
χ̄1,2

)
(4.80)

as eq.(3.14). Note that Ψ1,2 satisfies Γ7Ψ1,2 = −Ψ1,2.

To derive the mass-squared operators, we need to find Dirac equations for ψ1L,1R

and ψ2L,2R. The results are

γµ∂µψ1L + i(∂̄ + gfz)ψ1R = 0, (4.81)

γµ∂µψ1R − i(∂ − gf z̄)ψ1L = 0, (4.82)

γµ∂µψ2L + i(∂̄ − gfz)ψ2R = 0, (4.83)

γµ∂µψ2R − i(∂ + gf z̄)ψ2L = 0, (4.84)

where we ignore the interaction terms. Acting γµ∂µ on eqs.(4.81) to (4.84), Klein-

Gordon equations

□ψ1L − (∂̄ + gfz)(∂ − gf z̄)ψ1L = 0, (4.85)

□ψ̄1R − (∂̄ − gfz)(∂ + gf z̄)ψ̄1R = 0, (4.86)

□ψ2L − (∂̄ − gfz)(∂ + gf z̄)ψ2L = 0, (4.87)

□ψ̄2R − (∂̄ + gfz)(∂ − gf z̄)ψ̄2R = 0 (4.88)
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can be obtained. From these Klein-Gordon equations, we define creation and annihila-

tion operators as

a1L =
i√
α
(∂̄ + gfz), a†1L =

i√
α
(∂ − gf z̄), (4.89)

a1R =
i√
α
(∂ + gf z̄), a†1R =

i√
α
(∂̄ − gfz), (4.90)

a2L =
i√
α
(∂ + gf z̄), a†2L =

i√
α
(∂̄ − gfz), (4.91)

a2R =
i√
α
(∂̄ + gfz), a†2R =

i√
α
(∂ − gf z̄). (4.92)

Note that a1L = a2R, a
†
1L = a†2R, a1R = a2L and a†1R = a†2L are satisfied. The commuta-

tion relations are computed as

[aiL,iR, a
†
iL,iR] = 1, [aiL,iR, aiL,iR] = 0, [aiL,iR, ajL,jR] = 0, [aiL,iR, a

†
jR,jL] = 1,

(4.93)

where i, j = 1, 2, i ̸= j, and the corresponding subscripts (iL, iR, etc.) are ordered.

Using these creation and annihilation operators, we can read the mass-squared operators

as

M2
1L = αa1La

†
1L, M2

2L = αa†2La2L, (4.94)

M2
1R = αa†1Ra1R, M2

2R = αa2Ra
†
2R. (4.95)

The mode functions on ground state satisfy aiLξ
(i)
0,j = 0, aiRξ̄

(i)
0,j = 0 and higher mode

functions are represented as

ξ
(i)
n,j =

in√
n!
(a†iL)

nξ
(i)
0,j, ξ̄

(i)
n,j =

in√
n!
(a†iR)

nξ̄
(i)
0,j, (4.96)

and the orthonormality condition is satisfied. The relation between the higher mode

functions and creation (annihilation) operators has

aiLξ
(i)
n,j = i

√
nξ

(i)
n−1,j, a†iLξ

(i)
n,j = −i

√
n+ 1ξ

(i)
n+1,j, (4.97)

aiRξ̄
(i)
n,j = i

√
nξ̄

(i)
n−1,j, a†iRξ̄

(i)
n,j = −i

√
n+ 1ξ̄

(i)
n+1,j. (4.98)

Thus, KK expansions for ψiL, ψiR(i = 1, 2) can be obtained by

ψiL =
∑
n,j

ψiL,n,jξ
(i)
n,j, ψ̄iR =

∑
n,j

ψ̄iR,n,j ξ̄
(i)
n,j. (4.99)
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4.5.2 Effective Lagrangian

We represent the four-dimensional effective Lagrangian in terms of ψiL,iR. Noting that

we are not interested in the interaction of fermion and non-Abelian gauge fields and we

ignore these interactions. We extract necessary terms from the Lagrangian (4.78) for

our purpose as

Lf ⊃ iψ̄1Lγ
µ∂µψ1L + iψ̄1Rγ

µ∂µψ1R + iψ̄2Lγ
µ∂µψ2L + iψ̄2Rγ

µ∂µψ2R

−
√
α

i
ψ̄1La1Lψ1R +

√
α

i
ψ̄1Ra

†
1Lψ1L −

√
α

i
ψ̄2La

†
2Lψ2R +

√
α

i
ψ̄2Ra2Lψ2L

−
√
2gφ3∗(ψ̄1Lψ1R − ψ̄2Lψ2R)−

√
2gφ3(ψ̄1Rψ1L − ψ̄2Rψ2L). (4.100)

Using the relation eq.(4.97), eq.(4.98) and the orthonormality condition, the four-

dimensional Lagrangian for fermion can be obtained by

L4f ⊃
∑
n,j

[
iψ̄1L,n,jγ

µ∂µψ1L,n,j + iψ̄1R,n,jγ
µ∂µψ1R,n,j

+ iψ̄2L,n,jγ
µ∂µψ2L,n,j + iψ̄2R,n,jγ

µ∂µψ2R,n,j

]
+
∑
n,j

[
−
√
α(n+ 1)ψ̄1L,n+1,jψ1R,n,j +

√
α(n+ 1)ψ̄2L,n+1,jψ2R,n,j + h.c.

]
−
∑
n,j

[√
2gφ3∗(ψ̄1L,n,jψ1R,n,j − ψ̄2L,n,jψ2R,n,j)

+
√
2gφ3(ψ̄1R,n,jψ1L,n,j − ψ̄2R,n,jψ2L,n,j)

]
. (4.101)

For the reason that different KK modes are mixed in the mass terms, we rewrite

eq.(4.101). Using eq.(4.80), we decompose eq.(4.101) into the following form:

L4f ⊃
∑
n,j

[
− iψ1,n,jσ

µ∂µψ̄1,n,j − iψ2,n,jσ
µ∂µψ̄2,n,j − iχ1,n,jσ

µ∂µχ̄1,n,j − iχ2,n,jσ
µ∂µχ̄2,n,j

]
+
∑
n,j

[√
α(n+ 1)ψ̄1,n+1,jχ̄1,n,j −

√
α(n+ 1)ψ̄2,n+1,jχ̄2,n,j + h.c.

]
+
∑
n,j

[√
2gφ3∗(ψ̄1,n,jχ̄1,n,j − ψ̄2,n,jχ̄2,n,j) +

√
2gφ3(χ1,n,jψ1,n,j − χ2,n,jψ2,n,j)

]
.

(4.102)

For Dirac fermion, we define Ψi,n,j as

Ψi,n,j =

(
ψi,n+1,j

χ̄i,n,j

)
, (4.103)
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where we understand χi,−1,j = 0 for n = −1. Thus, we rewrite eq.(4.102) in terms of

Ψi,n,j,

L4f ⊃
∞∑

n=−1

|N |−1∑
j=0

[
iΨ1,n,jγ

µ∂µΨ1,n,j + iΨ2,n,jγ
µ∂µΨ2,n,j

]

+
∞∑

n=−1

|N |−1∑
j=0

[
−
√
α(n+ 1) Ψ1,n,jΨ1,n,j +

√
α(n+ 1) Ψ2,n,jΨ2,n,j

]

+
∞∑

n=−1

|N |−1∑
j=0

[√
2gφ3∗(−Ψ1,n,jPRΨ1,n+1,j +Ψ2,n,jPRΨ2,n+1,j)

+
√
2gφ3(−Ψ1,n+1,jPLΨ1,n,j +Ψ2,n+1,jPLΨ2,n,j)

]
, (4.104)

where PL = (1− γ5)/2, PR = (1 + γ5)/2 are the projection operators.

4.5.3 Fermion loop

Figure 4.4: Fermion loop correction If1 and If2.

As shown in figure 4.4, there are two diagrams from the fermion loop contributions.

Denoting If1 and If2 as the contribution from Ψ1,n,j and Ψ2,n,j respectively, we obtain

If1 = If2 = +4ig2|N |
∑
n

∫
d4k

(2π)4
k2

(k2 + αn)(k2 + α(n+ 1))
. (4.105)

Eq.(4.105) is the same form for eq.(3.61), and these contributions vanish by the shift

n→ n+ 1. Thus, we conclude

If1 = If2 = 0. (4.106)
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4.6 Higher dimensional operator

Since the higher dimensional gauge theory is non-renormalizable, the higher dimensional

operators which are consistent with symmetry of the theory should be considered. The

main purpose of this section is to show that the quantum corrections to the masses

of WL scalar fields φ1, φ1∗ at one-loop are canceled even if we take into account the

contributions from the higher dimensional operators. Before going to the calculation in

detail, we classify the higher dimensional operators based on a dimensional analysis.

In general, we can add the gauge invariant higher dimensional operators to La-

grangian (4.1).

L6 = −
1

4
F a
MNF

aMN +
1

Λ2
O1(D,F ) +

1

Λ4
O2(D,F ) +

1

Λ6
O3(D,F ) + · · · , (4.107)

where On(D,F ) is a set of gauge invariant operators with covariant derivatives and field

strengths. Λ is a cutoff scale of the theory and n is a degree of 1/Λ2. For On(D,F ), we

can determine the form of operators allowed inOn(D,F ) by considering mass dimension

in four dimensions of On(D,F ). In the case of n = 1 (the first order in 1/Λ2), the

following three operators are allowed.

O1(D,F ) = D4F +D2F 2 + F 3. (4.108)

Similarly, in the case of n = 2 (the second order in 1/Λ2), the following four operators

are allowed.

O2(D,F ) = D6F +D4F 2 +D2F 3 + F 4. (4.109)

More explicitly, the operators O1(D,F ) and O2(D,F ) are written by2

O1(D,F ) = Tr[DLD
LDMDNF

MN ] + 2Tr[DLFMND
LFMN ]

+ ϵM1N1M2N2M3N3Tr[FM1N1FM2N2FM3N3 ], (4.110)

O2(D,F ) = Tr[DKD
KDLD

LDMDNF
MN ] + Tr[DkDLFMND

KDLFMN ]

+ Tr[ϵM1N1M2N2M3N3(DLFM1N2)(D
LFM2N2)FM3N3 ] + Tr[FMNF

MNFABF
AB],

(4.111)

2For convenience of the calculation, a factor “2” is included in the second term of O1(D,F ) to
cancel a factor 1/2 coming from the normalization condition of the generators.
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where ϵM1N1M2N2M3N3 is a totally anti-symmetric tensor.

In this thesis, we mainly focus on the operators (4.110), which are the leading terms

of the higher dimensional operators. Since only the second term in eq.(4.110) will be

found to be non-vanishing, we derive the cubic terms with a single φ1 or φ1∗ and the

quartic terms involving two φ1 and φ1∗ from it, which are necessary for calculations

of one-loop corrections to WL scalar mass. In the following calculations, we fix the

parameter ξ = 1.

4.6.1 Tr[DLD
LDMDNF

MN ]

This operator vanishes because of the traceless condition for SU(2) generators.

Tr[DLD
LDMDNF

MN ] = (DLD
LDMDNF

MN)aTr[ta] = 0. (4.112)

Thus, we need not to calculate the first term in eq.(4.110).

4.6.2 ϵM1N1M2N2M3N3Tr[FM1N1
FM2N2

FM3N3
]

The third term in eq.(4.110) also vanishes because of properties of totally anti-symmetric

tensor ϵM1N1M2N2M3N3 and the trace of product of three generators. We first note that

the trace of tatbtc is written as

Tr
[
tatbtc

]
=

1

4
iϵabc. (4.113)

Using this result, we can find the third term in eq.(4.110) to take the following form.

ϵM1N1M2N2M3N3Tr[FM1N1FM2N2FM3N3 ] =
i

4
ϵabcϵM1N1M2N2M3N3F a

M1N1
F b
M2N2

F c
M3N3

= − i
4
ϵabcϵM1N1M2N2M3N3F a

M1N1
F b
M2N2

F c
M3N3

,

(4.114)

where we interchanged the indices a↔ b and M1, N1 ↔M2, N2 in the second equality,

and use the properties of two anti-symmetric tensors ϵabc and ϵM1N1M2N2M3N3 . Then we

conclude

ϵM1N1M2N2M3N3Tr[FM1N1FM2N2FM3N3 ] = 0. (4.115)
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4.6.3 2Tr[DLFMND
LFMN ]

This operator can be decomposed into the fields with four-dimensional and extra two-

dimensional indices as follows.

2Tr[DLFMND
LFMN ] = DLF

a
MND

LF aMN

= DρF
a
µνD

ρF aµν + 2DρF
a
µmD

ρF aµm + 2DρF
a
56D

ρF a56

+DlF
a
µνD

lF aµν + 2DlF
a
µmD

lF aµm + 2DlF
a
56D

lF a56.

(4.116)

Since the first term has no terms with φ1, φ1∗, it is irrelevant to our calculations.

We then decompose the remaining terms in eq.(4.116). Detail computations of the

remaining terms in eq.(4.116) are described in appendix B. In this subsection, we show

the final result,

LφφAA = 8g2φ1∗φ1
∑
n,j

∂µÃ
2
ν,n,j∂

µÃ2ν
n,j + 8g2φ1∗φ1

∑
n,j

∂µÃ
3
ν,n,j∂

µÃ3ν
n,j

+ 16g2φ1∗φ1
∑
n,j

αnÃ2
µ,n,jÃ

2µ
n,j + 16g2φ1∗φ1

∑
n,j

α(n+ 1)Ã3
µ,n,jÃ

3µ
n,j, (4.117)

Lφφφφ = 8g2φ1∗φ1
∑
n,j

∂µφ̃
2∗
n,j∂

µφ̃2
n,j + 8g2φ1∗φ1

∑
n,j

∂µφ̃
3∗
n,j∂

µφ̃3
n,j

+ 16g2φ1∗φ1
∑
n,j

αnφ̃2
n,jφ̃

2∗
n,j + 16g2φ1∗φ1

∑
n,j

α(n+ 1)φ̃3
n,jφ̃

3∗
n,j, (4.118)

LφAA1 = +4
√
2ig
∑
n,j

√
α (n+ 1)∂µÃ

2
ν,n,j∂

µÃ2ν
n+1,jφ

1∗

− 4
√
2ig
∑
n,j

√
α(n+ 1)∂µÃ

3
ν,n+1,j∂

µÃ3ν
n,jφ

1∗

− 4
√
2ig
∑
n,j

√
α(n+ 1)∂µÃ

2
ν,n+1,j∂

µÃ2ν
n,jφ

1

+ 4
√
2ig
∑
n,j

√
α(n+ 1)∂µÃ

3
ν,n,j∂

µÃ3ν
n+1,jφ

1 (4.119)
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LφAA2 = +4
√
2ig
∑
n,j

α

(
n+

1

2

)√
α(n+ 1)Ã2

µ,n+1,jÃ
2µ
n,jφ

1∗

− 4
√
2ig
∑
n,j

α

(
n+

3

2

)√
α(n+ 1)Ã3

µ,n,jÃ
3µ
n+1,jφ

1∗

− 4
√
2ig
∑
n,j

α

(
n+

1

2

)√
α(n+ 1)Ã2

µ,n+1,jÃ
2µ
n,jφ

1

+ 4
√
2ig
∑
n,j

α

(
n+

3

2

)√
α(n+ 1)Ã3

µ,n,jÃ
3µ
n+1,jφ

1, (4.120)

Lφφφ1 = +4
√
2ig
∑
n,j

√
α(n+ 1)∂µφ̃

2∗
n+1,j∂

µφ̃2
n,jφ

1∗

− 4
√
2ig
∑
n,j

√
α(n+ 1)∂µφ̃

3∗
n,j∂

µφ̃3
n+1,jφ

1∗

− 4
√
2ig
∑
n,j

√
α(n+ 1)∂µφ̃

2
n+1,j∂

µφ̃2∗
n,jφ

1

+ 4
√
2ig
∑
n,j

√
α (n+ 1)∂µφ̃

3
n,j∂

µφ̃3∗
n+1,jφ

1 (4.121)

Lφφφ2 = +4
√
2ig
∑
n2,j

α

(
n− 1

4

)√
α(n+ 1)φ̃2∗

n2+1,jφ̃
2
n2,j

φ1∗

− 4
√
2ig
∑
n3,j

α

(
n+

9

4

)√
α(n+ 1)φ̃3∗

n3,j
φ̃3
n3+1,jφ

1∗

− 4
√
2ig
∑
n2,j

α

(
n− 1

4

)√
α(n+ 1)φ̃2∗

n2,j
φ̃2
n2+1,jφ

1

+ 4
√
2ig
∑
n3,j

α

(
n+

9

4

)√
α(n+ 1)φ̃3∗

n3+1,jφ̃
3
n3,j

φ1, (4.122)

where we rewrite the original fields to the fields in the mass eigenstate Ãa
µ, φ̃

a. Thus,

the four-dimensional interaction Lagrangian is summarized as

L4,int =
1

Λ2
(LφφAA + Lφφφφ + LφAA1 + LφAA2 + Lφφφ1 + Lφφφ2). (4.123)

4.7 Quantum corrections to WL scalar mass from

higher dimensional operators

We will explicitly show below that one-loop corrections to the WL scalar masses is

indeed canceled even if the lowest term of the higher dimensional operators is present.
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The statement is straightforward, but the cancellation of quantum corrections to WL

scalar mass is somewhat nontrivial since the cancellation is realized among the terms

with different orders of 1/Λ2.

4.7.1 One-loop Corrections from the Quartic Interactions

From the interactions in (4.117), there are four types of one-loop corrections to the WL

scalar masses from the gauge boson loop contributions as the left diagram in figure 4.1,

which are expressed as

I
(2)
A3 =

32ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
p2

p2 + αn
, (4.124)

I
(3)
A3 =

32ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
p2

p2 + α(n+ 1)
, (4.125)

I
(2)
A4 =

64ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
αn

p2 + αn
, (4.126)

I
(3)
A4 =

64ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
α(n+ 1)

p2 + α(n+ 1)
. (4.127)

The superscripts (2), (3) imply the contributions from Ã2
µ, Ã

3
µ loops respectively. A3

and A4 represent corrections from the interactions in the first line and the second line

of eq.(4.117), respectively. Performing the dimensional regularization 3 for the four-

dimensional momentum integral, we find

IA3 ≡ I
(2)
A3 + I

(3)
A3 = −i4g

2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 0], (4.128)

IA4 ≡ I
(2)
A4 + I

(3)
A4 = +i

8g2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 0], (4.129)

where ζ[s, a] is Hurwitz zeta function which is defined by eq.(D.1) in appendix D and ϵ

is defined in the ordinary dimensional regularization as d = 4− 2ϵ. We will understand

how to compute from eq.(4.124) to eq.(4.127) by using the dimensional regularization

in next chapter. Summing up (4.128) and (4.129), we obtain the total gauge boson loop

3The reason why we employ the dimensional regularization is to keep the gauge symmetry. In our
discussion, the gauge symmetry is important to forbid a mass term of the WL scalar field at tree level.
Therefore, we should keep the gauge symmetry in the process of computation.

54



contributions to one-loop correction due to the quartic interactions.

IφφAA ≡ IA3 + IA4 = +i
4g2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 0]. (4.130)

Next, we consider the corrections from the WL scalar quartic interactions (4.118).

There are also four types of one-loop corrections to the WL scalar masses from the WL

scalar loop contributions as the left diagram in figure 4.2, which are expressed as

I
(2)
φ3 =

8ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
p2

p2 + α
(
n+ 1

2

) , (4.131)

I
(3)
φ3 =

8ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
p2

p2 + α
(
n+ 1

2

) , (4.132)

I
(2)
φ4 =

16ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
αn

p2 + α
(
n+ 1

2

) , (4.133)

I
(3)
φ4 =

16ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
α(n+ 1)

p2 + α
(
n+ 1

2

) , (4.134)

where the superscripts (2), (3) mean the contributions from φ̃2, φ̃3 loops respectively.

φ3 and φ4 represent corrections from the interactions in the first line and the second

line of eq.(4.118), respectively. Calculating these corrections similarly to the above

gauge boson loop (also understanding how to compute from eq.(4.131) to eq.(4.134) in

next chapter), one has

Iφ3 ≡ I
(2)
φ3 + I

(3)
φ3 = −ig

2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 1/2], (4.135)

Iφ4 ≡ I
(2)
φ4 + I

(3)
φ4 = +i

2g2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 1/2]. (4.136)

Summing up (4.135) and (4.136), we obtain the total WL scalar loop contributions to

one-loop correction due to the WL scalar quartic interactions.

Iφφφφ ≡ Iφ3 + Iφ4 = +i
g2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 1/2]. (4.137)

4.7.2 One-loop Corrections from the Cubic Interactions

In the case of the corrections due to the cubic interactions, we note that one-loop

corrections generate by using both the cubic interactions eqs.(4.48), (4.52) in O(Λ0)
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and eqs.(4.119), (4.120), (4.121), (4.122) in O(1/Λ2). This is a nontrivial point in

calculating the corrections in the presence of the higher dimensional operators. From

the interactions (4.48), (4.119) and (4.120), there are four types of one-loop corrections

to the WL scalar masses from the gauge boson loop contributions as the right diagram

in figure 4.1. These contributions are expressed as

I
(2)
A5 = −32ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
α(n+ 1)p2

(p2 + αn)(p2 + α(n+ 1))
, (4.138)

I
(3)
A5 = −32ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
α(n+ 1)p2

(p2 + α(n+ 1))(p2 + α(n+ 2))
, (4.139)

I
(2)
A6 = −32ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
α(n+ 1)α

(
n+ 1

2

)
(p2 + αn)(p2 + α(n+ 1))

, (4.140)

I
(3)
A6 = −32ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
α(n+ 1)α

(
n+ 3

2

)
(p2 + α(n+ 1))(p2 + α(n+ 2))

, (4.141)

where A5 or A6 represent the contributions from the interactions (4.48) and (4.119)

or the interaction (4.48) and (4.120), respectively. Calculating these corrections by

dimensional regularization, we find

IA5 ≡ I
(2)
A5 + I

(3)
A5 = +i

4g2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 0], (4.142)

IA6 ≡ I
(2)
A6 + I

(3)
A6 = −i8g

2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 0]. (4.143)

Summing up these results of eq.(4.142) and eq.(4.143), we obtain the total one-loop

corrections to the WL scalar masses from the gauge boson loop contributions.

IφAA ≡ IA5 + IA6 = −i
4g2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 0]. (4.144)

Next, we consider the corrections from eq.(4.52), eq.(4.121) and eq.(4.122), which

also give four types of one-loop corrections from the WL scalar loop contributions as
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the right diagram in figure 4.2. These contributions are represented as

I
(2)
φ5 = −8ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
α(n+ 1)p2(

p2 + α
(
n+ 1

2

)) (
p2 + α

(
n+ 3

2

)) , (4.145)

I
(3)
φ5 = −8ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
α(n+ 1)p2(

p2 + α
(
n+ 1

2

)) (
p2 + α

(
n+ 3

2

)) , (4.146)

I
(2)
φ6 = −8ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
α(n+ 1)α

(
n− 1

4

)(
p2 + α

(
n+ 1

2

)) (
p2 + α

(
n+ 3

2

)) , (4.147)

I
(3)
φ6 = −8ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
α(n+ 1)α

(
n+ 9

4

)(
p2 + α

(
n+ 1

2

)) (
p2 + α

(
n+ 3

2

)) , (4.148)

where φ5 or φ6 represent the contributions from the interactions (4.52) and (4.121) or

the interactions (4.52) and (4.122), respectively. By similar calculations of eq.(4.142)

and eq.(4.143), we find

Iφ5 ≡ I
(2)
φ5 + I

(3)
φ5 = +i

g2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 1/2], (4.149)

Iφ6 ≡ I
(2)
φ6 + I

(3)
φ6 = −i2g

2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 1/2]. (4.150)

Summing up eq.(4.149) and eq.(4.150), we obtain the total one-loop corrections to the

WL scalar masses from the WL scalar loop contributions.

Iφφφ ≡ Iφ5 + Iφ6 = −i
g2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 1/2]. (4.151)

4.7.3 Cancellation of One-loop Corrections to Scalar Mass at
O(1/Λ2)

Summing up all of the results (4.130), (4.137), (4.144) and (4.151), we can verify that

one-loop corrections to the WL scalar masses are indeed canceled at the leading order

of O(1/Λ2).

IφφAA + IφAA = 0, (4.152)

Iφφφφ + Iφφφ = 0. (4.153)

As can be seen from the above results, the gauge loop contributions and the WL

scalar loop contributions are independently canceled. In particular, the WL scalar loop

contributions can be canceled without the ghost loop contributions, which is different

from the case of Yang-Mills theory [27].
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4.7.4 Comments on the Corrections from the Higher Dimen-
sional Operators More Than O(1/Λ4)

We discuss the corrections from the higher dimensional operators more than O(1/Λ4).

If we use two kinds of cubic interactions (4.119), (4.120), (4.121) and (4.122), we obtain

some one-loop corrections to the WL scalar mass at the second order of 1/Λ2, that is

1/Λ4. However these corrections are not canceled because we must take into account

the contributions from the operators of O(1/Λ0) and O(1/Λ4). As an example for

O(1/Λ4), we have seen that operators (4.111) have an order O(1/Λ4) in the section 4.6.

Of these operators, the first term vanishes because of the traceless condition for SU(2)

generators as was shown in the section 4.6.1 and the third term also vanishes because

of the properties of totally anti-symmetric tensor and the trace of generators as was

shown in the section 4.6.2. Thus, we need to consider the second and the fourth terms

in eq.(4.111):

O2(D,F ) = Tr[DkDLFMND
KDLFMN ] + Tr[FMNF

MNFABF
AB]. (4.154)

Although it is relatively easy to calculate the second term in eq.(4.154) (see Appendix

C), the first term in eq.(4.154) is found to have huge number of interaction terms which

are relevant to the one-loop corrections to the WL scalar masses. At higher order than

O(1/Λ4), we need to consider carefully the variety of combinations among the operators

which are different order of 1/Λ2 and it becomes more complicated. Such an analysis

is very interesting, however it is beyond the scope of this thesis.

4.8 WL scalar as a Nambu-Goldstone boson

As in the section 3.4, the zero mode of WL scalar can be regarded as a NG boson

of translational invariance in extra spaces, which is the physical reason that one-loop

corrections to the WL scalar mass vanish. The transformations of translation in extra

spaces are given by

δTA
a
5 = (ϵ5∂5 + ϵ6∂6) Ã

a
5 −

f

2
ϵ6δ

a1, (4.155)

δTA
a
6 = (ϵ5∂5 + ϵ6∂6) Ã

a
6 +

f

2
ϵ5δ

a1, (4.156)
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where ϵ5,6 are constant parameters of translation in torus. These transformations can

be rewritten in complex coordinate as

δTϕ
a =

1√
2
(δTA6 + iδTA5)

= (ϵ∂ + ϵ∂)φa +
f√
2
ϵδa1, (4.157)

where ϵ ≡ (ϵ5 + iϵ6)/2. The first term in eq.(4.157) vanishes because we deal with the

zero mode of WL scalar φ1. Thus,

δTϕ
1 =

f√
2
ϵ (4.158)

is obtained and eq.(4.158) is simply reduced to a constant shift symmetry. Eq.(4.158)

means that the zero mode of WL scalar φ1 becomes a NG boson under the translation

in torus. Therefore, only the derivative terms of the zero mode of WL scalar are allowed

in the Lagrangian and it is a natural result that one-loop corrections to the zero mode

of WL scalar mass vanish. It is very interesting to note that the cancellations in the

explicit calculations above have been shown by relying on the shift n → n + 1, which

is a remnant of the shift symmetry discussed in previous subsections.

59



Chapter 5

Nonvanishing finite WL scalar mass

In previous chapters, we have shown that the quantum correction to WL scalar mass

vanishes. In this chapter, we study possibilities to realize a nonvanishing finite WL

scalar mass in flux compactification by analyzing the generalized loop integrals in the

quantum correction to WL scalar mass at one-loop [30]. After finding the conditions for

the loop integrals and mode sums in one-loop corrections to WL scalar mass to be finite,

we guess the four-point and three-point interaction terms satisfying this conditions.

5.1 Summary for Kaluza-Klein mass spectrum

In previous chapters, we have discussed the KK mass spectrums. For scalar field, the

KK mass is obtained by

m2
scalar = α

(
n+

1

2

)
(5.1)

as eq.(2.18) in subsection 2.2.

For fermion field, the KK mass is given by

m2
fermion =

{
αn

α(n+ 1)
(5.2)

asM2
− = αa†−a− andM2

+ = α(a†+a+ + 1) in the subsection 3.3.2, or the mass terms of

eq.(4.104) in the subsection 4.5.2.

For non-Abelian gauge field (for example, consider SU(2) gauge field), the KK mass
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is expressed by

m2
YM =

 β(l2 +m2) 0 0
0 αn2 0
0 0 α(n3 + 1)

 (5.3)

as eq.(4.28) in the subsection 4.2.1.

5.2 The structure of loop integral: general

In this section, we first systematically analyze the divergence structure of the quantum

corrections to WL scalar mass. In general, there are two types of Feynman diagrams

in figure 4.1 or 4.2. From these diagrams and the results of the above subsection, the

general form of loop integral in the quantum correction can be given by

∞∑
n=0

∫
d4k

(2π)4
k2af(n)

(k2 + α (n+ x))b

=
1

αb−a

(
4π

α

)ϵ−2
Γ (a+ 2− ϵ) Γ (ϵ+ b− a− 2)

Γ(b)Γ(2− ϵ)

∞∑
n=0

f(n)

(n+ x)ϵ+b−a−2
, (5.4)

where the dimensional regularization was employed for loop integral in the second line.

Γ(z) is a gamma function, ζ[s, a] is Hurwitz zeta function which is summarized in

appendix D, and d = 4 − 2ϵ dimensions. x is the part of KK mass characterized by

the field running in the loop. x = 1/2 corresponds to the KK mass of scalar field (5.1).

x = 1 or 0 mainly corresponds to the KK mass of fermion field (5.2) or the KK mass

of SU(2) gauge field (5.3), respectively. a denotes the number of derivatives acting on

the single field and b corresponds to the number of the propagator. Note that both a

and b are non-negative numbers. Since we are interested in the quantum correction as

figure 4.1 or 4.2, we focus on b = 1 or b = 2, that is four-point interaction or three-

point interaction, respectively. f(n) is a coefficient generated by an interaction term

depending on KK mode n.

If we take the complicated form of f(n), it is difficult to express the quantum

correction by using Hurwitz zeta function and the discussion on the finiteness of loop

integral becomes hard. Therefore, we simply take the form f(n) = (α(n + q))c(q is a
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real number and c is a non-negative number) in this thesis:

I(x; a, b; c, q) ≡ 1

αb−a−c

(
4π

α

)ϵ−2
Γ (a+ 2− ϵ) Γ (ϵ+ b− a− 2)

Γ(b)Γ(2− ϵ)

∞∑
n=0

(n+ q)c

(n+ x)ϵ+b−a−2
.

(5.5)

5.3 The structure of loop integral: part 1

First, we investigate the divergence structure for the quantum correction (5.5) with

c = 0:

I(x; a, b) ≡ I(x; a, b; 0, q)

=
1

αb−a

(
4π

α

)ϵ−2
Γ (a+ 2− ϵ) Γ (ϵ+ b− a− 2)

Γ(b)Γ(2− ϵ)
ζ[ϵ+ b− a− 2, x]. (5.6)

In order to realize nonvanishing finite WL scalar mass, the loop integral and mode sum

for one-loop correction to WL scalar mass (5.6) must be finite. To clarify this point,

we investigate

J(x; a, b) ≡ Γ (a+ 2− ϵ) Γ (ϵ+ b− a− 2)

Γ (2− ϵ)
ζ[ϵ+ b− a− 2, x] (5.7)

in eq.(5.6). As was mentioned in the above discussion, we deal with the case b = 1 or

b = 2. In the case of b = 1, the Gamma function part of eq.(5.7) is expressed by

Γ (a+ 2− ϵ) Γ (ϵ− a− 1)

Γ (2− ϵ)
= (a+ 2− ϵ− 1)(a+ 2− ϵ− 2) · · · (2− ϵ)Γ(ϵ− a− 1)

= (−1)aΓ(ϵ− 1). (5.8)

Thus, J(x; a, 1) becomes

J(x; a, 1) = (−1)aΓ(ϵ− 1)ζ[ϵ− a− 1, x]. (5.9)

In the case of b = 2, the same part of eq.(5.7) is expressed by

Γ (a+ 2− ϵ) Γ (ϵ− a)
Γ (2− ϵ)

= (a+ 2− ϵ− 1)(a+ 2− ϵ− 2) · · · (2− ϵ)Γ(ϵ− a)

= (−1)a(ϵ− a− 1)Γ(ϵ− 1). (5.10)

Thus, J(x; a, 2) becomes

J(x; a, 2) = (−1)a(ϵ− a− 1)Γ(ϵ− 1)ζ[ϵ− a, x]. (5.11)
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Here, Gamma function and Hurwitz zeta function can be expanded in ϵ

Γ(ϵ− 1) =
Γ(ϵ)

ϵ− 1
= −

(
1

ϵ
− γE + 1 +O(ϵ)

)
, (5.12)

ζ[ϵ− p, x] = ζ[−p, x] + ζ(1,0)[−p, x]ϵ+O(ϵ2), (5.13)

where γE = 0.5772 · · · is the Euler-Mascheroni constant, p is an arbitrary positive

integer, and ζ(1,0)[s, a] means ζ(1,0)[s, a] = ∂ζ[s, a]/∂s. Calculating Γ(ϵ − 1)ζ[ϵ − p, x],
divergent part will be remained because of 1/ϵ in eq.(5.12) and ζ[−p, x] in eq.(5.13).

However, using eq.(D.5) in appendix D, Γ(ϵ − 1)ζ[ϵ − p, x] becomes finite if we take p

being even. Thus, we summarize the condition for Γ(ϵ− 1)ζ[ϵ− p, x] being finite as

Γ(ϵ− 1)ζ[ϵ− p, x] = finite, if p = even. (5.14)

Applying this result to eqs.(5.9) and (5.11), J(x; a, 1) takes finite value at odd a,

J(x; a, 2) does at even a.

5.4 Classification of interaction terms: part 1

From the condition (5.14), we can classify the interaction terms giving finite one-loop

correction to WL scalar mass. In this section, we consider interaction terms which has

no derivatives acting on φ or φ∗ because we consider one-loop corrections to WL scalar

mass.

5.4.1 Four-point interaction

Four-point interaction term generates a correction to WL scalar mass of the left one

in figure 4.1 or 4.2. Since the diagram has a propagator, the diagram corresponds to

J(x; a, 1) (a: odd), from which we can guess the four-point interaction terms as follows,

• scalar field loop

J(1/2; a, 1)→ φ∗φ∂µ1 · · · ∂µaΦ
∗∂µ1 · · · ∂µaΦ, (5.15)

• fermion field loop

J(1; a, 1)→ φ∗φψ̄(/∂)2a−1ψ, (5.16)
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• SU(2) gauge field loop

J(0; a, 1)→ φ∗φ∂µ1 · · · ∂µaA
a
ν∂

µ1 · · · ∂µaAaν . (5.17)

We did not consider a four-point interaction with such as φ∗φ∂µ1 · · · ∂µaψ̄∂
µ1 · · · ∂µaψ

since the fermion mass mfermion =
√
α(n+ 1) appears from a numerator in the fermion

propagator and then the form of Hurwitz zeta function is complicated. On the other

hand, (/k)2a−1 is obtained by (5.16). Computing quantum correction, the trace of /k

from a numerator in the propagator of fermion multiplied by (/k)2a−1 is given by k2a.

These terms contribute to quantum correction to WL scalar mass in the case odd a.

5.4.2 Three-point inteaction

Three-point interaction term generates a correction of the right one in figure 3.4, 4.1

or 4.2. The diagram has two propagators and corresponds to J(x; a, 2) (a: even), from

which we can guess the three-point interaction terms as follows,

• scalar field loop

J(1/2; 0, 2)→ φ∗Φ∗Φ + φΦ∗Φ, (5.18)

J(1/2; a, 2)→ φ∗∂µ1 · · · ∂µa/2
Φ∗∂µ1 · · · ∂µa/2Φ + φ∂µ1 · · · ∂µa/2

Φ∗∂µ1 · · · ∂µa/2Φ,

(5.19)

• fermion field loop

J(1; a, 2)→ φ∗ψ̄(/∂)a−1ψ + φψ̄(/∂)a−1ψ, (5.20)

• SU(2) gauge field loop

J(0; a, 2)→ φ∗∂µ1 · · · ∂µa/2
Aa

ν∂
µ1 · · · ∂µa/2Aaν + φ∂µ1 · · · ∂µa/2

Aa
ν∂

µ1 · · · ∂µa/2Aaν ,

(5.21)

where J(1/2; 0, 2) is allowed because of ζ[0, 1/2] = 0. We are particularly interested in

the interaction term in (5.18), therefore we will discuss later.
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5.5 The structure of loop integral: part 2

Next, we consider the divergence structure for the quantum correction (5.5) with c ̸= 0

1. As a first step, we set c = 1 in eq.(5.5):

I(x; a, b; 1, q) =
1

αb−a−1

(
4π

α

)ϵ−2
Γ (a+ 2− ϵ) Γ (ϵ+ b− a− 2)

Γ(b)Γ(2− ϵ)

∞∑
n=0

n+ q

(n+ x)ϵ+b−a−2

=
1

αb−a−1

(
4π

α

)ϵ−2
Γ (a+ 2− ϵ) Γ (ϵ+ b− a− 2)

Γ(b)Γ (2− ϵ)

×
(
ζ[ϵ+ b− a− 3, x] + (q − x)ζ[ϵ+ b− a− 2, x]

)
. (5.22)

If q ̸= x, the divergence will inevitably appears from either ζ[ϵ + b − a − 3, x] or

ζ[ϵ + b − a − 2, x]. To avoid the divergence and see whether the quantum correction

is finite, we need to choose q = x (equivalent to the choice f(n) = KK mass in c = 1

case). Thus, the form of f(n) is fixed by f(n) = (α(n + x))c in c ̸= 0 case in order to

be finite for I(x; a, b, c). In the q = x case, eq.(5.5) has

I(x; a, b, c) ≡ I(x; a, b; c, q = x)

=
1

αb−a−c

(
4π

α

)ϵ−2
Γ (a+ 2− ϵ) Γ (ϵ+ b− a− 2)

Γ(b)Γ(2− ϵ)
ζ[ϵ+ b− a− c− 2, x].

(5.23)

Note that I(x; a, b, 0) corresponds to I(x; a, b) (5.6). To investigate the finiteness of

I(x; a, b, c), we see

K(x; a, b, c) ≡ Γ (a+ 2− ϵ) Γ (ϵ+ b− a− 2)

Γ (2− ϵ)
ζ[ϵ+ b− a− c− 2, x], (5.24)

in eq.(5.23). Substituting b = 1 or b = 2 in eq.(5.24) and using eq.(5.8) or eq.(5.10)

respectively, we obtain

K(x; a, 1, c) = (−1)aΓ(ϵ− 1)ζ[ϵ− a− c− 1, x], (5.25)

K(x; a, 2, c) = (−1)a(ϵ− a− 1)Γ(ϵ− 1)ζ[ϵ− a− c, x]. (5.26)

Applying the result (5.14) to (5.25) and (5.26), K(x; a, 1, c) takes finite value at odd

a+ c, K(x; a, 2, c) does at even a+ c.

1These results in this section are extended results in [30].
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5.6 Classification of interaction terms: part 2

We consider the case of four-point interaction terms (b = 1, a+ c: odd) and guess their

form providing finite quantum corrections to WL scalar mass,

• scalar field loop

K(1/2; a, 1, c)→ φ∗φ∂µ1 · · · ∂µaΦ
∗
(
a†a+

1

2

)c

∂µ1 · · · ∂µaΦ, (5.27)

• fermion field loop

K(1; a, 1, c)→ φ∗φψ̄(/∂)2a−1(a†a+ 1)cψ (5.28)

• SU(2) gauge field loop

K(0; a, 1, c)→ φ∗φ∂µ1 · · · ∂µaA
a
ν(a

†a)c∂µ1 · · · ∂µaAaν . (5.29)

The case of three-point interaction term is hard to guess because the three-point inter-

action term cannot be expressed in terms of a mass-squared operator. Thus, we do not

consider the three-point interaction terms in this section.

5.7 The structure of loop integral: part 3

Due to the presence of annihilation and creation operators, there are interactions be-

tween the field with different KK mode indices. In this case, we consider the following

divergence structure of the quantum corrections to WL scalar mass 2:

∞∑
n=0

∫
d4k

(2π)4
k2af(n, x)

(k2 + α(n+ x))(k2 + α(n+ y))
, (5.30)

where f(n, x) is a coefficient generated by an interaction term depending on KK mode

n and x, y are the parts of the KK mass characterized by the field running in the loop

and satisfy x ̸= y and y− x ∈ Z. Focusing on the denominator in the above integrand,

we use a partial fraction decomposition:

1

(k2 + α(n+ x))(k2 + α(n+ y))
=

1

α(y − x)

(
1

k2 + α(n+ x)
− 1

k2 + α(n+ y)

)
.

(5.31)

2These calculations in this section are unpublished results.
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Thus,

∞∑
n=0

∫
d4k

(2π)4
k2af(n, x)

(k2 + α(n+ x))(k2 + α(n+ y))

=
1

α(y − x)

(
∞∑
n=0

∫
d4k

(2π)4
k2af(n, x)

k2 + α(n+ x)
−

∞∑
n=0

∫
d4k

(2π)4
k2af(n, x)

k2 + α(n+ y)

)
(5.32)

is obtained. It would be interesting that eq.(5.32) implies that the quantum correction

from three-point interactions between the fields with different KK mode indices is de-

composed into the ones from four-point interaction. If we assume f(n, x) = (α(n+x))c

(c is a non-negative number), the divergence structure of the quantum corrections to

WL scalar mass is expressed as

Ic(x, y; a, c) ≡
∞∑
n=0

∫
d4k

(2π)4
k2a(α(n+ x))c

(k2 + α(n+ x))(k2 + α(n+ y))

=
1

α(y − x)

(
I(x; a, 1, c)−

∞∑
n=0

∫
d4k

(2π)4
k2a(α(n+ x))c

k2 + α(n+ y)

)
, (5.33)

where we use eq.(5.23). Denoting the second term in eq.(5.33) as X, X is computed as

X ≡
∞∑
n=0

∫
d4k

(2π)4
k2a(α(n+ x))c

k2 + α(n+ y)

=
1

α1−a

(
4π

α

)ϵ−2
Γ (a+ 2− ϵ) Γ (ϵ− a− 1)

Γ(2− ϵ)

∞∑
n=0

αc{(n+ y) + (x− y)}c

(n+ y)ϵ−a−1

=
(−1)a

α1−a−c

(
4π

α

)ϵ−2

Γ(ϵ− 1)
∞∑
n=0

1

(n+ y)ϵ−a−1

c∑
k=0

cCk(n+ y)k(x− y)c−k

=
c∑

k=0

cCk(x− y)c−kαc−k

[
(−1)a

α1−a−k

(
4π

α

)ϵ−2

Γ(ϵ− 1)ζ[ϵ− a− k − 1, y]

]

=
c∑

k=0

cCk(x− y)c−kαc−kI(y; a, 1, k), (5.34)

where eq.(5.8) is used in the third equality and eq.(5.23), eq.(5.25) with b = 1 and c = k

are used in the last equality. Note that we define 0Ck = 0 if c = 0 is taken. Therefore,

Ic(x, y; a, c) has

Ic(x, y; a, c) =
1

α(y − x)

[
I(x; a, 1, c)−

c∑
k=0

cCk(x− y)c−kαc−kI(y; a, 1, k)

]
. (5.35)
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We try to rewrite I(y; a, 1, k) in Ic(x, y; a, c). By using eq.(D.4), I(y; a, 1, k) is calculated

by

I(y; a, 1, k) =
(−1)a

α1−a−k

(
4π

α

)ϵ−2

Γ(ϵ− 1)ζ[ϵ− a− k − 1, x+ (y − x)]

= I(x; a, 1, k)− (−1)a

α1−a−k

(
4π

α

)ϵ−2

Γ(ϵ− 1)

y−x−1∑
m=0

1

(m+ x)ϵ−a−k−1
. (5.36)

Thus, Ic(x, y; a, c) is rewritten as

Ic(x, y; a, c) =
1

α(y − x)

(
I(x; a, 1, c)−

c∑
k=0

cCk(x− y)c−kαc−kI(x; a, 1, k)

)

+
1

α(y − x)

c∑
k=0

cCk(x− y)c−k (−1)a

α1−a−c

(
4π

α

)ϵ−2

Γ(ϵ− 1)

y−x−1∑
m=0

1

(m+ x)ϵ−a−k−1

= − 1

α(y − x)

c−1∑
k=0

cCk(x− y)c−kαc−kI(x; a, b, k)

+
1

α(y − x)
(−1)a

α1−a−c

(
4π

α

)ϵ−2

Γ(ϵ− 1)

y−x−1∑
m=0

(m+ 2x− y)c

(m+ x)ϵ−a−1
(5.37)

In order for Ic(x, y; a, c) to be finite, the second term in eq.(5.37) needs to be vanished

because it involves the divergent term. In general, it is difficult to vanish the second

term. If we however impose y − x− 1 = 0, Ic(x, y; a, c) is reduced as

Ic(x, x+ 1; a, c) = − 1

α

c−1∑
k=0

cCk(−1)c−kαc−kI(x; a, 1, k)

+
1

α

(−1)a

α1−a

(
4π

α

)ϵ−2

Γ(ϵ− 1)xa+1−ϵ(α(x− 1))c. (5.38)

To vanish the second term in eq.(5.38), we choose x = 0 which corresponds to the KK

mass of fermion field or x = 1 except for c = 0 which corresponds to the KK mass of

gauge field, respectively.

On the other hand, the second term in eq.(5.38) will remain if we choose x = 1/2,

which corresponds to the KK mass of scalar field. In the x = 1/2 case, we need to

deal with a polynomial in the KK mass of scalar field. We define below the polynomial

version of the divergence structure:

Ipoly(x; a)[λc, · · · , λ0] ≡ λcIc(x, x+ 1; a, c) + λc−1Ic−1(x, x+ 1; a, c− 1) + · · ·

+ · · ·+ λ1I1(x, x+ 1; a, 1) + λ0I0(x, x+ 1; a, 0), (5.39)
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where we fix b = 1 and y = x + 1 and λi(i = 1, · · · c) are real numbers. We note that

Ipoly(x; a)[λc, · · · , λ0] is expressed by

Ipoly(x; a)[λc, · · · , λ0] =
∞∑
n=0

∫
d4k

(2π)4
k2afpoly(n, x)

(k2 + α(n+ x))(k2 + α(n+ x+ 1))
, (5.40)

fpoly(n, x) = λc(α(n+ x))c + λc−1(α(n+ x))c−1 + · · ·+ λ0(α(n+ x))0.
(5.41)

As an illustration, we consider the following fpoly(n, x):

fpoly(n, x) = (α(n+ x))2 + α(r + s)(α(n+ x)) + α2rs

= α((n+ x) + r)α((n+ x) + s), (5.42)

where r, s are real numbers. From the above example, we read λ2 = 1, λ1 = α(r +

s), λ0 = α2rs. By using λ0,1,2, eq.(5.38) and eq.(5.39), Ipoly(x; a)[1, α(r + s), α2rs]

involves

Ipoly(x; a)[1, α(r + s), α2rs]

⊃ −(−1)a

α1−a

(
4π

α

)ϵ−2

Γ(ϵ− 1)xa+1−ϵα2{x− (1− r)}{x− (1− s)}. (5.43)

Taking x = 1/2, eq.(5.43) vanishes if we choose r or s for a half. That is, fpoly(n, x) is

represented by

fpoly(n, x) = α(n+ 1)α

((
n+

1

2

)
+ s

)
. (5.44)

The factor α(n+ 1) (or (
√
α(n+ 1))2) implies that creation operators raise KK mode

by one as eq.(3.40) or eq.(4.27). This implication is consistent with the condition of

y − x− 1 = 0.

5.8 Summary of the structure of loop integral

We summarize the structure of loop integral in the previous sections. In general, the

structure of loop integrals has

I(x; a, b; c, q) ≡
∞∑
n=0

∫
d4k

(2π)4
k2a(α(n+ q))c

(k2 + α (n+ x))b

=
1

αb−a−c

(
4π

α

)ϵ−2
Γ (a+ 2− ϵ) Γ (ϵ+ b− a− 2)

Γ(b)Γ(2− ϵ)

∞∑
n=0

(n+ q)c

(n+ x)ϵ+b−a−2
,

(5.45)
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where a, b, c are non-negative numbers. According to the finiteness of loop integral, we

mainly deal with the following loop integral

I(x; a, b, c) ≡ I(x; a, b; c, q = x) =
1

αb−a−c

(
4π

α

)ϵ−2

K(x; a, b, c), (5.46)

I(x; a, b) ≡ I(x; a, b; 0, q) =
1

αb−a

(
4π

α

)ϵ−2

J(x; a, b), (5.47)

where K(x; a, b, c) and J(x; a, b) with b = 1 or b = 2 are expressed as

K(x; a, 1, c) = (−1)aΓ(ϵ− 1)ζ[ϵ− a− c− 1, x], (5.48)

K(x; a, 2, c) = (−1)a(ϵ− a− 1)Γ(ϵ− 1)ζ[ϵ− a− c, x], (5.49)

J(x; a, 1) = (−1)aΓ(ϵ− 1)ζ[ϵ− a− 1, x], (5.50)

J(x; a, 2) = (−1)a(ϵ− a− 1)Γ(ϵ− 1)ζ[ϵ− a, x]. (5.51)

Note that K(x; a, b, 0) is reduced to J(x; a, b).

If there are interactions between the field with different KK mode indices, we con-

sider the following divergence structure of the quantum corrections to WL scalar mass

as in section 5.7. The final results are given by

Ic(x, y; a, c) ≡
∞∑
n=0

∫
d4k

(2π)4
k2a(α(n+ x))c

(k2 + α(n+ x))(k2 + α(n+ y))
(5.52)

= − 1

α(y − x)

c−1∑
k=0

cCk(x− y)c−kαc−kI(x; a, b, k)

+
1

α(y − x)
(−1)a

α1−a−c

(
4π

α

)ϵ−2

Γ(ϵ− 1)

y−x−1∑
m=0

(m+ 2x− y)c

(m+ x)ϵ−a−1
. (5.53)

In order for Ic(x, y; a, c) to be finite, the following form is used:

Ic(x, x+ 1; a, c) = − 1

α

c−1∑
k=0

cCk(−1)c−kαc−kI(x; a, 1, k)

+
1

α

(−1)a

α1−a

(
4π

α

)ϵ−2

Γ(ϵ− 1)xa+1(α(x− 1))c. (5.54)

Note that we define 0Ck = 0 if c = 0 is taken.
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Moreover, we define the polynomial version of the divergence structure:

Ipoly(x; a)[λc, · · · , λ0] ≡
∞∑
n=0

∫
d4k

(2π)4
k2afpoly(n, x)

(k2 + α(n+ x))(k2 + α(n+ x+ 1))

= λcIc(x, x+ 1; a, c) + λc−1Ic−1(x, x+ 1; a, c− 1) + · · ·

+ · · ·+ λ1I1(x, x+ 1; a, 1) + λ0I0(x, x+ 1; a, 0), (5.55)

fpoly(n, x) = λc(α(n+ x))c + λc−1(α(n+ x))c−1 + · · ·+ λ0(α(n+ x))0.
(5.56)

5.9 Examples

By using above formula, we can compute the quantum corrections to WL scalar mass

in previous chapters. In this section, we apply the above formula to the quantum

corrections in previous chapters.

5.9.1 Scalar type

The quantum corrections with from the KK scalar field contributions have been seen

in subsection 3.3.1, 4.4.2 with ξ = 1 or 4.4.3. By using eq.(5.46) and eq.(5.55), we first

compute Ib4pt and I3bpt in subsection 3.3.1:

Ib4pt = −2ig2|N |I(1/2; 0, 1, 0), (5.57)

Ib3pt = +2ig2|N |Ipoly(1/2; 0)[1, α/2]

= 2ig2|N |
(
I1(1/2, 3/2; 0, 1) +

α

2
I0(1/2, 3/2; 0, 0)

)
= 2ig2|N |

(
I(1/2; 0, 1, 0)− 1

4α

(
4π

α

)ϵ−2

Γ(ϵ− 1) +
1

4α

(
4π

α

)ϵ−2

Γ(ϵ− 1)

)
= 2ig2|N |I(1/2; 0, 1, 0). (5.58)

For I1(1/2, 3/2; 0, 1) and I0(1/2, 3/2; 0, 0), we used eq.(5.54). Therefore, Ib4pt and Ib3pt

are canceled.

Next, we consider eq.(4.135) and eq.(4.136). Eq.(4.135) is the sum of eq.(4.131) and
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eq.(4.132):

Iφ3 =
16ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
p2

p2 + α
(
n+ 1

2

) =
16ig2

Λ2
|N |I(1/2; 1, 1)

= −ig
2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 1/2], (5.59)

where we used eq.(5.47) (or eq.(5.46) with c = 0). Also, eq.(4.136) is the sum of

eq.(4.133) and eq.(4.134):

Iφ4 =
16ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
αn+ α(n+ 1)

p2 + α
(
n+ 1

2

) =
16ig2

Λ2
|N | × 2I(1/2; 0, 1, 1)

= i
2g2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 1/2], (5.60)

where we used eq.(5.46). These results are consistent with eq.(4.135) and eq.(4.136).

Finally, we consider eq.(4.149) and eq.(4.150). Eq.(4.149) is the sum of eq.(4.145)

and eq.(4.146). Using eq.(5.47), eq.(5.54) and eq.(5.55), Iφ5 is reproduced by

Iφ5 = −
16ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
α(n+ 1)p2(

p2 + α
(
n+ 1

2

)) (
p2 + α

(
n+ 3

2

))
= −16ig2

Λ2
|N |Ipoly(1/2; 1)[1, α/2]

= −16ig2

Λ2
|N |

(
I1(1/2, 3/2; 1, 1) +

α

2
I0(1/2, 3/2; 1, 0)

)
= −16ig2

Λ2
|N |

(
I(1/2; 1, 1) +

1

8

(
4π

α

)ϵ−2

Γ(ϵ− 1)− 1

8

(
4π

α

)ϵ−2

Γ(ϵ− 1)

)

= +i
g2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 1/2]. (5.61)

Also, by using eq.(5.47), eq.(5.54) and eq.(5.55), eq.(4.150), which is the sum of eq.(4.147)

and eq.(4.148), is computed by

Iφ6 = −
8ig2

Λ2
|N |

∞∑
n=0

∫
d4p

(2π)4
α(n+ 1)α (2n+ 2)(

p2 + α
(
n+ 1

2

)) (
p2 + α

(
n+ 3

2

))
= −16ig2

Λ2
|N |Ipoly(1/2; 0)[1, α, α2/4]

= −16ig2

Λ2
|N |

(
I2(1/2, 3/2; 0, 2) + αI1(1/2, 3/2; 0, 1) +

α2

4
I0(1/2, 3/2; 0, 0)

)
.

(5.62)
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Using eq.(5.54), I2(1/2, 3/2; 0, 2), I1(1/2, 3/2; 0, 1) and I0(1/2, 3/2; 0, 0) are expressed

as

I2(1/2, 3/2; 0, 2) = −
1

α

(
α2I(1/2; 0, 1, 0)− 2αI(1/2; 0, 1, 1)

)
+

1

8

(
4π

α

)ϵ−1

Γ(ϵ− 1),

(5.63)

I1(1/2, 3/2; 0, 1) = I(1/2; 0, 1, 0)− 1

4α

(
4π

α

)ϵ−1

Γ(ϵ− 1), (5.64)

I0(1/2, 3/2; 0, 1) =
1

2α2

(
4π

α

)ϵ−1

Γ(ϵ− 1). (5.65)

Therefore, using eq.(5.46), Iφ6 is reproduced by

Iφ6 = −
16ig2

Λ2
|N | × 2I(1/2; 0, 1, 1)

= −i2g
2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 1/2]. (5.66)

5.9.2 fermion/gauge type

The quantum corrections from the KK fermion or the KK gauge field contributions

have been seen in subsections 3.3.2 or 4.4.1. First, we again calculate eq.(3.4) in the

subsection 3.3.2, which is the contribution from fermion loop.

If = +4ig2|N |I0(0, 1; 1, 0) = 0, (5.67)

where we used eq.(5.54). Note that I0(0, 1; 1, 0) vanishes because of 0Ck = 0 and x = 0.

Thus, we conclude that the contribution from fermion loop vanishes.

Next, we see I
(2)
A1 and I

(2)
A2 in the subsection 4.4.1 as an example. For simplicity, we

take ξ = 1 in this subsection.

I
(2)
A1 = −8ig2|N |I(0; 0, 1), (5.68)

I
(2)
A2 = 8ig2|N |Ipoly(0; 0)[1, α] = 8ig2|N |

(
I1(0, 1; 0, 1) + αI0(0, 1; 0, 0)

)
= 8ig2|N |I(0; 0, 1). (5.69)

Note that I1(0, 1; 0, 1) is reduced to I(0; 0, 1) (or I(0; 0, 1, 0)) and I0(0, 1; 0, 0) vanishes

because of 0Ck = 0 and x = 0. Thus, I
(2)
A1 and I

(2)
A2 are canceled. As above calculations,

we show that I
(3)
A1 + I

(3)
A2 vanishes.
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Next, we consider IA3 and IA4 in the subsection 4.7. We compute eqs.(4.124) and

(4.125) by using eq.(5.47) and eq.(4.126) and eq.(4.127) by using eq.(5.46):

I
(2)
A3 =

32ig2

Λ2
|N |I(0; 1, 1) = −i2g

2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 0], (5.70)

I
(3)
A3 =

32ig2

Λ2
|N |I(1; 1, 1) = −i2g

2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 1], (5.71)

I
(2)
A4 =

64ig2

Λ2
|N |I(0; 0, 1, 1) = i

4g2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 0], (5.72)

I
(3)
A4 =

64ig2

Λ2
|N |I(1; 0, 1, 1) = i

4g2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 1]. (5.73)

Noting that ζ[s, 1] = ζ[s, 0] is satisfied, IA3 = I
(2)
A3 +I

(3)
A3 and IA4 = I

(2)
A4 +I

(3)
A4 are derived.

Finally, we deal with IA5 and IA6 in the subsection 4.7.2. By applying eq.(5.54) and

eq.(5.55) to I
(2)
A5 and I

(3)
A5 , we obtain

I
(2)
A5 = −32ig2

Λ2
|N |Ipoly(0; 1)[1, α] =

32ig2

Λ2
|N |
(
I1(0, 1; 1, 1) + αI0(0, 1; 1, 0)

)
=

32ig2

Λ2
|N |
(
I(0; 1, 1) + α× 0

)
= i

2ig2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 0] (5.74)

I
(3)
A5 = −32ig2

Λ2
|N |I1(1, 2; 1, 1) = −

32ig2

Λ2
|N |I(1; 1, 1)

= i
2ig2α2|N |
π2Λ2

(
4π

α

)ϵ

Γ(ϵ− 1)ζ[ϵ− 2, 1], (5.75)

where we apply eq.(5.47) to eq.(5.74) and eq.(5.75) in the last equality. Because of

ζ[s, 1] = ζ[s, 0], IA5 = I
(2)
A5 + I

(3)
A5 is derived. Similarly, I

(2)
A6 and I

(3)
A6 are

I
(2)
A6 = −32ig2

Λ2
|N |Ipoly(0; 0)[1, 3α/2, α2/2]

= −32ig2

Λ2
|N |

(
I2(0, 1; 0, 2) +

3α

2
I1(0, 1; 0, 1) +

α2

2
I0(0, 1; 0, 0)

)
= −32ig2

Λ2
|N |

(
− 1

α

(
α2I(0; 0, 1)− 2αI(0; 0, 1, 1)

)
+

3α

2
I(0; 0, 1) +

α2

2
× 0

)
= −32ig2

Λ2
|N |

(
2I(0; 0, 1, 1) +

α

2
I(0; 0, 1)

)
= −i2g

2α2|N |
π2Λ2

(
4π

α

)ϵ(
2Γ(ϵ− 1)ζ[ϵ− 2, 0] +

1

2
Γ(ϵ− 1)ζ[ϵ− 1, 0]

)
, (5.76)
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I
(3)
A6 = −32ig2

Λ2
|N |Ipoly(1; 0)[1, α/2, 0]

= −32ig2

Λ2
|N |

(
I2(1, 2; 0, 2) +

α

2
I1(1, 2; 0, 1)

)
= −32ig2

Λ2
|N |

(
− 1

α

(
α2I(1; 0, 1)− 2αI(1; 0, 1, 1)

)
+
α

2
I(1; 0, 1)

)
= −32ig2

Λ2
|N |

(
2I(1; 0, 1, 1)− α

2
I(1; 0, 1)

)
= −i2g

2α2|N |
π2Λ2

(
2Γ(ϵ− 1)ζ[ϵ− 2, 1]− 1

2
Γ(ϵ− 1)ζ[ϵ− 1, 1]

)
, (5.77)

where eq.(5.47) and eq.(5.46) are used in the last equality of eq.(5.76) and eq.(5.77).

Although I
(2)
A6 or I

(3)
A6 have a divergent term, the sum of I

(2)
A6 and I

(3)
A6 cancels the divergent

term because of ζ[s, 1] = ζ[s, 0] and then eq.(4.143) can be realized.

5.10 Nonvanishing finite WL scalar mass

In the section 5.4, we have classified the interaction terms generating finite quantum

correction at one-loop. In this section, we focus on eq.(5.18) since it has no derivatives

and is the simplest interaction term of all interaction terms in the section 5.4.

We consider the following Lagrangian given by eqs.(3.3), (3.5) and (5.18):

L = −1

4
FMNF

MN −DMΦ∗DMΦ + κ(ϕ∗Φ∗Φ + ϕΦ∗Φ), (5.78)

where κ is a dimensionless coupling constant. ϕ involves the flux background ⟨ϕ⟩ and
the fluctuation φ as eq.(3.2). Thus, Lagrangian (5.78) is rewritten as

L ⊃ −1

4
F µνFµν −DµΦ

∗DµΦ−m2
scalarΦ

∗Φ

− ig
√
2αφ∗Φ∗a†Φ + ig

√
2αφΦ∗aΦ− 2g2φ∗φΦ∗Φ

+ κ(φ∗Φ∗Φ + φΦ∗Φ) + κ(⟨ϕ∗⟩Φ∗Φ + ⟨ϕ⟩Φ∗Φ), (5.79)

where we note that the unnecessary terms are omitted. To derive a four-dimensional

effective Lagrangian by KK reduction, we need to use eq.(2.22) or eq.(2.23). Integrating
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over T 2, the four-dimensional effective Lagrangian is obtained by

L4D = −1

4
F µνFµν − ∂µφ∗∂µφ

+
∑
n,j

(
−DµΦ

∗
n,jD

µΦn,j − α
(
n+

1

2

)
Φ∗

n,jΦn,j

− ig
√
2α(n+ 1)φ∗Φ∗

n+1,jΦn,j + ig
√

2α(n+ 1)φΦ∗
n,jΦn+1,j − 2g2φ∗φΦ∗

n,jΦn,j

+ κφ∗Φ∗
n,jΦn,j + κφΦ∗

n,jΦn,j + κ ⟨ϕ⟩I Φ
∗
n,jΦn,j + κ ⟨ϕ∗⟩I Φ

∗
n,jΦn,j

)
, (5.80)

where ⟨ϕ⟩I and ⟨ϕ∗⟩I are defined by

⟨ϕ⟩I =
∫
T 2

dx2 ⟨ϕ⟩ ξ̄n,jξn′,j′ , ⟨ϕ∗⟩I =
∫
T 2

dx2 ⟨ϕ∗⟩ ξ̄n,jξn′,j′ . (5.81)

When ⟨ϕ⟩ = f z̄/
√
2, ⟨ϕ⟩I and ⟨ϕ∗⟩I lead to zero because of odd function with respect

to integral variables z or z̄.

5.10.1 Diagrammatic computation

If κ = 0, we reproduce the result (3.47). On the other hand, we get a new quantum

correction to WL scalar mass in the κ ̸= 0 case. Computing the right diagram in figure

3.1, the result has

I = +iκ2
∑
n,j

∫
d4k

(2π)4
1(

k2 + α
(
n+ 1

2

))2 = iκ2|N |I(1/2; 0, 2)

=
iκ2|N |
α2

(
4π

α

)ϵ−2

Γ(ϵ)ζ[ϵ, 1/2] = −iκ
2|N | ln 2
32π2

(
4π

α

)ϵ

+O(ϵ), (5.82)

where

ζ[ϵ, 1/2] = 0− ϵ ln 2
2

(5.83)

are used in the last equality of eq.(5.82). This correction (5.82) is finite in ϵ→ 0 limit.

Thus, the quantum correction to WL scalar mass at one-loop is given by

δm2 = iI =
|N | ln 2
32π2

κ2

L2
. (5.84)

Note that we introduced a factor of torus area L2, which comes from the normalization

factors for KK mode function. Obviously, we can also understand that δm2 = 0 is re-

produced for eq.(5.84) with κ = 0 in six-dimensional scalar QED (see subsection 3.3.1).
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One of the interesting phenomenological applications is that the quantum correction

δm2 to WL scalar mass can be interpreted as Higgs mass. This idea is based on gauge-

Higgs unification, namely a zero-mode of WL scalar φ is regarded as Higgs field. Even

if the compactification scale is Planck scale 1/L ∼ O(MPlanck), Higgs mass could be

realized by the interaction term (5.18) generated by some dynamics at O(1) TeV scale.

This is analogous to the mass of pion as a pseudo NG boson for chiral symmetry. The

reason why the pion mass is not Planck scale is that chiral symmetry is dynamically

broken at extremely lower energy scale comparing to the Planck scale, namely, QCD

scale.

In this theory, the WL scalar cannot be actually identified with Higgs field in the

SM since the WL scalar in this theory is not an SU(2) doublet. It would be studied that

an SU(2) doublet is realized by the WL scalar field in six-dimensional SU(3) Yang-Mills

theory and SU(3) gauge symmetry is broken to U(1)×U(1) or U(1) [39].

5.10.2 Effective potential analysis

We can calculate the quantum correction to WL scalar mass in terms of effective

potential. In our Lagrangian (5.80), we read the KK mass spectrum of Φ to be

α(n+1/2)−κ ⟨ϕ⟩I −κ ⟨ϕ∗⟩I . Thus, the four-dimensional effective potential is given by

V =
∞∑
n=0

∫
d4k

(2π)4
ln

(
k2 + α

(
n+

1

2

)
− κ ⟨ϕ⟩I − κ ⟨ϕ

∗⟩I
)
, (5.85)

where we take into account a degree of freedom of complex scalar field Φ. To obtain

the quantum correction to WL scalar mass from four-dimensional effective potential,

we differentiate the effective potential with respect to ⟨ϕ⟩I and ⟨ϕ∗⟩I . Thus, δm2 is

obtained as

δm2 =
∂2V

∂ ⟨ϕ⟩I ∂ ⟨ϕ∗⟩I

∣∣∣∣
⟨ϕ⟩I=0

= −κ2
∞∑
n=0

∫
d4k

(2π)4
1(

k2 + α
(
n+ 1

2

))2 = iI. (5.86)

This result (5.86) is consistent with eq.(5.82) or eq.(5.84).
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5.10.3 WL scalar as a pseudo Nambu-Goldstone boson

We have seen that the zero-mode of WL scalar φ becomes a NG boson of translational

invariance in extra spaces as in section 3.4 or 4.8 if κ = 0. This is the physical reason

that the quantum correction to WL scalar mass vanishes. If κ ̸= 0, φΦ∗
n,jΦn,j (or

φ∗Φ∗
n,jΦn,j) in eq.(5.80) is expected to break the translational invariance explicitly. To

confirm it, we consider the following local six-dimensional transformation [25]

φ′ = φ− 1√
2
∂Λ, Φ′ = egΛΦ, Φ∗′ = e−gΛΦ∗, (5.87)

where Λ = f(ϵz̄ − ϵ̄z). Infinitesimal transformations of ϵ, ϵ̄ are expressed as

δΛφ = − 1√
2
∂Λ, δΛΦ = gΛΦ, δΛΦ

∗ = −gΛΦ∗. (5.88)

Transformations of φ and Φ are the combination of translation δT and infinitesimal

transformation δΛ,

δφ = (δT + δΛ)φ =
√
2f ϵ̄, (5.89)

δΦ = (δT + δΛ)Φ = −i
√
α(ϵa† + ϵ̄a)Φ. (5.90)

Using eq.(2.22) and eq.(3.40), we obtain

δΦ = −i
√
α
∑
n,j

Φn,j(ϵa
† + ϵ̄a)ξn,j =

∑
n,j

δΦn,jξn,j, (5.91)

δΦn,j = −i
√
α(ϵ
√
n+ 1Φn+1,j + ϵ̄

√
nΦn−1,j). (5.92)

For δΦ∗
n,j, it is given by complex conjugate of eq.(5.92),

δΦ∗
n,j = +i

√
α(ϵ̄
√
n+ 1Φ∗

n+1,j + ϵ
√
nΦ∗

n−1,j). (5.93)

Let us confirm the explicit breaking of translational invariance of the interaction

term φΦ∗
n,jΦn,j. First, a transformation of Φ∗

n,jΦn,j is

δ

(∑
n,j

Φ∗
n,jΦn,j

)
= i
√
α
∑
n,j

(
ϵ̄
√
n+ 1Φ∗

n+1,jΦn,j + ϵ
√
nΦ∗

n−1,jΦn,j

− ϵ
√
n+ 1Φ∗

n,jΦn+1,j − ϵ̄
√
nΦ∗

n,jΦn−1,j

)
= 0, (5.94)
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by the shift n → n + 1. Thus, the mass term of Φn,j is invariant. For φΦ∗
n,jΦn,j, a

transformation is

δ

(∑
n,j

φΦ∗
n,jΦn,j

)
= (δφ)

∑
n,j

Φ∗
n,jΦn,j + φδ

(∑
n,j

Φ∗
n,jΦn,j

)
=
√
2f ϵ̄

∑
n,j

Φ∗
n,jΦn,j ̸= 0. (5.95)

This result means the explicit breaking of translational invariance in extra spaces. For

κ ̸= 0, the zero-mode of WL scalar is identified with a pseudo NG boson of translational

invariance in extra spaces.

One might claim that the interaction terms (5.18) are not gauge invariant since φ

or φ∗ transforms under the gauge symmetry as eq.(5.87). In order to overcome such a

claim, φ or φ∗ should be expressed by a gauge invariant non-local Wilson line operator

and the interaction terms (5.18) should be regarded as one of the terms of expanding

the Wilson line operators in small φ or φ∗. Noting that the Wilson line operators3

U5 = exp

[
ig

∮
A5dx

5

]
, U6 = exp

[
ig

∮
A6dx

6

]
(5.96)

can be written in terms of φ, φ∗ and z, z̄ as

U5 = exp

[
g√
2

∮
(φdz + φdz̄ − φ∗dz − φ∗dz̄)

]
, (5.97)

U6 = exp

[
g√
2

∮
(φdz − φdz̄ + φ∗dz − φ∗dz̄)

]
, (5.98)

we find that the cubic terms introduced in this thesis can be expressed by the non-local

Wilson line operators

i(U5 − U †
5)Φ

∗Φ− i(U6 − U †
6)Φ

∗Φ ⊃ 2
√
2ig

∮
φdz̄Φ∗Φ− 2

√
2ig

∮
φ∗dzΦ∗Φ

= 2
√
2ig4φΦ

∗Φ− 2
√
2ig4φ

∗Φ∗Φ (5.99)

where g4 is a gauge coupling constant in four dimensions. Note that the Φ∗Φ term

cannot be included in (5.99). If this term is allowed, the WL scalar mass would be

divergent.

We note how the finite WL scalar mass can be expressed in terms of the Wilson

line operators. If the WL scalar mass is generated in the broken phase, where the VEV

3In non-Abelian case, the path ordering must be taken into account, U5,6 = P exp[ig
∮
A5,6dx

5,6].
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of the WL scalar field is non-zero, it is straightforward to express the WL scalar mass

by the Wilson line operators as in the gauge-Higgs unification. As for the WL scalar

field mass in the present thesis, the mass is generated in the unbroken phase and is

independent of the VEV of the WL scalar field. Therefore, we cannot express the WL

scalar field mass by the Wilson line operators explicitly.

Under the constant shift of A5 → A5 − fϵ6/2, A6 → A6 + fϵ5/2, the operators

U5 − U †
5 = 2i sin

[
g

∮
A5dx

5

]
, U6 − U †

6 = 2i sin

[
g

∮
A6dx

6

]
(5.100)

are not obviously invariant, which means that the interaction terms (5.99) explicitly

break the shift symmetry. It is not easy to clarify the origin of the interaction terms

eq.(5.99), which is beyond the scope of this thesis. We expect that the origin of the

interaction terms might be connected to the quantum gravity effects, nontrivial back-

grounds such as a vortex, or some non-perturbative dynamics.
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Chapter 6

Application to inflationary theory

In this chapter, we propose a new inflation scenario in flux compactification [31]. In

this scenario, we identify a zero mode WL scalar field of extra components of the higher

dimensional gauge field with an inflaton. Following the section 5.10, we give an explicit

inflation model in a six-dimensional scalar QED, which is shown to be consistent with

Planck 2018 data.

6.1 Setup and one-loop effective potential

Inflation is a very attractive scenario to expand the space in the early universe exponen-

tially and to solve many problems (for example, Horizon problem and flatness problem)

in the standard Big Bang cosmology. Its existence is supported by observations of cos-

mological parameters [32]. Although inflation has been considered to happen by a

scalar field called as inflaton, there is still no compelling model of inflation. In a slow-

roll scenario of the inflation, the scalar potential is required to be flat and stable under

quantum corrections, which usually causes an unnatural fine-tuning of parameters of

the theory unless we have some dynamics or symmetry to control the inflaton dynam-

ics. For instance, the inflaton in natural inflation [40, 41] is identified with the pseudo

Nambu-Goldstone boson of some global symmetry. In extranatural inflation [42], the

inflaton is identified with the WL scalar field of the gauge field in higher dimensions

without magnetic flux. In [43], the inflaton and the curvaton are identified with the

WL scalar fields in a six-dimensional gauge theory.

Our setup in this chapter is the same as the section 5.10. In particular, we follow
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eq.(5.78) or eq.(5.80). By using g4 = g6/L which is a four-dimensional gauge coupling

constant and κ4 = κ6/L which is a four-dimensional coupling constant, eq.(5.80) is

rewritten as

L4D = −1

4
F µνFµν − ∂µφ∗∂µφ

+
∑
n,j

(
−DµΦ

∗
n,jD

µΦn,j − α
(
n+

1

2

)
Φ∗

n,jΦn,j

− ig4
√

2α(n+ 1)φ∗Φ∗
n+1,jΦn,j + ig4

√
2α(n+ 1)φΦ∗

n,jΦn+1,j − 2g24φ
∗φΦ∗

n,jΦn,j

+ κ4φ
∗Φ∗

n,jΦn,j + κ4φΦ
∗
n,jΦn,j + κ4 ⟨ϕ⟩I Φ

∗
n,jΦn,j + κ4 ⟨ϕ∗⟩I Φ

∗
n,jΦn,j

)
, (6.1)

where α = 2gf . Following [42], we regard WL scalar φ as an inflaton in this chapter.

One-loop effective potential depending on φ can be described as

V (φ, φ∗) = N
∞∑
n=0

∫
d4k

(2π)4
ln

(
k2 + α

(
n+

1

2

)
+M2(φ, φ∗)

)
, (6.2)

where we have taken into account loop contributions from the bulk scalar field Φ. N

is a number of the degeneracy, and M2(φ, φ∗) is a field-dependent mass for the bulk

scalar field Φ.

As for M2(φ, φ∗), we consider two limiting cases for a free parameter U(1) gauge

coupling, namely g4 ≪ 1 and g4 ≫ 1. For that purpose, we read M2(φ, φ∗) from

eq.(6.1) as

M2(φ, φ∗) = −κ4φ∗ − κ4φ+ 2g24φ
∗φ. (6.3)

While only the first two terms in eq.(6.3) are considered in the g4 ≪ 1 case, the last

term proportional to g24 in eq.(6.3) is also considered in the g4 ≫ 1 case in addition

to the first two terms. In the case of g4 ≃ O(1), the terms linear in g4 in eq.(6.1)

should be also taken into account in M2(φ, φ∗). However, the obtained eigenvalues of

M2(φ, φ∗) become complicated and makes the computation of the effective potential

hard. Therefore, we do not discuss this case in this thesis.

We can express the effective potential by using Schwinger representation as

V = −N
∞∑
n=0

∫
d4k

(2π)4

∫ ∞

0

dt

t
e−k2t−α(n+ 1

2)te−M2(φ,φ∗)t

= −N 1

16π2

∫ ∞

0

dt

t3
e−

α
2
t

1− e−αt
e−M2(φ,φ∗)t. (6.4)
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To proceed a calculation of the effective potential further, we focus on an integral

representation of Hurwitz zeta function 1

ζ[s, a] =
1

Γ(s)

∫ ∞

0

dt
ts−1e−at

1− e−t
, Re s > 1. (6.5)

Then, the effective potential and its derivatives by φ can be expressed by

V = −N α2

16π2
lim
ϵ→0

Γ(ϵ− 2)ζ

[
ϵ− 2,

1

2
+

1

α
M2(φ, φ∗)

]
, (6.6)

Vφ = −N ακ

16π2
lim
ϵ→0

Γ(ϵ− 1)ζ

[
ϵ− 1,

1

2
+

1

α
M2(φ, φ∗)

]
, (6.7)

Vφφ∗ = −N κ2

16π2
lim
ϵ→0

Γ(ϵ)ζ

[
ϵ,
1

2
+

1

α
M2(φ, φ∗)

]
, (6.8)

where a parameter ϵ is introduced to regularize the integral of t. In particular, we can

check that the ϵ → 0 limit indeed agrees with the results in case of M2(φ, φ∗) = 0

obtained in section 5.10 by diagrammatic calculations using the dimensional regular-

ization.

In the g4 ≪ 1 case, we ignore 2g24φ
∗φ in eq.(6.3) as mentioned above. For conve-

nience, we define the dimensionless variables in a four-dimensional sense as

z =
φ

MP

, y =MP
κ4
α
, (6.9)

M2(φ, φ∗)/α is then expressed by

1

α
M2(φ, φ∗) = −(z + z∗)y = −2xy, Re z = x. (6.10)

Thus, the effective potential is rewritten by

V = −N α2

16π2
lim
ϵ→0

Γ(ϵ− 2)ζ

[
ϵ− 2,

1

2
− 2xy

]
, (6.11)

and the effective potential is shown in figure 6.1. If L ∼M−1
P , the effective potential is

close to flat as y (or κ4) takes smaller value. Taking into account for the consistency

with the original theory [24, 25], the small value of y is favored. If y ≪ 1, κ4 is small,

which is independent of g4. This implies that linear terms in g4 can be neglected because

we can always take g4 ≪ κ4L.

1For analysis of the effective potential using Hurwitz zeta function, an interesting study is done
in [39].
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Figure 6.1: Schematic picture of the effective potential in the case of g4 ≪ 1. The blue
and yellow lines shows y = 1.0× 100, y = 1.0× 10−1 respectively.

In the g4 ≫ 1 case, M2(φ, φ∗)/α is expressed by

1

α
M2(φ, φ∗) = −(z + z∗)y + 2

g24M
2
P

α
|z|2

= −2uy + 2G(u2 + v2), (6.12)

where z ≡ u+ iv and G ≡ g24M
2
P/α are defined in the second equality. Note that G is

almost an order of g24 because α is independent of g4. Setting u = v for simplicity, the

effective potential is given by

V = −N α2

16π2
lim
ϵ→0

Γ(ϵ− 2)ζ

[
ϵ− 2,

1

2
− 2uy + 4Gu2

]
, (6.13)

which is shown in figure 6.2. This effective potential in the case of g4 ≫ 1 behaves as

V ∝ Γ[ϵ−2]ζ[ϵ−2, 4Gu2]. Comparing with the potential in figure 6.1, it seems difficult

to apply the potential in figure 6.2 to an inflation model.

6.2 Inflationary parameters

Using the four-dimensional effective potential for the WL scalar field (6.6), we propose

a cosmological inflation model in flux compactifiaction, where the WL scalar field is

identified with an inflaton.
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Figure 6.2: Schematic picture of the effective potential in the case of g4 ≫ 1. We take
y = 1 for simplicity. The yellow and blue lines shows G = 1.0 × 102, G = 1.0 × 103

respectively.

Slow-roll parameters ϵ and η in our model are given by

ϵ ≡ M2
P

2

(
Vφ
V

)2

=
M2

P

2

(
κ4
α

lim
ϵ→0

Γ(ϵ− 1)

Γ(ϵ− 2)

ζ
[
ϵ− 1, 1

2
+ 1

α
M2(φ, φ∗)

]
ζ
[
ϵ− 2, 1

2
+ 1

α
M2(φ, φ∗)

])2

, (6.14)

η ≡M2
P

Vφφ∗

V
=M2

P

(
κ24
α2

lim
ϵ→0

Γ(ϵ)

Γ(ϵ− 2)

ζ
[
ϵ, 1

2
+ 1

α
M2(φ, φ∗)

]
ζ
[
ϵ− 2, 1

2
+ 1

α
M2(φ, φ∗)

]) . (6.15)

Using eq.(D.6), we can further simplify eq.(6.14) and eq.(6.15),

ϵ =
y2

2

(
−2

ζ
[
−1, 1

2
+ 1

α
M2(φ, φ∗)

]
ζ
[
−2, 1

2
+ 1

α
M2(φ, φ∗)

])2

=
9y2

2

(
B2(

1
2
+ 1

α
M2(φ, φ∗))

B3(
1
2
+ 1

α
M2(φ, φ∗))

)2

, (6.16)

η = y2

(
(−1)(−2)

ζ
[
0, 1

2
+ 1

α
M2(φ, φ∗)

]
ζ
[
−2, 1

2
+ 1

α
M2(φ, φ∗)

]) = 6y2
B1(

1
2
+ 1

α
M2(φ, φ∗))

B3(
1
2
+ 1

α
M2(φ, φ∗))

. (6.17)

Slow-roll conditions to realize inflation require ϵ≪ 1, |η| ≪ 1.

The number of e-folding before the end of inflation is

N∗ =
1

M2
P

∫ φ∗

φf

V

Vφ
dφ =

2

3y

∫ φf

φ∗

B3

(
1
2
+ 1

α
M2(φ, φ∗)

)
B2

(
1
2
+ 1

α
M2(φ, φ∗)

)dφ. (6.18)

To solve the horizon and flatness problems, the number of e-folding N∗ has to be at

least 50 < N∗ < 60. φf is the value of the end of inflation determined by ϵ(φf ) = 1,
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which violates the slow-roll conditions. φ∗ is determined so that the e-folding can satisfy

50 < N∗ < 60.

The spectral index and the tensor-to-scalar ratio are given in a slow-roll approxi-

mation as

ns = 1− 6ϵ+ 2η, r = 16ϵ. (6.19)

Planck 2018 data [32] gives constraints on ns = 0.9649± 0.0042 and r < 0.10.

6.3 Numerical results

In this section, our numerical results are shown.

6.3.1 g4 ≪1 case

In this case, M2(φ, φ∗)/α corresponds to eq.(6.10), where the slow-roll parameters ϵ

and η are provided by

ϵ =
9y2

2

(
B2(

1
2
− 2xy)

B3(
1
2
− 2xy)

)2

, η = 6y2
B1(

1
2
− 2xy)

B3(
1
2
− 2xy)

. (6.20)

To compute the e-folding N∗, we need to know the value of end of inflation xf = φf/MP ,

which is determined by the condition of the end of inflation ϵ(xf ) = 1. The number of

e-folding is

N∗ =
2

3y

∫ xf

xi

B3(
1
2
− 2xy)

B2(
1
2
− 2xy)

dx, (6.21)

where xi = Reφ∗/MP . Sample of our numerical solutions xi, xf , N∗ at some points of

y are shown in Table 6.1, where the e-folding N∗ = 50, 60 are taken. One might think

that our results are not reliable since the value of the WL scalar field is quite larger

than the Planck scale, which is beyond an applicability of the effective field theory.

However, the gauge symmetry in our theory is not broken by quantum gravity effects

and forbids any dangerous higher dimensional local operators suppressed by the Planck

scale as well as the non-derivative local operators of the WL scalar field. Therefore, our

results are reliable.
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y xi xf N∗
A50 1.0× 10−2 −30.4669 −25.3611 50.002
A60 1.0× 10−2 −31.0285 −25.3611 60.0098
B50 5.0× 10−3 −55.2516 −50.3573 50.0016
B60 5.0× 10−3 −55.7738 −50.3573 60.0004
C50 1.0× 10−3 −255.063 −250.354 50.0144
C60 1.0× 10−3 −255.549 −250.354 60.0162
D50 5.0× 10−4 −505.038 −500.354 50.0099
D60 5.0× 10−4 −505.519 −500.354 60.0087
E50 1.0× 10−4 −2505.018 −2500.35 50.0098
E60 1.0× 10−4 −2505.495 −2500.35 60.0078

Table 6.1: Sample of our numerical solutions xi, xf , N∗ at some points of y.

Using the numerical solutions in table 6.1, the slow-roll parameters ϵ, η, the spectral

index ns, and the scalar-to-tensor ratio r are calculated and shown in table 6.2. Com-

paring our results in table 6.2 with ns and r in Planck 2018 data, our results are found

to be relatively good agreement with the data. If y is taken to be a large value such as

y = 1.0× 102, ns and r cannot be satisfied with Planck 2018 data.

ϵ η ns r
A50 0.00683107 0.00494671 0.968907 0.109297
A60 0.00582958 0.00444092 0.973904 0.0932733
B50 0.00594149 0.00271376 0.969779 0.0950639
B60 0.00502904 0.00245613 0.974738 0.0804646
C50 0.00517205 0.000586594 0.970141 0.0827528
C60 0.00432933 0.000534704 0.975093 0.0692693
D50 0.00507359 0.000296245 0.970151 0.0811775
D60 0.00423959 0.000270297 0.975103 0.0678334
E50 0.00499408 0.0000597248 0.970155 0.0799053
E60 0.00416705 0.0000545352 0.975107 0.0666728

Table 6.2: Inflation parameters ϵ, η, ns, r obtained from our model.

Our results are shown in (ns, r) plot of figure 6.3 from Planck 2018 data [32]. Orange

circles are our results where small and large ones correspond to N∗ = 50 and N∗ = 60,

respectively. As the parameter y is decreased, our results in (ns, r) plot go downward.

Our results are within a parameter region indicating the combining data of Planck TT,
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TE, EE+lowE+lensing at CL95%.
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Figure 6.3: Our results (table 6.2) in the ns-r plot from Planck 2018 data [32]. Orange
circles are our results, where the small and large ones represent N∗ = 50 and N∗ = 60,
respectively.

From the parameter y, we can estimate the value of κ6, which provides the com-

pactification scale and the 6D Planck scale M6P in our model. κ6L is determined by y

L [GeV−1](κ6 = 10xL) M6P =
√
MP/L

y = 1.0× 10−2 3.20941× 10−x/2−10 1.9497× 10x/4+14

y = 5.0× 10−3 2.26939× 10−x/2−10 2.3186× 10x/4+14

y = 1.0× 10−3 1.0149× 10−x/2−10 3.46711× 10x/4+14

y = 5.0× 10−4 7.17646× 10−x/2−11 4.12311× 10x/4+14

y = 1.0× 10−4 3.20941× 10−x/2−11 6.16549× 10x/4+14

Table 6.3: The value of L,M6P .

as follows.

y =MP
κ4
α

=MP
κ6/L

4πN/L2
=
MPLκ6
4πN

⇔κ6 = 4πN
y

MPL
(6.22)
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where the number of degeneracy is assumed to be N = 10. If we assume κ6 = minflatonL

and minflaton = 10x GeV, L is estimated. κ6L, L, M6P are shown in table 6.3.

Now, we discuss how small the gauge coupling g4 is required for a successful inflation.

Although the gauge coupling itself g4 is a free parameter, the constraint from slow-roll

parameter condition can be obtained through the coupling constant κ6, which can be

derived from ϵ≪ 1,

3√
2
yB2(1/2− 2xiy)≪ B3(1/2− 2xiy),

which implies,

y ≪

√
2
√
2xi + 1

4(12x2i + 8
√
2x3i )

. (6.23)

In the condition ϵ ≪ 1, y ≪ 1 is immediately found. Therefore, we obtain κ6 ≪
10−19/L, which means κ6 ≪ 1 because the maximum value of 10−19/L is at 1/L ∼MP .

As mentioned in section 6.1, we can always take the free parameter g4 less than κ6.

For a successful inflation in our model, we have only to take the free parameter gauge

coupling g4 such that g4 ≪ κ6 and this can be always possible.

6.3.2 g4 ≫1 case

In this case, M2(φ, φ∗) corresponds to (6.12). Under the simplification u = v, ϵ and η

are expressed by

ϵ =
9y2

2

(
B2(

1
2
+ 4Gu2)

B3(
1
2
+ 4Gu2)

)2

, η = 6y2
B1(

1
2
+ 4Gu2)

B3(
1
2
+ 4Gu2)

, (6.24)

where we ignore −2uy because y is small. The number of e-folding is

N∗ =
2

3y

∫ uf

ui

B3(
1
2
+ 4Gu2)

B2(
1
2
+ 4Gu2)

du. (6.25)

As in the g4 ≪ 1 case, we obtain the value of ui and uf for a value of G. Taking

G = 1, 0 × 103 as an example, we find ui = −3.8403 and uf = −0.7282. Using these

values, ns and r are ns = 0.99569 and r = 0.0206896. r is consistent with Planck

2018 constraint, but ns is not. Thus, comparing with the potential in g4 ≪ 1 case, the

potential in the g4 ≫ 1 case is not suitable for the inflation.

89



6.3.3 The vacuum energy during inflation

In order for our model to be consistent with inflationary setup, the vacuum energy

during inflation should be smaller than 4D Planck scale and the compactification scale.

We verify this requirement. As you can see from table 6.1, xfy takes 1/4 during inflation.

Thus, the vacuum energy becomes

Vvac = ⟨V ⟩ = −N
α2

16π2
lim
ϵ→0

Γ(ϵ− 2)ζ[ϵ− 2, 1/2]

= −N α2

16π2

(
1

2
ζ(1,0)[−2, 1/2]

)
= −3N3ζ(3)

32π2

1

L4
(6.26)

where we take into account in the second equality that the VEV of inflaton field is zero

during inflation, and

ζ(1,0)[−2, 1/2] = 2ζ(3)

16π2
(6.27)

is used in the third equality. Setting N = 10, Vvac is estimated to be O(10) × L−4 ∼
O(10) ×

(
M6P

MP

)4
M4

6P . In large extra dimensions, 6D Planck scale is smallar than 4D

Planck scale M6P < MP , unless the compactification scale is the 4D Planck scale.

Therefore, 1/L4 < |Vvac| < M4
P are satisfied as long as the compactification scale is

smaller than 4D Planck scale.
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Chapter 7

Conclusion

In this thesis, we have considered six-dimensional field theories with magnetic flux

compactification toward the approach to the hierarchy problem. In chapter 2, we gave

a basis of flux compactification. Based on quantum mechanics in magnetic field, we

discussed a six-dimensional field theory with flux compactification. The key in flux

compactification is that Kaluza-Klein mass is discretized such as Landau level. It is also

a feature to identify covariant derivatives in extra spaces with creation and annihilation

operators.

In chapter 3, we reviewed Abelian gauge theories in six dimensions without or with

flux [24, 25]. We first discussed Abelian gauge theories in six dimensions without flux

(scalar QED and QED), and then we obtained the finite quantum corrections to WL

scalar mass at one-loop (see eq.(3.36) or eq.(3.37)). Next, we considered Abelian gauge

theories in six dimensions with flux (scalar QED and QED). In these theories, the

quantum corrections to WL scalar mass vanished for the sake of magnetic flux (see

eq.(3.62)). At the end of this chapter, we mentioned that the physical reason of this

cancellation is the shift symmetry from translation in compact spaces, which forbids

the mass term of scalar field.

In chapter 4, we extended Abelian gauge theories to non-Abelian gauge theories and

also calculated the quantum corrections to WL scalar mass. Concretely, we consider

a six-dimensional SU(2) Yang-Mills theory with flux compactification. After deriving

the four-dimensional effective Lagrangian, we computed the quantum corrections to

WL scalar mass. As in the previous chapter, we showed that the quantum corrections

to WL scalar mass vanish. Moreover, we added the higher dimensional operators and
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showed that the quantum corrections to WL scalar mass also vanish at the first order

of 1/Λ2 (Λ is a cutoff scale).

In chapter 5, we studied possibilities to realize a nonvanishing finite WL scalar mass

in flux compactification. We analyzed the generalized loop integrals in the quantum

correction to WL scalar mass at one-loop. Then, the conditions for the loop integrals

and mode sum in one-loop corrections to WL scalar mass to be finite could be ob-

tained. From these conditions, we guessed the four-point and three-point interaction

terms satisfying this conditions. Moreover, an argument was generalized to the quan-

tum corrections from the interactions between the different KK modes. Finally, we

considered the Lagrangian (5.78) and illustrated the finite quantum correction to the

WL scalar mass (see eq.(5.84)).

In chapter 6, we proposed an inflation scenario in flux compactification as an ap-

plication of the result in chapter 5. We identified a zero mode WL scalar field of extra

components of the higher dimensional gauge field with an inflaton in this chapter. We

gave the four-dimensional effective potential and calculated the inflationary parameters.

The spectral index and the tensor-scalar ratio were computed in our model, and then

we compared our results with Planck 2018 data (see figure 6.3).

We cannot directly apply the results in chapter 3, 4 to the hierarchy problem since

the quantum corrections to WL scalar mass are canceled and Higgs mass cannot be

realized at one-loop level. To avoid the feature of this exact cancellation to the hierarchy

problem, we extend NG boson to pseudo NG boson as in chapter 5. By extending

to pseudo NG boson, the quantum correction to WL scalar mass are generated (see

eq.(5.84)) at the scale, where translational symmetry is explicitly broken at a scale

much smaller than the compactification scale. Then, it has a possibility to solve the

hierarchy problem. Concretely, even if the compactification scale becomes Planck scale

1/L ∼ O(MPlanck), Higgs mass could be realized by the interaction φΦ∗Φ generated by

some dynamics at O(1) TeV scale.

There are still some issues to be explored. First, we do not know a new bulk scalar

Φ. For example, this scalar field might be the candidate for dark matter. In any case,

we need to study what the bulk scalar Φ is. Second, we do not understand the origin

of φΦ∗Φ (or governing dynamics) and a new coupling κ. As for the origin of φΦ∗Φ, we
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discussed that WL scalar φ or φ∗ should be expressed by a gauge invariant non-local

Wilson line operator in chapter 5. However, it is not easy to clarify the origin of φΦ∗Φ.

We expect that the origin of φΦ∗Φ might be connected to the quantum gravity effects,

nontrivial backgrounds such as a vortex, or some non-perturbative dynamics. These

issues are left for our future study.

We do not also construct a realistic model with flux compactification. In particular,

we have not succeeded in applying the flux compactification to gauge-Higgs unifica-

tion when the WL scalar field is identified with the SM Higgs field. Recently, as an

application to gauge-Higgs unification, we discuss the gauge symmetry breaking of six-

dimensional theories in flux compactification with a magnetic flux background and a

constant vacuum expectation for the WL scalar fields [39]. In [39], the pattern of the

electroweak symmetry breaking is shown to be realized in Yang-Mills theory. The re-

alistic model is not however constructed in that the theory does not contain fermions.

These issues are also left for our future study.

If we resolve the above issues, we may consider that WL scalar is regarded as Higgs

field and an inflaton (called as Higgs inflation) [44–46]. If Higgs inflation succeeds in

gauge-Higgs unification with flux compactification, we can explain the origin of inflaton.

Although a new coupling (or a corresponding quantity) is constrained by the reheat-

ing temperature and the inflaton energy scale (or compact scale) is guessed by scalar

power spectrum amplitude [32], we will address these issues in future by considering

the unification of WL scalar field, Higgs field and inflaton.
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Appendix A

Poisson Resummation

Poisson resummation is a technique of the calculation for the one-loop effective potential

in higher dimensional field theory. In general, if Fourier inverse transformation is defined

by

f̂(k) =

∫ ∞

−∞
e−ikxf(x)dx, (A.1)

the following relation is satisfied:

∞∑
n=−∞

f(n) =
∞∑

m=−∞

f̂(2πm), (A.2)

where n,m are integer. Eq.(A.2) is the general Poisson resummation. We show this

relation as follows.

We use a periodic function F (x) = f(x+ n) and consider Fourier transform of this

function.
∞∑

n=−∞

f(x+ n) =
∞∑

n=−∞

∫ ∞

−∞

eikx

2π
f̂(k)dkeikn

=
∞∑

n=−∞

∫ ∞

−∞
e2πikxf̂(2πk)dke2πikn

=

∫ ∞

−∞
dke2πikxf̂(2πk)

(
∞∑

n=−∞

e2πikn

)
.

Here, using the following formula

∞∑
n=−∞

e2πikn =
∞∑

m=−∞

δ(k −m), (A.3)
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we have

∞∑
n=−∞

f(x+ n) =
∞∑

m=−∞

e2πimxf̂(2πm). (A.4)

Setting x = 0, we obtain eq.(A.2).

In this thesis, we deal with the following function:

f(m) = exp

[
−(m+ a)2

R2l

]
. (A.5)

By applying Fourier inverse transformation to f(m), f̂(k) can be obtained as

f̂(k) =

∫ ∞

−∞
e−ikx exp

[
−(x+ a)2

R2l

]
dx

=

∫ ∞

−∞
exp

[
− 1

R2l
{x2 + (2a+ ikR2l)x} − a2

R2l

]
dx

=

∫ ∞

−∞
exp

[
− 1

R2l

{
x+

2a+ ikR2l

2

}2

+ ika− 1

4
k2R2l

]
dx

= R
√
πleikae−

1
4
k2R2l. (A.6)

Therefore, we get

∞∑
n=−∞

exp

[
−(n+ a)2

R2l

]
= R
√
πl

∞∑
m=−∞

e2πimae−π2lm2R2

. (A.7)

Eq.(A.7) is the same as eq.(3.34).
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Appendix B

Detail of 2Tr[DLFMND
LFMN ]

The second term in eq.(4.116) is calculated as

2DρF
a
µmD

ρF aµm ⊃ +4gεabc∂µ∂νφ
a∂νAbµφc∗ + 4gεabc∂µ∂νφ̄

a∂νAbµφc

− 2
√
2igεabc∂µDAa

ν∂
µAbνφc∗ + 2

√
2igεabc∂µD̄Aa

ν∂
µAbνφc

+ 4g2φa∗φa∂µA
b
ν∂

µAbν − 4g2φa∗φb∂µA
a
ν∂

µAbν . (B.1)

The third term in eq.(4.116) is calculated as

2DµF
a
56D

µF a56 ⊃ −2
√
2g∂µ(Dφa∗ + D̄φa)[∂µφ, φ∗]a − 2

√
2g∂µ(Dφa∗ + D̄φa)[φ, ∂µφ∗]a

+ 2g2[∂µφ, φ
∗]a[∂µφ, φ∗]a + 4g2[∂µφ, φ

∗]a[φ, ∂µφ∗]a + 2g2[φ, ∂µφ
∗]a[φ, ∂µφ∗]a

− 2εabc∂µ(Dφa∗ + D̄φa)(Dφb∗ + D̄φb)Acµ

+ g2Aa
µA

aµ(Dφb∗ + D̄φb)(Dφb∗ + D̄φb)

− g2Aa
µA

bµ(Dφa∗ + D̄φa)(Dφb∗ + D̄φb). (B.2)

The fourth term in eq.(4.116) is calculated as

DlF
a
µνD

lF aµν ⊃ 2
√
2igεabcφ

a
(
∂µD̄Ab

ν∂
µAcν − ∂µD̄Ab

ν∂
νAcµ

)
− 2
√
2igεabcφ

a∗
(
∂µDAb

ν∂
µAcν − ∂µDAb

ν∂
νAcµ

)
+ 4g2φa∗φa(∂µA

a
ν∂

µAaν − ∂µAa
ν∂

νAaµ)

− 4g2φa∗φb(∂µA
a
ν∂

µAbν − ∂µAa
ν∂

νAbµ). (B.3)
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The fifth term in eq.(4.116) is calculated as

2DlF
a
µmD

lF aµm ⊃ −2
√
2gD̄(∂µφa)[φ, ∂µφ∗]a + 2

√
2gD(∂µφa∗)[φ∗, ∂µφ]a

− 4g2[φ∗, ∂µφ]a[φ, ∂µφ∗]a − 4igD̄(∂µφa)[φ, D̄Aµ]a + 4igDD̄Aa
µ[φ

∗, ∂µφ]a

− 4igD̄(∂µφa)D([Aµ, φ∗]a) + 4igD̄DAa
µ[φ, ∂

µφ∗]a − 4ig[φ∗,DAµ]
aD(∂µφa∗)

− 4igD̄([Aµ, φ]
a)D(∂µφa∗)− 2

√
2gD̄DAa

µ[φ, D̄Aµ]a + 2
√
2g[φ∗,DAµ]

aDD̄Aaµ

− 4g2[φ∗,DAµ]
a[φ, D̄Aµ]a − 2

√
2gD̄DAa

µD([Aµ, φ∗]a) + 4g2D̄DAa
µ[φ, [A

µ, φ∗]]a

− 4g2[φ∗,DAµ]
aD([Aµ, φ∗]a) + 2

√
2gD̄([Aµ, φ]

a)DD̄Aaµ

− 4g2D̄([Aµ, φ]
a)[φ, D̄Aµ]a + 4g2[φ∗, [Aµ, φ]]

aDD̄Aaµ

− 4g2D̄([Aµ, φ]
a)D([Aµ, φ∗]a). (B.4)

The sixth term in eq.(4.116) is calculated as

2DlF
a
56D

lF a56 ⊃ −
√
2gD̄Dφa∗D([φ, φ∗]a)−

√
2gD̄2φaD([φ, φ∗]a)

−
√
2gD̄([φ, φ∗]a)D2φa∗ −

√
2gD̄([φ, φ∗]a)DD̄φa + 2g2D̄([φ, φ∗]a)D([φ, φ∗]a)

−
√
2gD̄Dφa∗[φ,Dφ∗]a −

√
2gD̄Dφa∗[φ, D̄φ]a + 2g2D̄Dφa∗[φ, [φ, φ∗]]a

−
√
2gD̄2φa[φ,Dφ∗]a −

√
2gD̄2φa[φ, D̄φ]a + 2g2D̄([φ, φ∗])[φ,Dφ∗]a

+
√
2gD2φa∗[φ∗,Dφ∗]a +

√
2gD2φa∗[φ∗, D̄φ]a +

√
2gDD̄φa[φ∗,Dφ∗]a

+
√
2gDD̄φa[φ∗, D̄φ]a − 2g2DD̄φa[φ∗, [φ, φ∗]]a − 2g2D([φ, φ∗])[φ∗, D̄φ]a

− 2g2[φ∗,Dφ∗]a[φ, D̄φ]a − 2g2[φ∗, D̄φ]a[φ,Dφ∗]a

+ 2
√
2g2fD̄([φ, φ∗]a)[φ, δ]a − 2

√
2g2fD([φ, φ∗]a)[φ∗, δ]a

− 2
√
2g2f [φ∗,Dφ∗]a[φ, δ]a − 2

√
2g2f [φ∗, D̄φ]a[φ, δ]a

− 2
√
2g2f [φ,Dφ∗]a[φ∗, δ]a − 2

√
2g2f [φ, D̄φ]a[φ∗, δ]a. (B.5)

δ is a Kronecker’s delta which appears when F a
56 is expanded around the VEV ⟨A5,6⟩

as eq.(4.13). In these decompositions, we have extracted only the cubic terms with a

single φ1 or φ1∗ and quartic terms with φ1 and φ1∗, which give contributions to one-loop

corrections to the the WL scalar mass. After rewriting the original fields to the fields in

the mass eigenstate Ãa
µ, φ̃

a, we expand the terms except for the first term in eq.(4.116)

in terms of KK modes. Using the orthonormality condition for mode functions, we

obtain four-dimensional interaction terms eqs.(4.117)-(4.122).
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Appendix C

Tr[F 4]

We consider the operator Tr[F 4] at the second order of O(1/Λ2). This operator can be

expressed as

Tr[FMNF
MNFABF

AB] = F a
MNF

bMNF c
ABF

dABTr[tatbtctd]. (C.1)

Using [ta, tb] = iϵabctc and {ta, tb} = δab12×2/2, Tr[t
atbtctd] becomes

Tr[tatbtctd] =
1

4
Tr
[
([ta, tb] + {ta, tb})([tc, td] + {tc, td})

]
=

1

4
Tr

[(
iϵabltl +

1

2
δab12×2

)(
iϵcdmtm +

1

2
δcd12×2

)]
=

1

8
(δabδcd − δacδbd + δadδbd).

Thus, Tr[F 4] is described as

Tr[FMNF
MNFABF

AB] =
1

8
(δabδcd − δacδbd + δadδbd)F a

MNF
bMNF c

ABF
dAB

=
1

8
F a
MNF

aMNF b
ABF

bAB

= 2

(
−1

4
F a
MNF

aMN

)2

. (C.2)

Eq.(C.2) means that the interaction between WL scalar and gauge fields is reproduced

from the square of eq.(4.1) or eq.(4.6). Since we are interested in the three-point

intxeraction terms involving φ or φ∗ and the four-point interaction terms involving φ

and φ∗, we extract these three-point and four-point interaction terms from eq.(C.2).
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The result is

Tr[FMNF
MNFABF

AB]

⊃ −2f 2

(
− g√

2

{
−DAa

µ[A
µ, φ∗]a + D̄Aaµ[Aµ, φ]

a
}
+ g2[Aµ, φ]

a[Aµ, φ∗]a

+
g√
2

{
Dφa∗[φ, φ∗]a + D̄φa[φ, φ∗]a

}
− 1

2
g2[φ, φ∗]a[φ, φ∗]a

)
. (C.3)

Eq.(C.3) is the same structure of the last term of the third line, the fourth and fifth

line in eq.(4.44) except for the coefficients. We have computed the right hand side of

eq.(C.3) in the section 4.3. Thus, we can calculate the quantum corrections to WL

scalar mass from eq.(C.3). The structures of loop integrals in the quantum corrections

are the same as the subsection 4.4.1 and 4.4.2 with ξ = 1. These loop integrals vanish as

in the subsection 4.4.1. The quantum corrections are also generated by using the cubic

interactions (C.3), (4.48) and (4.52) in O(1/Λ4). Since cubic interactions (C.3), (4.48)

and (4.52) are the same structure except for the coefficients, the quantum corrections

by using these interactions also vanish.
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Appendix D

Hurwiz zeta function

In this appendix, we summarize the property of Hurwitz zeta function [47]. Hurwitz

zeta function is defined as

ζ[s, a] =
∞∑
n=0

1

(n+ a)s
. (D.1)

It is known that Hurwitz zeta function is related to Riemann zeta function by the

following identical equations

ζ[s, 1] = ζ(s), (D.2)

ζ[s, 1/2] = (2s − 1)ζ(s). (D.3)

Hurwitz zeta function also satisfies the following formula

ζ[s, a] = ζ[s, a+m] +
m−1∑
n=0

1

(n+ a)s
. (D.4)

Note that ζ[s, 1] = ζ[s, 0] is satisfied. Since Riemann zeta function has a property

ζ(−2n) = 0 (n is a natural number), Hurwitz zeta function also satisfies

ζ[−2n, 1] = 0, ζ[−2n, 1/2] = 0. (D.5)

In particular, ζ[s, 1/2] satisfies ζ[0, 1/2] = 0 in s = 0 case. Furthermore, Hurwitz zeta

function can be expressed by Bernoulli polynomials Bn(x) as follows

ζ[−n, x] = −Bn+1(x)

n+ 1
. (D.6)
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