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Abstract

The Standard Model (SM) of elementary particles can explain various observed phe-

nomena, and its correctness is no longer in doubt. On the other hand, it is also true that

there are some observed facts that cannot be explained by the Standard Model. This

indicates that there is a more fundamental theory beyond the SM. One of the candidates

is the Grand Unified Theory (GUT), which unifies the three fundamental interactions:

strong interaction, electromagnetic interaction, and weak interaction. According to the

prediction of the renormalization group, the energy scale of GUT is about 1015−16GeV.

Since the energy scale of the LHC, which is currently the largest accelerator, is about

104GeV, it is difficult to test the theory directly at such high energies with a terrestrial

accelerator.

On the other hand, there is a natural phenomenon with an energy scale of about

1014GeV: the inflation of the universe. Inflation is the exponential expansion of the

universe in the early universe. Recent successes in precise observations of the universe

have confirmed the existence of inflation. Therefore, we focus on the fact that the

energy scales of inflation and GUT are very close, and search for evidence of GUT by

observing their interaction.

In this thesis, we focus on the Higgs boson in GUT which is responsible for the gauge

symmetry breaking from GUT gauge symmetry to the SM one, and the inflaton which

is a scalar particle that causes inflation. As a model, we consider the action of gravity,

the effective action of inflaton with slow-roll potential, the action of Higgs boson, the

action of gauge bosons and fermions in GUT group. The most important feature of

this model is that, considering a graph mediated by the Higgs bosons without vacuum

expectation value (VEV) among three inflatons, there exists only loop graphs, but the

Higgs boson has a non-vanishing VEV, we find the leading effect from tree graphs. By

computing such three-point functions, we evaluate non-Gaussianity, which is an impor-

tant observable quantity in inflation. The obtained non-Gaussianity is compared with

the observed values, and the testability of GUT is discussed.
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Chapter 1

Introduction

The Standard Model of elementary particles can explain a wide variety of elementary

particle phenomena and has acquired reliability. On the other hand, there are cer-

tainly some phenomena that cannot be explained by the Standard Model, for example,

the mechanism of generating tiny neutrino masses, the origin of dark matter and dark

energy, and the hierarchy problem. To solve these problems, various theories beyond

the Standard Model have been considered, such as extra dimensional scenario, super-

symmetry, and Grand Unified Theory (GUT). GUT is the theory that unifies three of

the four fundamental interactions that exist in nature: strong interaction, electromag-

netic interaction, and weak interaction. The renormalization group method suggests

that these three interactions are unified at a certain energy scale. Since the Standard

Model is described by the Weinberg-Salam model unifying the electromagnetic and

weak interactions and strong interaction separately, it is desirable that these interac-

tions are unified. However, the energy scale of the GUT is expected to be about 1015

GeV, and it is difficult to verify directly such a high energy theory with terrestrial

accelerators. For this reason, Cosmological Collider Physics has attracted much in-

terests [1–94]. Cosmological Collider Physics is an approach that obtains information

on high energy elementary particles by observing quantum fluctuations in space-time

stretched by inflation through the cosmic microwave background radiation. That is,

precise observation of the universe can provide information on elementary particles in

high energy which cannot be reached by terrestrial accelerators.

Non-Gaussianity is the more than three point function of some quantum fluctuation

in the curvature perturbations. Three point functions in models with only inflatons
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and gravitons were computed by Maldacena [95]. The effective field theory of inflation

was proposed by C. Cheung, et al. [96], and its formalism has been used to calculate

three-point functions in models with various particles. We focus on the case where the

GUT scale is close to the energy scale of inflation and calculate three point function of

inflaton by exchanging Higgs boson in GUT. The characteristic feature of this model is

that the interaction between Higgs boson and inflaton generated by the (non-)vanishing

Higgs boson vacuum expectation value (VEV) contributes to three point function of the

inflaton at the (tree) 1-loop level as shown in Fig.1.1 and Fig.1.2. The results are found

to be consistent with the current observational constraints on non-Gaussianity without

drastic fine tuning of parameters, and it might be possible to detect the signature of

the Higgs boson in GUT by 21cm spectrum, future LSS and future CMB depending on

our model parameters.

Figure 1.1: Leading graph of the inflaton three point function where the Higgs boson
has no VEV inevitably becomes at one-loop level. The rigid line represents the inflaton,
and the dotted line represents the Higgs boson in GUT. See Chapter 5 for notation.

This thesis is organized as follows. Chapters 1 to 5 are review parts, and chapters 6

to 8 are the main results of this thesis based on the work by N. Maru and myself [97].

First, we review the physics of inflation and the slow-roll condition. In Chapter 3, by

solving the equation of the fluctuation generated by the inflation, we understand the

behavior of the fluctuation and review its two-point function, the power spectrum. Sub-

sequently, we introduce non-Gaussianity, an important observable quantity for inflation.

In Chapter 4, we review the effective field theory of inflation. By viewing the inflaton as

a Nambu-Goldstone boson of time translation, we see that it is possible to construct the

effective action of inflation and review several advantages. In Chapter 5, we review the
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Figure 1.2: Leading graph of the inflaton three point function in the presence of sponta-
neous symmetry breaking. In the absence of spontaneous symmetry breaking, no such
tree graph exists.

in-in formalism (Schwinger-Keldysh formalism) and Feynman rule, which are methods

for computing physical quantities in field theories on curved spacetime. In Chapter 6,

we actually set up our model. Furthermore, we introduce the Higgs potential in GUT

and confirm that the Higgs boson interacts with the inflaton linearly after developing

the vacuum expectation value due to the spontaneous symmetry breaking. Concretely,

we compute three point function of the inflatons via the Higgs boson exchange at tree

level by using the approximation in horizon exit. Non-Gaussianity is evaluated from

the obtained three-point functions and the results are compared with the data observed

by the Planck satellite. Conclusions are given in Chapter 8.

In Appendix A, we see what form of the perturbed metric in uniform isotropic space-

time is taken. In Appendix B, we consider the coordinate transformations as gauge

transformations and investigate how the perturbed quantities in the metric are trans-

formed. In Appendix C, we examine the transformation of matter appearing on the

right-hand side of Einstein equations. In Appendix D, we combine these quantities to

construct gauge invariants. Gauge fixing is also discussed. In Appendix E, we derive

the Einstein equations for the perturbations to be satisfied. In Appendix F, we calcu-

late how the determinant of the metric behaves when the coordinate transformations

with respect to time are performed in the effective field theory.
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Chapter 2

Inflation mechanism

In order to see what kind of physics the inflationary mechanism is, consider the following

action

S =

∫
d4x

√
−g
[
M2

pl

2
R + P (ϕ,X)

]
, (2.1)

where

X = −1

2
gµν (∂µϕ) ∂νϕ (2.2)

is the kinetic energy of a scalar field, and this scalar field is called the inflaton. The

first term on the right-hand side is the Einstein-Hilbelt action, whereMpl = mpl/
√
8π is

the reduced Planck mass and R is the Ricci scalar. The second term on the right-hand

side, P , is Lagrangian for inflaton ϕ and

P = X − V (ϕ) (2.3)

for inflaton with canonical kinetic energy X. V (ϕ) is the potential energy of the inflaton

ϕ. The energy density of the inflaton is given by the equation (C.53),

ρ = 2XP,X − P (2.4)

and the pressure is given by P . Since the curvature term can be regarded as zero once

inflation starts, the Friedmann equation and the continuity equation in the Friedmann-

Lemâıtre-Robertson-Walker (FLRW) metric are

3M2
plH

2 = 2XP,X − P, (2.5)

M2
plḢ = −XP,X , (2.6)

(P,X + 2XP,XX)ϕ̈ + 3HP,X ϕ̇+ 2XP,Xϕ − P,ϕ = 0. (2.7)
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The pressure P , energy density ρ, and inflaton ϕ are all functions of time t only, and

the dot represents the derivative with respect to t.

Since the time derivative of the Hubble parameter H is

Ḣ =
d

dt

ȧ

a
= − ȧ

2

a2
+
ä

a
, (2.8)

the quantity ä/a can be written as

ä

a
=
ȧ2

a2
+ Ḣ = H2

{
1−

(
− Ḣ

H2

)}
. (2.9)

We now define a quantity called the slow-roll parameter:

ϵ := − Ḣ

H2
=

3XP,X
2XP,X − P

=
3XP,X
ρ

. (2.10)

Using the slow-roll parameter ϵ, the quantity ä/a becomes

ä

a
= H2(1− ϵ). (2.11)

Therefore, the slow-roll parameter ϵ must be smaller than 1 in order to satisfy the

condition

ä > 0 (2.12)

that the universe accelerates and expands. Then, we define inflation as the condition

|ϵ| � 1 (2.13)

that the magnitude of ϵ is sufficiently smaller than 1. Using equation (2.10), the con-

dition for inflation to occur is

|3XP,X | � ρ. (2.14)

For a canonical scalar field for which the Lagrangian is P = X − V (ϕ), the derivative

with respect to X of the Lagrangian and energy density are

P,X = 1, ρ = 2X − (X − V ) = X + V, (2.15)

respectively, so that the condition follows:
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X � V (ϕ). (2.16)

Since this implies that inflation will occur if the field moves slowly along the poten-

tial, such a situation is called slow-roll inflation. In the following, we will consider for

a while the inflation induced by the potential energy of this canonical scalar field.

In the case of a canonical scalar field, the Friedmann equation (2.5) and the continuity

equation (2.7) are

3M2
plH

2 = X + V (ϕ), (2.17)

ϕ̈+ 3Hϕ̇+ V,ϕ(ϕ) = 0 (2.18)

respectively. In order for the kinetic energy of the inflaton ϕ not to be large, the

condition ∣∣∣ϕ̈∣∣∣� ∣∣∣3Hϕ̇∣∣∣ , |V,ϕ(ϕ)| (2.19)

must be hold that the acceleration is small. In this case, the equation (2.18) becomes

3Hϕ̇ ' −V,ϕ(ϕ). (2.20)

Approximation using this condition and the condition

X =
1

2
ϕ̇2 � V (ϕ) (2.21)

that the kinetic energy is sufficiently smaller than the potential energy is called the

slow-roll approximation.

It is convenient to define the following potential slow-roll parameter

ϵV :=
M2

pl

2

(
V,ϕ
V

)2

, ηV :=
M2

plV,ϕϕ

V
, ξ2V :=

M4
plV,ϕV,ϕϕϕ

V 2
, (2.22)

which is related to the flatness of the potential. Under the slow-roll approximation,

they can be written as

ϵV ' ϵ, ηV ' 2ϵ− ϵ̇

2Hϵ
, ξ2V '

(
2ϵV − η̇V

HηV

)
ηV (2.23)

with ϵ defined by the equation (2.10). ξ2V is a second order quantity.
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We show that the potential slow-roll parameter can be written as in equation

(2.23). Using the Friedmann equation and the continuous equation

3M2
plH

2 ' V (ϕ), (2.24)

M2
plḢ = −X, (2.25)

3Hϕ̇ ' −V,ϕ(ϕ), (2.26)

ϵ is written as

ϵ =
3XP,X
ρ

=
3ϕ̇2

2V

' 3

2V

(
V,ϕ
3H

)2

=
V 2
,ϕ

6V H2

=
3M2

plV
2
,ϕ

6V 2

=
M2

pl

2

(
V,ϕ
V

)2

= ϵV (2.27)

from equation (2.10). Next, consider ηV . In order to find the second-order derivative

of the potential, we perform the time derivative of ϵ, which is

ϵ̇ ' ϵ̇V = M2
pl

V,ϕ
V

d

dt

V,ϕ
V

= M2
pl

V,ϕ
V

(
−
V 2
,ϕ

V 2
ϕ̇+

V,ϕϕ
V

ϕ̇

)
, (2.28)

then, we can write

V,ϕϕ =
V 2

M2
plV,ϕϕ̇

ϵ̇+
V 2
,ϕ

V
. (2.29)
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Thus,

ηV =
M2

plV,ϕϕ

V
= 2

M2
pl

2

(
V,ϕ
V

)2
V V,ϕϕ
V 2
,ϕ

' 2ϵ
V V,ϕϕ
V 2
,ϕ

= 2ϵ
V

V 2
,ϕ

(
V 2

M2
plV,ϕϕ̇

ϵ̇+
V 2
,ϕ

V

)

= 2ϵ+M2
pl

(
V,ϕ
V

)2
V 3ϵ̇

M2
plV

3
,ϕϕ̇

(
ϵ '

M2
pl

2

(
V,ϕ
V

)2
)

= 2ϵ+
V ϵ̇

V,ϕϕ̇

= 2ϵ− V ϵ̇

3Hϕ̇2

= 2ϵ− ϵ̇

2Hϵ
(2.30)

is obtained. In the last equality,

ϵ =
3ϕ̇2

2V
(2.31)

is used. Finally, consider ξ2V . In order to obtain the third-order derivative of the

potential, we perform a time derivative on ηV , which yields

η̇V = −
M2

plV,ϕV,ϕϕ

V 2
ϕ̇+

M2
plV,ϕϕϕ

V
ϕ̇

= −V,ϕ
V
ϕ̇ηV +

V ϕ̇

M2
plV,ϕ

M4
plV,ϕV,ϕϕϕ

V 2

' −V,ϕ
V

(
− V,ϕ
3H

)
ηV +

V

M2
plV,ϕ

(
− V,ϕ
3H

)
ξ2V

= H
V 2
,ϕ

3V H2
ηV −H

V

3M2
plH

2
ξ2V

= HM2
pl

(
V,ϕ
V

)2

ηV −Hξ2V

= 2HϵV ηV −Hξ2V . (2.32)

Therefore,

ξ2V '
(
2ϵV − η̇V

HηV

)
ηV (2.33)
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is derived.2

With these parameters, the condition for inflation to occur is

|ϵV |, |ηV | � 1, (2.34)

and inflation ends when these quantities reach a magnitude of about 1.
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Chapter 3

Two-point correlation function of
inflaton

Consider linear density fluctuations in the action (2.1)

S =

∫
d4x

√
−g
[
M2

pl

2
R + P (ϕ,X)

]
. (3.1)

In this section, we will take the comoving gauge (uniform field gauge)

δϕ = 0, E = 0 (3.2)

and proceed with the discussion. The physical content is the same even if other gauges

are adopted. See Appendices A to E for discussions and notations of gauges and

perturbations. Under the comoving gauge, the gauge invariant, the comoving curvature

fluctuation ζ, is equal to the scalar perturbation ψ. In the following, we consider the flat

universe K = 0. Vector perturbations are not considered because they do not increase.

In other words, we consider

ds2 = a2(η)
[
−(1 + 2A)dη2 + {(1 + 2ψ)γij + hij} dxidxj

]
(3.3)

as a metric. The four equations for scalar perturbations A,B,E, and ψ were (E.74),

(E.75), (E.76), (E.77)

3Hψ′ − [3H2 − 4πGϕ′2 (P,X + 2XP,XX)]A−
(
∇2 + 3K

)
ψ +H∇2σ

= −4πG
[
a2 (P,ϕ − 2XP,Xϕ) δϕ− (P,X + 2XP,XX)ϕ

′δϕ′] , (3.4)
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ψ′ −HA−Kσ = −4πGP,X ϕ
′δϕ, (3.5)

σ′ + 2Hσ − A− ψ = 0, (3.6)

ψ′′ + 2Hψ′ −Kψ −HA′ −
(
2H2 +H′ +K

)
A = −4πG

(
P,Xϕ

′δϕ′ + a2P,ϕδϕ
)
(3.7)

respectively, where σ is

σ = E ′ −B = −B (3.8)

because we adopted the comoving gauge. Let us eliminate A, σ from the above si-

multaneous equations and derive the equations of motion for the comoving curvature

fluctuation ψ = ζ. First, from the equation (3.5), we obtain

A =
ζ ′

H
. (3.9)

Substituting this into the left-hand side of the equation (3.7), we see that this equation is

automatically satisfied. This is because the gauge fixing reduces the number of degrees

of freedom, and thus the number of equations to be solved is also reduced. Let us define

a quantity

Qs :=
ϕ′2

2H2
(P,X + 2XP,XX) (3.10)

to represent the time evolution of the inflaton ϕ due to the expansion of the universe.

Rewriting the left-hand side of the equation (3.4) by using Qs, we obtain

LHS of (3.4) = 3Hζ ′ − 2H2

(
3

2
− 4πGQs

)
ζ ′

H
−∇2ζ +H∇2σ

= H
(
8πGQsζ

′ − 1

H
∇2ζ +∇2σ

)
= H

(
Qs

M2
pl

ζ ′ − 1

H
∇2ζ +∇2σ

)
. (3.11)

Hence, we can obtain the equation

∇2σ = − Qs

M2
pl

ζ ′ +
1

H
∇2ζ (3.12)

for σ. Next, using equation (3.12), we eliminate σ from the equation (3.6). Rewriting

σ,A, ψ using ζ by acting ∇2 on both sides, we obtain(
− Qs

M2
pl

ζ ′ +
1

H
∇2ζ

)′

+ 2H

(
− Qs

M2
pl

ζ ′ +
1

H
∇2ζ

)
− 1

H
∇2ζ ′ −∇2ζ = 0. (3.13)
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Performing the derivative of the second term, we can compute(
− Qs

M2
pl

ζ ′

)′

− H′

H2
∇2ζ − 2HQs

M2
pl

ζ ′ +∇2ζ = 0. (3.14)

Multiplying both sides by a2M2
pl and noting H = a′/a gives

a2 (Qsζ
′)
′
+ 2aa′Qsζ

′ − a2M2
pl

(
1− H′

H2

)
∇2ζ = 0. (3.15)

Furthermore, the first and second terms can be combined into a single term using

differentiation, which gives(
a2Qsζ

′)′ − a2M2
pl

(
1− H′

H2

)
∇2ζ = 0. (3.16)

Let us write

M2
pl

(
1− H′

H2

)
≡ Qsc

2
s (3.17)

to match the coefficients of the time and spatial derivative terms1. Then we arrive at

the equation of motion (
a2Qsζ

′)′ − a2Qsc
2
s∇2ζ = 0 (3.18)

for the comoving curvature fluctuation ζ. From the form of equation (3.18), we can see

that cs represents the propagation speed of the inflaton. From this fact, cs is called the

sound speed. The concrete form of sound speed cs expressed by kinetic energy X and

Lagrangian P is

c2s =
M2

pl

Qs

(
1− H′

H2

)
=

2H2M2
pl

ϕ′2 (P,X + 2XP,XX)

(
1− H′

H2

)
=

2M2
pl

ϕ′2 (P,X + 2XP,XX)
· a2

2M2
pl

(ρ+ P ) (using Friedmann eq.)

=
a2(ρ+ P )

ϕ′2 (P,X + 2XP,XX)

=
2a2XP,X

ϕ′2 (P,X + 2XP,XX)
(energy density ρ = 2XP,X − P )

=
P,X

P,X + 2XP,XX

(
kinetic energy X =

1

2a2
ϕ′2
)

(3.19)

1Since cs is a dimensionless quantity, it is a quantity of O(1). In fact, cs = 1 in the canonical model,
as can be immediately seen from the expression (3.19) below.
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from the definition.

The equation of motion (3.18) can be also derived from the following variation of the

action

S2 =

∫
dηd3x a2Qs

[
ζ ′2 − c2s(∂ζ)

2
]

(3.20)

for ζ, where η is confomal time and (∂ζ)2 means

(∂ζ)2 := (∂iζ) ∂
iζ. (3.21)

As we will show later, by expanding the action (2.1)

S =

∫
d4x

√
−g
[
M2

pl

2
R + P (ϕ,X)

]
(3.22)

to the second order terms of the perturbation, we obtain the action (3.20).

The comoving curvature fluctuations ζ originate from quantum fluctuations at wave-

lengths smaller than the Hubble radius (k is the momentum, the wavelength is its

inverse)

k � aH

(
1

aH
� 1

k

)
(3.23)

at the early stage of inflation. Then, when the physical wavelength of the fluctuation

becomes almost the same as the Hubble radius

k ∼ aH, (3.24)

the effect of gravity starts to become significant and the fluctuation behaves as a classical

fluctuation. Finally, comoving curvature fluctuation ζ stops growing as

k � aH (3.25)

and this is called frozen. To understand the process, we expand the comoving curvature

fluctuation ζ into

ζ(η,x) =

∫
d3k

(2π)3
ζ(η,k)eik·x, (3.26)

ζ(η,k) = u(η,k)a(k) + u∗(η,−k)a†(−k) (3.27)

in the Fourier space of wavenumber k where a†(k) and a(k) are the creation and

annihilation operators and satisfy the commutation relation[
a (k1) , a

† (k2)
]

= (2π)3δ(3) (k1 − k2) , (3.28)

[a (k1) , a (k2)] =
[
a† (k1) , a

† (k2)
]
= 0. (3.29)
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The conformal time η is

η =

∫
dt

a
= − 1

aH
+

∫
ϵ
da

a2H
. (3.30)

We show that the conformal time η can be expressed as in equation (3.30):

η =

∫
dt

a
=

∫
da

aȧ
=

∫
da

a2H

=

∫ (
− d

da

1

a

)
1

H
da

= − 1

aH
+

∫
1

a

d

da

1

H
da

= − 1

aH
−
∫

1

aH2

dH

da
da

= − 1

aH
−
∫

1

aH2

dH

dt

dt

da
da

= − 1

aH
−
∫

Ḣ

aȧH2
da

= − 1

aH
+

∫
ϵ
da

a2H
. 2

When the slow-roll parameter ϵ is sufficiently small and constant compared to 1, H

is also constant and the conformal time becomes

η ' −1 + ϵ

aH
. (3.31)

The asymptotic past a→ 0 and asymptotic future a→ ∞ correspond to η → −∞ and

η → −0, respectively. From the equation of motion (3.18)(
a2Qsζ

′)′ − a2Qsc
2
s∇2ζ = 0 (3.32)

and the Fourier expansion (3.27)

ζ(η,x) =

∫
d3k

(2π)3
ζ(η,k)eik·x,

ζ(η,k) = u(η,k)a(k) + u∗(η,−k)a†(−k),

we obtain an equation satisfied by the Fourier mode u with wavenumber magnitude

k = |k|: Since it is (
a2Qsu

′)′ + a2Qsc
2
sk

2u = 0 (3.33)
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from the equation of motion (3.18), we obtain

a2Qsu
′′ + (a2Qs)

′u′ + a2Qsc
2
sk

2u = 0 (3.34)

by performing differentiation. Dividing both sides by a2Qs, we find that the equation

satisfied for u is

u′′ +
(a2Qs)

′

a2Qs

u′ + c2sk
2u = 0. (3.35)

In the large scale limit k → 0, the solution of this equation can be expressed as

u = c1 + c2

∫
dη

1

a2Qs

(c1, c2 are integral constants) . (3.36)

We show that solving the equation of motion (3.35) in the large scale limit k → 0,

the Fourier mode u can be expressed as in equation (3.36). Writing

u′ ≡ U, a2Qs ≡ A (3.37)

for simplicity, the equation (3.35)

u′′ +
(a2Qs)

′

a2Qs

u′ + c2sk
2u = 0 (3.38)

in the large scale limit k → 0 can be solved as follows:

U ′ = −A
′

A
U

U ′

U
= −A

′

A
logU = − logA+ c3

U =
c2
A

(c2 = ec3)

u′ =
c2
A

u = c1 + c2

∫
dη

1

A

u = c1 + c2

∫
dη

1

a2Qs

. 2

If Qs changes slowly during inflation, the second term of the solution (3.36) decays

and the mode function u approaches to a constant value c1. On the other hand, in the
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small-scale limit k → ∞, the third term on the left-hand side of the equation (3.35)

becomes more dominant than the second term. In order to perform quantization for

fluctuations sufficiently inside the Hubble radius at the beginning of inflation, it is

necessary to consider which perturbation quantities correspond to the canonical fields.

This canonical field is the field v (Mukhanov-Sasaki variables) defined by

v ≡ zu, z := a
√

2Qs. (3.39)

This is because the kinetic energy term of the action (3.20)

S2 =

∫
dηd3x a2Qs

[
ζ ′2 − c2s(∂ζ)

2
]

(3.40)

can be written as ∫
dηd3x

v′2

2
. (3.41)

The equation satisfied by the Mukhanov-Sasaki variable v is derived from the equation

(3.35): The time derivative of the mode function u in terms of the Mukhanov-Sasaki

variable v is

u =
v

z
, u′ =

v′

z
− z′v

z2
, u′′ =

v′′

z
− 2z′v′

z2
− z′′

z2
v +

2z′2

z3
v. (3.42)

Therefore, the left-hand side of equation (3.35)

u′′ +
(a2Qs)

′

a2Qs

u′ + c2sk
2u = 0 (3.43)

can be computed

LHS of (3.35) =
v′′

z
− 2z′v′

z2
− z′′

z2
v +

2z′2

z3
v +

2z′

z

(
v′

z
− z′v

z2

)
+ c2sk

2v

z

=
v′′

z
+

(
c2sk

2 − z′′

z

)
v

z
. (3.44)

Hence, the equation satisfied by the Mukhanov-Sasaki variable v is

v′′ +

(
c2sk

2 − z′′

z

)
v = 0. (3.45)

From the definition of the sound speed cs,

Qs =
ϵM2

pl

c2s
(3.46)
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is satisfied. From this equation, if the background spacetime is close to the de Sitter

universe in which the Hubble parameterH is constant, and if the sound speed cs changes

slowly, Qs also changes slowly. In this case, by defining the change of Qs as

δQs :=
Q̇s

HQs

, (3.47)

the relation
z′′

z
= 2(aH)2

(
1− 1

2
ϵ+

3

4
δQs

)
+O

(
ϵ2
)

(3.48)

hold.

We show that equation (3.48) holds. Since the relation between physical time t

and conformal time η is dt = adη, the relation

d

dη
=
dt

dη

d

dt
= a

d

dt
(3.49)

for the derivative holds. Using this, we can calculate the conformal time derivative

of z = a
√
2Qs to be

z′ = a
d

dt
a
√

2Qs

= aȧ
√

2Qs + a2
Q̇s√
2Qs

, (3.50)

z′′ = aȧ2
√

2Qs + a2ä
√
2Qs + 3a2ȧ

Q̇s√
2Qs

+ a3
Q̈s√
2Qs

− a3
Q̇2
s

2
√
2Q

3/2
s

. (3.51)

Therefore,

z′′

z
= ȧ2 + aä+ 3aȧ

Q̇s

2Qs

+ a2
Q̈s

2Qs

− a2
Q̇2
s

4Q2
s

= 2ȧ2

(
1

2
+
aä

2ȧ2
+ 3a

Q̇s

4ȧQs

+ a2
Q̈s

4ȧ2Qs

− a2
Q̇2
s

8ȧ2Q2
s

)

= 2ȧ2

(
1

2
+

a2

2ȧ2
ä

a
+

3

4

Q̇s

HQs

+
Q̈s

4H2Qs

− Q̇2
s

8H2Q2
s

)

= 2ȧ2
(
1

2
+

1

2H2
H2(1− ϵ) +

3

4
δQs

)
+O(ϵ2)

= 2(aH)2
(
1− 1

2
ϵ+

3

4
δQs

)
+O

(
ϵ2
)

is derived. 2
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In the asymptotic past kη → −∞, the quantum fluctuation is sufficiently smaller

than the Hubble radius csk � aH, and thus the relation

c2sk
2 � z′′

z
(3.52)

holds. In this case, the equation of motion (3.45)

v′′ +

(
c2sk

2 − z′′

z

)
v = 0 (3.53)

simplifies to

v′′ + ω2
kv ' 0, ωk := csk. (3.54)

If we choose the Bunch-Davis vacuum corresponding to a state with zero number of

particles (a vacuum that is consistent with the solution of the flat spacetime field theory

in the asymptotic past limit), we can write the solution as

v =
e−iωkη

√
2ωk

=
e−icskη√
2csk

(kη → −∞). (3.55)

With time evolution during inflation, z′′/z in the equation of motion (3.45)

v′′ +

(
c2sk

2 − z′′

z

)
v = 0 (3.56)

becomes larger and larger, and the growth term of v due to gravity becomes important at

around csk = aH. Since the sound speed is cs = 1 in the canonical model P = X−V (ϕ),

the condition csk = aH coincides with the time

k = aH (3.57)

when the wavelength of the fluctuation equals the Hubble radius. When Lagrangian

P contains a nonlinear term of kinetic energy X, the condition cs 6= 1 in general, thus

the condition csk = aH does not coincide with the time k = aH when the fluctuation

wavelength equals the Hubble radius. In the limit where the Hubble parameter H is

constant, the equation (3.48)

z′′

z
= 2(aH)2

(
1− 1

2
ϵ+

3

4
δQs

)
+O

(
ϵ2
)

(3.58)

remains only the first term, that is,

z′′

z
= 2(aH)2 =

2

η2
, (3.59)
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where we use the relation

η = − 1

aH
(3.60)

which is valid when the slow-roll parameter ϵ is sufficiently small and H can be regarded

as constant from the equation (3.31)

η ' −1 + ϵ

aH
. (3.61)

In this case, the solution of the equation of motion is given by

v = −
√
π|η|
2

[
c1H

(1)
3/2(x) + c2H

(2)
3/2(x)

]
, x = csk|η| (3.62)

using the Hankel function of the first kind H
(1)
3/2, H

(2)
3/2 whose index is ν = 3/2. Note

that the explicit expression of the Hankel function is

H
(1)
3/2(x) =

(
H

(2)
3/2(x)

)∗
= −

√
2

πx

(
1 +

i

x

)
eix (3.63)

and the coefficients are determined to be

c1 = 1, c2 = 0 (3.64)

by the condition that the limit of the asymptotic past x → ∞ coincides with the

solution (3.55)

v =
e−iωkη

√
2ωk

=
e−icskη√
2csk

(kη → −∞). (3.65)

Therefore, the solution of the mode function of the comoving curvature fluctuation is

given by

u(η, k) =
v

z
=

v

a
√
2Qs

=
1

a
√
2Qs

√
π|η|
2

√
2

πcsk|η|

(
1 +

i

csk|η|

)
e−icskη

=
H|η|
2
√
Qs

√
1

csk

(
1 +

i

csk|η|

)
e−icskη

(
η = − 1

aH

)
=

iH

2 (csk)
3/2√Qs

(1 + icskη) e
−icskη. (3.66)

The mode function (3.66) is corrected by considering the deviation from de Sitter space-

time, but the correction to the spectrum of curvature fluctuation (3.70) obtained below

is about O(ϵ) and is not important.
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The two-point correlation function when the curvature fluctuation ζ is frozen in the

asymptotic future csk � aH is given by the vacuum expectation value

〈0| ζ(0,k1)ζ(0,k2) |0〉 (3.67)

at η → 0. The power spectrum Pζ of the curvature fluctuation ζ is defined as follows:

〈0| ζ (0,k1) ζ (0,k2) |0〉 ≡ Pζ (k1) (2π)
3δ(3) (k1 + k2) . (3.68)

Using the Fourier expansion (3.27)

ζ(η,x) =
1

(2π)3

∫
d3kζ(η,k)eik·x,

ζ(η,k) = u(η,k)a(k) + u∗(η,−k)a†(−k)

and the commutation relation (3.28), (3.29)[
a (k1) , a

† (k2)
]

= (2π)3δ(3) (k1 − k2) ,

[a (k1) , a (k2)] =
[
a† (k1) , a

† (k2)
]
= 0,

the two-point correlation function is expressed as

〈0| ζ (0,k1) ζ (0,k2) |0〉 = 〈0|
{
u(0,k1)a(k1) + u∗(0,−k1)a

†(−k1)
}

×
{
u(0,k2)a(k2) + u∗(0,−k2)a

†(−k2)
}
|0〉

= u(0,k1)u
∗(0,−k2)(2π)

3δ(3) (k1 + k2) . (3.69)

Consequently, the power spectrum is obtained by using the mode function (3.66) as

follows:

Pζ(k) = |u(0, k)|2 = H2

4Qsc3sk
3
. (3.70)

Here, using the dimensionless quantity

Pζ(k) :=
k3

2π2
Pζ(k) =

H2

8π2Qsc3s
=

H2

8π2ϵM2
plcs

(
Qs =

ϵM2
pl

c2s

)
, (3.71)
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the vacuum expectation value of the curvature fluctuation when the power spectrum

Pζ(k) is added up by the mode k of all wavenumbers is denoted by

〈ζ2〉 =
1

2π2

∫
dk k2Pζ(k)

=

∫
Pζ(k)d ln k. (3.72)

This dimensionless quantity Pζ(k) is also called the power spectrum. This result was

derived using a comoving gauge, but the same result can be obtained using a Newton

gauge.

Since the curvature fluctuation ζ quickly approaches to a constant value for csk < aH,

we only need to calculate the spectrum (3.70) when csk = aH during inflation. The

time when csk = aH occurs later for larger wave number k, and therefore Pζ(k) has

dependence on the k. To quantify this fact, we define the spectral index

ns − 1 ≡ d lnPζ
d ln k

∣∣∣∣
csk=aH

(3.73)

of the curvature fluctuation. When the change of sound speed cs during inflation is

slow, cs, H is regarded as a constant and the logarithmic change of wavenumber d ln k

at csk = aH is approximately

d ln k = d ln a =
da

a
=
ȧ

a
dt = Hdt. (3.74)

Using this, the spectral index (3.73) is expressed as

ns − 1 =
d lnPζ
d ln k

∣∣∣∣
csk=aH

=
1

H

d

dt
lnPζ

=
1

H

Ṗζ
Pζ

=
1

H

ϵcs
H2

d

dt

H2

ϵcs

=
ϵcs
H3

(
2HḢ

ϵcs
− H2ϵ̇

ϵ2cs
− H2ċs

ϵc2s

)

= −2

(
− Ḣ

H2

)
− ϵ̇

Hϵ
− ċs
Hcs

= −2ϵ− ηs − s, (3.75)
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where we define the rate of change of the slow-roll parameter ϵ and the sound speed cs:

ηs :=
ϵ̇

Hϵ
, s :=

ċs
Hcs

. (3.76)

Since

ϵ, |ηs|, |s| � 1 (3.77)

hold during inflation, the spectral index ns is close to 1. In this case, from the definition

of spectral exponent (3.73), we have

Pζ ∝ kns−1 = k0, (3.78)

which means that the amplitude is almost constant and independent of k. In other

words, it is almost scale invariant. The initial spectrum of the observed temperature

fluctuations of the background radiation (i.e., the spectrum before the fluctuations

re-enter the Hubble radius) is close to scale-invariant, which is consistent with the

theoretical prediction of inflation. Because ϵ, ηs, s are non-zero and their values are

different for each model of inflation, it is possible to distinguish which model is consistent

by observing its deviation from the scale invariance.

The spectrum Pζ(k) can be expressed as

Pζ(k)
Pζ (k0)

=

(
k

k0

)ns−1

(3.79)

i.e.

Pζ(k) = Pζ (k0)
(
k

k0

)ns−1

(3.80)

by expanding around some wavenumber k0, and is bounded by Pζ (k0) and ns from

observations of background radiation. We also define a quantity

αs :=
dns
d ln k

∣∣∣∣
csk=aH

(3.81)

called running, which characterizes the scale dependence on ns. Running αs is a second-

order quantity with respect to the slow-roll parameter. When running αs is taken into

account, a correction is added to the power spectrum (3.80).

Consider a canonical model whose Lagrangian is given by

P = X − V (ϕ), (3.82)

27



and find a concrete expression for the spectral index ns and running αs in terms of

slow-roll parameters. In this case, since the sound speed is cs = 1, we have

s =
ċs
Hcs

= 0. (3.83)

According to equation (2.23)

ϵV ' ϵ, ηV ' 2ϵ− ϵ̇

2Hϵ
= 2ϵ− 1

2
ηs, (3.84)

since relations

ϵV = ϵ, ηs = 4ϵV − 2ηV (3.85)

hold, the spectral index (3.75)

ns − 1 = −2ϵ− ηs − s (3.86)

becomes

ns − 1 = −6ϵV + 2ηV . (3.87)

Furthermore, from equation (2.23)

ϵV ' ϵ, ηV ' 2ϵ− ϵ̇

2Hϵ
, ξ2V '

(
2ϵV − η̇V

HηV

)
ηV , (3.88)

the relations
ϵ̇V
H

= −2ϵV ηV + 4ϵ2V ,
η̇V
H

= 2ϵV ηV − ξ2V (3.89)

hold, thus the specific expression for the running αs is

αs =
dns
d ln k

∣∣∣∣
csk=aH

=
1

H

d

dt
ns

=
1

H
(−6ϵ̇V + 2η̇V )

= −6
(
−2ϵV ηV + 4ϵ2V

)
+ 2

(
2ϵV ηV − ξ2V

)
= 16ϵV ηV − 24ϵ2V − 2ξ2V . (3.90)

Next, let us consider the tensor perturbations generated by the inflation, i.e., the

spectrum of gravitational waves. The gravitational waves hij has polarization states

and can be written as

hij = h+e
+
ij + h×e

×
ij (3.91)
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using two polarization tensors e+ij and e×ij. The polarization tensors e+ij and e×ij are

symmetric tensors and satisfy the transverse wave condition and traceless condition

kieλij = kjeλij = 0, eλii = 0 (λ = +,×). (3.92)

In addition, the normalization condition and the orthogonality condition

e+ij(k)e
+∗
ij (−k) = e×ij(k)e

×∗
ij (−k) = 2, e+ij(k)e

×∗
ij (−k) = 0 (3.93)

are satisfied. Since the tensor perturbation equation is(
hij
)′′

+ 2H
(
hij
)′
+
(
2K −∇2

)
hij = 0, (3.94)

the components h+ and h× satisfy equation

h′′λ + 2Hh′λ + k2hλ = 0 (3.95)

in Fourier space respectively. For the tensor mode hλ, expanding the action (2.1)

S =

∫
d4x

√
−g
[
M2

pl

2
R + P (ϕ,X)

]
(3.96)

to the second order yields

St =
∑
λ=+,x

∫
dηd3x a2Qt

[
h′2λ − (∂hλ)

2] , (3.97)

where we define

Qt :=
M2

pl

4
. (3.98)

By variating this action with respect to hλ, we can also obtain the equation of motion

(3.95). In the model (2.1), the propagation velocity (sound speed) of the tensor mode is

ct = 1, as can be seen from the coefficient of the spatial derivative term in the equation

(3.95).

Similar to the previous discussion on scalar perturbations, the canonical quantum field

corresponding to the tensor mode hλ is

vλ := zthλ, zt := a
√
2Qt. (3.99)

Using these, the equation of motion (3.95) becomes

v′′λ +

(
k2 − z′′t

zt

)
vλ = 0. (3.100)
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The mode function with the Bunch-Davis vacuum as the initial state in the asymptotic

past is

hλ(η, k) =
iHe−ikη

2k3/2
√
Qt

(1 + ikη) (3.101)

at time η. This function approaches to

hλ →
iH

2k3/2
√
Qt

(3.102)

after the crossing with the Hubble radius k = aH. Using the normalization condition

e+ij(k)e
+∗
ij (−k) = e×ij(k)e

×∗
ij (−k) = 2 (3.103)

for the polarization tensor eλij, the power spectrum of gravitational waves becomes

Ph(k) =
4k3

2π2
|hλ(0, k)|2 =

H2

2π2Qt

=
2H2

π2M2
pl

. (3.104)

Since the mode function Hλ freezes at k < aH, we only need to find the value at k = aH

in crossing. The spectral index of the gravitational wave is given by

nt :=
d lnPh
d ln k

∣∣∣∣
k=aH

=
1

H

d

dt
lnPh

=
1

H3

d

dt
H2

= −2

(
− Ḣ

H2

)
= −2ϵ, (3.105)

and the running is

αt :=
dnt
d ln k

∣∣∣∣
k=aH

=
1

H

d

dt
nt

= −2
ϵ̇

H

= −2ϵηs

(
ηs =

ϵ̇

Hϵ

)
. (3.106)

In particular, when the canonical model P = X − V (ϕ), using relation ηs = 4ϵV − 2ηV ,

the running is

αt = −8ϵ2V + 4ϵV ηV . (3.107)

We define the tensor-to-scalar ratio as an important physical quantity:
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r :=
Ph(k)
Pζ(k)

(3.108)

From the power spectrum of the scalar perturbation (3.71)

Pζ(k) =
H2

8π2ϵM2
plcs

(3.109)

and the power spectrum of the tensor perturbation (3.104)

Ph(k) =
2H2

π2M2
pl

, (3.110)

the expression for the tensor-to-scalar ratio becomes

r = 16csϵ. (3.111)

Since cs = 1 in the canonical model P = X − V (ϕ), we can calculate (3.108) with

k = aH. When cs 6= 1, we only need to find the ratio r for the case where Pζ(k)
and Ph(k) become almost constant. From the spectral index of the gravitational wave

(3.105)

nt = −2ϵ (3.112)

and the tensor-to-scalar ratio (3.108), we obtain

r = −8csnt (3.113)

which is called consistency relation.

From the analysis of combined data of Planck, BICEP/Keck, WMAP polarization

(WP), ACT and SPT power spectra on small scales when the sound speed is cs = 1,

we obtain the limits

Pζ (k0) = 2.198+0.056
−0.054 × 10−9 (68%CL), (3.114)

ns(k0) = 0.9585± 0.0070 (68%CL), (3.115)

r(k0) < 0.036 (95%CL) (3.116)
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at k0 = 0.002Mpc−1.

In the case of the canonical model P = X − V (ϕ), H(k0) is obtained from the scalar

spectrum (3.71)

Pζ(k) =
k3

2π2
Pζ(k) =

H2

8π2Qsc3s
=

H2

8π2ϵM2
plcs

(
Qs =

ϵM2
pl

c2s

)
(3.117)

and the observed value (3.114):

H(k0) =
√
ϵ(k0)× 2

√
2πMpl

√
Pζ(k0) '

√
r(k0)× 1015GeV. (3.118)

Thus, the typical energy scale of inflation is estimated to be around 1014GeV.

In addition to the spectral index ns and tensor-to-scalar ratio r, the most important

observables for identifying inflationary models is the parameter fNL, which characterizes

non-Gaussianity of curvature fluctuation. Non-Gaussianity is defined by

〈ζζζ〉 = (2π)7δ(3)(p1 + p2 + p3)p̃
2
ζ

(
9

10
fNL

)
1

(p1p2p3)2
(3.119)

in the case where the configuration of the external momentum are equilateral

p := p1 = p2 = p3, (3.120)

where 〈ζζζ〉 is the three-point correlation function of curvature fluctuation and p̃2ζ is

a shorthand for the observed value (3.114). We sometimes call 〈ζζζ〉 non-Gaussianity

or fNL non-Gaussianity. Since the constraints for non-Gaussianity fNL are obtained

from observations as shown in Fig.3.1, it is possible to select models by performing

theoretical calculations and comparing their values. In Chapter 4, we will construct

an effective field theory of inflation, and in Chapter 5, we will review the method of

Feynman graphs in elementary particle theory for computing three-point correlation

function.
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Figure 3.1: Schematic illustration of current and future constraints on non-Gaussianity
(Figure taken from [104]).
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Chapter 4

Effective field theory of inflation

Effective field theory is a method of writing down to Lagrangian all operators that

are allowed by the symmetry of the system. This method allows us to investigate

phenomenology at a given energy scale and plays the role of a guiding principle in

particle theory and condensed matter physics because it is a systematic and consistent

construction method. In discussing the effective field theory of inflation, let us consider

inflation as Goldstone’s theory of time translation. The discussion here is based on

[96,99].

4.1 Inflation as Goldstone boson theory

In order to construct an effective field theory of inflation, let us consider again what

the physics of inflation is. What we know about inflation is that the universe is a quasi

de Sitter spacetime, a period of accelerated expansion. It is important to note that

it is not strictly de Sitter spacetime, but quasi de Sitter spacetime. This is because

inflation will end at some point and move to the Big Bang cosmology. This means that

the translational symmetry of time is spontaneously broken. Therefore, there exists

a physical object that plays the role of a clock, which we choose as the simplest field

to be a scalar field ϕ and call an inflaton. Using the coordinate invariance of general

relativity, we can move to a coordinate system such that this physical clock is zero,

i.e., a comoving gauge, by choosing a spatial slice where the time fluctuation is zero.

In other words, the change of ϕ is adopted as a clock. Concretely, it is a differential

homomorphic mapping of eigentime from an arbitrary coordinate system.
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As an example, consider the case where we are in a spatially flat gauge with δϕ(t,x) 6=
0. We consider a time diffeomorphism map

t 7→ t̃ = t+ δt(t,x) (4.1)

such that we move from a scalar field and a spatial metric

ϕ(t) = ϕ0(t) + δϕ(t,x), γij = a2(t)

(
δij + hij(t) +

1

2
hikhkj + · · ·

)
(4.2)

in a spatially flat gauge to a scalar field and a spatial metric

ϕ = ϕ0(t̃), γij = a2(t̃)e2ζ
(
δij + hij(t̃) +

1

2
hikhkj + · · ·

)
(4.3)

in a comoving gauge. That is, consider what form δt(t,x) should take. The inflaton

undergoes the following transformation at the first order (which can be generalized to

any order):

ϕ(t) = ϕ0(t̃− δt) + δϕ(t̃− δt,x)

= ϕ0(t̃)− ϕ̇0(t̃)δt+ δϕ(t̃,x). (4.4)

Since we want to move to a coordinate system such that the inflaton fluctuation is zero

after the transformation, from

0 = δ̃ϕ(t̃,x) = −ϕ̇0(t̃)δt(t,x) + δϕ(t,x) (4.5)

we can take δt to be

δt =
δϕ

ϕ̇0

. (4.6)

Since the spatial metric is

γij = a2(t) (δij + hij)

= a2(t̃− δt)
(
δij + hij(t̃− δt)

)
=

(
a2(t̃)− 2aȧ(t̃)δt

)
(δij + hij)

= a2(t̃)(1− 2Hδt) (δij + hij) , (4.7)

the relation between the scalar fluctuation ζ and the inflaton fluctuation δϕ can be read

ζ = −Hδt = −Hδϕ

ϕ̇0

. (4.8)
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Now that we understand how to move to δϕ(t,x) = 0, let us assume that we are now

in a comoving gauge. Following the method of effective field theory, all possible degrees

of freedom must be written in the action. Now, the possible degrees of freedom are

the fluctuations of the metric. Lagrangian must be expanded in terms of fluctuations

of the metric and all operators must be written down to match the symmetry of the

problem. Now we are in a situation where the spatial coordinates on the spatial slice

can be arbitrarily changed in a different way for each spatial slice, which means that

the remaining gauge symmetry is a time-dependent diffeomorphism map of space:

xi 7→ x̃i = xi + ξi(t,x). (4.9)

Then, what is the most general Lagrangian in the comoving gauge? Lagrangian is a

function of the metric gµν and must be written down as an invariant operator under a

time-dependent diffeomorphism map of space. In addition to the terms of the ordinary

Riemann tensor, which are invariant under the differential homomorphic mapping of

space-time, many extra terms are now allowed because of the loosening of the symmetry

of the system. The extra term describes the additional degrees of freedom eaten by

graviton. For example, it is easy to verify that g00 is a scalar as in

g̃00 =
∂t̃

∂xµ
∂t̃

∂xν
gµν = δ0µδ

0
νg

µν = g00 (4.10)

under the diffeomorphism map of the space (t̃ = t). Thus, g00 is free to enter the

Lagrangian in the comoving gauge. The polynomial in g00 is the only quantity that can

be allowed in Lagrangian as a term without derivatives. Given a slice of spacetime, it is

also allowed to write a geometric object describing this slice. For example, the external

curvature Kµν on a time-constant surface is a tensor invariant under a diffeomorphism

map of space, and can be written in Lagrangian. Let nµ be a vector orthogonal to the

time-constant surface, the external curvature is denoted by

Kµν = γσµ∇σnν , (4.11)

where ∇ is the covariant derivative and γµν is the induced metric on the spatial slice

γµν = gµν + nµnν . (4.12)
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In general, writing the Lagrangian as L(g) and considering the fluctuation g+ δg of the

metric g, we can expand it as

L(g + δg) = L(g) + δL
δg

∣∣∣∣
g

δg +O
(
(δg)2.

)
(4.13)

The first-order coefficient of the fluctuation δg is zero from the equation of motion.

Thus, noting the fact that an arbitrary function of time can be multiplied by each term

of the action, the most general Lagrangian can be written as

S =

∫
d4x

√
−g
[
1

2
M2

PlR− c(t)g00 − Λ(t) +
1

2!
M2(t)

4
(
δg00

)2
+

1

3!
M3(t)

4
(
δg00

)3
−M1(t)

3

2

(
δg00

)
δKµ

µ −
M2(t)

2

2
(δKµ

µ)
2 − M3(t)

2

2
δKµ

νδK
ν
µ + . . .

]
,

(4.14)

where M2(t),M3(t), etc. are arbitrary functions of time, and · · · denotes higher-order

fluctuations and derivative terms. Note that the concrete expression of δg00 is

δg00 = g00 + 1, (4.15)

and

δKµν = Kµν − a2Hγµν (4.16)

is the fluctuation of the external curvature of the time constant surface with unper-

turbed background FLRW metric. Only the first three terms of the action (4.14) con-

tain the first-order perturbations around the chosen FLRW solution, all other terms are

explicitly the second-order or higher perturbations. The coefficients c(t),Λ(t) are deter-

mined by the equations of motion of the background spacetime. Since the background

spacetime is a flat FLRW universe

ds2 = −dt2 + a2(t)dx2, (4.17)

the left-hand side of the Einstein equation takes the form of the well-known Friedmann

equation, and the right-hand side is contributed by the energy momentum tensor

Tµν = − 2√
−g

δSmatter

δgµν
, (4.18)

we obtain

H2 =
1

3M2
Pl

[c(t) + Λ(t)],

ä

a
= Ḣ +H2 = − 1

3M2
Pl

[2c(t)− Λ(t)]
(4.19)
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as the equation of motion. Solving these for c,Λ yields

c(t) = −M2
PlḢ, (4.20)

Λ(t) = M2
Pl

(
3H2 + Ḣ

)
, (4.21)

then the action (4.14)

S =

∫
d4x

√
−g
[
1

2
M2

PlR− c(t)g00 − Λ(t) +
1

2!
M2(t)

4
(
δg00

)2
+

1

3!
M3(t)

4
(
δg00

)3
−M1(t)

3

2

(
δg00

)
δKµ

µ −
M2(t)

2

2
(δKµ

µ)
2 − M3(t)

2

2
δKµ

νδK
ν
µ + . . .

]
(4.22)

can be written as

S =

∫
d4x

√
−g
[
1

2
M2

PlR +M2
PlḢg

00 −M2
Pl

(
3H2 + Ḣ

)
+
1

2!
M2(t)

4
(
δg00

)2
+

1

3!
M3(t)

4
(
δg00

)3
−M1(t)

3

2

(
δg00

)
δKµ

µ −
M2(t)

2

2
(δKµ

µ)
2 − M3(t)

2

2
δKµ

νδK
ν
µ + · · ·

]
.

(4.23)

As mentioned above, the coefficients of all operators of actions are generally time depen-

dent. However, we are interested in solutions where H, Ḣ does not change significantly

in some Hubble time. Therefore, it is natural to assume that all operators do not change

significantly in time as well. Under this assumption, Lagrangian is approximately time

translation invariant. Hence, the time dependence generated by the loop effect is sup-

pressed by a small breaking parameter.

It is important to note that this approach not only describes the most general Lagr-

nagian of scalar modes, but also the most general Lagrnagian of gravity. High energy

effects are contained, for example, in the operator δRµνρσ, which is a perturbation of

the Riemann tensor. These contributions are higher order terms of the derivative.

Let us look at the relationship between the inflation model which we have dealt with

in the previous chapters and effective field theory. A model with a canonical kinetic
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term and a slow-roll potential V (ϕ) can be written as

Scan =

∫
d4x

√
−g
[
−1

2
(∂ϕ)2 − V (ϕ)

]
=

∫
d4x

√
−g

[
− ϕ̇0(t)

2

2
g00 − V (ϕ0(t))

]
(4.24)

in the comoving gauge. The Friedmann equation is

ϕ̇2
0(t) = −2M2

PlḢ, (4.25)

V (ϕ0(t)) = M2
Pl

(
3H2 + Ḣ

)
(4.26)

with

P = X − V =
1

2
ϕ̇2
0(t)− V (ϕ0(t)) (4.27)

in equations (2.5) and (2.6)

3M2
plH

2 = 2XP,X − P,

M2
plḢ = −XP,X

in the general Lagrangian P case. Hence, the action is

Scan =

∫
d4x

√
−g
[
1

2
M2

PlR +M2
PlḢg

00 −M2
Pl

(
3H2 + Ḣ

)]
. (4.28)

Comparing this with the effective action (4.23)

S =

∫
d4x

√
−g
[
1

2
M2

PlR +M2
PlḢg

00 −M2
Pl

(
3H2 + Ḣ

)
+
1

2!
M2(t)

4
(
δg00

)2
+

1

3!
M3(t)

4
(
δg00

)3
−M1(t)

3

2

(
δg00

)
δKµ

µ −
M2(t)

2

2
(δKµ

µ)
2 − M3(t)

2

2
δKµ

νδK
ν
µ + · · ·

]
,

we can see that except for the first three terms, all other terms are zero. That is,

the action with a canonical kinetic term and slow-roll potential (4.28) is the simplest

example of the effective action (4.23).
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4.2 Stückelberg trick and Goldstone boson equiva-

lence theorem

We have seen that the comoving gauge Lagrangian (4.23) is general expression and

includes slow-roll inflation. However, the scalar degrees of freedom are not obvious, as

in the scalar field ϕ of the slow-roll inflation (4.24). We will now rewrite the comoving

gauge Lagrangian in a form where the scalar degrees of freedom are obvious, and fur-

ther show that the action is of simpler form for the slow-roll inflation that we usually

consider.

As a simple example, we consider the U(1) gauge theory of electromagnetic interaction.

As is well known, the invariant action for the gauge transformation

Aµ 7→ A′
µ = Aµ +

1

g
∂µα (4.29)

is

S =

∫
d4x

(
−1

4
FµνF

µν

)
. (4.30)

The action

S =

∫
d4x

(
−1

4
FµνF

µν − 1

2
m2AµA

µ

)
, (4.31)

which includes the mass term, is not gauge invariant:

S 7→ S ′ =

∫
d4x

(
−1

4
FµνF

µν − 1

2
m2

(
Aµ +

1

g
∂µα

)(
Aµ +

1

g
∂µα

))
. (4.32)

Introducing a scalar field that transforms as

π 7→ π′ = π − α (4.33)

into this action by replacement

α → π (4.34)

yields a gauge-invariant action

S =

∫
d4x

(
−1

4
FµνF

µν − 1

2
m2

(
Aµ +

1

g
∂µπ

)(
Aµ +

1

g
∂µπ

))
. (4.35)

In other words, the gauge symmetry is restored by introducing the field π into the

action with the broken mass term. This method is called the Stückelberg trick.

Consider a field

πc :=
m

g
π. (4.36)
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which is a canonical normalization of π. The advantage of treating the Nambu-Goldstone

boson in this way is that the mixing terms between the Nambu-Goldstone boson and

the longitudinal wave component of the gauge field can be neglected at energy E � m.

In fact, the mixing term takes the form

m2

g
Aµ∂

µπ = mAµ∂
µπc, (4.37)

which is negligible at energy E � m because it is smaller than the canonical kinetic

term (πc)
2. This fact is called the Goldstone boson equivalence theorem.

Let us apply the same process to the case of a breaking of the differential homomorphic

map of time. We consider the action∫
d4x

√
−g
[
A(t) +B(t)g00(x)

]
(4.38)

as an example. Under the breaking of the differential homomorphic map of time

t 7→ t̃ = t+ ξ0(x), x 7→ x̃ = x, (4.39)

the time-time component of the metric g00 transforms as in

g00(x) 7→ g̃00(x̃(x)) =
∂x̃0(x)

∂xµ
∂x̃0(x)

∂xν
gµν(x). (4.40)

The action (4.38) becomes∫
d4x
√
−g̃(x̃(x))

∣∣∣∣∂x̃∂x
∣∣∣∣ [A(t) +B(t)

∂x0

∂x̃µ
∂x0

∂x̃ν
g̃µν(x̃(x))

]
(4.41)

under this transformation. Rewriting the integral variable as x̃ yields∫
d4x̃
√

−g̃(x̃)
[
A
(
t̃− ξ0(x(x̃))

)
+B

(
t̃− ξ0(x(x̃))

) ∂ (t̃− ξ0(x(x̃))
)

∂x̃µ
∂
(
t̃− ξ0(x(x̃))

)
∂x̃ν

g̃µν(x̃)

]
. (4.42)

We introduce the Nambu-Goldstone boson as in the U(1) gauge theory case. Replace

ξ0 appearing in the action (4.42) by

ξ0(x(x̃)) → −π̃(x̃). (4.43)
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Dropping the tilde for readability gives us∫
d4x
√

−g(x)
[
A(t+ π(x)) +B(t+ π(x))

∂(t+ π(x))

∂xµ
∂(t+ π(x))

∂xν
gµν(x)

]
. (4.44)

If the transformation law of the Nambu-Goldstone boson π is

π(x) 7→ π̃(x̃(x)) = π(x)− ξ0(x), (4.45)

we can confirm that the action (4.44) is gauge invariant at all orders (not only for

infinitesimal transformations). In other words, the differential homomorphic map of

time is recovered.

Applying this process to the comoving gauge action (4.23)

S =

∫
d4x

√
−g
[
1

2
M2

PlR +M2
PlḢg

00 −M2
Pl

(
3H2 + Ḣ

)
+
1

2!
M2(t)

4
(
δg00

)2
+

1

3!
M3(t)

4
(
δg00

)3
−M1(t)

3

2

(
δg00

)
δKµ

µ −
M2(t)

2

2
(δKµ

µ)
2 − M3(t)

2

2
δKµ

νδK
ν
µ + · · ·

]
,

we obtain the action with restored gauge symmetry:

S =

∫
d4x

√
−g
[
1

2
M2

PlR−M2
Pl

(
3H2(t+ π) + Ḣ(t+ π)

)
+M2

PIḢ(t+ π) (∂µ(t+ π)∂ν(t+ π)gµν)

+
M2(t+ π)4

2!
(∂µ(t+ π)∂ν(t+ π)gµν + 1)2

+
M3(t+ π)4

3!
(∂µ(t+ π)∂ν(t+ π)gµν + 1)3 + . . .

]
.

(4.46)

As in the case of U(1) gauge theory, we see that the Goldstone boson equivalence

theorem simplifies the action. Let us consider the case M2 = M3 = · · · = 0, which

involves ordinary slow-roll inflation. The leading term in the mixing of gravity and the

Nambu-Goldstone boson π is of the form

M2
PlḢ (∂µπ) δg

0µ. (4.47)
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Canonical normalization of gravity and the Nambu-Goldstone boson π are

πc :=
√
2MPl(−Ḣ)1/2π, δgµνc :=MPlδg

µν . (4.48)

Recalling the definition of the slow-roll parameter (2.10)

ϵ = − Ḣ

H2
, (4.49)

the mixing term (4.47) is evaluated as

M2
PlḢ (∂µπ) δg

0µ ∼ (−Ḣ)1/2 (∂µπc) δg
0µ
c ∼ ϵ1/2H (∂µπc) δg

0µ
c . (4.50)

Hence, when the energy scale is

E � ϵ1/2H, (4.51)

the mixing term is smaller than the kinetic term

M2
PlḢ (∂µπ) (∂

µπ) ∼ (∂µπc) (∂
µπc) (4.52)

and can be neglected. That is, when the slow-roll parameter ϵ is small, mixing term is

negligible inside the horizon (UV). In such a case, the action (4.46)

S =

∫
d4x

√
−g
[
1

2
M2

PlR−M2
Pl

(
3H2(t+ π) + Ḣ(t+ π)

)
+M2

PIḢ(t+ π) (∂µ(t+ π)∂ν(t+ π)gµν)

+
M2(t+ π)4

2!
(∂µ(t+ π)∂ν(t+ π)gµν + 1)2

+
M3(t+ π)4

3!
(∂µ(t+ π)∂ν(t+ π)gµν + 1)3 + . . .

]
,

becomes surprisingly easy:

Sπ =

∫
d4x

√
−g

[
1

2
M2

PlR−M2
PlḢ

(
π̇2 − (∂iπ)

2

a2

)

+2M4
2

(
π̇2 + π̇3 − π̇

(∂iπ)
2

a2

)
− 4

3
M4

3 π̇
3 + . . .

]
.

(4.53)
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Chapter 5

in-in formalism and Feynman rule

5.1 Path integral in in-in formalism

Now that we have constructed the effective action of inflation, let us construct the

feynman rule in curved space-time as a method to compute the correlation function.

In this section, we consider theories with Lagrangian

Lcl =
1

2
UABφ′Aφ′B + VA(φ)φ′A +W(φ) (5.1)

on the FLRW background according to [105], and derive the Feynman rule in in-in

formalism (Schwinger-Keldysh formalism) by constructing path integrals. We denote

the scalar fields by φA, where A,B are subscripts to distinguish different fields, a prime

denotes the derivative with respect to the conformal time and UAB is a “measurement”

for the fields. VA(φ),W(φ) are arbitrary functions of φ and its spatial derivative, but the

dependence of the spatial derivative is not explicitly mentioned to avoid complications.

The canonical conjugate momentum π of φ and Hamiltonian are defined by

πA =
∂Lcl[φ]

∂φ′A ,

H [π, φ] = πAφ
′A − Lcl[φ],

(5.2)

which are explicitly given by

πA = UABφ′B + VA(φ),

H [π, φ] =
1

2
πAπ

A − VAπA +
1

2
VAVA −W . (5.3)

Now, let us compute the expectation value 〈Q(η)〉 for operator

Q(η) := φA1 (η,x1) · · ·φAN (η,xN) . (5.4)
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The expectation value 〈· · · 〉 is taken for the state |Ω〉. The state |Ω〉 is determined at

some initial time slice η = η0, and usually the vacuum state at η = η0 is adopted.

Starting from the Heisenberg picture, consider the path integral expression for the

expectation value of 〈Q(η)〉. In the Heisenberg picture, the initial state is time-

independent and the expectation value 〈Q(η)〉 is given by

〈Q〉 = 〈Ω|Q(η)|Ω〉. (5.5)

In order to derive the path integral expression for the expectation value of 〈Q(η)〉, let
us first rewrite 〈Q(η)〉 in terms of the amplitudes between the in and out states. We

can naturally adopt |Ω〉 as the in state, but we do not know what the out state is

because the inflationary spacetime is a non-equilibrium system. To solve this problem,

we perform averaging. That is, we choose a time slice Σf at arbitrary time ηf ≥ η and

insert the complete set of basis of states

1 =

∫ ∏
x

dOα(ηf ,x) |Oα(ηf ,x)〉 〈Oα(ηf ,x)| . (5.6)

into the expectation value 〈Q(η)〉 on Σf :

〈Q〉 =
∫ ∏

x

dOα(ηf ,x)
〈
Ω |Oα(ηf ,x)〉 〈Oα(ηf ,x)| φA1 (η,x1) · · ·φAN (η,xN)

∣∣Ω〉
(5.7)

where Oα (η,xi) is a local operator consisting of field operators in Lagrangian. All

of these operators are on the same time slice. There is also the ambiguity that the

complete set of basis can be inserted in many different places, but the result is the

same no matter where it is inserted.

The two factors 〈Ω|Oα〉 and 〈Oα|Q|Ω〉 on the right-hand side of Eq. (5.7) are in the

form of S-matrix, which is suitable for the path integral expression. In particular,

〈Ω|Oα〉 resembles a conjugate quantity of the vacuum amplitude with the time order

of the in and out states flipped. Therefore, we call it the anti-time-ordered factor and

similarly 〈Oα|Q|Ω〉 time-ordered factor.

In order to write down the path integral expression for the two factors, we foliate

between the initial slice Σ0 and the final slice Σf in infinitely many time slices, as

usual. Then, the complete set of basis

1 =

∫ ∏
x

dφ(ηi,x) |φ(ηi,x)〉 〈φ(ηi,x)| (5.8)
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of the field operator φA and the complete set of basis

1 =

∫ ∏
x

dπ(ηi,x) |π(ηi,x)〉 〈π(ηi,x)| (5.9)

of its conjugate operator πA are inserted into each slices Σi. In particular, the time-

ordered factor can be written as the path integral

〈Oα(ηf ,x) |Q(η)|Ω〉 =
∫

Dφ+Dπ+ exp

[
i

∫ ηf

η0

dηd3x
(
π+Aφ

′A
+ − H [π+, φ+]

)]
× φA1

+ (η, x1) · · ·φAN
+ (η, xN) 〈Oα(η0,x)|φ+ (ηf )〉 〈φ+ (η0) |Ω〉

(5.10)

over the field configuration φA+(η,x) and its conjugate momentum πA+(η,x), and the

anti-time-ordered factor can be written as the path integral

〈Ω|Oα(ηf ,x)〉 =
∫

Dφ−Dπ− exp

[
−i
∫ ηf

η0

dηd3x
(
π−Aφ

′A
− − H [π−, φ−]

)]
× 〈φ− (ηf ) |Oα(η0,x)〉 〈Ω|φ− (η0)〉

(5.11)

over the field configuration φA−(η,x) and its conjugate momentum πA−(η,x). In the

expressions above, we introduced variables with + and − subscripts for time-ordered

factors and anti-time-ordered factors.

We show that the path integral expressions (5.10) and (5.11) can be obtained

(the subscript A is omitted here). First, we insert the complete set at each time

into the time-ordered factors 〈Oα(ηf ,x)|Q(η)|Ω〉:

〈Oα(ηf ,x)|Q(η)|Ω〉 =
〈
Oα(η0,x)

∣∣e−iH(ηf−η0)Q(η)
∣∣Ω〉

=

∫ ∏
x

dφ (ηf ,x) 〈Oα(η0,x) |φ (ηf ,x)〉 〈φ (ηf ,x)|

×e−iH(ηf−η0)Q(η)|Ω〉

=

∫ ∏
x

dφ (ηf ,x) dφ (ηf−1,x) 〈Oα(η0,x) |φ (ηf ,x)〉

× 〈φ (ηf ,x)| e−iH(ηf−ηf−1) |φ (ηf−1,x)〉 〈φ (ηf−1,x)|

×e−iH(ηf−1−η0)Q(η)|Ω〉 (5.12)

Repeat this process, and divide the time into N equal parts

ε :=
ηf − η0
N

(5.13)
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and set N → ∞, we can obtain

〈Oα (ηf ) |Q(η)|Ω (η0)〉 = lim
N→∞

∫ N−1∏
n=0

∏
x

dφ (ηn,x) 〈Oα(η0,x)|φ (ηf )〉

×Q(η)G [φn+1, φn; ε] 〈φ (η0,x) |Ω〉 , (5.14)

where φn = φ(ηn,x) and ηf = ηN . We denote G [φn+1, φn; ε] by Green’s function,

which is given by

G [φn+1, φn; ε] :=
〈
φn+1

∣∣e−iHε∣∣φn〉
= 〈φn+1|(1− iHε)|φn〉

= 〈φn+1|φn〉 − iH (φn) ε 〈φn+1|φn〉

= 〈φn+1|φn〉 e−iH(φn)ε

=

∫ ∏
x

dπn
2π

exp

[
i

∫
d3xπn {φn+1 − φn}

]
exp [−iH (φn) ε]

=

∫ ∏
x

dπn
2π

exp

[
iε

∫
d3x

(
πn
φn+1 − φn

ε
− H

)]
. (5.15)

In the transformation of the equation in the second to third lines, by acting the

Hamiltonian as an operator on the state |φn〉, we replaced Hamiltonian with the

c-number H(φn). In the deformation of the equation in the fourth to fifth lines, we

used the field theoretic version

〈φn+1|φn〉 =
∫ ∏

x

dπn
2π

exp

[
i

∫
d3xπn {φn+1 − φn}

]
(5.16)

of orthogonality

〈xn+1|xn〉 =
∫
dpn
2π

exp [ipn (xn+1 − xn)] (5.17)

in quantum mechanics. Therefore, if the integral measure are written collectively

as

DφDπ := lim
N→∞

N−1∏
n=0

∏
x

dφ (ηn,x) dπ (ηn,x)

2π
=

∏
η0≤η≤ηf

∏
x

dφ (ηn,x) dπ (ηn,x)

2π

(5.18)
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and we assign the subscript + to the field, the time-ordered factors are denoted as

〈Oα (ηf ) |Q(η)|Ω (η0)〉 =

∫
Dφ+Dπ+ exp

[
i

∫ ηf

η0

dηd3x
(
π+Aφ

′A
+ − H [π+, φ+]

)]
× φA1

+ (η, x1) · · ·φAN
+ (η, xN) 〈Oα(η0,x)|φ+ (ηf )〉 〈φ+ (η0) |Ω〉 .

(5.19)

Similarly, we can obtain

〈Ω (η0) |Oα(ηf ,x)〉

=
〈
Ω
∣∣e−iHη0eiHηf ∣∣Oα(η0,x)

〉
=

∫ ∏
x

dφ (η0,x) 〈Ω|φ (η0,x)〉 〈φ (η0,x)| e−iHη0eiHηf |Oα(η0,x)〉

=

∫ ∏
x

dφ (η0,x) dφ (η1,x) 〈Ω|φ (η0,x)〉 〈φ (η0,x)| eiH(η1−η0)|φ(η1,x)〉

× 〈φ(η1,x)| eiH(ηf−η1) |Oα(η0,x)〉

=

∫ ∏
x

dφ (η0,x) dφ (η1,x) 〈Ω|φ (η0,x)〉G [φ0, φ1;− (η0 − η1)]

×〈φ(η1,x)| eiH(ηf−η1) |Oα(η0,x)〉

= · · ·

= lim
N→∞

∫ N−1∏
n=0

∏
x

dφ (ηn,x) 〈Ω|φ (η0,x)〉G [φn, φn+1;−ε] 〈φ(ηf ,x)|Oα(η0,x)〉

=

∫
Dφ−Dπ− exp

[
−i
∫ ηf

η0

dηd3x
(
π−Aφ

′A
− − H [π−, φ−]

)]
×〈φ− (ηf ) |Oα(η0,x)〉 〈Ω|φ− (η0)〉 (5.20)

as anti-time-ordered factors.2

Substituting the two factors (5.10) and (5.11) into the expectation value 〈Q(η)〉
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(5.7), we obtain

〈Q〉 =
∫

Dφ+Dπ+Dφ−Dπ−φA1
+ (η,x1) · · ·φAN

+ (η,xN)

× exp

[
i

∫ ηf

η0

dηd3x
(
π+Aφ

′A
+ − H [π+, φ+]

)]
× exp

[
−i
∫ ηf

η0

dηd3x
(
π−Aφ

′A
− − H [π−, φ−]

)]
× 〈Ω|φ− (η0)〉 〈φ+ (η0) |Ω〉

∏
A,x

δ
(
φA+ (ηf ,x)− φA− (ηf ,x)

)
.

(5.21)

Note that the path integral is unbounded at two times η = η0 and η = ηf , which means

that it must integrate over all possible states |φ−(η0)〉 and 〈φ+(η0)| that appear in the

integrand. As a result, two copies of the path integral are obtained. One is in the

forward direction of time and the other is in the backward direction of time, and both

coincide in the limit ηf of future time by the condition

φA+(ηf ) = φA−(ηf ). (5.22)

The integration over momentum π±A can be performed directly in theories without

higher-order derivatives, i.e. Lagrangian (5.1)

Lcl =
1

2
UABφ′Aφ′B + VA(φ)φ′A +W(φ) (5.23)

theory. This is because in such cases, the Hamiltonian (5.3)

H [π, φ] =
1

2
πAπ

A − VAπA +
1

2
VAVA −W (5.24)

is second-order in momentum and the momentum integral of Eq. (5.21) is Gaussian.

Hence, if the Hamiltonian is (5.3) the path integral is∫
Dπ+ exp

[
i

∫ ηf

η0

dηd3x
(
π+Aφ

′A
+ − H [π+, φ+]

)]
= exp

[
i

∫ ηf

η0

dηd3x

(
1

2
UABφ′A

+ φ
′B
+ + VA (φ+)φ

′A
+ +W (φ+)

)]
, (5.25)

and the integrand is nothing but a classical Lagrangian, but the argument is written

in φ+A. Similarly, the integral over π− can be also performed and the factor whose
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argument is written in φ−A is obtained. Therefore, the expectation value (5.21) is

simplified as

〈Q〉 =
∫

Dφ+Dφ−φ
A1
+ (η,x1) · · ·φAN

+ (η,xN) exp

[
i

∫ ηf

η0

dηd3x (Lcl [φ+]− Lcl [φ−])

]
× 〈Ω|φ− (η0)〉 〈φ+ (η0) |Ω〉

∏
A,x

δ
(
φA+ (ηf ,x)− φA− (ηf ,x)

)
.

(5.26)

However, if the theory involves higher-order derivatives, the momentum integral cannot

be performed in a closed form. It has been shown that such momentum integrals

can be performed perturbatively in [105] and the results are consistent with classical

Lagrangian up to the fourth order of the field. Therefore, in the following, we assume

that equation (5.26) also holds for the case involving higher-order derivatives.

The first line of the expression (5.26) is weighted by the exponential function of the

action

S [φ±] =

∫
dηd3x (L [φ+]− L [φ−]) (5.27)

and takes the form of a path integral. The second line is a factor absent in the conven-

tional path integral, consisting of two inner products of states and a delta functional.

The meaning of the delta functional is clear: the path integrals of φA+ and φA− should

coincide at the end time slice η = ηf . On the other hand, as we will show in the next

section, the two inner products 〈Ω|φ− (η0)〉 and 〈φ+ (η0) |Ω〉 are responsible for giving

the correct iϵ prescription for time integration.

5.2 iϵ prescription

Let us show that the two inner products 〈Ω|φ− (η0)〉 and 〈φ+ (η0) |Ω〉 give the correct

iϵ prescription for the time integral. It is important to note that the wave functional of

the vacuum is expressed in terms of a field basis, and the state |Ω〉 satisfies the equation

bA |Ω〉 = 0 (5.28)

where bA is the annihilation operator.

First, we denote the annihilation operator bA by the field φA and its conjugate mo-

mentum πA. In order to be more concrete, let us consider the case of inflation (gen-
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eralizations can be made straightforwardly). Let H be the Hubble parameter and the

scale factor be

a(η) ' 1

|Hη|
. (5.29)

As an example, let UAB = δAB for the field metric and consider Lagrangian

Lcl[φ] =
∑
A

[
1

2
a2(η)φ′2

A(η,x)−
1

2
a2(η) [∂iφA(η,x)]

2 − 1

2
a4(η)M2

Aφ
2
A(η,x)

]
+ · · ·

(5.30)

of some massive scalar fields. Performing Fourier transform of the field φA(η,x) in the

spatial direction yields

φA(η,x) =

∫
d3k

(2π)3

[
uA(η,k)bA(k) + u∗A(η,−k)b†A(−k)

]
eik·x, (5.31)

where b†A, bA are the creation and annihilation operators and the equation of motion of

the mode function uA(η,k) is

u′′A(η,k)−
2

η
u′A(η,k) +

(
k2 +

M2
A

H2η2

)
uA(η,k) = 0. (5.32)

We choose the Bunch-Davis vacuum as the initial condition, and normalizing with

a2(η) [uA(η,k)u
∗′
A(η,−k)− u′A(η,k)u

∗
A(η,−k)] = i (5.33)

to satisfy the canonical commutation relation

[φA(η,x), πB(η,y)] = iδ(3)(x− y)δAB, (5.34)[
bA (k1) , b

†
B (k2)

]
= (2π)3δ(3) (k1 − k2) δAB (5.35)

for the field φA(η,x), its conjugate momentum πA = a2(η)φ′
A, and the creation and

annihilation operators, we find that the solution of this equation is

uA(η,k) = −i
√
π

2
eiπ(ν/2+1/4)H(−η)3/2H(1)

νA
(−kη), (5.36)

where H
(1)
νA (−kη) is a Hankel function of the first kind and νA is

νA :=

√
9

4
−
(
MA

H

)2

. (5.37)
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Now, using the asymptotic form

H(1)
ν (x) →

√
2

πx
ei(x−π/4−πν/2) (5.38)

of the Hankel function in x→ ∞, the mode function in the infinite past is

uA (η0,k) =
iHη√
2k
e−ikη0 . (5.39)

This means that in the infinite past η0, these fields are not only free fields but also

massless. Then, from the Fourier transform

φA(η,x) =

∫
d3k

(2π)3

[
uA(η,k)bA(k) + u∗A(η,−k)b†A(−k)

]
eik·x, (5.40)

πA(η,x) = a2(η)

∫
d3k

(2π)3

[
u′A(η,k)bA(k) + u∗′A(η,−k)b†A(−k)

]
eik·x, (5.41)

the annihilation operator can be solved as

bA(k) = −i
∫
d3x

[
a2(η)u∗′A(η,−k)φA(η,x)− u∗A(η,−k)πA(η,x)

]
e−ik·x (5.42)

(without summing over A). Furthermore, since the conjugate momentum in the field

basis |φ+(η0)〉 is
πA(η,x) = −i δ

δφA(η,x)
, (5.43)

note that the equation

bA |Ω〉 = 0 (5.44)

expressed in the field basis has the following form

0 =

∫
d3x e−ik·x

[
δ

δφA+ (η0,x)
− ia2 (η0)u

∗′
A (η0,−k)

u∗A (η0,k)
φ+A (η0,x)

]
〈φ+ (η0) |Ω〉

=

∫
d3x e−ik·x

[
δ

δφA+ (η0,x)
+ a2 (η0) kφ+A (η0,x)

]
〈φ+ (η0) |Ω〉 .

(5.45)

We have used the fact that the mode function uA(η,k) is massless expression (5.39) in

η0 → −∞. Assuming that the solution of the above equation is

〈φ+ (η0) |Ω〉 = N exp

[
−1

2

∫
d3xd3y EAB (η0;x,y)φ

A
+ (η0,x)φ

B
+ (η0,y)

]
= N exp

[
− ϵ

2

∫ ηf

η0

dη

∫
d3xd3y EAB(η;x,y)φA+(η,x)φB+(η,y)eϵη

]
,

(5.46)
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we determine EAB(η;x,y) such that the equation is satisfied. We denote by ϵ the pos-

itive infinitesimal parameter and by N the normalization factor of the wavefunctional.

EAB(η;x,y) is obtained by substituting the expression (5.46) back into (5.45):

EAB(η;x,y) = a2(η)

∫
d3k

(2π)3
eik·(x−y)kδAB. (5.47)

Therefore, the solution of the equation (5.45) is

〈φ+ (η0) |Ω〉 = N exp

[
− ϵ

2

∫ ηf

η0

dη a2(η)

∫
d3k

(2π)3
kφ+A(η,k)φ

A
+(η,−k)

]
. (5.48)

We neglect eϵη, which is a higher-order correction to ϵ. Similarly, the other inner product

〈Ω, |φ− (η0)〉 contained in the expectation value (5.26) can be expressed as

〈Ω|φ− (η0)〉 = N ∗ exp

[
− ϵ

2

∫ ηf

η0

dη a2(η)

∫
d3k

(2π)3
kφ−A(η,k)φ

A
−(η,−k)

]
. (5.49)

The factorsN ,N ∗ are not important. This is because they do not affect the expectation

value since they also appear in the vacuum 〈Ω|Ω〉.
Now, let us substitute the inner product (5.48) and (5.49) into the expected value

(5.26)

〈Q〉 =
∫

Dφ+Dφ−φ
A1
+ (η,x1) · · ·φAN

+ (η,xN) exp

[
i

∫ ηi

η0

dηd3x (Lcl [φ+]− Lcl [φ−])

]
× 〈Ω|φ− (η0)〉 〈φ+ (η0) |Ω〉

∏
A,x

δ
(
φA+ (ηf ,x)− φA− (ηf ,x)

)
.

(5.50)

Then, two extra terms are added to Lagrangian:

Lcl [φ±] → Lcl [φ±]±
iϵ

2

∫
dη a2(η)

∫
d3k

(2π)3
kφ±A(k)φ

A
±(−k). (5.51)

Comparing this with Lagrangian (5.30)

Lcl[φ] =
∑
A

[
1

2
a2(η)φ′2

A(η,x)−
1

2
a2(η) [∂iφA(η,x)]

2 − 1

2
a4(η)M2

Aφ
2
A(η,x)

]
+ · · · ,

(5.52)

we see that the extra term makes a correction

kη → (1− iϵ)kη (5.53)
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to the mode function (5.39) of the time-ordered variable φA+ and a correction

kη → (1 + iϵ)kη (5.54)

to the mode function of the anti-time-ordered variable φA−. This means that the time-

ordered part is deformed as

η → (1− iϵ)η (5.55)

in the time direction of the complex plane, and the anti-time-ordered part is deformed

as

η → (1 + iϵ)η. (5.56)

Therefore, the combined contribution of the two inner products yields the correct iϵ

formulation in the path integral. Hence, from now on, we assume that the time integral

is properly transformed and remove the two inner products from the expectation value

(5.26). Then, the expected value can be written as

〈Q〉 =

∫
Dφ+Dφ−φ

A1
+ (η,x1) · · ·φAN

+ (η,xN) exp

[
i

∫ ηf

η0

dηd3x (Lcl [φ+]− Lcl [φ−])

]
×
∏
A,x

δ
(
φA+ (ηf ,x)− φA− (ηf ,x)

)
. (5.57)

This is the path integral expression for the in-in formalism of the expectational value

at a given time. The formula is intuitive, as can be explained very well in the following

three steps:� �
Path integral in in-in formalism
1. Make the field φA in the classical Lagrangian doubled: φA±
2. Assign Lagrangian L for φA+ and Lagrangian −L for φA−.
3. Match the path integral of φA± at the time slice of the end time η = ηf by the
delta functional.� �

Since the expectation value (5.57) has almost the same form as the ordinary path

integral, it is easy to derive the diagrammatic rules for the perturbation calculation.

This will be done in the next section.
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5.3 generating functionals

Similar to the field theory on flat spacetime, the expectation value (5.57) can be com-

puted by the functional derivative of the generating functionals, and the Feynman rule

can be constructed. For simplicity of notation, we consider only real scalar fields φ, but

the generalization is straightforward.

First, we introduce the source J±(η,x) for the scalar field φ±(η,x) and define a gen-

erating functional

Z [J+, J−] =

∫
Dφ+Dφ− exp

[
i

∫ ηf

η0

dηd3x (Lcl [φ+]− Lcl [φ−] + J+φ+ − J−φ−)

]
.

(5.58)

Then the general amplitude 〈φa1 (η,x1) · · ·φaN (η,xN)〉 (a1, · · · , aN = ±) can be com-

puted by taking the functional derivative as usual. However, since the sign differs in

differentiating + type fields and − type fields, ai = ± is assigned to each derivatives:

〈φa1 (η,x1) · · ·φaN (η,xN)〉

=

∫
Dφ+Dφ−φa1 (η,x1) · · ·φaN (η,xN)

× exp

[
i

∫ ηf

η0

dηd3x (Lcl [φ+]− Lcl [φ−] + J+φ+ − J−φ−)

]
=

δ

ia1δJa1 (η,x1)
· · · δ

iaNδJaN (η,xN)
Z [J+, J−]

∣∣∣∣
J±=0

. (5.59)

By separating the Lagrangian into free field part L0 and interaction part Lint, as in

Lcl[φ] = L0[φ] + Lint[φ], (5.60)

we can calculate this amplitude perturbatively. Next, let the generating functional

(5.58) separate the free field part Z0 [J+, J−] as in

Z [J+, J−] = exp

[
i

∫ ηf

η0

dηd3x

(
Lint

[
δ

iδJ+

]
− Lint

[
− δ

iδJ−

])]
Z0 [J+, J−] ,

(5.61)

Z0 [J+, J−] ≡
∫

Dφ+Dφ− exp

[
i

∫ ηf

η0

dηd3x (L0 [φ+]− L0 [φ−] + J+φ+ − J−φ−)

]
.

(5.62)

Note that the path integral of the free field part Z0[J+, J−] is Gaussian, and can be

performed explicitly. Then, (5.60) can be perturbatively expanded and combined with
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(5.59) to compute the expected value 〈Q〉. Let’s see how the Feynman rule is obtained

with examples.

5.4 Propagators

First, we consider the tree-level propagators. It is defined by the two-point function as

−i∆ab (η1,x1; η2,x2) :=
δ

iaδJa (η1,x1)

δ

ibδJb (η2,x2)
Z0 [J+, J−]

∣∣∣∣
J±=0

(5.63)

where a, b = ±. There are four types of propagators depending on the choice of subscript

a, b. For example, the propagator of type (+,+) has the form

−i∆++ (η1,x1; η2,x2) =
δ

iδJ+ (η1,x1)

δ

iδJ+ (η2,x2)
Z0 [J+, J−]

∣∣∣∣
J±=0

=

∫
Dφ+Dφ−φ+ (η1,x1)φ+ (η2,x2) e

i
∫
dηd3x(L0[φ+]−L0[φ−])

= 〈Ω |T {φ (η1,x1)φ (η2,x2)}|Ω〉 . (5.64)

Similarly, other propagators are obtained: The propagators of type (−,−), (+,−) and

(−,+) are

−i∆−− (η1,x1; η2,x2) =
−δ

iδJ− (η1,x1)

−δ
iδJ− (η2,x2)

Z0 [J+, J−]

∣∣∣∣
J±=0

=

∫
Dφ+Dφ−φ− (η1,x1)φ− (η2,x2) e

i
∫
dηd3x(L0[φ+]−L0[φ−])

=
〈
Ω
∣∣T {φ (η1,x1)φ (η2,x2)}

∣∣Ω〉 , (5.65)

−i∆+− (η1,x1; η2,x2) =
δ

iδJ+ (η1,x1)

−δ
iδJ− (η2,x2)

Z0 [J+, J−]

∣∣∣∣
J±=0

=

∫
Dφ+Dφ−φ+ (η1,x1)φ− (η2,x2) e

i
∫
dηd3x(L0[φ+]−L0[φ−])

= 〈Ω |φ (η2,x2)φ (η1,x1)|Ω〉 , (5.66)

−i∆−+ (η1,x1; η2,x2) =
−δ

iδJ− (η1,x1)

δ

iδJ+ (η2,x2)
Z0 [J+, J−]

∣∣∣∣
J±=0

=

∫
Dφ+Dφ−φ− (η1,x1)φ+ (η2,x2) e

i
∫
dηd3x(L0[φ+]−L0[φ−])

= 〈Ω |φ (η1,x1)φ (η2,x2)|Ω〉 (5.67)
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respectively. Because of the translational and rotational invariance on each time slice,

it is possible to transform to the 3-dimensional momentum space. Describing the field

φ in terms of the mode function u(η,k) and the creation and annihilation operators

for a given 3-dimensional momentum k, we substitute it into the above four types of

propagators. Then, we obtain the propagators in momentum space, which is connected

to the coordinate space by the relation

Gab (η1, η2, k) = −i
∫
d3xe−ik·x∆ab (η1,x; η2,0) . (5.68)

The reason why Gab is appended with −i is to prevent extra factors from appearing in

the rules in momentum space. Furthermore, the momentum dependence of Gab can be

written as k = |k|. This is because the propagators do not depend on the direction of

3-dimensional momentum but only on its magnitude, due to the rotational symmetry.

Then, the propagators in 3-dimensional momentum space are easily obtained:

G++ (η1, η2, k) = G> (η1, η2, k) θ (η1 − η2) +G< (η1, η2, k) θ (η2 − η1) , (5.69)

G+− (η1, η2, k) = G< (η1, η2, k) , (5.70)

G−+ (η1, η2, k) = G> (η1, η2, k) , (5.71)

G−− (η1, η2, k) = G< (η1, η2, k) θ (η1 − η2) +G> (η1, η2, k) θ (η2 − η1) , (5.72)

where we defined

G> (η1, η2, k) := u (η1, k)u
∗ (η2, k) , (5.73)

G< (η1, η2, k) := u∗ (η1, k)u (η2, k) . (5.74)

It is clear that these propagators are not completely independent. We can immedi-

ately see that only three of the four propagators are linearly independent. If complex

conjugation is taken into account, further relations

G∗
> = G<, G∗

++ = G−−, G∗
+− = G−+ (5.75)

are also obtained.

As a graph, black dots and white dots are assigned to represent + and −, respectively.

Hence, the four propagators are denoted by

57



η1 η2
= G++(η1, η2, k),

η1 η2
= G+−(η1, η2, k),

η1 η2
= G−+(η1, η2, k),

η1 η2
= G−−(η1, η2, k).

The propagators derived above apply to both the internal (bulk propagators) and ex-

ternal (bulk-to-boundary propagators) of the graph. We adopt ηf as an argument for

the external line connecting the time slice (boundary point) of the end time η = ηf .

Since there is no distinction between + and − for boundary points, there are only two

types of bulk-to-boundary propagators. We assign a square to the Boundary point:

= G++(η, ηf , k),
η

= G−+(η, ηf , k).
η

In inflation (i.e., in a quasi-de Sitter background), the end-time slice ηf is an infinite

future.

5.5 Vertices

Next, let us consider vertices. For one interaction vertex in the original Lagrangian, we

need to write down two vertices corresponding to +,− types. Then, an extra minus

sign is added to the − type vertex. To understand this rule, we will look at simple

examples of non-derivative couplings and derivative couplings.

First, we look at the rules for non-derivative couplings. It is almost the same as

the quantum field theory of ordinary flat space-time. The only difference is that only

the spatial coordinates is Fourier transformed, while the temporal coordinate is not.

Therefore, the rules for vertex are a mixture of Feynman rules for coordinate space and
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Feynman rules for momentum space. Let us consider the λφ4 theory as an example:

Lint ⊃ − λ

4!
a4(η)φ4 (5.76)

where a4(η) comes from
√
−g contained in the action. The following rules are obtained

for verticies in 3-dimensional momentum space:

= −iλ
∫ ηf
η0
dη a4(η) · · ·

= +iλ
∫ ηf
η0
dη a4(η) · · ·

where · · · denotes all η-dependent parts of the graph coming from the propagators

connected to the vertex.

Next, we look at the rules for derivative couplings. Since the Fourier transform is per-

formed only in spatial coordinates, it must be divided into spatial and time derivatives.

The spatial derivative is easy since it becomes a momentum after the Fourier transform.

For example, the rule for interaction

Lint ⊃ − λ

3!
a2(η)φ (∂iφ) (∂iφ) (5.77)

is given by
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= + iλ
3
(k1 · k2 + k2 · k3 + k3 · k1)

∫ ηf
η0
dη a2(η) · · ·

k1

k2

k3

= − iλ
3
(k1 · k2 + k2 · k3 + k3 · k1)

∫ ηf
η0
dη a2(η) · · ·

k1

k2

k3

noting that the two (∂iφ) are indistinguishable, which yields a symmetry factor 2. On

the other hand, the time derivative is not Fourier transformed and must act directly on

the propagators. For example, the rule for interaction

Lint ⊃ − λ

3!
a2(η)φφ′2 (5.78)

is given by

= − iλ
3

∫ ηf
η0
dη a2(η)[∂ηG+a1(η, η1, k1)][∂ηG+a2(η, η2, k2)]G+a3(η, η3, k3)

η1, k1

η2, k2

η3, k3
η

2 permutations+

= + iλ
3

∫ ηf
η0
dη a2(η)[∂ηG+a1(η, η1, k1)][∂ηG+a2(η, η2, k2)]G+a3(η, η3, k3)

η1, k1

η2, k2

η3, k3
η

2 permutations+
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noting that the two φ′2 are indistinguishable, which yields the symmetry factor 2, where

a1, a2, a3 = ±.

5.6 Summary of Feynman rule

We summarize here the Feynman rule for calculating expectation values.

• We separate the classical Lagrangian Lcl[φ] into the free field part L0[φ] and the

interaction part Lint[φ]. Solve the equation of motion

δL0[φ]

δφ
= 0 (5.79)

under the given initial condition |Ω〉 to obtain the mode function of the field

φ. Due to the asymmetry of space-time, Fourier transforms are performed for

spatial coordinates, but not for temporal coordinates. Hence, the mode function

is expressed as u(η,k) with 3-dimensional momentum k.

• For each φ(η,ki) in Q(η), draw a square and call it an external point. As in

the usual flat space-time perturbation theory, write the vertices read from the

interaction part Lint[φ]. Then, in all possible combinations, connect vertices and

external point with a line (but do not connect two external point with a line).

Up to this point, the rules are the same as those in ordinary flat spacetime field

theories.

• In all possible combinations, assign each vertex a black dot (called a + type

vertex) or a white dot (called a − type vertex). Therefore, for theories with V

vertices, we obtain 2V graphs.

• Assign propagators to the line connecting the two vertices:

G++ (η1, η2, k) = G> (η1, η2, k) θ (η1 − η2) +G< (η1, η2, k) θ (η2 − η1) ,

(5.80)

G+− (η1, η2, k) = G< (η1, η2, k) , (5.81)

G−+ (η1, η2, k) = G> (η1, η2, k) , (5.82)

G−− (η1, η2, k) = G< (η1, η2, k) θ (η1 − η2) +G> (η1, η2, k) θ (η2 − η1) .

(5.83)
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There are four propagators depending on the type of the two vertices. Assign a

boundary-to-bulk propagator to the line connecting the vertex and the external

line. There are two boundary-to-bulk propagators G++(η, ηf , k), G−+(η, ηf , k)

depending on the type of bulk vertex. The momentum of each propagators must

be chosen such that the total momentum is conserved at each vertex.

• Assign appropriate factors to each vertex derived from Lagrangian. An extra mi-

nus sign is added for− type graphs. Undetermined independent three-dimensional

momenta are integrated. For each vertex, integrate over time from the initial slice

η = η0 to the final slice η = ηf .

• The symmetry factor is the same as the rule in ordinary flat spacetime field

theories.

• The final result of the expectation value 〈Q〉′ is the sum of all graphs where 〈Q〉′

is

〈Q〉 = (2π)3δ3

(∑
i

ki

)
〈Q〉′. (5.84)

In the in-in formalism, the number of fields is doubled and the number of vertices in

the graph is doubled, so the number of vertices in the internal line increases and the

computation appears to be more complicated. However, it is not necessary to compute

all the graphs. This is because there exists graphs in complex conjugate relation. As

we can easily see from the rule that a graph of − type should have an extra minus

sign, the complex conjugate of the graph can be obtained by turning over the black and

white dots. An arbitrary expectation value is finally given by the sum of the graphs of

all possible black dots and white dots. Thus, from the rule of complex conjugation, we

immediately see that the expectation value 〈Q〉′ is real.
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Chapter 6

Set up of our model

This Chapters 6 to 8 are the original results of this doctoral thesis. We consider

the FLRW spacetime with fluctuations and curvature K = 0 expressed in the ADM

formalism as the inflationary spacetime.

ds2 = −N2dt2 + h̃ij
(
dxi +N idt

) (
dxj +N jdt

)
, (6.1)

where h̃ij is a spatial components of the metric, N is the lapse function and N i is the

shift function. The tilde represents a physical quantity in the comoving gauge. The

action we consider is

S = Sgrav + SSU(5) gauge + SSU(5) Higgs + SSU(5) fermion, (6.2)

where Sgrav, SSU(5) gauge, SSU(5) Higgs and SSU(5) fermion describe the actions of the gravity,

SU(5) gauge bosons, an SU(5) adjoint Higgs boson to break GUT gauge symmetry

and SU(5) fermions respectively1. We will now examine each action in detail but omit

the SSU(5) gauge and SSU(5) fermion since they are unnecessary for our computation of the

graph Fig.1.2. From the viewpoint of the effective field theory [96, 99], the Einstein-

Hilbert action and the inflaton action after the transformation of time coordinates

1In the following, we consider in this thesis the SU(5) GUT as an illustrating example, but it can
be easily extended to other GUT gauge group.
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t 7→ t̃ = t− π(t̃,x) can be written as

Sgrav =

∫
d4x

√
−g
[
1

2
M2

PlR−M2
Pl

(
3H2(t̃+ π) + Ḣ(t̃+ π)

)
+M2

PIḢ(t̃+ π)
(
∂µ(t̃+ π)∂ν(t̃+ π)gµν

)
+
M2(t̃+ π)4

2!

(
∂µ(t̃+ π)∂ν(t̃+ π)gµν + 1

)2
+
M3(t̃+ π)4

3!

(
∂µ(t̃+ π)∂ν(t̃+ π)gµν + 1

)3
+ . . .

]
,

(6.3)

where g is the determinant of the metric gµν , MPl is the Planck mass, R is the Ricci

curvature in four dimensions, H is the Hubble parameter, π is a Nambu-Goldstone

boson of time translation which is identified with the inflaton. M2,3 are the coefficients

of the high-dimensional operators.

The quadratic terms of the effective action of inflaton π is identified as [96,100]

I2 =M2
Pl

∫
dtd3x a3

[
−Ḣ
c2s

(
π̇2 − c2s

(∂iπ)
2

a2

)]
. (6.4)

The sound speed cs is a quantity that is not determined by the effective field theory,

but is bounded by the fundamental theory and observational data. The mode function

w(τ, k) of the inflaton π is obtained as

w(τ, k) =
cs√

2ϵaHMPl

1 + icskτ√
2cskcskτ

e−icskτ , (6.5)

where τ is the conformal time and ϵ is the slow roll parameter. Using the expression

for the propagators by in-in formalism in Appendix B, the propagators of inflaton π is

obtained as

∆> (τ1, τ2, k) = w (τ1, k)w
∗ (τ2, k)

=
1 + icsk (τ1 − τ2) + (csk)

2τ1τ2
4ϵMPlcsk3

e−icsk(τ1−τ2), (6.6)

∆< (τ1, τ2, k) = w (τ2, k)w
∗ (τ1, k)

=
1− icsk (τ1 − τ2) + (csk)

2τ1τ2
4ϵMPlcsk3

eicsk(τ1−τ2) (6.7)

Next, we discuss the action of the Higgs boson for GUT gauge symmetry breaking to

the SM gauge symmetry. Let us denote Σ′ for the Higgs of the 24-dimensional adjoint

representation of SU(5) and its renormalizable potential is introduced as

V (Σ′) = −M2tr(Σ′2) + λ1
{
tr(Σ′2)

}2
+ λ2 tr(Σ

′4), (6.8)
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where M,λ1 and λ2 are constants, and M is an order of the GUT scale.

M ∼ O(MGUT). (6.9)

We expand the adjoint Higgs Σ′ around the expectation value

〈Σ〉 = v diag(2, 2, 2,−3,−3), v ∼ O(MGUT) (6.10)

as

Σ′ = 〈Σ〉+ Σ. (6.11)

Now, we calculate three point function of inflaton to extract non-Gaussianity by the

existence of Σ, which is given by a graph of tree level exchange of Σ shown in Fig. 1.2.

In order to extract the first-order term of Σ in the potential, we expand Σ′2 around the

expectation value yields

Σ′2 = (〈Σ〉+ Σ)2

= 〈Σ〉2 + 〈Σ〉Σ + Σ〈Σ〉+ Σ2, (6.12)

and we obtain

2tr (〈Σ〉Σ) = 2× (2vΣ11 + 2vΣ22 + 2vΣ33 − 3vΣ44 − 3vΣ55)

= 2× 5v (Σ11 + Σ22 + Σ33)

= 10v (Σ11 + Σ22 + Σ33) (6.13)

from the terms in tr(Σ′2). Note that only diagonal components of Σ are taken into

account and the traceless condition for Σ

Σ11 + Σ22 + Σ33 + Σ44 + Σ55 = 0. (6.14)

is used in the second equality. Then, since the first term of (6.12) can be computed as

tr
(
〈Σ〉2

)
= 30v2, (6.15)

we have

tr(Σ′2) = 30v2 + 10v (Σ11 + Σ22 + Σ33) + tr(Σ2). (6.16)
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Now we can obtain the linear term for Σ

λ1
{
tr(Σ′2)

}2
= λ1

[
30v2 + 10v (Σ11 + Σ22 + Σ33) + tr(Σ2)

]2
⊃ 600λ1v

3 (Σ11 + Σ22 + Σ33) (6.17)

from the second term in potential (6.8). Similarly,

λ2 tr(Σ
′4) ⊃ 140λ2v

3 (Σ11 + Σ22 + Σ33) (6.18)

is obtained from the third term in (6.8).

Next, we consider cubic term for Σ in potential (6.8):

λ1
{
tr(Σ′2)

}2
= λ1

[
30v2 + 10v (Σ11 + Σ22 + Σ33) + tr(Σ2)

]2
⊃ 20λ1v (Σ11 + Σ22 + Σ33) tr(Σ

2) (6.19)

The last term tr(Σ2) is

tr(Σ2) = Σ2
11 + Σ2

22 + · · ·+ Σ2
55 + 2(Σ12Σ21 + Σ13Σ31 + · · ·+ Σ45Σ54), (6.20)

but the only meaningful term are only Σ2
11+Σ2

22+ · · ·+Σ2
55, since the πΣ term has only

a diagonal component Σ11,Σ22,Σ33 when performing the graph calculation. Σ2
44 + Σ2

55

can be rewritten as

Σ2
44 + Σ2

55 = (Σ11 + Σ22 + Σ33)
2 − 2Σ44Σ55 (6.21)

using (6.14). Hence, the meaningful part is

tr(Σ2) ⊃ Σ2
11 + Σ2

22 + Σ2
33 + Σ2

44 + Σ2
55

⊃ Σ2
11 + Σ2

22 + Σ2
33 + (Σ11 + Σ22 + Σ33)

2

= 2
(
Σ2

11 + Σ2
22 + Σ2

33

)
+ 2 (Σ11Σ22 + Σ22Σ33 + Σ33Σ11) (6.22)

and substituting this into (6.19), we obtain cubic term for Σ

λ1
{
tr(Σ′2)

}2 ⊃ 40λ1v
(
Σ3

11 + Σ3
22 + Σ3

33

+2Σ2
11Σ22 + 2Σ2

11Σ33 + 2Σ2
22Σ11 + 2Σ2

22Σ33 + 2Σ2
33Σ22 + 2Σ2

33Σ11

+3Σ11Σ22Σ33) . (6.23)
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Although there are cross terms among diagonal components in the second and last

line of (6.23), their contributions to non-Gaussianity are comparable, therefore we only

need to consider 40λ1vΣ
3
11 in effect. We also omitted Σ44Σ55, since they are functions

of Σ11,Σ22 and Σ33 and they give the same order of contribution as the cross-terms.

Furthermore, the cubic term of Σ is also obtained from the term λ2 tr(Σ
′4) of potential

(6.8), since it only yields the same order of contribution, we write them collectively as

α later. Therefore, using these equations (6.8), (6.16), (6.17), (6.18) and (6.23)

V (Σ′) = −M2tr(Σ′2) + λ1
{
tr(Σ′2)

}2
+ λ2 tr(Σ

′4), (6.24)

tr(Σ′2) = 30v2 + 10v (Σ11 + Σ22 + Σ33) + tr(Σ2), (6.25)

λ1
{
tr(Σ′2)

}2 ⊃ 600λ1v
3 (Σ11 + Σ22 + Σ33) + 40λ1v

(
Σ3

11 + Σ3
22 + Σ3

33

)
, (6.26)

λ2 tr(Σ
′4) ⊃ 140λ2v

3 (Σ11 + Σ22 + Σ33) , (6.27)

the necessary part of potential for the adjoint Higgs boson of SU(5) for calculation in

Fig.1.2 is

V (Σ) = −10M2v (Σ11 + Σ22 + Σ33) + (600λ1 + 140λ2) v
3 (Σ11 + Σ22 + Σ33)

+40λ1v
(
Σ3

11 + Σ3
22 + Σ3

33

)
. (6.28)

The corresponding action is

SSU(5) Higgs =

∫
d4x

√
−g
[
(DµΣ)

†DµΣ− V (Σ)
]

⊃
∫
d4x

√
−g
[
(∂µΣ)

† ∂µΣ + 10M2v (Σ11 + Σ22 + Σ33)

− (600λ1 + 140λ2) v
3 (Σ11 + Σ22 + Σ33)− 40λ1v

(
Σ3

11 + Σ3
22 + Σ3

33

)]
.

(6.29)

Let us write this action

SSU(5) Higgs ⊃
∫
d4x

√
−gLSU(5) Higgs, (6.30)

i.e., we define the Lagrangian

LSU(5) Higgs :=
[
(∂µΣ)

† ∂µΣ + 10M2v (Σ11 + Σ22 + Σ33)

− (600λ1 + 140λ2) v
3 (Σ11 + Σ22 + Σ33)− 40λ1v

(
Σ3

11 + Σ3
22 + Σ3

33

)]
.

(6.31)
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To calculate the graph in Fig.1.2, we have to extract the terms proportional to π and

π2 from the metric
√
−g. From appendix A, the metric

√
−g is expanded as

√
−g = a3(t̃) + 3a3Hπ − a3π̇ +

2

9
a3H2π2 − 3a3Hππ̇ + a3π̇2 (6.32)

after the transformation

t 7→ t̃ = t− π(t̃,x) (6.33)

of time coordinates. Note that we neglect the terms including ϵ which are discussed

in Appendix A in three point functions of inflaton, since they make only sub-leading

contributions to non-Gaussianity. Thus, the interactions between the linear terms of Σ

and the inflaton π with no derivative are found

√
−gLSU(5) Higgs

=
√
−g
[
(∂µΣ)

† ∂µΣ + 10M2v (Σ11 + Σ22 + Σ33)

− (600λ1 + 140λ2) v
3 (Σ11 + Σ22 + Σ33)− 40λ1v

(
Σ3

11 + Σ3
22 + Σ3

33

)]
⊃

√
−g
[
10M2v (Σ11(t) + Σ22(t) + Σ33(t))− (600λ1 + 140λ2) v

3 (Σ11(t) + Σ22(t) + Σ33(t))
]

(6.34)

where the linear terms of Σ are extracted. Substituting only the linear and quadratic

terms of π from
√
−g, we can get the interactions between the linear terms of Σ and
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the inflaton π with no derivative

√
−gLSU(5) Higgs

⊃
(
3a3Hπ +

2

9
a3H2π2

)(
10M2v − (600λ1 + 140λ2) v

3
)
(Σ11(t) + Σ22(t) + Σ33(t))

=

(
3a3Hπ +

2

9
a3H2π2

)(
10M2v − (600λ1 + 140λ2) v

3
)

×
(
Σ11(t̃+ π) + Σ22(t̃+ π) + Σ33(t̃+ π)

)
=

(
3a3Hπ +

2

9
a3H2π2

)(
10M2v − (600λ1 + 140λ2) v

3
)

×
(
Σ11(t̃) + πΣ̇11(t̃) + Σ22(t̃) + πΣ̇22(t̃) + Σ33(t̃) + πΣ̇33(t̃)

)
= 3

(
10M2v − (600λ1 + 140λ2) v

3
)
a3Hπ

(
Σ11(t̃) + Σ22(t̃) + Σ33(t̃)

)
+
2

9

(
10M2v − (600λ1 + 140λ2) v

3
)
a3H2π2

(
Σ11(t̃) + Σ22(t̃) + Σ33(t̃)

)
+3
(
10M2v − (600λ1 + 140λ2) v

3
)
a3Hπ2

(
Σ̇11(t̃) + Σ̇22(t̃) + Σ̇33(t̃)

)
.

(6.35)

On the other hand, the interactions with time derivative are found similarly,

√
−gLSU(5) Higgs

⊃
√
−g
[
10M2v (Σ11(t) + Σ22(t) + Σ33(t))− (600λ1 + 140λ2) v

3 (Σ11(t) + Σ22(t) + Σ33(t))
]

⊃
(
−a3π̇ − 3a3Hππ̇ + a3π̇2

) (
10M2v − (600λ1 + 140λ2) v

3
)
(Σ11(t) + Σ22(t) + Σ33(t))

=
(
−a3π̇ − 3a3Hππ̇ + a3π̇2

) (
10M2v − (600λ1 + 140λ2) v

3
)

×
(
Σ11(t̃+ π) + Σ22(t̃+ π) + Σ33(t̃+ π)

)
=

(
−a3π̇ − 3a3Hππ̇ + a3π̇2

) (
10M2v − (600λ1 + 140λ2) v

3
)

×
(
Σ11(t̃) + πΣ̇11(t̃) + Σ22(t̃) + πΣ̇22(t̃) + Σ33(t̃) + πΣ̇33(t̃)

)
= −a3

{
10M2v − (600λ1 + 140λ2) v

3
}
π̇
(
Σ11(t̃) + Σ22(t̃) + Σ33(t̃)

)
−3a3H

{
10M2v − (600λ1 + 140λ2) v

3
}
ππ̇
(
Σ11(t̃) + Σ22(t̃) + Σ33(t̃)

)
−a3

{
10M2v − (600λ1 + 140λ2) v

3
}
ππ̇
(
Σ̇11(t̃) + Σ̇22(t̃) + Σ̇33(t̃)

)
+a3

{
10M2v − (600λ1 + 140λ2) v

3
}
π̇2
(
Σ11(t̃) + Σ22(t̃) + Σ33(t̃)

)
(6.36)

where the linear terms of Σ are extracted in the second line and substituting only the

linear and quadratic terms of π̇ from
√
−g in the third line. The terms without time
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derivative of π are left even after performing integration by parts. This is because the

translational symmetry with respect to time is explicitly broken by inflation, and π

is a pesudo NG boson. Since Σ11,Σ22 and Σ33 are equivalent, we consider Σ11 in the

following.

Next, we consider the propagator of Σ, since the interaction has been obtained.

Using the expressions of Higgs boson

Σ′2 = (〈Σ〉+ Σ)2

= 〈Σ〉2 + 2〈Σ〉Σ + Σ2

= v2 diag(4, 4, 4, 9, 9) + 2v diag(2, 2, 2,−3,−3) Σ + Σ2 (6.37)

and

tr(Σ′2) = 30v2 + 10v (Σ11 + Σ22 + Σ33) + tr(Σ2), (6.38)

the quadratic terms of Σ in potential (6.8) is

V (Σ′) = −M2tr(Σ′2) + λ1
{
tr(Σ′2)

}2
+ λ2 tr(Σ

′4)

⊃ −M2 (Σ11)
2 + 160λ1v

2 (Σ11)
2 + 24λ2v

2 (Σ11)
2 . (6.39)

Hence, by setting

−m2 := −M2 + 160λ1v
2 + 24λ2v

2, (6.40)

Σ11 is a scalar field with mass m2 in de Sitter spacetime, therefore it has propagators

G> (τ1, τ2, k) = −i
√
π

2
eiπ(ν/2+1/4)H (−τ1)3/2H(1)

ν (−kτ1)

×i
√
π

2
eiπ(ν

∗/2+1/4)H (−τ2)3/2H(2)
ν (−kτ2)

= −π
4
e−πIm(ν)H2 (τ1τ2)

3/2H(1)
ν (−kτ1)H(2)

ν (−kτ2), (6.41)

G< (τ1, τ2, k) = −π
4
e−πIm(ν)H2 (τ1τ2)

3/2H(1)
ν (−kτ2)H(2)

ν (−kτ1). (6.42)

from appendix B. From the viewpoint of effective field theory, sincem2 should be around

the Hubble scale, λ1 and λ2 must be an order of O(10−2).
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Chapter 7

Calculation of non-Gaussianity

7.1 Σ exchange

7.1.1 interaction without time derivatives

We are now ready to calculate non-Gaussianity. Since the interaction of Σ11 and the

interaction of Σ̇11 give the same order contributions to non-Gaussianity, only the con-

tribution by Σ11 is considered and the result is doubled by taking into account the

latter contributuion. First, consider interactions without time derivative. According to

the rule of in-in formalism, there exist four types of graphs, (+,+), (+,−), (−,+) and

(−,−) as shown in Fig.7.1, mediated by one Σ between the three inflatons π.

Figure 7.1: Four graphs in in-in formalism. Black circles indicate + and white circles
indicate −.

As an example, let us consider the graphs of (+,−) and (−,+). Note that in the
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Feynman rule for in-in formalism with conformal time τ , the time integral for conformal

time, the scale factor a(τ), and the factor ±i for ± type appear. Using the interaction

(6.35) without time derivatives

√
−gLSU(5) Higgs

⊃ 3
(
10M2v − (600λ1 + 140λ2) v

3
)
a3Hπ

(
Σ11(t̃) + Σ22(t̃) + Σ33(t̃)

)
+
2

9

(
10M2v − (600λ1 + 140λ2) v

3
)
a3H2π2

(
Σ11(t̃) + Σ22(t̃) + Σ33(t̃)

)
, (7.1)

the propagators of inflaton (6.6), (6.7)

∆> (τ1, τ2, k) =
1 + icsk (τ1 − τ2) + (csk)

2τ1τ2
4ϵMPlcsk3

e−icsk(τ1−τ2), (7.2)

∆< (τ1, τ2, k) =
1− icsk (τ1 − τ2) + (csk)

2τ1τ2
4ϵMPlcsk3

eicsk(τ1−τ2) (7.3)

and those of Higgs boson (6.41), (6.42)

G> (τ1, τ2, k) = −π
4
e−πIm(ν)H2 (τ1τ2)

3/2H(1)
ν (−kτ1)H(2)

ν (−kτ2), (7.4)

G< (τ1, τ2, k) = −π
4
e−πIm(ν)H2 (τ1τ2)

3/2H(1)
ν (−kτ2)H(2)

ν (−kτ1), (7.5)

the three point function of inflaton π contributed from the sum of two graphs is given

as follows:

〈πππ〉 =

∫ 0

−(1+iϵ)∞
a(τ1)dτ1

∫ 0

−(1+iϵ)∞
a(τ2)dτ2(−i)

2

9

(
10M2v − (600λ1 + 140λ2) v

3
)

×a3(τ1)H2 × 3i
(
10M2v − (600λ1 + 140λ2) v

3
)
a3(τ2)H

×G+−(τ1, τ2, p3)∆+−(0, τ1, p1)∆+−(0, τ1, p2)∆++(τ2, 0, p3) + (p1 ↔ p3)(7.6)

+(p2 ↔ p3) + c.c.

=
2

3

(
10M2v − (600λ1 + 140λ2) v

3
)2
H3

×
∫ 0

−(1+iϵ)∞
dτ1

∫ 0

−(1+iϵ)∞
dτ2 a

4(τ1)a
4(τ2)G+−(τ1, τ2, p3)∆+−(0, τ1, p1)

×∆+−(0, τ1, p2)∆++(τ2, 0, p3) + (p1 ↔ p3) + (p2 ↔ p3) + c.c. (7.7)

Now, we substitute the propagators (6.42) of Σ and the propagators (6.6) and (6.7) of

π. As shown in detail in Appendix B, note that the notation for ∆++ etc. is given by

∆++ (η1, η2, k) = ∆> (η1, η2, k) θ (η1 − η2) + ∆< (η1, η2, k) θ (η2 − η1) , (7.8)
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we have

〈πππ〉 = − π

27 · 3
e−πIm(ν)

(
10M2v − (600λ1 + 140λ2) v

3
)2 1

(HϵMPlcsp1p2p3)
3

×
∫ 0

−(1+iϵ)∞
dτ1

∫ 0

−(1+iϵ)∞
dτ2 (τ1τ2)

−5/2H(1)
ν (−p3τ1)H(2)

ν (−p3τ2)

× (1 + icsp1τ1) (1 + icsp2τ1) (1 + icsp3τ2) e
−ics(p1+p2)τ1e−icsp3τ2

+(p1 ↔ p3) + (p2 ↔ p3) + c.c. (7.9)

As discussed in [101] and [102], we use the approximation of the Hankel function

H(1)
ν (−p3τ2) → −i2

ν

π
(−p3τ2)−νΓ(ν), (7.10)

H(2)
ν (−p3τ1) → i

2ν

π
(−p3τ1)−νΓ(ν) (7.11)

with horizon exit −p3τ1,−p3τ2 → 1 to evaluate the integral. This is an approximation

to extract the effect of the largest contribution as time evolves and the fluctuations

freeze. Note that we consider the parameter region

0 < ν ≤ 3

2
, (7.12)

in other words,

0 <
m2

H2
≤ 9

4
(7.13)

where the suppression factor e−πIm(ν) does not appear. Substituting approximations

(7.10) and (7.11) of the Hankel functions into (7.9), three point function of inflaton

〈πππ〉 becomes

〈πππ〉 = − Γ2(ν)

27−2ν · 3π
(
10M2v − (600λ1 + 140λ2) v

3
)2 1

(HϵMPlcsp1p2p3)
3

1

p2ν3

×
∫ 0

−(1+iϵ)∞
dτ1

∫ 0

−(1+iϵ)∞
dτ2 (τ1τ2)

−5/2−ν e−ics(p1+p2)τ1e−icsp3τ2

× (1 + icsp1τ1) (1 + icsp2τ1) (1 + icsp3τ2) + (p1 ↔ p3) + (p2 ↔ p3) + c.c.

(7.14)

Note that the dependence on the external momentum p3 is found to be non-local,

because the non-local part of 〈πππ〉 is non-analytic in external momentum p3 [22].
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This implies that the contribution for the three point function actually comes from the

Σ field. Non-Gaussianity is defined by

〈ζζζ〉 = (2π)7δ(3)(p1 + p2 + p3)p̃
2
ζ

(
9

10
fNL

)
1

(p1p2p3)2
(7.15)

in the case where the configuration of the external momentum are equilateral,

p := p1 = p2 = p3 (7.16)

in the following. Note that ζ is the curvature fluctuation, which is related to inflaton π

by ζ = −Hπ. Since the integral has only an effect up to the horizon exit −p3τ1,−p3τ2 →
1, the upper limit of the integral should be [102]

τ1∗ = τ2∗ = −p−1. (7.17)

In this case, the higher order term of the factor e−ics(p1+p2)τ1e−icsp3τ2 is a small quantity,

then the integral of (7.14) can be calculated as follows:∫ 0

−(1+iϵ)∞
dτ1

∫ 0

−(1+iϵ)∞
dτ2 (τ1τ2)

−5/2−ν (1 + icsp1τ1) (1 + icsp2τ1) (1 + icsp3τ2)

×e−ics(p1+p2)τ1e−icsp3τ2

=

(
−2

3 + 2ν
− 4ics

1 + 2ν

)(
−2

3 + 2ν
− 2ics

1 + 2ν

)
p3+2ν . (7.18)

Therefore, the three point function of inflaton π can be computed as

〈πππ〉 ' − Γ2(ν)

27−2ν · 3π
(
10M2v − (600λ1 + 140λ2) v

3
)2 1

(HϵMPlcsp1p2p3)
3

1

p2ν3

×
(

−2

3 + 2ν
− 4ics

1 + 2ν

)(
−2

3 + 2ν
− 2ics

1 + 2ν

)
p3+2ν + (p1 ↔ p3) + (p2 ↔ p3) + c.c.

= − Γ2(ν)

27−2ν · 3π
(
10M2v + (600λ1 + 140λ2) v

3
)2

× 1

(HϵMPlcs)
3p

−6

(
8

(3 + 2ν)2
− 16c2s

(1 + 2ν)2

)
× 3 (7.19)

Recalling the relation between the curvature fluctuation ζ and inflaton π is ζ = −Hπ,
non-Gaussianity can be estimated as

fNL =
10

9

1

(2π)7p̃2ζ
p6M−3

Pl (−H)3

× −Γ2(ν)

27−2ν · 3π
(
10M2v − (600λ1 + 140λ2) v

3
)2

× 1

(HϵMPlcs)
3p

−6

(
8

(3 + 2ν)2
− 16c2s

(1 + 2ν)2

)
× 3 (7.20)
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by reviving MPl for ζ. This expression shows that non-Gaussianity fNL is Planck sup-

pressed but enhanced by the high scale of inflation. Here, the constant cs has the

relation r = 16ϵcs with the tensor-scalar ratio r and the upper bound r < 0.036 [103]

gives

ϵcs ∼ O(10−3∼−4). (7.21)

Since the constant in (7.20) has the order of

MPl ∼ O(1019)GeV, v ∼M ∼ O(1015)GeV, p̃ζ ∼ 6.1× 10−9 (7.22)

respectively, the non-Gaussianity is found as

fNL ∼ O(10−4∼−1)× α, (7.23)

where α represents the similar contributions from other components such as Σ22,Σ33

and Σ̇11 and the additional group theoretical numerical factor that appears in larger

GUT gauge groups extension. The order is α ∼ O(100∼1).

7.1.2 interaction with time derivatives

Next, we consider interactions with time derivatives. To begin with, consider the case

where all three inflatons are time differentiated. From equation (6.35), the correspond-

ing interaction is

√
−gLSU(5) Higgs

⊃ −a3
{
10M2v − (600λ1 + 140λ2) v

3
}
π̇
(
Σ11(t̃) + Σ22(t̃) + Σ33(t̃)

)
+a3

{
10M2v − (600λ1 + 140λ2) v

3
}
π̇2
(
Σ11(t̃) + Σ22(t̃) + Σ33(t̃)

)
. (7.24)

Using the Feynman rule for in-in formalism, the three point function of inflaton π from

the sum of the graphs of (+,−) and (−,+) is given as follows:

〈πππ〉 =

∫ 0

−(1+iϵ)∞
a(τ1)dτ1

∫ 0

−(1+iϵ)∞
a(τ2)dτ2(−i)a3(τ1)Aia3(τ2)A

×G+−(τ1, τ2, p3)
1

a(τ1)
∆̇+−(0, τ1, p1)

1

a(τ1)
∆̇+−(0, τ1, p2)

1

a(τ2)
∆̇++(τ2, 0, p3)

+(p1 ↔ p3) + (p2 ↔ p3) + c.c. (7.25)
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where A is defined as

A := 10M2v − (600λ1 + 140λ2) v
3. (7.26)

Note that in differentiating by conformal time, we get the inverse of the scale factor

a(τ). Differentiating the propagator ∆++ (τ2, 0, p) with respect to τ2 yields

∆̇++ (τ2, 0, p) = ∆̇> (τ2, 0, p) θ (τ2 − 0) + ∆> (τ2, 0, p) δ (τ2 − 0)

+∆̇< (τ2, 0, p) θ (0− τ2)−∆< (τ2, 0, p) δ (0− τ2)

=
1 + icspτ2
4ϵMPlcsp3

e−icspτ2δ(τ2)

+

(
−icsp

4ϵMPlcsp3
eicspτ2 + icsp

1− icspτ2
4ϵMPlcsp3

eicspτ2
)
θ(−τ2)

−1− icspτ2
4ϵMPlcsp3

eicspτ2δ(−τ2)

=
1 + icspτ2
4ϵMPlcsp3

e−icspτ2δ(τ2)−
1− icspτ2
4ϵMPlcsp3

eicspτ2δ(−τ2) +
csτ2

4ϵMPlp
eicspτ2θ(−τ2),

(7.27)

which leads to a simple form

∆̇++ (τ2, 0, p) =
csτ2

4ϵMPlp
eicspτ2 (7.28)

because of the τ2-integral. Similarly, differentiating the propagator ∆+−(0, τ1, p) with

respect to τ1 yields

∆̇+−(0, τ1, p) = ∆̇<(0, τ1, p) =
icsp

4ϵMPlcsp3
e−icspτ1 + (−icsp)

1 + icspτ1
4ϵMPlcsp3

e−icspτ1

=
csτ1

4ϵMPlp
e−icspτ1 . (7.29)

Substituting these results, 〈πππ〉 becomes

〈πππ〉 =

∫ 0

−(1+iϵ)∞
a(τ1)dτ1

∫ 0

−(1+iϵ)∞
a(τ2)dτ2(−i)a3(τ1)Aia3(τ2)AG+−(τ1, τ2, p3)

× 1

a(τ1)
∆̇+−(0, τ1, p1)

1

a(τ1)
∆̇+−(0, τ1, p2)

1

a(τ2)
∆̇++(τ2, 0, p3)

+(p1 ↔ p3) + (p2 ↔ p3) + c.c.

=

∫
dτ1

∫
dτ2

(
− 1

Hτ1

)2(
− 1

Hτ2

)3

A2
(
−π
4

)
e−πIm(ν)H2 (τ1τ2)

3/2

×H(1)
ν (−pτ2)H(2)

ν (−pτ1)
csτ1

4ϵMPlp1
e−icsp1τ1

csτ1
4ϵMPlp2

e−icsp2τ1
csτ2

4ϵMPlp3
eicsp3τ2

+(p1 ↔ p3) + (p2 ↔ p3) + c.c. (7.30)
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Furthermore, using the horizon exit approximations (7.10), (7.11) for Hankel functions

H(1)
ν (−p3τ2) → −i2

ν

π
(−p3τ2)−νΓ(ν), (7.31)

H(2)
ν (−p3τ1) → i

2ν

π
(−p3τ1)−νΓ(ν), (7.32)

we obtain

〈πππ〉 ∼
∫ τ∗

−(1+iϵ)∞
dτ1

∫ τ∗

−(1+iϵ)∞
dτ2

−1

H5τ 21 τ
3
2

A2
(
−π
4

)
H2 (τ1τ2)

3/2

×(−i)2
ν

π
(−p3τ2)−νΓ(ν)i

2ν

π
(−p3τ1)−νΓ(ν)

(
cs

4ϵMPl

)3
1

p1p2p3
τ 21 τ2

+(p1 ↔ p3) + (p2 ↔ p3) + c.c.

=
22ν

4π
Γ2(ν)

1

H3

(
cs

4ϵMPl

)3

A2 1

p1p2p3
p−2ν
3

×
∫ τ∗

−(1+iϵ)∞
dτ1

∫ τ∗

−(1+iϵ)∞
dτ2 τ

3/2
1 τ

−1/2
2 (τ1τ2)

−ν . (7.33)

Here, introducing the UV cutoff

τΛ = −Λ−1, (7.34)

we can calculate as

〈πππ〉 ∼ 22ν

4π
Γ2(ν)

1

H3

(
cs

4ϵMPl

)3

A2 1

p1p2p3
p−2ν
3

1

5/2− ν
τ
5/2−ν
1

∣∣∣∣τ∗
τΛ

1

1/2− ν
τ
1/2−ν
2

∣∣∣∣τ∗
τΛ

(7.35)

Since the cutoff scale has a dimension of momentum, we can write

Λ = γp, (7.36)

using the dimensionless parameter γ. Therefore we can obtain

1

5/2− ν
τ
5/2−ν
1

∣∣∣∣τ∗
τΛ

1

1/2− ν
τ
1/2−ν
2

∣∣∣∣τ∗
τΛ

=
4

(5− 2ν) (1− 2ν)
(−p)2ν−3

(
1− γν−1/2 − γν−5/2 + γ2ν−3

)
.

(7.37)
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From the definition, non-Gaussianity is computed as

fNL =
10

9

1

(2π)7p̃2ζ
p6M−3

Pl (−H)3〈πππ〉

=
10

9

1

(2π)7p̃2ζ
p6M−3

Pl (−H)3

×22ν

4π
Γ2(ν)

1

H3

(
cs

4ϵMPl

)3

A2 1

p3
p−2ν

× 4

(5− 2ν) (1− 2ν)
(−p)2ν−3

(
1− γν−1/2 − γν−5/2 + γ2ν−3

)
∼ 10−12

(cs
ϵ

)3 (
1− γν−1/2 − γν−5/2 + γ2ν−3

)
. (7.38)

Now, recalling that

ϵcs ∼ 10−3∼−4, (7.39)

we have

fNL ∼ 10−3∼0c6s
(
1− γν−1/2 − γν−5/2 + γ2ν−3

)
. (7.40)

From the viewpoint of effective field theory, the cutoff is the inflationary scale, and γ

is

γ ∼ 1. (7.41)

In this case, non-Gaussianity has the width of

fNL ∼ 10−3∼0c6s. (7.42)

cs is a quantity such that it is 1 in the simplest model, and is not expected to vary

significantly in order estimation. This result is comparable to that of case (7.11) where

the time derivative is not included. The reasons are shown in the following table.

Table 1 shows the coefficients and propagator for three point function of inflaton with

various number of time derivatives. In the table, the case where the three point function

of inflaton without a time derivative is denoted by 〈πππ〉, with one, two and three time

derivatives by 〈πππ̇〉 , 〈ππ̇π̇〉, and 〈π̇π̇π̇〉. For example, 〈πππ〉 represents equation (7.6)

and 〈π̇π̇π̇〉 represents equation (7.25). Taking into account that a−1 = Hτ is added in

taking the time derivative of the propagator, the coefficients are all of the form A2H3.
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factor propagator
〈πππ〉 2

9
AH2 × 3AH G+−∆+−∆+−∆++

〈πππ̇〉 2
9
AH2 × A G+−∆+−∆+−∆̇++

3AH × 3AH G+−∆+−∆̇+−∆++

〈ππ̇π̇〉 A× 3AH G+−∆̇+−∆̇+−∆++

3AH × A G+−∆̇+−∆+−∆̇++

〈π̇π̇π̇〉 A× A G+−∆̇+−∆̇+−∆̇++

Table 7.1: The factors and propagator for three point function of inflaton with various
number of time derivatives.

The coefficients except for A2H3 of the interaction are not so different in magnitude,

and the difference among propagators is just O(1) factor as long as the cutoff is set to

Λ = γp. Thus, they all give the same contribution to non-Gaussianity.

7.2 cubic interaction of Σ

Next, we consider the graph generated by the cubic interaction of Σ (Fig.7.2).

Figure 7.2: The graph generated by the cubic interaction of Σ. There are 24 graphs in
total, and this is an example, representing the graph of (−,−,−,+).

Let τ4 be the time for the part of Σ3 interaction and τ1, τ2, τ3 be the time for the

rest of πΣ interaction. According to the rule of in-in formalism, there exist 24 types of

graphs. Consider the (−,−,−,+) graphs and its complex conjugation (+,+,+,−) in
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the order (τ1, τ2, τ3, τ4). From equations (6.31) and (6.35), the relevant interactions are

√
−gLSU(5) Higgs

⊃ 3
(
10M2v − (600λ1 + 140λ2) v

3
)
a3Hπ

(
Σ11(t̃) + Σ22(t̃) + Σ33(t̃)

)
−40λ1va

3
(
Σ3

11(t̃) + Σ3
22(t̃) + Σ3

33(t̃)
)
. (7.43)

Using the Feynman rule for in-in formalism, the case where the interaction does not

have time derivative is written down as

〈πππ〉 =

∫ 0

−(1+iϵ)∞
a(τ1)dτ1

∫ 0

−(1+iϵ)∞
a(τ2)dτ2

∫ 0

−(1+iϵ)∞
a(τ3)dτ3

∫ 0

−(1+iϵ)∞
a(τ4)dτ4

×(−i)a(τ1)3a3(τ1)AH∆+−(0, τ1, p1)G−+(τ1, τ4, p1)

×(−i)a(τ2)3a3(τ2)AH∆+−(0, τ2, p2)G−+(τ2, τ4, p2)

×ia(τ4)(−1)a3(τ4)40λ1vG+−(τ4, τ3, p3)

×(−i)a(τ3)3a3(τ3)AH∆−+(τ3, 0, p3) + (p1 ↔ p3) + (p2 ↔ p3) + c.c.

(7.44)

Substituting the propagators of inflaton (6.6), (6.7)

∆> (τ1, τ2, k) =
1 + icsk (τ1 − τ2) + (csk)

2τ1τ2
4ϵMPlcsk3

e−icsk(τ1−τ2), (7.45)

∆< (τ1, τ2, k) =
1− icsk (τ1 − τ2) + (csk)

2τ1τ2
4ϵMPlcsk3

eicsk(τ1−τ2) (7.46)

and propagators of Higgs boson (6.41), (6.42)

G> (τ1, τ2, k) = −π
4
e−πIm(ν)H2 (τ1τ2)

3/2H(1)
ν (−kτ1)H(2)

ν (−kτ2), (7.47)

G< (τ1, τ2, k) = −π
4
e−πIm(ν)H2 (τ1τ2)

3/2H(1)
ν (−kτ2)H(2)

ν (−kτ1), (7.48)

we obtain

〈πππ〉 = 40× 33λ1vA
3H−7

(
1

4ϵMPlcs

)3 (
−π
4

)3
e−3πIm(ν)

(
1

p1p2p3

)3

×
∫ 0

−(1+iϵ)∞
dτ1

∫ 0

−(1+iϵ)∞
dτ2

∫ 0

−(1+iϵ)∞
dτ3

∫ 0

−(1+iϵ)∞
dτ4

× (1 + icsp1τ1) (1 + icsp2τ2) (1 + icsp3τ3) e
−icsp1τ1e−icsp2τ2e−icsp3τ3 (τ1τ2τ3)

−5/2 τ
1/2
4

×H(1)
ν (−p1τ1)H(1)

ν (−p2τ2)H(1)
ν (−p3τ3)H(2)

ν (−p1τ4)H(2)
ν (−p2τ4)H(2)

ν (−p3τ4)

+(p1 ↔ p3) + (p2 ↔ p3) + c.c. (7.49)
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Using the horizon exit approximations (7.10), (7.11) of Hankel functions

H(1)
ν (−p3τ2) → −i2

ν

π
(−p3τ2)−νΓ(ν), (7.50)

H(2)
ν (−p3τ1) → i

2ν

π
(−p3τ1)−νΓ(ν), (7.51)

we can compute

〈πππ〉 ' −6× 40× 33λ1vA
3H−7

(
1

4ϵMPlcs

)3 (π
4

)3(2ν

π

)6

Γ6(ν)

(
1

p1p2p3

)3

×
∫ τ1∗

−(1+iϵ)∞
dτ1

∫ τ2∗

−(1+iϵ)∞
dτ2

∫ τ3∗

−(1+iϵ)∞
dτ3

∫ τ4∗

−(1+iϵ)∞
dτ4

× (τ1τ2τ3)
−5/2 τ

1/2
4 (−p1τ1)−ν (−p2τ2)−ν (−p3τ3)−ν (−p1τ4)−ν (−p2τ4)−ν (−p3τ4)−ν

(7.52)

The first factor 6 comes from momentum exchange and contributions from complex

conjugation. Now, if we insert the cutoff Λ = γp for τ4, we obtain

〈πππ〉 ' 6× 40× 33λ1vA
3H−7

(
1

4ϵMPlcs

)3 (π
4

)3(2ν

π

)6

Γ6(ν)

(
1

p1p2p3

)3

×
(

2

3 + 2ν

)3
2

3− 6ν
(p1p2)

3/2−ν(−1)3ν−3/2p2ν3
(
1− γ3ν−3/2

)
, (7.53)

thus non-Gaussianity is given by

fNL =
10

9

1

(2π)7p̃2ζ
p6M−3

Pl (−H)3〈πππ〉

=
10

9

1

(2π)7p̃2ζ
p6M−3

Pl (−H)3

×6× 40× 33λ1vA
3H−7

(
1

4ϵMPlcs

)3 (π
4

)3(2ν

π

)6

Γ6(ν)

(
1

p1p2p3

)3

×
(

2

3 + 2ν

)3
2

3− 6ν
(p1p2)

3/2−ν(−1)3ν−3/2p2ν3
(
1− γ3ν−3/2

)
. (7.54)

Substituting numerical values as before gives the result

|fNL| = O(10−3∼0). (7.55)

The calculations for the case where the interaction involves time derivatives can be

performed similarly to the discussion in Table 1, and they all yield the same contribution

to non-Gaussianity.
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7.3 results

After all, combining all the obtained non-Gaussianity results in

|fNL| = O(10−3∼0)× α. (7.56)

α represents the contribution from components other than Σ11, or the additional group

theoretical numerical factor that appears in larger GUT gauge groups extension, and

so on, which one the same order contribution to the non-Gaussianity. Roughly, α is

expected to be an order of magnitude of O(100∼1). Since the current observation limit

(Fig.7.3) is

|fNL| ≲ 1, (7.57)

this result is consistent with the observation and it might be possible to detect the

signature of the Higgs boson in GUT by 21cm spectrum, future LSS and future CMB

depending on our model parameters. That is, the non-Gaussianity fNL is suppressed by

the Planck scale, but enhanced because of the large inflation scale. If fNL is evaluated

in a parameter region that is consistent with the currently observed upper bound of

tensor-scalar ratio r, fNL will be large enough to be observable in future experiments.

Figure 7.3: Schematic illustration of current and future constraints on the non-
Gaussianity (Figure taken from [104]).
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Chapter 8

Conclusion

The Standard Model of elementary particles, which has successfully explained many

physical phenomena, is probably one of the most successful physical theories. How-

ever, the nature is full of rich phenomena that cannot be explained by the Standard

Model alone. GUT is one of the attempts to describe these interesting phenomena.

GUT is a fascinating theory that unifies the three interactions that exist in nature:

strong interaction, electromagnetic interaction, and weak interaction. Although many

researchers have tried to verify it, it has not yet been confirmed. For example, we

have been looking for proton decay in Super Kamiokande, but have not observed that

process. In addition, it is difficult to investigate by using accelerators because the GUT

scale is very high energy (1015GeV). For this reason, Cosmological Collider Physics

has been the focus of much attention in recent years. Cosmological Collider Physics

is a method to obtain information on elementary particles by using the effective field

theory of inflation. Quantum fluctuations generated in the short time after the birth

of the universe are stretched by inflation. It appears in the form of non-Gaussianity by

observing the cosmic microwave background radiation. This means that Cosmological

Collider Physics is a very interesting way to obtain information on high energy elemen-

tary particles that cannot be reached by terrestrial accelerators by means of precise

observation of the universe.

In this thesis, we focus on the case where the energy scale of the inflation is close

to the GUT scale, and discuss if the GUT can be verified by the non-Gaussianity

due to the Higgs boson in GUT. Concretely, in addition to the effective action of

inflation, we considered the action of the adjoint Higgs scalar field in SU(5) GUT. A
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characteristic feature of this model is that the Higgs boson has a vacuum expectation

value due to spontaneous symmetry breaking, which leads to linear interactions of

Higgs boson with the inflation. Therefore, the same argument can be applied not only

to SU(5) GUT, but also to GUT such as SO(10) and E6 where the Higgs boson has

a vacuum expectation value and the symmetry is broken to the Standard Model, in

which case the final result will be enhanced by a group theoretical factor compared to

SU(5). Using these interactions, the three point function of the inflaton is generated

by the tree level exchange of the GUT symmetry breaking Higgs boson. The graphs

contributing to the inflaton three point function can be computed by performing horizon

exit approximation, and non-Gaussianity is evaluated from the obtained values. As a

result, we have shown

|fNL| ≲ 1 (8.1)

for non-Gaussianity without a drastic fine-tuning of parameters. This result is consis-

tent with the current observed limit and suggests the existence of the GUT symmetry

breaking Higgs boson and it might be possible to detect the signature of the GUT sym-

metry breaking Higgs boson by 21cm spectrum, future LSS and future CMB depending

on our model parameters.
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Appendix A

Perturbations in uniformly isotropic
spacetime

In appendix A to E, we follow [106] and review the perturbed metric in uniformly

isotropic spacetime and gauge transformation. In this appendix, we show that the

perturbed metric in uniformly isotropic spacetime is

ds2 = a2(η)
[
−(1 + 2A)dη2 + 2(B|i − Si)dηdx

i +
{
(1 + 2ψ)γij + 2E|ij + 2Fi|j + hij

}
dxidxj

]
(A.1)

in the range of linear perturbations. The symbols appearing in the above equation are

explained below.

In the universe with the FLRW metric (b)gµν on the background, we consider the

perturbation δgµν of the metric. This space-time metric can be written as

gµν =
(b)gµν + δgµν . (A.2)

For convenience, we define conformal time η by

η :=

∫
1

a
dt. (A.3)

Furthermore, if the metric in 3-dimensional space with curvature K is a2γij, the FLRW

metric (b)gµν can be written as

(b)ds2 = −dt2 + a2γijdx
idxj

= a2
(
−dη2 + γijdx

idxj
)
. (A.4)

As shown below, the perturbed metric δgµν can be separated into three contributions:

scalar perturbation, vector perturbation, and tensor perturbation. From the symmetry
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of the metric tensor, there are 10 independent components in δgµν .

(a) scalar perturbation

First, we consider scalar perturbations. The perturbed measure δg00 of the temporal-

temporal component can be written

δg
(S)
00 = −2a2A (A.5)

with only a contribution from the scalar quantity A. The reason why a2 is multiplied

here is to correspond to the fact that the metric of the time component of the back-

ground spacetime (A.4) is (b)g00 = −a2. The contribution of a scalar quantity B to the

perturbed metric of the temporal-spatial component δg0i can be written as

δg
(S)
0i = a2B|i (A.6)

where B|i is the covariant derivative with respect to the 3-dimensional metric γij of B.

This is because the only vector that can be constracted naturally from a scalar is the

derivative. The contribution of a scalar quantity to the perturbed metric δgij of the

spatial-spatial component can be written as

δg
(S)
ij = 2a2

(
ψγij + E|ij

)
(A.7)

using two scalar quantities ψ and E. This is because the only quantity with tensor

structure of the spatial part in the current theory is γij, and the only tensor that can

be constracted naturally from scalars is the second-order derivative.

In summary, the part of the metric that contains scalar perturbed metric are

δg
(S)
00 = −2a2A, (A.8)

δg
(S)
0i = a2B|i, (A.9)

δg
(S)
ij = 2a2

(
ψγij + E|ij

)
(A.10)

which consists of the four quantities A,B, ψ and E.

(b) vector perturbation

Next, we consider vector perturbations. Here, we use Helmholtz’s theorem:
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� �
Helmholtz’s theorem
Any 3-dimensional vector Vi can be written as

Vi = B|i + Si (A.11)

by the sum of a vector B|i with zero rotation and a vector Si with zero divergence:

B|[ij] :=
1

2
(B|ij −B|ji) = 0, (A.12)

Si
|i = 0 (A.13)

This represents the decomposition of vector Vi into longitudinal and transverse wave
components.� �

From Helmholtz’s theorem, the perturbed metric δg
(V )
0i consists of the sum of the purely

vector part

δg
(V )
0i = −a2Si (A.14)

and the spatial derivative B|i of the scalar quantity B. This B|i is considered in (A.9).

Similarly, the vector contribution δg
(V )
ij to the perturbed metric δgij is the spatial deriva-

tive Fi|j of the vector Fi with zero divergence satisfying the relation Fi
|i = 0, from

Helmholtz’s theorem. The scalar that comes out as a change of Helmholtz’s theorem

is E considered in the contribution (A.10) (Vi = Fi + E|i). Using the symmetry of the

metric δg
(V )
ij , we can write

δg
(V )
ij = a2(Fi|j + Fj|i) (A.15)

for perturbed metric originated by pure vector.

In summary, the perturbed metric component for vector perturbations are

δg
(V )
0i = −a2Si, (A.16)

δg
(V )
ij = a2(Fi|j + Fj|i) (A.17)

and the vector perturbations Si and Fi satisfy the conditions

Si
|i = 0, Fi

|i = 0. (A.18)

With these two restrictions, the vector perturbations Si and Fi have 6− 2 = 4 degrees

of freedom.

88



(c) tensor perturbation

Finally, we consider tensor perturbations. Here, we use the SVT (Scalar Vector Tensor)

decomposition of the tensor:� �
SVT (Scalar Vector Tensor) decomposition of the tensor
Any second-order tensor Tij can be written as

Tij(x) =

(
DiDj −

1

3
γij∇2

)
S +

1

2

(
DiY

(L)
j +DjY

(R)
i

)
+ Yij︸ ︷︷ ︸

traceless part

+
1

3
γijT

k
k︸ ︷︷ ︸

trace part

(A.19)

where Y
(L)
i , Y

(R)
i , Yij satisfy

DiY
(L)
i = 0, (A.20)

DiY
(R)
i = 0, (A.21)

DiYij = DjYij = Yi
i = 0 (A.22)

respectively. Di represents the covariant derivative. If Tij is a symmetric tensor,

then Y
(L)
i = Y

(R)
i and Yij = Yji. The above equation (A.19) is the decomposition

of the vector into longitudinal and transverse wave components twice.� �
We write

δg
(T )
ij = a2Tij (A.23)

for the contribution by the tensor of the perturbed metric δgij. From the SVT decom-

position of the tensor, we have

Tij =

(
DiDj −

1

3
γij∇2

)
S +

1

3
γijY +

1

2

(
DiY

(L)
j +DjY

(R)
i

)
+ Yij. (A.24)

The first term on the right-hand side is the traceless part, which is the contribution from

scalar quantities. The second term is the trace part, which is also a contribution from

scalar quantity. The third term is the traceless part, which is the contribution from

vector quantities satisfying DiY
(L)
i = 0, DiY

(R)
i = 0. Therefore, to extract the fourth

term, which is the contribution from the pure tensor part, Tij must be divergenceless
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and traceless. We write Tij satisfying these conditions as hij:

δg
(T )
ij = a2hij, (A.25)

hij
|j = 0, (A.26)

hi
i = 0. (A.27)

The independent degree of freedom of hij is 6− 3− 1 = 2.

Summarizing the above scalar, vector and tensor perturbations, the perturbed metric

with FLRW metric in the background from equations (A.8), (A.16) and (A.25) is as

follows:

ds2 = a2(η)
[
−(1 + 2A)dη2 + 2(B|i − Si)dηdx

i +
{
(1 + 2ψ)γij + 2E|ij + 2Fi|j + hij

}
dxidxj

]
(A.28)

Note that these perturbations satisfy the conditions

Si
|i = 0, (A.29)

Fi
|i = 0, (A.30)

hij
|j = 0, (A.31)

hi
i = 0 (A.32)

from equations (A.18), (A.26) and (A.27). All perturbations are functions of conformal

time η and position x. The physical meanings of each perturbation quantities are

A : fluctuations in the passage of time (Newton Potential),

B|i − Si : fluctuation of displacement vector,

ψ : fluctuation of spatial volume,

2E|ij + 2Fi|j + hij : anisotropy of space (E is rescaled according to radius, hij is distortion)

respectively. The physical meaning of the conditions (A.18) and (A.25) is as follows.

The conditions of the divergenceless

Si
|i = 0, Fi

|i = 0, hij
|j = 0 (A.33)

imply that the vectors Si, Fi and the gravitational wave hij are transverse waves. Trace-

less condition

hi
i = 0 (A.34)

means that gravitational waves do not change the spatial volume.

90



Appendix B

Gauge transformation

Since the general relativity is a gauge theory with general coordinate transformations,

the apparent degrees of freedom, called gauge degrees of freedom, appear in the theory.

In linear perturbation theory, gauge degrees of freedom are understood as degrees of

freedom of infinitesimal coordinate transformations. In this Appendix, we investigate

how the perturbed quantities in metric (A.28)

ds2 = a2(η)
[
−(1 + 2A)dη2 + 2(B|i − Si)dηdx

i +
{
(1 + 2ψ)γij + 2E|ij + 2Fi|j + hij

}
dxidxj

]
(B.1)

are transformed under such gauge transformations.

We consider the spacetime as a manifold that can take local coordinates at any point,

and introduce the following two manifolds:

• background spacetime manifold N

• physical (all spacetime) manifolds including perturbations M

Set the coordinate system (b)xµ in the background spacetime N and set the coordinate

system xµ in the all spacetime M. Consider a diffeomorphism map

D : N → M, (b)xµ 7→ xµ (B.2)

from N to M between these coordinate systems. The point P on M is transformed to

the point D−1(P ) on N by the inverse map The perturbation δT (δT can be a scalar,

vector, or tensor) at point P is defined by

δT (xµ(P )) := T (xµ(P ))− (b)T
(
(b)xµ

(
D−1(P )

))
. (B.3)
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That is, the difference between the quantity on the total space-timeM and the quantity

on the background space-time N at the point P .

Next, consider a diffeomorphism map

D̃ : N → M, (b)xµ 7→ x̃µ (B.4)

from the background space-time N to another coordinate system x̃µ on the all space-

time M. In this coordinate system x̃µ, the value of T at the point P on M is defined as

T̃ (x̃µ(P )). Since the value in the background spacetime N corresponding to the point

P is (b)T
(
D̃−1(P )

)
, the perturbation δ̃T in the new coordinate system is

δ̃T (x̃µ(P )) = T̃ (x̃µ(P ))− (b)T
(
(b)x̃µ

(
D̃−1(P )

))
. (B.5)

Now, consider the following infinitesimal coordinate transformations (gauge transfor-

mation):

x̃µ = xµ + ξµ. (B.6)

If T is a scalar quantity f , then the relation f̃ (x̃µ) = f (xµ) holds and the perturbation

(B.5) at point P becomes

δ̃f (x̃) = f (x)− (b)f
(
(b)x̃µ

(
D̃−1(P )

))
= f (x̃)− ξµ

∂f (x̃)

∂x̃µ
− (b)f

(
(b)x̃µ

(
D̃−1(P )

))
(first order expansion for ξ)

= δf (x̃)− ξµ
∂f (x̃)

∂x̃µ
.

(B.7)

Since ∂f (x̃) /∂x̃µ, which contributes to the last term in the first-order of infinitesimal

quantities, is time-dependent quantity in the background space-time N and the scalar

quantity f is (b)f (x̃0) in uniformly isotropic spacetime,

δ̃f = δf − ξ0f ′ (B.8)

is obtained. Note that the prime represents the derivative by x̃0 = η̃.

Using Helmholtz’s theorem on the vector x̃i, the infinitesimal coordinate transforma-

tions of the temporal and spatial parts of the gauge transformation (B.6) can be written

as
η̃ = η + ξ0,

x̃i = xi + ξ|
i + ζ i

(B.9)
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respectively, where ξ0 (η, xi) and ξ (η, xi) are scalar functions and ζ i (η, xi) is vector

with zero divergence ζ i|i = 0. Since relations

ξ0
(
η, xi

)
= ξ0

(
η̃, x̃i

)
, (B.10)

ξ
(
η, xi

)
= ξ

(
η̃, x̃i

)
, (B.11)

ζ i
(
η, xi

)
= ζ i

(
η̃, x̃i

)
(B.12)

hold in the first-order perturbation of infinitesimal coordinate transformations, we ob-

tain

dξ0 = ξ0′dη̃ + ξ0|idx̃
i, (B.13)

dξ = ξ′dη̃ + ξ|jdx̃
j, (B.14)

dζ i = ζ i′dη̃ + ζ i|jdx̃
j (B.15)

for small changes. From these equations and the derivative of (B.9), we can obtain

dη = dη̃ − ξ0′dη̃ − ξ0|idx̃
i (B.16)

dxi = dx̃i −
(
ξ′|

i
+ ζ i′

)
dη̃ −

(
ξ|
i
j
+ ζ i|j

)
dx̃j. (B.17)

Also, a relation

a(η) = a
(
η̃ − ξ0

)
= a(η̃)− ξ0a′(η̃) (B.18)

holds for the scale factor a(η). Substituting equations (B.16), (B.17), and (B.18) into

the perturbed metric (A.28)

ds2 = a2(η)
[
−(1 + 2A)dη2 + 2(B|i − Si)dηdx

i +
{
(1 + 2ψ)γij + 2E|ij + 2Fi|j + hij

}
dxidxj

]
,

(B.19)
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we can obtain gauge transformations of the perturbations: From equations (B.16),

(B.17), and (B.18),

a2(η) =
{
a(η̃)− ξ0a′(η̃)

}2
= a2(η̃)− 2aa′ξ0, (B.20)

dη2 =
(
dη̃ − ξ0′dη̃ − ξ0|idx̃

i
)2

= dη̃2 − 2ξ0′dη̃2 − 2ξ0|idη̃dx̃
i, (B.21)

dηdxi =
(
dη̃ − ξ0′dη̃ − ξ0|kdx̃

k
){

dx̃i −
(
ξ′|

i
+ ζ i′

)
dη̃ −

(
ξ|
i
j
+ ζ i|j

)
dx̃j
}

= dη̃dx̃i −
(
ξ′|

i
+ ζ i′

)
dη̃2 −

(
ξ|
i
j
+ ζ i|j

)
dη̃dx̃j − ξ0′dη̃dx̃i − ξ0|kdx̃

kdx̃i

= −
(
ξ′|

i
+ ζ i′

)
dη̃2 + (1− ξ0′)dη̃dx̃i −

(
ξ|
i
j
+ ζ i|j

)
dη̃dx̃j − ξ0|jdx̃

jdx̃i,

(B.22)

dxidxj =
{
dx̃i −

(
ξ′|

i
+ ζ i′

)
dη̃ −

(
ξ|
i
k
+ ζ i|k

)
dx̃k
}

×
{
dx̃j −

(
ξ′|

j
+ ζj′

)
dη̃ −

(
ξ|
j
l
+ ζj |l

)
dx̃l
}

= dx̃idx̃j −
(
ξ′|

j
+ ζj′

)
dη̃dx̃i

−
(
ξ|
j
l
+ ζj |l

)
dx̃ldx̃i −

(
ξ′|

i
+ ζ i′

)
dη̃dx̃j −

(
ξ|
i
k
+ ζ i|k

)
dx̃kdx̃j (B.23)
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are obtained, and substituting them into the perturbed metric (A.28), it is calculated

as in

ds2

=
{
a2(η̃)− 2aa′ξ0

} [
−(1 + 2A)

(
dη̃2 − 2ξ0′dη̃2 − 2ξ0|idη̃dx̃

i
)

+2(B|i − Si)
{
−
(
ξ′|

i
+ ζ i′

)
dη̃2 + (1− ξ0′)dη̃dx̃i −

(
ξ|
i
j
+ ζ i|j

)
dη̃dx̃j − ξ0|jdx̃

jdx̃i
}

+
{
(1 + 2ψ)γij + 2E|ij + 2Fi|j + hij

}{
dx̃idx̃j −

(
ξ′|

j
+ ζj′

)
dη̃dx̃i −

(
ξ|
j
l
+ ζj |l

)
dx̃ldx̃i

−
(
ξ′|

i
+ ζ i′

)
dη̃dx̃j −

(
ξ|
i
k
+ ζ i|k

)
dx̃kdx̃j

}]

=
{
a2(η̃)− 2aa′ξ0

} [
−
(
1 + 2A− 2ξ0′

)
dη̃2 + 2(B|i + ξ0|i − ξ′|i − Si − ζ ′i)dη̃dx̃

i

+
{
(1 + 2ψ)γij + 2E|ij + 2Fi|j + hij

}
dx̃idx̃j − 2γij

(
ξ|
j
l
+ ζ|

j
l

)
dx̃ldx̃i

]
= a2(η̃)

[
−
(
1 + 2A− 2ξ0′ − 2

a′

a
ξ0
)
dη̃2 + 2(B|i + ξ0|i − ξ′|i − Si − ζ ′i)dη̃dx̃

i

+

{(
1 + 2ψ − 2

a′

a
ξ0
)
γij + 2

(
E|ij − ξ|ij

)
+ 2

(
Fi|j − ζi|j

)
+ hij

}
dx̃idx̃j

]
.

(B.24)

Since the line element is a scalar invariant ds2 = ds̃2, it can be seen from equation

(B.24) and

ds̃2 = a2(η)
[
−(1 + 2Ã)dη̃2 + 2(B̃|i − S̃i)dη̃dx̃

i +
{
(1 + 2ψ̃)γij + 2Ẽ|ij + 2F̃i|j + h̃ij

}
dx̃idx̃j

]
(B.25)

that the perturbed quantities receives the following gauge transformation, respectively:
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Ã = A−Hξ0 − ξ0
′
, (B.26)

B̃ = B + ξ0 − ξ′, (B.27)

ψ̃ = ψ −Hξ0, (B.28)

Ẽ = E − ξ, (B.29)

F̃i = Fi − ζi, (B.30)

S̃i = Si + ζ ′i, (B.31)

h̃ij = hij, (B.32)

where H is defined as

H :=
a′

a
= aH = ȧ. (B.33)
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Appendix C

Fluctuation of matter density

In the previous appendix, we have considered perturbations of the metric that appears

on the left-hand side of the Einstein equation. In this appendix, we consider the pertur-

bation δT µν of the energy momentum tensor T µν that appears on the right-hand side of

the Einstein equation. First, we compute the scalar, vector, and tensor components of

the perturbation δT µν , respectively. Then, we derive the transformation laws for each

component of the perturbation δT µν by the gauge transformation (B.6)

x̃µ = xµ + ξµ. (C.1)

In the following, we will discuss the cases of fluid and scalar fields separately.

C.1 Fluctuation of fluid density

The energy-momentum tensor of a fluid with energy density ρ and pressure P can be

written as

T µν = (ρ+ P )uµuν + Pδµν + πµν (C.2)

in general. The πµν is called an anisotropic stress and contributes to an anisotropy in

the spatial direction. uµ is 4-velocity satisfying a relation

gµνu
µuν = −1. (C.3)

In perturbed metric (A.28)

ds2 = a2(η)
[
−(1 + 2A)dη2 + 2(B|i − Si)dηdx

i +
{
(1 + 2ψ)γij + 2E|ij + 2Fi|j + hij

}
dxidxj

]
,

(C.4)
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since the proper time τ is related to the conformal time η by

dτ = a(1 + A)dη, (C.5)

the temporal component u0 of the 4-velocity is

u0 =
dη

dτ
=

1

a
(1 + A)−1 =

1

a
(1− A). (C.6)

The spatial component of the 4-velocity uµ is

ui =
dxi

dτ
=
dxi

dη

dη

dτ
, (C.7)

while the vector dxi/dη can be written in terms of the contribution from a scalar v|
i

and from a pure vector vi, from Helmholtz’s theorem, and thus

ui =
dxi

dη

dη

dτ
=

1

a
(1− A)(v|

i + vi) =
1

a
(v|

i + vi)
(
|v|i|, |vi| � 1

)
. (C.8)

The scalar quantity v is a velocity potential with zero rotation about the vector v|
i.

The vector vi is a vector describing the rotation of the fluid with zero divergence, i.e.

vi|i = 0. Therefore, the 4-velocity uµ is given by

uµ =
1

a

(
1− A, v|

i + vi
)
. (C.9)

The covariant component of the 4-velocity uµ has temporal component

u0 = g0µu
µ = g00u

0 + g0iu
i

= −a2(1 + 2A)
1

a
(1− A) + a2

(
B|i − Si

) 1
a

(
u|
i + ui

)
= −a(1 + A), (C.10)

and spatial components

ui = giµu
µ = gi0u

0 + giju
j

= a2
(
B|i − Si

) 1
a
(1− A) + a2

{
(1 + 2ψ)γij + 2E|ij + 2Fi|j + hij

} 1

a
(v|

j + vj)

= a(B|i − Si) + aγij(v|
j + vj)

= a(B|i − Si + v|i + vi) (C.11)

for the perturbed metric (A.28), which can be summarized as

uµ = a
(
−1− A, v|i +B|i + vi − Si

)
. (C.12)
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The energy density and pressure of the fluid are divided into the background and

perturbation parts and denoted as

ρtotal = ρ+ δρ, Ptotal = P + δP. (C.13)

ρ, P satisfy the continuous equation

ρ′ + 3H(ρ+ P ) = 0 (C.14)

from the Einstein equation. Note that the anisotropic stress πµν has only a spatial

component πij and can be divided into a scalar part Π, a vector part πi, a purely

tensor part (T )πij and a trace part πkk (= 0) as in

πij =

(
Π|

i
j
− 1

3
∇2Πδij

)
+

1

2

(
πi|j + πj|

i
)
+ (T )πij +

1

3
πkkδ

i
j (C.15)

from the SVT decomposition of the tensor, and substituting the 4-velocity (C.9), (C.12)

into the energy momentum tensor (C.2)

T µν = (ρtotal + Ptotal)u
µuν + Ptotalδ

µ
ν + πµν , (C.16)

we can obtain

T 0
0 = (ρ+ δρ+ P + δP )u0u0 + P + δP

= (ρ+ δρ+ P + δP )(1− A)(−1− A) + P + δP

= −(ρ+ δρ+ P + δP )(1− A2) + P + δP

= −ρ− δρ, (C.17)

T 0
i = (ρ+ δρ+ P + δP )u0ui

= (ρ+ δρ+ P + δP )(1− A)(v|i +B|i + vi − Si)

= (ρ+ P )(v|i +B|i + vi − Si), (C.18)

T i0 = (ρ+ δρ+ P + δP )uiu0

= (ρ+ δρ+ P + δP )(v|
i + vi)(−1− A)

= −(ρ+ P )(v|
i + vi), (C.19)
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T ij = (ρ+ δρ+ P + δP )uiuj + (P + δP )δij + πij

= (ρ+ δρ+ P + δP )(v|
i + vi)(v|i +B|i + vi − Si) + (P + δP )δij + πij

= (P + δP )δij + πij,

= (P + δP )δij +

(
Π|

i
j
− 1

3
∇2Πδij

)
+

1

2

(
πi|j + πj|

i
)
+(T ) πij. (C.20)

From these expressions, the perturbations corresponding to scalar, vector, and tensor,

respectively, are as follows:

• scalar perturbations

(S)δT 0
0 = −δρ,

(S)δT 0
i = (ρ+ P )

(
v|i +B|i

)
,

(S)δT i0 = −(ρ+ P )v|
i,

(S)δT ij = δPδij +Π|
i
j
− 1

3
∇2Πδij.

(C.21)

• vector perturbations
(V )δT 0

0 = 0,

(V )δT 0
i = (ρ+ P ) (vi − Si) ,

(V )δT i0 = −(ρ+ P )vi,

(V )δT ij =
1

2

(
πi|j + πj|

i
)
.

(C.22)

• tensor perturbations
(T )δT 0

0 = 0,

(T )δT 0
i = 0,

(T )δT i0 = 0,

(T )δT ij =
(T ) πij.

(C.23)

Next, we determine the transformation law for each component of the perturbation

δT µν by the gauge transformation (B.6)

x̃µ = xµ + ξµ. (C.24)

100



From the discussion in the previous appendix, since the scalar quantity f receives the

transformation

δ̃f = δf − ξ0f ′, (C.25)

the transformation with respect to the scalar perturbations δρ and δP become

δ̃ρ = δρ− ρ′ξ0, δ̃P = δP − P ′ξ0. (C.26)

Next, we determine the transformations for the scalar part (S)δT 0
i and the vector part

(V )δT 0
i of δT

0
i. Differentiating the gauge transformation (B.6)

x̃i = xi + ξ|
i + ζ i (C.27)

with respect to η yields

(x̃i)′ = (xi)′ + (ξ|
i)′ + (ζ i)′

= ui + (ξ|
i)′ + (ζ i)′

= vi + v|
i + (ξ|

i)′ + (ζ i)′

=
(
vi + (ζ i)′

)
+
(
v|
i + (ξ|

i)′
)

≡ ṽi(x̃) + ṽ(x̃). (C.28)

Thus, the transformation of the scalar velocity potential v is

ṽ(x̃) = v(x) + ξ′(x) (C.29)

and that of the velocity vector vi is

ṽi(x̃) = vi(x) +
(
ζ i
)′
(x). (C.30)

Let us define two quantities to be used later. First, consider

δq|i := a(S)δT 0
i, (C.31)

the density of energy flow generated by the scalar fluctuations. In the fluid case, this

quantity is

δq = a(ρ+ P )(v +B). (C.32)
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Note that the unperturbed scalar quantity f satisfies

f̃(x̃) = f(x), (C.33)

from equation (B.27)

B̃(x̃) = B(x) + ξ0(x)− ξ′(x) (C.34)

and (C.29), δq receives a gauge transformation

δ̃q = ã(η̃)
{
ρ̃(η̃) + P̃ (η̃)

}{
ṽ(x̃) + B̃(x̃)

}
= a(η) {ρ(η) + P (η)}

{
v(x) + ξ′(x) +B(x) + ξ0(x)− ξ′(x)

}
= a(η) {ρ(η) + P (η)}

{
v(x) +B(x) + ξ0(x)

}
= δq + a(ρ+ P )ξ0(x). (C.35)

Similarly, we define
(V )δqi := a(V )δT 0

i (C.36)

to be the density of the energy flow generated by the vector fluctuations. In the fluid

case, this quantity is
(V )δqi = a(ρ+ P ) (vi − Si) . (C.37)

From equation (B.31)

S̃i = Si + ζ ′i (C.38)

and (C.30)

ṽi(x̃) = vi(x) +
(
ζ i
)′
(x), (C.39)

we see that (V )δqi is gauge invariant

(V )δ̃qi =
(V )δqi. (C.40)

That is, (V )δqi is invariant under the coordinate transformations.

C.2 Fluctuation of the scalar field density

Next, we consider density fluctuations of the scalar field ϕ. When the Lagrangian L
can be written

L = P (ϕ,X) (C.41)
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as a function of ϕ and its kinetic energy

X = −1

2
gµν(∂µϕ)(∂νϕ), (C.42)

the field action is

S =

∫
d4x

√
−gL, (C.43)

where g is the determinant of a 4 × 4 matrix with metric gµν as its component. The

Lagrangian of a canonical scalar field with potential V (ϕ) is given by

L = P (ϕ,X) = X − V (ϕ). (C.44)

The model (C.43) is a general model that includes not only the potential V (ϕ) but also

the case with nonlinear terms in X.

For the action S, we define the energy-momentum tensor to be the quantity that takes

the variational with respect to gµν :

Tµν := − 2√
−g

δS

δgµν
= −2

∂L
∂gµν

+ gµνL. (C.45)

In the second equality, we used a relation

δ
√
−g = −1

2

√
−ggµνδgµν . (C.46)

Since the relation

−2
∂L
∂gµν

= −2
∂P

∂X

∂X

∂gµν
= P,X(∂µϕ)∂νϕ (C.47)

holds for general Lagrangian

L = P (ϕ,X), (C.48)

the energy-momentum tensor becomes

Tµν = P,X(∂µϕ)∂νϕ+ gµνP. (C.49)

We denote the derivative of the Lagrangian P with respect to the kinetic energy X as

P,X :=
∂P

∂X
. (C.50)

If we raise the subscript one up, we get

T µν = P,X(∂
µϕ)∂νϕ+ δµνP. (C.51)
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Separating the scalar field into a background part and a perturbed part as in

ϕtotal(η,x) = ϕ(η) + δϕ(η,x), (C.52)

the density ρ of the field for the background part is

ρ = −(b)T 0
0 = −

(
P,X(∂

0ϕ)∂0ϕ+ P
)

= −P,X (b)g0µ(∂µϕ)∂0ϕ− P

=
1

a2
P,Xϕ

′2 − P

= 2XP,X − P, (C.53)

where the kinetic energy of the background field

X =
1

2a2
ϕ′2 (C.54)

is used in the last equality. Note that the background field pressure T ii/3 is P itself.

These ρ, P satisfy the continuous equation (C.14).

For the perturbed metric

ds2 = a2(η)
[
−(1 + 2A)dη2 + 2(B|i − Si)dηdx

i +
{
(1 + 2ψ)γij + 2E|ij + 2Fi|j + hij

}
dxidxj

]
,

(C.55)

the perturbed part of the energy-momentum tensor (C.51) is as follows:

δρ := −δT 0
0 = (P,X + 2XP,XX) δX − (P,ϕ − 2XP,Xϕ) δϕ, (C.56)

δq|i := aδT 0
i = −1

a
P,Xϕ

′δϕ|i, (C.57)

δPδij := δT ij = (P,X δX + P,ϕδϕ) δ
i
j, (C.58)

where P,Xϕ and δX are

P,Xϕ :=
∂2P

∂ϕ∂X
, δX =

1

a2
(
ϕ′δϕ′ − Aϕ′2) (C.59)

respectively.
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Here we derive the perturbed part of the energy-momentum tensor (C.56),

(C.57), (C.58). First, by substituting ϕ + δϕ,X + δX into the T 0
0 component

of the energy-momentum tensor, the energy density becomes

ρ

= −T 0
0(ϕ+ δϕ,X + δX)

= −P,X(ϕ+ δϕ,X + δX)g0µ (∂µϕ+ ∂µδϕ) (∂0ϕ+ ∂0δϕ)− P (ϕ+ δϕ,X + δX)

=
1

a2
(P,X + P,Xϕδϕ+ P,XXδX) (1− 2A)(ϕ′ + δϕ′)2 − P − P,ϕδϕ− P,XδX

=
1

a2
(P,X + P,Xϕδϕ+ P,XXδX) (1− 2A)(ϕ′2 + 2ϕ′δϕ′)− P − P,ϕδϕ− P,XδX

=
1

a2
(P,X + P,Xϕδϕ+ P,XXδX) (ϕ′2 + 2ϕ′δϕ′ − 2Aϕ′2)− P − P,ϕδϕ− P,XδX

=
1

a2
P,Xϕ

′2 − P +
1

a2
(
2P,Xϕ

′δϕ′ − 2P,XAϕ
′2 + P,Xϕϕ

′2δϕ+ P,XXϕ
2′δX

)
−P,ϕδϕ− P,XδX

= 2P,XX − P +
1

a2
(
2P,Xϕ

′δϕ′ − 2P,XAϕ
′2)+ (−P,X + 2XP,XX)δX

−(P,ϕ − 2XP,Xϕ)δϕ. (C.60)

Note that since the total kinetic energy is

Xtotal = −1

2
gµν (∂µϕ+ ∂µδϕ) (∂νϕ+ ∂νδϕ)

= −1

2

{
g00ϕ′2 + 2g00ϕ′δϕ′}

=
1

2a2
(1− 2A)(ϕ′2 + 2ϕ′δϕ′)

=
1

2a2
ϕ′2 +

1

a2
(ϕ′δϕ′ − Aϕ′2), (C.61)

it follows that

δX =
1

a2
(
ϕ′δϕ′ − Aϕ′2) (C.62)

holds. Using this, the relation

1

a2
(
2P,Xϕ

′δϕ′ − 2P,XAϕ
′2) = 2P,XδX (C.63)

holds, which implies that the energy density has the form

ρ = 2P,XX − P + (P,X + 2XP,XX)δX − (P,ϕ − 2XP,Xϕ)δϕ, (C.64)
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and its perturbed part is

δρ = (P,X + 2XP,XX)δX − (P,ϕ − 2XP,Xϕ)δϕ. (C.65)

Next, we derive the perturbed part of the density of energy flow. From the equation

(C.51)

T µν = P,X(∂
µϕ)∂νϕ+ δµνP, (C.66)

its temporal-spatial component is

T 0
i(ϕ+ δϕ,X + δX) = P,X(ϕ+ δϕ,X + δX)g0µ (∂µ (ϕ+ δϕ)) ∂i (ϕ+ δϕ)

= P,X(ϕ,X)g00ϕ′∂iδϕ

= − 1

a2
P,Xϕ

′δϕ|i. (C.67)

Since the background spacetime is uniformly isotropic, no zeroth-order terms re-

main. Thus, we find that the perturbed part of the density of energy flow is equation

(C.57)

δq|i := aδT 0
i = −1

a
P,Xϕ

′δϕ|i. (C.68)

The perturbed part of the pressure is clearly

δPδij := δT ij = (P,X δX + P,ϕδϕ) δ
i
j, (C.69)

since we can immediately see that the first term in equation (C.51)

T ij = P,X(∂
iϕ)∂jϕ+ δijP (C.70)

is of second or higher order. 2

Recalling that the perturbed part of the scalar quantity f receives a transformation

as in equation (B.8)

δ̃f = δf − ξ0f ′ (C.71)

under the gauge transformation

x̃µ = xµ + ξµ, (C.72)
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we find that the perturbed part of the scalar field ϕ receives a transformation as in

δ̃ϕ = δϕ− ϕ′ξ0. (C.73)

For δρ and δP , we find the same transformation

δ̃ρ = δρ− ρ′ξ0, δ̃P = δP − P ′ξ0 (C.74)

as in the fluid case. Given the equation (C.57)

δq|i = aδT 0
i = −1

a
P,Xϕ

′δϕ|i (C.75)

and the fact that the part of ∂i acting on P,X is an infinitesimal quantity, δq is

δq = −1

a
P,Xϕ

′δϕ. (C.76)

Moreover, using equations (C.53)

ρ =
1

a2
P,Xϕ

′2 − P (C.77)

and (C.73), we see that the perturbed part δq receives the same transformation (C.35)

as in the fluid case:

δ̃q = −1

ã
P̃,X ϕ̃

′δ̃ϕ

= −1

a
P,Xϕ

′ (δϕ− ϕ′ξ0
)

= −1

a
P,Xϕ

′δϕ+ a
1

a2
P,Xϕ

′2ξ0

= δq + a(ρ+ P )ξ0. (C.78)
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Appendix D

Gauge invariants and gauge fixing

In Appendix B, we examined how the perturbations of the metric are transformed by the

gauge transformation. In Appendix C, we examined how quantities related to matter

fluctuations receive transformations. In this Appendix, we combine these quantities to

form gauge invariants. Gauge fixing is also discussed.

D.1 Gauge invariants

The observables are invariant under the gauge transformation

x̃µ = xµ + ξµ. (D.1)

There exist

Ψ := A− 1

a
[a (E ′ −B)]

′
, Φ := ψ −H (E ′ −B) (D.2)

as gauge invariant quantities composed of scalar perturbations A,B,E, ψ of the metric

ds2 = a2(η)
[
−(1 + 2A)dη2 + 2(B|i − Si)dηdx

i +
{
(1 + 2ψ)γij + 2E|ij + 2Fi|j + hij

}
dxidxj

]
(D.3)

These two quantities are called Bardeen variables since they were introduced by Bardeen

in 1980.

108



Check that the Bardeen variables Ψ,Φ are gauge invariants. First, Ψ can be

written as

Ψ = A− 1

a
[a (E ′ −B)]

′
= A−H(E ′ −B)− (E ′ −B)′

(
H =

a′

a
= aH = ȧ

)
.

(D.4)

From the transformation rules (B.26)∼(B.29)

Ã = A−Hξ0 − ξ0
′
,

B̃ = B + ξ0 − ξ′,

ψ̃ = ψ −Hξ0,

Ẽ = E − ξ,

(D.5)

we get

Ψ̃ = Ã−H(Ẽ ′ − B̃)− (Ẽ ′ − B̃)′

= A−Hξ0 − ξ0
′ −H(E ′ − ξ′ −B − ξ0 + ξ′)− (E ′ − ξ′ −B − ξ0 + ξ′)′

= A−Hξ0 − ξ0
′ −H(E ′ −B) +Hξ0 − (E ′ −B)′ + ξ0′

= A−H(E ′ −B)− (E ′ −B)′ (D.6)

and certainly Ψ is gauge invariant:

Ψ̃ = Ψ. (D.7)

Next, the gauge transformation of Φ is

Φ̃ = ψ̃ −H
(
Ẽ ′ − B̃

)
= ψ −Hξ0 −H

(
E ′ − ξ′ −B − ξ0 + ξ′

)
= ψ −H (E ′ −B) , (D.8)

and indeed Φ is gauge invariant:

Φ̃ = Φ. 2 (D.9)
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In addition, the following three quantities are also gauge invariants:

ζ := ψ +
H

ρ+ P
δq, Θ := ψ − H

ρ′
δρ, δϕψ := δϕ− ϕ′

H
ψ. (D.10)

Check that ζ,Θ, δϕψ are gauge invariants. The gauge transformations of the

perturbed part of the energy density δρ, the fluctuations of the spatial volume ψ,

the perturbed part of the density of the energy flow δq, and the perturbed part of

the scalar field δϕ are respectively given by the expressions (C.26), (B.28) (C.35),

(C.73)

δ̃ρ = δρ− ρ′ξ0, ψ̃ = ψ −Hξ0, δ̃q = δq + a(ρ+ P )ξ0, δ̃ϕ = δϕ− ϕ′ξ0. (D.11)

Using them, the gauge transformations each of these quantities are

ζ̃ = ψ̃ +
H̃

ρ̃+ P̃
δ̃q

= ψ −Hξ0 + H

ρ+ P

(
δq + a (ρ+ P ) ξ0

)
= ψ +

H

ρ+ P
δq,

(
H =

a′

a
= aH = ȧ

)
(D.12)

Θ̃ = ψ̃ − H̃
ρ̃′
δ̃ρ

= ψ −Hξ0 − H
ρ′
(
δρ− ρ′ξ0

)
= ψ − H

ρ′
δρ, (D.13)

δ̃ϕψ = δ̃ϕ− ϕ̃′

H̃
ψ̃

= δϕ− ϕ′ξ0 − ϕ′

H
(
ψ −Hξ0

)
= δϕ− ϕ′

H
ψ, (D.14)

which are indeed gauge invariant. 2

Moreover, when we consider the scalar field ϕ, from the equations (C.53) and (C.76)

110



ρ =
1

a2
P,Xϕ

′2 − P, δq = −1

a
P,Xϕ

′δϕ, (D.15)

we can write

H

ρ+ P
δq =

H

ρ+ P

(
−1

a
P,Xϕ

′δϕ

)
= − H

1
a2
P,Xϕ′2

(
1

a
P,Xϕ

′δϕ

)
= −H

ϕ′ δϕ, (D.16)

then ζ can be also expressed as

ζ = ψ − H
ϕ′ δϕ. (D.17)

From this expression and the equation (D.10)

δϕψ = δϕ− ϕ′

H
ψ, (D.18)

it is clear that the relationship

δϕψ = −ϕ
′

H
ζ (D.19)

holds. Using the equations (C.26) and (C.35) and the continuous equation (C.14)

δ̃ρ = δρ− ρ′ξ0, δ̃q = δq + a(ρ+ P )ξ0, ρ′ + 3H(ρ+ P ) = 0, (D.20)

we find that the combination

δρm := δρ− 3Hδq (D.21)

is also gauge invariant.

Check that δρm is a gauge invariant:

δ̃ρm = δ̃ρ− 3H̃δ̃q

= δρ− ρ′ξ0 − 3H
(
δq + a(ρ+ P )ξ0

)
= δρ− 3Hδq − (ρ′ + 3H(ρ+ P )) ξ0

= δρ− 3Hδq. 2 (D.22)
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Then, using this δρm, we find that there exists a relation

ζ = Θ+
H
ρ′
δρm (D.23)

between ζ and Θ.

Check that ζ can be written as in equation (D.23). From equation (D.10) and

the continuous equation (C.14)

ζ = ψ +
H

ρ+ P
δq, Θ = ψ − H

ρ′
δρ, ρ′ + 3H(ρ+ P ) = 0 (D.24)

we can obtain

ζ = ψ +
H

ρ+ P
δq

= Θ+
H
ρ′
δρ+

H

ρ+ P
δq

= Θ+
H
ρ′
δρ− 3

HH
ρ′

δq

= Θ+
H
ρ′
(δρ− 3Hδq)

= Θ +
H
ρ′
δρm. 2 (D.25)

For vector perturbations Fi and Si, from equations (B.30), (B.31)

F̃i = Fi − ζi,

S̃i = Si + ζ ′i,
(D.26)

it is clear that the quantity defined by

Ui := Si + F ′
i (D.27)

is gauge invariant.
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We summarize the above gauge invariants:

Ψ = A− 1

a
[a (E ′ −B)]

′
= A−H(E ′ −B)− (E ′ −B)′, (D.28)

Φ = ψ −H (E ′ −B) , (D.29)

ζ = ψ +
H

ρ+ P
δq = ψ − H

ϕ′ δϕ = Θ+
H
ρ′
δρm = −H

ϕ′ δϕψ, (D.30)

Θ = ψ − H
ρ′
δρ, (D.31)

δϕψ = δϕ− ϕ′

H
ψ, (D.32)

δρm = δρ− 3Hδq, (D.33)

Ui = Si + F ′
i . (D.34)

D.2 Gauge fixing

In the gauge transformation (B.9),

η̃ = η + ξ0,

x̃i = xi + ξ|
i + ζ i,

(D.35)

note that the two scalar quantities ξ0 and ξ and the three components of the vector

quantity ζ i are unrestricted and that ζ i is subject to the restriction ζ i|i = 0, the degrees

of freedom for the gauge transformation are 4. These four degrees of freedom can be

determined by fixing the gauge. For the vector ζi, for example, if we take the gauge

F̃i = 0 in equation (B.30)

F̃i = Fi − ζi, (D.36)

the gauge is fixed to

Fi = ζi (D.37)

and the remaining two degrees of freedom to be fixed are ξ0 and ξ. In the following, we

consider gauge fixing for this scalar two degree of freedom. For convenience, we restate

the perturbed metric and the gauge transformation for scalar perturbations:

ds̃2 = a2(η̃)
{
−(1 + 2Ã)dη̃2 + 2

(
B̃|i − S̃i

)
dη̃dx̃i +

[
(1 + 2ψ̃)γij + 2Ẽ|ij + 2F̃i|j + h̃ij

]
dx̃idx̃j

}
,

(D.38)
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Ã = A−Hξ0 − ξ0
′
, (D.39)

B̃ = B + ξ0 − ξ′, (D.40)

ψ̃ = ψ −Hξ0, (D.41)

Ẽ = E − ξ (D.42)

(A) Newtonian gauge

Newtonian gauge is the gauge fixed such that

B̃ = 0, Ẽ = 0, (D.43)

i.e., fixed to

ξ0 = E ′ −B, ξ = E. (D.44)

At this point, recalling the Bardeen variable (D.2)

Ψ = A− 1

a
[a (E ′ −B)]

′
= A−H(E ′−B)− (E ′−B)′, Φ = ψ−H (E ′ −B) , (D.45)

we find that it can be written as

Ã = A−Hξ0 − ξ0
′

= A−H(E ′ −B)− (E ′ −B)′

= Ψ, (D.46)

ψ̃ = ψ −Hξ0

= ψ −H(E ′ −B)

= Φ. (D.47)

Substituting these into the perturbed metric (D.38) yields

ds̃2 = a2(η̃)
{
−(1 + 2Ψ̃)dη̃2 − 2S̃idη̃dx̃

i +
[
(1 + 2Φ̃)γij + h̃ij

]
dx̃idx̃j

}
(D.48)

for the Newtonian gauge. It can be seen that Ψ̃ corresponds to the gravitational po-

tential in Newtonian mechanics and Φ̃ corresponds to the fluctuation of the spatial

volume. As we will see later, if anisotropic stress Π is zero, then Ψ = −Φ. Since Ψ and

Φ are gauge invariants, we can obtain expressions in general gauges by treating scalar
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perturbations in the Newtonian gauge and rewriting them as A,E,B, ψ, etc. using

equation (D.2) after calculating the physical quantities.

(B) Spatially flat gauge

Spatially flat gauges are gauges for which the perturbation of the spatial part of the

perturbed metric (D.38) (without considering the tensor perturbation h̃ij) is zero, that

is,

ψ̃ = 0, Ẽ = 0. (D.49)

Since the equations (D.41) and (D.42) are

ψ̃ = ψ −Hξ0, Ẽ = E − ξ, (D.50)

we have

ξ0 =
ψ

H
, ξ = E, (D.51)

and the remaining two scalar perturbations can be written as

Ã = A− ψ −
(
ψ

H

)′

, B̃ = B +
ψ

H
− E ′. (D.52)

Also, from the expressions (D.30), (D.31), and (D.32)

ζ = −H
ϕ′ δϕψ,

Θ = ψ − H
ρ′
δρ,

δϕψ = δϕ− ϕ′

H
ψ,

these gauge invariants can be written as

ζ̃ = −H
ϕ′ δ̃ϕψ, (D.53)

Θ̃ = −H
ρ′
δ̃ρ, (D.54)

δ̃ϕψ = δ̃ϕ. (D.55)
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(C) Uniform density gauge

The uniform density gauge is a gauge that makes the fluctuation of the energy density

ρ zero:

δ̃ρ = 0. (D.56)

In this case, from equation (C.26)

δ̃ρ = δρ− ρ′ξ0, (D.57)

ξ0 is fixed to

ξ0 =
δρ

ρ′
. (D.58)

Another scalar gauge degree of freedom ξ is determined by taking B̃ = 0 or Ẽ = 0.

In the uniform density gauge, from equation (D.31)

Θ = ψ − H
ρ′
δρ, (D.59)

we have

Θ̃ = ψ̃. (D.60)

The three-dimensional spatial curvature on a constant-time hypersurface is denoted by

(3)ζ =
6

a2
(1− 2ψ)K − 4

a2
∇2ψ. (D.61)

Thus, the scalar perturbation ψ of the spatial part of the metric in flat spacetime

(K = 0) is related to the 3-dimensional spatial curvature ζ as

(3)ζ = − 4

a2
∇2ψ. (D.62)

Therefore, Θ is called a curvature fluctuation on a constant-density hypersurface.

(D) Comoving gauge (Unitary gauge)

The expressions of the comoving gauges are different for the fluid case and the scalar

field case.

• Fluid

In the fluid case, the comoving gauge is the gauge for which the spatial components
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of the four-velocities (C.9) and (C.12)

uµ =
1

a

(
1− A, v|

i + vi
)
,

uµ = a
(
−1− A, v|i +B|i + vi − Si

)
are zero (assuming no vector perturbations are considered), i.e.,

ṽ = 0, B̃ = 0. (D.63)

Then, from equations (C.29) and (D.40)

ṽ(x̃) = v(x) + ξ′(x), B̃ = B + ξ0 − ξ′, (D.64)

we obtain

ξ = −
∫
vdη + Y (xi), ξ0 = −v −B. (D.65)

Y (xi) is an arbitrary scalar function that depends on the spatial coordinate xi.

It can be seen that Ẽ depends on Y (xi) from equation (D.42)

Ẽ = E − ξ. (D.66)

Since Ã and ψ̃ are

Ã = A−Hξ0 − ξ0
′
, ψ̃ = ψ −Hξ0, (D.67)

and ξ0 is fixed, we can see that scalar fluctuations Ã, B̃ and ψ̃ are fixed in this

gauge except Ẽ. Also, since the time derivative Ẽ ′ is independent of Y (xi), for

example, the quantities Ψ,Φ written in equations (D.2)

Ψ = A− 1

a
[a (E ′ −B)]

′
= A−H(E ′ −B)− (E ′ −B)′,

Φ = ψ −H (E ′ −B)

are fixed. Furthermore, transformations of scalar quantities such as δρ, δP, δϕ, δq, v

involve ξ′ and ξ0 rather than ξ itself ((C.26) etc.):

δ̃ρ = δρ− ρ′ξ0, (D.68)

δ̃P = δP − P ′ξ0, (D.69)

δ̃ϕ = δϕ− ϕ′ξ0, (D.70)

δ̃q = δq + a(ρ+ P )ξ0(x), (D.71)

ṽ = v + ξ′. (D.72)
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Thus, the ambiguity of ξ coming from Y (xi) is not essentially a problem. Note

that from equation (C.32), we have equation

δ̃q = a(ρ+ P )(ṽ + B̃) = 0 (D.73)

(since the coordinate system moves with the fluid, the density of energy flow is

0), and from equation (D.10)

ζ = ψ +
H

ρ+ P
δq, (D.74)

we can find

ζ̃ = ψ̃. (D.75)

Combined with equation (D.62)

(3)ζ = − 4

a2
∇2ψ, (D.76)

we can obtain the relation
(3)ζ̃ = − 4

a2
∇2ζ̃ , (D.77)

hence ζ is called the comoving curvature fluctuation.

• scalar field ϕ

The definition of a comoving gauge in the case of a scalar field ϕ is

δ̃q = 0. (D.78)

In this case, the equation (D.77) is still valid. From equation (C.76)

δq = −1

a
P,Xϕ

′δϕ, (D.79)

the above equation corresponds to

δ̃ϕ = 0. (D.80)

From this fact, we also refer to this gauge as the uniform field gauge. From the

transformation (C.73)

δ̃ϕ = δϕ− ϕ′ξ0, (D.81)
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the relation

ξ0 =
δϕ

ϕ′ (D.82)

holds, and then, for example, if we choose Ẽ = 0, we can determine ξ = E from

Ẽ = E − ξ.

Note that the comoving gauge is sometimes referred to as unitary gauge.

If the gauge is fixed to one of the above (A) to (D), the physical contents to be solved

are essentially the same. In other words, depending on the problem under consideration,

we can proceed with the discussion using convenient gauge conditions.

In summary, we note the physical meaning of each gauge invariant:

Ψ (Bardeen variable) : in Newtonian gauge, gravitational potential in Newtonian me-

chanics

Φ (Bardeen variable) : in Newtonian gauge, fluctuation of spatial volume (Ψ = −Φ if

anisotropic stress Π is zero)

Θ (the curvature fluctuation on a constant-density hypersurface) : in Uniform density

gauge, three-dimensional spatial curvature
(
(3)ζ̃ = − 4

a2
∇2Θ̃

)
ζ (the comoving curvature fluctuation) : in comoving gauge, three-dimensional spatial

curvature
(
(3)ζ̃ = − 4

a2
∇2ζ̃

)
δϕψ : in spatially flat gauge, fluctuation of scalar field ϕ

(
δ̃ϕψ = δ̃ϕ

)
δρm : in comoving gauge, fluctuations of the energy density ρ

(
δ̃ρm = δ̃ρ

)
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Appendix E

Perturbed Einstein equations

In this appendix, we consider the perturbed Einstein equations that linear fluctuations

must satisfy for the metric

ds2 = a2(η)
[
−(1 + 2A)dη2 + 2(B|i − Si)dηdx

i +
{
(1 + 2ψ)γij + 2E|ij + 2Fi|j + hij

}
dxidxj

]
.

(E.1)

Since we proceed without fixing the gauge, the obtained equations can be used for

arbitrary gauge fixings. The Einstein tensor Gµ
ν and the energy-momentum tensor

T µν can be separated into the background spacetime part and the perturbation part

and written as

Gµ
ν =

(b)Gµ
ν + δGµ

ν , T µν =
(b)T µν + δT µν . (E.2)

From equation
(b)Gµ

ν = 8πG(b)T µν (E.3)

for the background spacetime, we get equations

H2 =
8πG

3
ρ− K

a2
, (E.4)

3H2 + 2Ḣ = −8πGP − K

a2
, (E.5)

where G is the universal gravitational constant. The perturbed Einstein equation can

be written as

δGµ
ν = 8πGδT µν . (E.6)

The fluctuations δT µν of the energy-momentum tensor on the right-hand side are con-

cretely obtained by the equations (C.21), (C.22), (C.23), (C.56), (C.57) and (C.58) for
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fluid and the scalar field:

For fluid

• scalar perturbations

(S)δT 0
0 = −δρ,

(S)δT 0
i = (ρ+ P )

(
v|i +B|i

)
,

(S)δT i0 = −(ρ+ P )v|
i,

(S)δT ij = δPδij +Π|
i
j
− 1

3
∇2Πδij.

(E.7)

• vector perturbations
(V )δT 0

0 = 0,

(V )δT 0
i = (ρ+ P ) (vi − Si) ,

(V )δT i0 = −(ρ+ P )vi,

(V )δT ij =
1

2

(
πi|j + πj|

i
)
.

(E.8)

• tensor perturbations
(T )δT 0

0 = 0,

(T )δT 0
i = 0,

(T )δT i0 = 0,

(T )δT ij =
(T ) πij.

(E.9)

For scalar field

δρ = −δT 0
0 = (P,X + 2XP,XX) δX − (P,ϕ − 2XP,Xϕ) δϕ, (E.10)

δq|i = aδT 0
i = −1

a
P,Xϕ

′δϕ|i, (E.11)

δPδij = δT ij = (P,X δX + P,ϕδϕ) δ
i
j. (E.12)

Consider the fluctuation δGµ
ν of the Einstein tensor, which is the left-hand side of the

perturbed Einstein equation. First, the perturbed Christoffel symbol is

δΓµνλ =
1

2
δgµα (gαν,λ + gαλ,ν − gνλ,α) +

1

2
gµα (δgαν,λ + δgαλ,ν − δgνλ,α) . (E.13)
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Then, the perturbations of the Ricci tensor Rµν and the scalar curvature R are

δRµν = δΓαµν,α − δΓαµα,ν + (δΓαµν) Γ
β
αβ + ΓαµνδΓ

β
αβ − (δΓαµβ) Γ

β
αν − ΓαµβδΓ

β
αν ,

(E.14)

δR = (δgµν)Rµν + gµνδRµν , (E.15)

respectively. From the above, the perturbed Einstein tensor is given by

δGµ
ν = δRµ

ν −
1

2
δµν δR. (E.16)

Using this, δGµ
ν for scalar, vector, and tensor perturbations, respectively, are as follows

[106,107]:

• scalar perturbations

(S) δG0
0 =

2

a2
[
3H (HA− ψ′) +∇2 {ψ −H (E ′ −B)}+ 3Kψ

]
, (E.17)

(S)δG0
i = − 2

a2
[HA− ψ′ +K (E ′ −B)]|i , (E.18)

(S)δGi
j =

2

a2
[(
H2 + 2H′)A+HA′ − ψ′′ − 2Hψ′ +Kψ

]
δij

+
1

a2

(
∇2Dδij −D|

i
j

)
, (E.19)

where ∇2 and D are

∇2 = δij∂i∂j, D := A+ ψ − 2H (E ′ −B)− (E ′ −B)
′
. (E.20)

If we take the trace of the equation (E.19), we obtain

(S)δGi
i =

6

a2
[(
H2 + 2H′)A+HA′ − ψ′′ − 2Hψ′ +Kψ

]
+

2

a2
∇2D. (E.21)

• vector perturbations

(V )δG0
0 = 0, (E.22)

(V )δG0
i = −2K +∇2

2a2
(Si + F ′

i ) , (E.23)

(V )δGi
j =

1

2a2

{(
∂

∂η
+ 2H

)[
Si|j + Sj|

i +
(
F i

|j + Fj|
i
)′]}

. (E.24)
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• tensor perturbations

(T )δG0
0 = 0, (E.25)

(T )δG0
i = 0, (E.26)

(T )δGi
j =

1

2a2

[(
hij
)′′

+ 2H
(
hij
)′
+
(
2K −∇2

)
hij

]
. (E.27)

In the following, we consider the perturbed equations separately for fluid and the scalar

field.

E.1 Perturbed Einstein equation for fluid

Using H = aH = ȧ in the equation of FLRW background spacetime

H2 =
8πG

3
ρ− K

a2
, (E.28)

3H2 + 2Ḣ = −8πGP − K

a2
, (E.29)

we can write

3H2 = 8πGa2ρ− 3K, (E.30)

H′ −H2 = −4πGa2(ρ+ P ) +K. (E.31)

Using the fluctuations of the energy-momentum tensor of the fluid given by (E.7), (E.8),

and (E.9), we obtain the basic equations for scalar, vector, and tensor perturbations,

respectively:

• Scalar perturbation equations for fluid

From equations (E.7), (E.17), and (E.18)

(S)δT 0
0 = −δρ,

(S)δT 0
i = (ρ+ P )

(
v|i +B|i

)
,

(S) δG0
0 =

2

a2
[
3H (HA− ψ′) +∇2 {ψ −H (E ′ −B)}+ 3Kψ

]
,

(S)δG0
i = − 2

a2
[HA− ψ′ +K (E ′ −B)]|i ,

the temporal-temporal (00) and temporal-spatial (0i) components of the per-

turbed Einstein equations

(S)δG0
0 = 8πG(T )δT 0

0,
(S)δG0

i = 8πG(S)δT 0
i (E.32)
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can be expressed as

3H (ψ′ −HA)−
(
∇2 + 3K

)
ψ +H∇2σ = 4πGa2δρ, (E.33)

ψ′ −HA−Kσ = 4πGaδq, (E.34)

respectively. Here, we defined

σ := E ′ −B (E.35)

and used equation (C.32)

δq = a(ρ+ P )(v +B). (E.36)

When i 6= j, using the fact that

(S)δGi
j = − 1

a2
D|

i
j
, (S)δT ij = Π|

i
j
, (E.37)

the spatial-spatial components (ij) of the scalar perturbation Einstein equations

of the fluid
(S)δGi

j = 8πG(S)δT ij (E.38)

give

D = −8πGa2Π (E.39)

respectively, which can be written concretely as

σ′ + 2Hσ − A− ψ = 8πGa2Π. (E.40)

In addition, using an equation

(S)δT ii = 3δP (E.41)

with the trace of equation (E.7)

(S)δT ij = δPδij +Π|
i
j
− 1

3
∇2Πδij (E.42)

and equation (E.21)

(S)δGi
i =

6

a2
[(
H2 + 2H′)A+HA′ − ψ′′ − 2Hψ′ +Kψ

]
+

2

a2
∇2D, (E.43)
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we obtain trace component of the perturbed Einstein equation:

ψ′′ + 2Hψ′ −Kψ −HA′ −
(
H2 + 2H′)A = −4πGa2

(
δP +

2

3
∇2Π

)
. (E.44)

Note that using Bardeen variables

Ψ = A− 1

a
[a (E ′ −B)]

′
= A−Hσ−σ′, Φ = ψ−H (E ′ −B) = ψ−Hσ, (E.45)

the equation (E.40) can be written as

Ψ + Φ = −8πGa2Π. (E.46)

This indicates

Ψ = −Φ (E.47)

when the anisotropic stress Π is zero.

From the conservation law of energy and momentum

T µ0;µ = 0, T µi;µ = 0, (E.48)

we can also obtain equations for the perturbations δρ and δq. T µ0;µ = 0 is written

in concrete form as

T µ0;µ =
∂T 0

0

∂η
+
∂T i0
∂xi

+ Γii0T
0
0 − Γii0T

i
i = 0, (E.49)

and by using the equation

ρ′ + 3H(ρ+ P ) = 0 (E.50)

for the continuous equation of background spacetime, the perturbed part becomes

δT µ0;µ = −δρ′ − 3H(δρ+ δP )− (ρ+ P )
[
3ψ′ +∇2 (E ′ + v)

]
. (E.51)

Thus, we obtain an equation

δρ′ + 3H(δρ+ δP ) = −(ρ+ P )
[
3ψ′ +∇2 (E ′ + v)

]
(E.52)

for the perturbation δρ. Similarly, from equation

T µi;µ =
1

a

[
δq′ + 3Hδq + aδP +

2

3
a
(
∇2 + 3K

)
Π+ (ρ+ P )aA

]
|i
= 0, (E.53)
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we can obtain

δq′ + 3Hδq = −aδP − 2

3
a
(
∇2 + 3K

)
Π− (ρ+ P )aA (E.54)

for the perturbation δq. Equations (E.52) and (E.54) can be also derived using

(E.33)∼(E.44).

• Vector perturbation equations for fluid

Since the temporal-temporal component (00) is a quantity for scalar perturba-

tions, the equations for vector perturbations can only come from the temporal-

spatial component (0i) and the spatial-spatial component (ij). From equations

(E.8), (E.22), (E.23), (E.24)

(V )δT 0
0 = 0,

(V )δT 0
i = (ρ+ P ) (vi − Si) ,

(V )δT i0 = −(ρ+ P )vi,

(V )δT ij =
1

2

(
πi|j + πj|

i
)
,

(V )δG0
0 = 0,

(V )δG0
i = −2K +∇2

2a2
(Si + F ′

i ) ,

(V )δGi
j =

1

2a2

{(
∂

∂η
+ 2H

)[
Si|j + Sj|

i +
(
F i

|j + Fj|
i
)′]}

,

the vector perturbation Einstein equation for fluid (V )δGi
j = 8πG(V )δT ij are(

∇2 + 2K
)
(F ′

i + Si) = −16πGa(V )δqi, (E.55)

τ ij
′
+ 3Hτ ij = 4πGa

(
πi|j + πj|

i
)
. (E.56)

From the vector perturbation of the fluid (E.8)

(V )δT 0
i = (ρ+ P ) (vi − Si) , (E.57)

the density of energy flow is

(V )δqi = a(ρ+ P ) (vi − Si) . (E.58)

We defined the quantity

τ ij :=
1

2a

[
Si|j + Sj|

i +
(
F i

|j + Fj|
i
)′]

(E.59)
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for convenience. Moreover, nothing is obtained from the temporal component of

the conservation law of energy and momentum T µ0;µ = 0, but from the spatial

component T µi;µ = 0, we can obtain

(V )δq′i + 3H(V )δqi = −a
(
∇2 + 2K

)
πi. (E.60)

• Tensor perturbation equations for fluid

The only equation for tensor perturbations are spatial-spatial components (ij).

From equations (E.9) and (E.27)

(T )δT ij = (T )πij,

(T )δGi
j =

1

2a2

[(
hij
)′′

+ 2H
(
hij
)′
+
(
2K −∇2

)
hij

]
,

the tensor perturbation Einstein equation (T )δGi
j = 8πG(T )δT ij for a fluid is(

hij
)′′

+ 2H
(
hij
)′
+
(
2K −∇2

)
hij = 16πG(T )πija

2. (E.61)

E.2 Perturbed Einstein equation for the scalar field

Next, we consider the perturbed Einstein equations in the case of a scalar field with

the Lagrangian given by P (ϕ,X). In the FLRW background spacetime, the equations

(E.30) and (E.31)

3H2 = 8πGa2ρ− 3K,

H′ −H2 = −4πGa2(ρ+ P ) +K

with energy density as equation (C.53)

ρ = 2XP,X − P (E.62)

hold, and the continuous equation can be expressed as follows:

(P,X + 2XP,XX)ϕ
′′ + 2(P,X −XP,XX)Hϕ′ + a2 (2XP,Xϕ − P,ϕ) = 0. (E.63)
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We show that the continuous equation can be expressed as (E.63). First, the

time derivative of the energy density

ρ = 2XP,X(ϕ,X)− P (ϕ,X) (E.64)

is

ρ′ = 2X ′P,X + 2XP,XXX
′ + 2XP,Xϕϕ

′ − P,XX
′ − P,ϕϕ

′

= X ′P,X + 2XP,XXX
′ + 2XP,Xϕϕ

′ − P,ϕϕ
′. (E.65)

Next, the time derivative of the kinetic term for the background field

X =
1

2a2
ϕ′2 (E.66)

is

X ′ = − a′

a3
ϕ′2 +

1

a2
ϕ′ϕ′′

= −2
a′

a
X + 2

ϕ′′

ϕ′X

= 2X

(
−H +

ϕ′′

ϕ′

)
. (E.67)

Using these, the continuity equation becomes

2X

(
−H +

ϕ′′

ϕ′

)
P,X + 4X2

(
−H +

ϕ′′

ϕ′

)
P,XX + 2XP,Xϕϕ

′ − P,ϕϕ
′ + 6HXP,X = 0.

(E.68)

Furthermore, multiplying by ϕ′/2X yields

−Hϕ′P,X + ϕ′′P,X − 2XHϕ′P,XX + 2Xϕ′′P,XX + 2a2XP,Xϕ − a2P,ϕ + 3HP,Xϕ′ = 0,

(E.69)

and finally

(P,X + 2XP,XX)ϕ
′′ + 2(P,X −XP,XX)Hϕ′ + a2 (2XP,Xϕ − P,ϕ) = 0 (E.70)

is obtained. 2
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The perturbed energy momentum tensor in the scalar field case is given by the

equations (C.56), (C.57), (C.58)

δρ = −δT 0
0 = (P,X + 2XP,XX) δX − (P,ϕ − 2XP,Xϕ) δϕ, (E.71)

δq|i = aδT 0
i = −1

a
P,Xϕ

′δϕ|i, (E.72)

δPδij = δT ij = (P,X δX + P,ϕδϕ) δ
i
j. (E.73)

• Scalar perturbation equations for the scalar field

The scalar perturbation equations for the scalar field are

3Hψ′ −
[
3H2 − 4πGϕ′2 (P,X + 2XP,XX)

]
A−

(
∇2 + 3K

)
ψ +H∇2σ

= −4πG
[
a2 (P,ϕ − 2XP,Xϕ) δϕ− (P,X + 2XP,XX)ϕ

′δϕ′] , (E.74)

ψ′ −HA−Kσ = −4πGP,X ϕ
′δϕ, (E.75)

σ′ + 2Hσ − A− ψ = 0 (D = 0), (E.76)

ψ′′ + 2Hψ′ −Kψ −HA′ −
(
2H2 +H′ +K

)
A = −4πG

(
P,Xϕ

′δϕ′ + a2P,ϕδϕ
)

(E.77)

from the equations for the (00), (0i), (ij)[i 6= j] components and the trace, i.e.,

equations (E.7), (E.17), (E.18), (E.19) and (E.21)

(S)δT 0
0 = −δρ,

(S)δT 0
i = (ρ+ P )

(
v|i +B|i

)
,

(S)δT ij = δPδij +Π|
i
j
− 1

3
∇2Πδij,

(S)δT ii = 3δP,

(S)δG0
0 =

2

a2
[
3H (HA− ψ′) +∇2 {ψ −H (E ′ −B)}+ 3Kψ

]
,

(S)δG0
i = − 2

a2
[HA− ψ′ +K (E ′ −B)]|i ,

(S)δGi
j =

2

a2
[(
H2 + 2H′)A+HA′ − ψ′′ − 2Hψ′ +Kψ

]
δij +

1

a2

(
∇2Dδij −D|

i
j

)
,

(S)δGi
i =

6

a2
[(
H2 + 2H′)A+HA′ − ψ′′ − 2Hψ′ +Kψ

]
+

2

a2
∇2D.
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We used the kinetic energy of the perturbed part of the scalar field (C.62)

δX =
1

a2
(
ϕ′δϕ′ − Aϕ′2) (E.78)

in obtaining the equations (E.74) and (E.77). σ and D are

σ = E ′ −B, D = A+ ψ − 2H (E ′ −B)− (E ′ −B)
′

(E.79)

as defined previously. In obtaining the equation (E.77), we used the equation for

pressure perturbation (E.10)

δPδij = (P,X δX + P,ϕδϕ) δ
i
j. (E.80)

In addition, we used the FLRW equation for the background field (E.31)

H′ −H2 = −4πGa2(ρ+ P ) +K (E.81)

and the relation

H′ −H2 −K = −4πGϕ′2P,X (E.82)

derived from the relation

ρ+ P = 2XP,X =
1

a2
ϕ′2P,X (E.83)

between energy density and pressure. The perturbed quantities δρ, δP for the

scalar field satisfy the same equation (E.52)

δρ′ + 3H(δρ+ δP ) = −(ρ+ P )
[
3ψ′ +∇2 (E ′ + v)

]
(E.84)

as in the fluid case, and transformed using the equation (C.32)

δq = a(ρ+ P )(v +B), (E.85)

we can write

δρ′ + 3H(δρ+ δP ) = −a−1∇2δq − (ρ+ P )
(
3ψ′ +∇2σ

)
. (E.86)

Of course, this equation is not independent of equations (E.74)∼(E.77). Note

that the equation (E.54)

δq′ + 3Hδq = −aδP − 2

3
a
(
∇2 + 3K

)
Π− (ρ+ P )aA (E.87)

for the perturbed momentum δq is automatically satisfied.
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• Vector perturbation equations for the scalar field

As mentioned before, since the vector quantities vi, Si, πi are zero for scalar fields,

we obtain (
∇2 + 2K

)
F ′
i = 0, (E.88)

τ ij
′
+ 3Hτ ij = 0, (E.89)

(V )δq′i = 0 (E.90)

from the expressions (E.55), (E.56), and (E.60)(
∇2 + 2K

)
(F ′

i + Si) = −16πGa(V )δqi,

τ ij
′
+ 3Hτ ij = 4πGa

(
πi|j + πj|

i
)
,

(V )δq′i + 3H(V )δqi = −a
(
∇2 + 2K

)
πi.

From equations (E.88) and (E.90) the perturbations Fi and
(V )δqi do not increase.

From this fact, the gauge invariant

Ui = F ′
i + Si (E.91)

does not increase either. In addition, the spatial derivative of the vector pertur-

bation

τ ij =
1

2a

[
Si|j + Sj|

i +
(
F i

|j + Fj|
i
)′]

(E.92)

is reduced from equation (E.89) as

τ ij ∝
1

a3
. (E.93)

Thus, without the vector component πi of the anisotropic stress

πij =

(
Π|

i
j
− 1

3
∇2Πδij

)
+

1

2

(
πi|j + πj|

i
)
+ (T )πij, (E.94)

the vector perturbation does not increase. For these reasons, vector perturbations

are often not considered.
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• Tensor perturbation equations for the scalar field

In the case of the scalar field, the transverse and traceless tensor component

(T )πij is zero, and thus from equation (E.61)(
hij
)′′

+ 2H
(
hij
)′
+
(
2K −∇2

)
hij = 16πG(T )πija

2 (E.95)

we obtain (
hij
)′′

+ 2H
(
hij
)′
+
(
2K −∇2

)
hij = 0. (E.96)

Unlike vector perturbations, tensor perturbations generally have growing solu-

tions. Since ∇2hij → 0 (in Fourier components |k|2 → 0) in the large scale

limit, from equation (E.96), there exist solutions such that hij is constant in flat

spacetime K = 0, as (
hij
)′
=
c1
a2

(E.97)

that is

hij = −c1
a
+ c2 → c2 (E.98)

where c1, c2 are integral constants.

In the case of the scalar field, since the momentum δq is given by equation (C.76)

δq = −1

a
P,Xϕ

′δϕ, (E.99)

equation (E.75)

ψ′ −HA−Kσ = −4πGP,X ϕ
′δϕ (E.100)

becomes

ψ′ −HA−Kσ = 4πGaδq (E.101)

when the right-hand side is denoted by δq, which is the same as the scalar per-

turbation equation (E.34) for fluid.

132



Appendix F

Calculation of the determinant of
the metric

For the determinant of the metric, starting from the curvature fluctuation in unitary

gauge ζ(t,x), we derive NG boson π(t̃,x) terms in
√
−g. We can write the determinant

of the metric in unitary gauge as

√
−g = Na3(t) =

(
1 +

1

H(t)

d

dt
ζ(t)

)
a3(t) (F.1)

using ADM formalism. Curvature fluctuations ζ(t,x) and inflaton π(t̃,x) are related

by the relation

ζ(t,x) = −H(t̃)π(t̃,x) (F.2)

under the transformation of time

t 7→ t̃ = t− π(t̃,x). (F.3)

By rewriting the derivative of ζ(t,x) with respect to t into the derivative with respect

to t̃, we obtain

d

dt
ζ(t,x) =

dt̃

dt

d

dt̃

(
−H(t̃)π(t̃,x)

)
= −

[
1− dt̃

dt
π̇(t̃)

](
Ḣπ +Hπ̇

)
= −

(
1− π̇ + π̇2

) (
Ḣπ +Hπ̇

)
= Ḣ(t̃) (−π + ππ̇) +H(t̃)

(
−π̇ + π̇2

)
(F.4)
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up to the second order of π, where the dot represents the derivative with respect to t̃.

After applying the time transformation to H−1(t), we obtain

H−1(t) = H−1(t̃+ π) =

(
H(t̃) + Ḣ(t̃)π +

1

2
Ḧ(t̃)π2

)−1

(F.5)

which can be written as

H−1(t) '
(
H(t̃) + Ḣ(t̃)π

)−1

=
1

H(t̃)

(
1 +

Ḣ(t̃)

H(t̃)
π

)−1

=
1

H(t̃)

(
1−H(t̃)ϵ(t̃)π

)−1

=
1

H(t̃)
+ ϵ(t̃)π +Hϵ2π2. (F.6)

Note that Ḧ is in the second order of ϵ = −Ḣ/H2. Similarly, applying the time

transformation to the scale factor a(t), we obtain

a3(t) = a3(t̃+ π) =

[
a(t̃) + ȧ(t̃)π +

1

2
ä(t̃)π2

]3
= a3(t̃) + 3a2(t̃)ȧ(t̃)π(t̃) +

3

2
a2äπ2 + 3aȧ2π2. (F.7)

Putting them together, the determinant of the metric (F.1) expands to

√
−g =

(
1 +

1

H(t)

d

dt
ζ(t,x)

)
a3(t)

=

[
1 +

Ḣ(t̃)

H(t̃)
{−π + ππ̇} − Ḣϵπ2 − π̇ + π̇2 −Hϵππ̇

]

×
[
a3(t̃) + 3a2(t̃)ȧ(t̃)π(t̃) +

3

2
a2äπ2 + 3aȧ2π2

]
= a3(t̃) + 3a2ȧπ +

3

2
a2äπ2 + 3aȧ2π2 − Ḣ

H

(
a3π + 3a2ȧπ2

)
+
Ḣ

H
a3ππ̇

−Ḣϵa3π2 − a3π̇ − 3a2ȧππ̇ + a3π̇2 −Hϵa3ππ̇. (F.8)

Using the relations

ȧ = aH, ä = aH2 + aḢ (F.9)
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and expressing the derivative of the scale factor a in terms of the Hubble H, we can

obtain

√
−g = a3(t̃) + 3a3Hπ +

3

2
a3
(
H2 + Ḣ

)
π2 + 3a3H2π2

−Ḣ
H
a3π − 3a3Ḣπ2 +

Ḣ

H
a3ππ̇ − Ḣϵa3π2 − a3π̇ − 3a3Hππ̇ + a3π̇2 −Hϵa3ππ̇

= a3(t̃) + 3a3H
(
1 +

ϵ

3

)
π − a3π̇ + a3H2

(
9

2
+

3

2
ϵ

)
π2 − a3H (3 + 2ϵ) ππ̇ + a3π̇2.

(F.10)
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Appendix G

Propagators for scalar fields with
mass m in de Sitter spacetime

We consider the propagator of a complex scalar field ϕ with mass m in the de Sitter

spacetime. By using conformal time η and the Minkowski metric ηµρ to write down the

action, we have

S =

∫
d4x

[
ηµρϕ∗∂µ∂ρϕ− a2m2|ϕ|2

]
. (G.1)

From this action, we obtain the equation of motion(
ηµρ∂µ∂ρ − a2m2

)
ϕ = 0, (G.2)

which is the Klein-Gordon equation with mass a2m2. Due to the rotational symmetry,

we can transform the scalar field ϕ into three dimensional momentum space and write

its mode function as u(η, k), the Klein-Gordon equation (G.2) is

∂2u

∂η2
(η, k) +

(
k2 +

m2

H2η2

)
u(η, k) = 0. (G.3)

The solution to this Klein-Gordon equation is

u(η, k) = −i
√
π

2
eiπ(ν/2+1/4) (−η)

1
2 Hν(−kη), (G.4)

where Hν(−kη) is a Hankel function of the first kind and we define the index

ν ≡
√

1

4
−
(m
H

)2
. (G.5)
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Therefore, a scalar field with mass m2 in de Sitter spacetime has propagators

G> (η1, η2, k) = −i
√
π

2
eiπ(ν/2+1/4)H (−η1)3/2H(1)

ν (−kη1)

×i
√
π

2
eiπ(ν

∗/2+1/4)H (−η2)3/2H(2)
ν (−kη2)

= −π
4
e−πIm(ν)H2 (η1η2)

3/2H(1)
ν (−kη1)H(2)

ν (−kη2), (G.6)

G< (η1, η2, k) = −π
4
e−πIm(ν)H2 (η1η2)

3/2H(1)
ν (−kη2)H(2)

ν (−kη1) (G.7)

from equations (5.73) and (5.74).
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