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Abstract 

 Quartz is the most dominant constitutive mineral in the continental crust, and thus, the 

deformation mechanism of quartz is essential for understanding the continental crust 

rheology. Under the mid-crustal conditions, dislocation creep of quartz is the dominant 

deformation mechanism. Based on the previously proposed flow laws, the flow strength 

of quartz aggregates with a dominant basal <a> slip system differs from that with a 

dominant prism <a> slip system by tens of megapascals under mid-crustal conditions, 

where crustal strength is at its maximum. Thus, identifying the dominant slip systems in 

naturally deformed quartz is crucial for understanding the continental crust rheology. 

Although the basal <a> slip system is considered dominant in quartz under mid-crustal 

conditions, its activity is controversial because some microstructural observations support 

an oriented nucleation growth model for c-axis distribution near the minimum strain axis. 

This study examined the crystallographic orientation and shape of quartz phenocrysts in 

a deformed granitic porphyry in the Ryoke belt, SW Japan, to clarify the dominant slip 

systems in the naturally deformed quartz at temperature conditions of ~400–500 °C 

utilizing optical and electron backscatter diffraction (EBSD) observations. Identified 

active slip systems include prism <a>, basal <a>, prism [c], and rhomb <a> through 

misorientation analyses via EBSD data. The aspect ratios of phenocrysts with dominant 

prism <a> and basal <a> slip systems are higher than prism [c] and rhomb <a> slip 

systems, indicating similar strengths between prism <a> and basal <a> slip systems, 

which are weaker than prism [c] and rhomb <a> slip systems under the mid-crustal 

conditions. Misorientation analysis showed c-axis orientations of basal <a> phenocrysts 
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distributed at pole figures peripheries, indicating basal <a> activation over the proposed 

oriented nucleation and growth model. Consequently, this study provided robust evidence 

for the basal <a> and prism <a> slip systems as the dominant slip systems in the middle 

crustal conditions. We proposed a proportional model of the combination of basal <a> 

and prism <a> slip systems, suggesting that crustal strength would be controlled by the 

increasing ratio from prism <a> to basal <a> with decreasing depth in the continental 

middle crust.  
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1. Introduction 

1.1. Quartz as an important mineral in the crustal rheology 

 Quartz is a dominant mineral in the continental upper to middle crust, and thus the 

rheological properties of quartz are important in the deformation of the continental crust 

(e.g., Kohlstedt et al., 1995; Scholz, 1998; Tokle et al., 2019; Tokle and Hirth, 2021). 

The inference of deformation processes, conditions, and rheology at depth in active 

tectonic settings is of fundamental importance to a quantitative geodynamic 

understanding of deformation in the Earth (Prior et al., 2011). Several researchers 

estimated the upper limit for the strength of the lithosphere as a function of depth based 

on the results of laboratory measurements on the mechanical properties of rocks, noting 

that the strength of Earth cannot be greater than the strength of the rocks of which it is 

composed (Kohlstedt et al., 1995 and references therein). Quartz, feldspar, and olivine 

are particularly common minerals in the lithosphere, and their rheological properties 

play a significant role to the continental crust rheology. Figure 1.1 shows that the 

lithosphere is divided into three layers, each with strength controlled by different 

dominant minerals. A simple strength profile model for continental lithosphere is 

composed of a strength profile predicted by a constitutive equation for rock strength 

determined through experiments (Fig. 1.1). This model subdivides the lithosphere into 

three layers where brittle deformation mechanisms in an upper part and a lower part 

where plastic flow dominates, referred to as rheological stratification. The notably 

abundant minerals quartz and feldspar dominate the rheological properties of the crust, 

while olivine controls the rheological characteristics of the upper mantle. Although the 
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crust is not monomineralic, it is generally assumed that there is enough quartz in the 

continental crust to control its rheology. This means that even if feldspar is still brittle at 

15–20 km, quartz is sufficiently represented and distributed that the crust is 

predominantly deforming plastically even at 10–12 km. Therefore, several experimental 

studies focused on establishing plastic flow laws of quartz (Ashby, 1972; Kohlstedt et 

al., 1995; Stipp and Tullis, 2003; Evans, 2005). 

 The paramount influence of quartz on the mechanical properties of the middle crust 

underscores the importance of a detailed understanding and development of its 

deformation flow laws. Various independent deformation mechanisms, such as 

dislocation creep, diffusion creep, and defect-free flow, each characterized by distinct 

constitutive equations, contribute to the plastic deformation of rocks (Ashby, 1972). 

Microstructures observed in many deformed quartzites indicate that dislocation creep is 

a prevalent deformation mechanism under upper to middle crustal conditions, providing 

robust constraints on rheological behavior (Hirth and Tullis, 1992). Figure 1.2 shows 

the changes in quartz CPO along depth and stress, as well as the extrapolated strength 

profile based on the quartz dislocation creep flow laws with different quartz CPOs. 

Based on the flow laws proposed in a recent study by Tokle et al. (2019), the flow 

strength of quartz aggregates with a dominant basal <a> slip system is higher than that 

with a dominant prism <a> slip system by tens of megapascals under mid-crustal 

conditions, where crustal strength is at its maximum (Fig. 1.2). This suggests that the 

transition in flow laws results from a simultaneous shift in the dominant slip system or 

the slip system that rate-limits deformation. Therefore, clarifying the dominant slip 
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system under mid-crustal conditions is crucial for assessing the strength of the Earth 

crust. 

 

Fig. 1.1. Rheological stratification of continental lithosphere based on a combination of 

the brittle friction law and the plastic flow law derived experimentally for quartz, 

feldspar and olivine (modified from Fossen, 2010). (a) Brittle–plastic transitions occur 

where the brittle (frictional) and plastic flow laws intersect. (b) The strength profile 

depends on mineralogy and lithologic stratification. 
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Fig. 1.2. Plots of stress versus depth with the constrained natural and experimental data 

(Tokle et al., 2019). (a) Plot of stress versus depth with the constrained Whipple 

Mountains core complex (WMCC) samples from Behr and Platt (2011). Representative 

error bars for the WMCC data are shown by the black bars. The shear plane for the c-

axis pole figures is horizontal with a dextral sense of shear. The black line is the 

frictional stress for a strike-slip boundary assuming the effective normal stress equals 

the lithostatic normal stress (i.e., α = 0) and μ = 0.7. (b) Plot of stress versus depth with 

the extrapolated fit end-member flow laws for strain rates of 10−12, 10−13, and 10−15 s−1 

plotted against the constrained WMCC samples from Behr and Platt (2011). The 

WMCC samples are color-coded to illustrate what flow law represents the sample based 

on the c-axis fabric. Black points represent samples with transitional c-axis fabrics. 

There is no fabric data for the points labeled with a white dot and therefore we infer the 

color coding.  



 5 

1.2. Quartz slip system 

 There are three equivalent crystallographic axes, referred to as the a-axes in quartz. 

Three a-axes lie in the basal plane and intersect at 120º angles with each other. The c-

axis, serving as the principal axis, is perpendicular to the basal plane. Figure 1.3 shows 

the Schematic figure of a quartz crystal and the main crystallographic axes and 

crystallographic planes. Additionally, the main crystallographic planes of quartz include 

the basal plane, denoted as (0001) and abbreviated as (c); the prismatic plane, denoted 

as {1010} and abbreviated as {m}; the positive rhombohedral plane, denoted as {0111} 

and abbreviated as {r}; and the negative rhombohedral plane, denoted as {0111} and 

abbreviated as {z}(Fig. 1.3). Quartz slip systems are defined by the main slip 

crystallographic planes c (0001), m {1010}, r {0111}, z {0111}, π {0112}, and π’ 

{0112} and  the main crystallographic directions c [0001] and a <2110> of slip within 

the plane (e.g., Baëta and Ashbee, 1969). Single crystals of synthetic quartz deformed 

experiment and transmission electron microscopy (TEM) analyses were carried out to 

confirm (c)<a> (= basal <a>), {m}<a> (= prism <a>), {m}[c] (= prism [c]), {r}<a> (= 

positive rhomb <a>), and {z}<a> (= negative rhomb <a>) as the common slip systems 

in nature (e.g., Baëta and Ashbee, 1969; Neumann, 2000; Morales et al., 2011).  

 The activation of different slip systems within a crystal depends on both the 

orientation and intensity of the stress field present within the grain, in addition to the 

critical resolved shear stress (CRSS), denoted as τc, associated with slip system. 

Dislocation movement is initiated only when the shear stress component acting in the 

direction of slip exceeds the CRSS of the slip system. The value of CRSS is 
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predominantly influenced by temperature and, to a lesser extent, by other factors such as 

strain rate, differential stress, and the chemical activity of certain components, like 

water, which may alter the strength of particular bonds within the crystal structure 

(Passchier and Trouw, 2005). Therefore, the activity of the different slip systems in 

quartz mainly depends on temperature, where different slip system becomes dominant 

under different temperature conditions (e.g., Hobbs, 1985; Mainprice and Nicolas, 

1989). Figure 1.4 illustrates the relationship between different dominant slip systems 

and the temperature range in natural samples. Basal <a> and rhomb <a>, prism <a>, 

and prism [c] are dominant at low (~300–450 °C), medium (450–600 °C), and high 

(≥600 °C) temperatures, respectively (Fig. 1.4; e.g., Lister and Dornsiepen, 1982; 

Mainprice and Nicolas, 1989; Takeshita, 1996; Toy et al., 2008; Law, 2014; Wallis et 

al., 2019). Separately, the use of the opening angle of quartz crystallographic preferred 

orientation (CPO) as a deformation thermometer is increasingly validated (e.g., Kruhl, 

1998; Law, 2014; Faleiros et al., 2016). However, the activity of slip systems at 

different temperatures could be influenced by other factors, e.g., strain, strain rate, water 

content, and stress (e.g., Muto et al., 2011; Law, 2014). 

 Figure 1.5 shows the pole figure of c-axis projections in different domains, 

corresponding to the activation of different slip systems. In pole figures with the X-, Y- 

and Z-axes representing the maximum, intermediate and minimum strain axes, 

respectively, basal <a> and prism <a> slips may have a strong cluster of c-axes in the 

periphery near the Z-axis and the Y-axis of the pole figures, respectively (Fig. 1.5; e.g., 

Lister et al., 1978; Schmid and Casey, 1986; Takeshita and Wenk, 1988). Nevertheless, 
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controversy surrounds the peripheral c-axis distribution near the Z axis in pole figures. 

The traditional view, based on numerical simulation studies, proposed that the 

peripheral c-axis fabrics result from the activity of the basal <a> slip system, with some 

rhomb slip systems, in low-temperature conditions (e.g., Hobbs, 1985; Lister et al., 

1978; Morales et al., 2011, 2014). Recently, Kilian and Heilbronner (2017) have 

suggested that the textures with peripheral c-axis at high angles to shear plane in pole 

figures cannot be attributed to the activity of the basal <a> slip system, based on the 

microstructural analyses of experimentally sheared natural quartzite (Fig. 1.6; 

Heilbronner and Tullis, 2002, 2006). Instead, they proposed the model of initial oriented 

nucleation and growth of quartz. Figure 1.6 shows the conceptual model of quartz CPO 

development through newly grown grains and dislocation glide involving multiple slip 

systems. 

Fig. 1.3. Schematic figure of crystallographic axes and planes of quartz.  
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Fig. 1.4. Summary of the temperature ranges in which certain quartz slip systems have 

been found to operate or where CPO patterns characteristic of operation of certain slip 

systems have been measured (modified form Toy et al., 2008 and references therein). 

 
Fig. 1.5. Pole figure of c-axis distribution showing correlation between locations of c-

axis peaks on CPO figures and the active slip systems in quartz (Toy et al., 2008). X is 

the lineation direction, Z the pole to foliation. 
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Fig. 1.6. Pole figure of c-axis orientation showing conceptual model of quartz CPO 

development (modified from Kilian and Heilbronner, 2017). The areas colored in red 

and blue represent c-axis positions of newly grown grains and c-axis positions formed 

during dislocation glide along multiple <a> slip systems, respectively. A combination of 

the two areas could form quartz CPO. Large contributions of dislocation glide lead to a 

high density of c-axes in the center of the pole figure, and only few newly grown grains 

from the periphery contribute to the peripheral part of the girdle.  
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1.3. The advantage and objective of the study 

 The advantage of this study is the selection of granite porphyry sample instead of 

quartz aggregate. The evaluation of the dominant slip systems in equigranular 

monophase or polyphase aggregates, e.g., quartzite or granitoids, is usually difficult due 

to the von Mises criterion, which necessitates the activity of five independent slip 

systems to deform a crystal into any arbitrary shape. In the cases of equigranular 

aggregates, a grain can deform if its easy slip planes are favorably oriented and if the 

surrounding grains can also deform to the same degree; the orientation and presence of 

the surrounding other phases can affect quartz c-axis textures (e.g., Kilian et al., 2011). 

In contrast, relatively large particles (e.g., phenocrysts in porphyries) in fine-grained 

matrix can be deformed by a slip on easy-slip plane(s) accommodated by the flow of the 

matrix around the phenocryst. Since the fine-grained polyphase matrix would be weaker 

than the quartz phenocrysts (e.g., Bouchez and Duval, 1982; Ishii and Sawaguchi, 2002; 

Kilian et al., 2011; Ceccato et al., 2018), leading to the phenocrysts deformed by a slip 

on easy-slip plane. Thus, the active slip systems could be easily identified by the 

crystallographic orientations of deformed phenocrysts and through misorientation 

analysis. Figure 1.7 shows the model of grains deformed and rotate with different glide 

plane in the matrix deforming by simple shear. Figure 1.8 the grain with a glide plane 

at 90° in a matrix deformed by progressive deformation. The aspect ratio could also be 

controlled by the phenocryst’s initial crystallographic orientation (Figs. 1.7 and 1.8; 

Etchecopar, 1977; Bouchez and Duval, 1982; Ishii and Sawaguchi, 2002), as shear 
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deformation progresses, the aspect ratio of phenocrysts increases with easy slip planes 

parallel to the shear zone boundary (i.e., shear plane). 

 Ishii and Sawaguchi (2002) illustrate the deformation behavior of grains with 

different initial orientations of the glide plane in a simple shearing matrix. Grains with 

slip plane at different initial angles to the shear plane (θ0) deform differently under 

simple shear (Fig. 1.7). The grain with θ0 = 0º deformed only by simple shear without 

any rotation of glide plane; the grain with θ0 =90º deformed with a shear sense opposite 

to matrix deformation with a clockwise rotation of glide plane; the grain with θ0 = 50º 

rotates clockwise with little deformation. Fig. 1.8 details the progressive deformation of 

a grain with an initial glide plane orientation of θ0 = 90º under simple shear. Initially, 

the grain deforms with a shear sense opposite to the matrix deformation, gradually 

elongating. As the deformation continues, the grain transfers to deforming with the 

same shear sense as the matrix, with a concurrent clockwise rotation of the glide plane, 

causing the aspect ratio of the grain to decrease. As deformation progresses further, the 

aspect ratio of the grain increases again as the glide plane rotates to become parallel to 

the shear plane. This figure demonstrates that the aspect ratio (R) and the long-axis 

orientation (φ) of the grain change significantly with progressive shear deformation, 

where the aspect ratio of the grain increases as the glide plane gradually aligns parallel 

to the shear zone boundary (i.e., the shear plane) during progressive deformation. 

Therefore, we choose quartz phenocrysts in granitic porphyry to evaluate the dominant 

slip system of quartz (Fig. 1.8). 
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 The objective of this study is to evaluate the relative activity of different slip systems 

under the lower amphibolite-facies conditions (i.e., ~400–500 °C) in the upper to 

middle crust through the analysis of the crystallographic orientation and shape of 

deformed quartz phenocrysts in the sheared granitic porphyry that occur in the 

Cretaceous Ryoke belt, Awaji Island, SW Japan (Kano and Takagi, 2013). Furthermore, 

this study also aims to find evidence for forming the peripheral c-axis in the pole 

figures, to evaluate the most plausible hypothesis for the formation of peripheral c-axes 

in the pole figures. 

 

 

Fig. 1.7. Deformations and rotations of model circular grains with different glide-plane 

orientations θ0) in a matrix deforming by simple shear (modified from Ishii and 

Sawaguchi, 2002).  



 13 

 

Fig. 1.8. A progressive deformation of a grain with θ0 = 90° in a matrix deforming by 

progressive simple shear. n is the number of deformation increments. The deformation 

path of this grain is shown in R–θ (a), R–φ (b) and θ–φ (c) graphs (Ishii and Sawaguchi, 

2002).  
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2. Samples 

2.1. Geological background 

 Awaji Island is located in the southern part of the Ryoke Belt, with the Median 

Tectonic Line (MTL) transecting its southern part (Fig. 2.1). Figure 2.1 shows the 

geological map with the distribution of the locality of studied sample. Older Ryoke 

Granite with developed foliated structures are present on Awaji Island, but their 

distribution does not along the MTL. Massive granites, known as Younger Ryoke 

Granite, are interspersed within the acidic volcanic rocks of the Izumi Group located to 

the north of the MTL (Takahashi and Hattori, 1992). Kano and Takagi (2013) 

investigated of the granites on Awaji Island and performed a detailed study of the Older 

Ryoke Granite dikes. 

 In the Ryoke Belt of Awaji Island, Cretaceous Older and Younger Ryoke Granites are 

extensively distributed from the central to the northern parts of the island (Fig. 2.1). The 

granites of Awaji Island are classified into 11 different bodies based on lithology and 

their intrusive relationships. According to the sequence of formation, these granites can 

generally be divided into three main groups: Granite Types I, II, and III (Takahashi and 

Hattori, 1992). Granite type I is characterized by plastically deformed rocks that foliated 

structures, though with varying deformation degrees, and are equivalent to the Older 

Ryoke Granites. Granite type II is found to the north and south of Granite type I. It 

comprises blocky granodiorites that intrude into Granite type I, causing contact 

metamorphism in some areas, and is equivalent to the Younger Ryoke Granites. Granite 

type III, which intrudes into both Granite types I and II, consists of massive granites but 
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does not cause contact metamorphism in Granite type II. In contrast to the granodiorites 

of Granite type II, Granite type III is primarily composed of granite. 

 Dikes that intrude into the granites are also classified into older and younger dike 

types (Takahashi and Hattori, 1992). The older dikes are composed of granitic porphyry 

and dioritic porphyry, which intrude into Granite type I, and foliated structures can be 

observed in the older dikes. The orientation of these dikes predominantly follows the 

NNW–WNW direction. The younger dikes, consisting of blocky and undeformed 

granitic porphyry and dioritic porphyry, intrudes into Granite types I, II, and III. Their 

intrusion orientation is predominantly in the NNW–NNE direction, intersecting 

obliquely with the direction of the older dikes. 

 Kano and Takagi (2013) identified 26 older dikes in the Shio region and across the 

central to the west coast of Awaji Island. The widths of the dikes vary from several tens 

of centimeters to several tens of meters. The dikes primarily consist of medium to 

coarse-grained quartz diorite-porphyry and granite-porphyry, though in some areas, 

fine-grained felsic porphyry is also present. The grain size of the matrix varies as well. 

Many of these dikes have been affected by mylonitization, developing foliated and 

linear structures. Evidence that the mylonite's protolith is granite-porphyry, rather than 

older granite, is the presence of quartz phenocrysts, with some showing signs of 

alteration. Plagioclase phenocrysts exhibit well-defined idiomorphic characteristics and 

develop zonal structures. During mylonitization, quartz phenocrysts can deform to 

varying degrees, forming polycrystalline aggregate phenocrysts, but in cases of intense 

mylonitization, these aggregates also assume a lenticular shape, allowing for their 
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distinction from mylonitized of granite. However, if the protolith is fine-grained and 

strongly deformed, the quartz phenocrysts might also appear banded, thereby making it 

challenging to differentiate from mylonite derived from granite. 

 

 

Fig. 2.1. Geological map showing the distribution of the Ryoke granitoids in the Awaji 

Island, SW Japan (modified from Kano and Takagi, 2013) and the locality of the 

studied sample. Inset: Location of the mapped area. MTL: Median Tectonic Line. ISTL: 

Itoigawa–Shizuoka Tectonic Line.  
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2.2. Sample descriptions 

 The granitic porphyry samples used in this study were collected in the sheared 

granitic dike (dike 6 of Kano and Takagi, 2013) from northern Shio in Awaji Island 

(Fig. 2.1). In the samples, most quartz phenocrysts exhibit varying degrees of 

elongation (Fig. 2.2). The size of the quartz phenocrysts ranges from ~0.5 mm to ~3 

mm. C- and C'-type shear bands (e.g., Passchier and Trouw, 2005) can be seen on the 

polished slab of hand specimen (Fig. 2.2a). Displacement along the C'-type shear bands 

indicates a top to the SW sense of shear (sense of shear referred to as dextral hereafter). 

An oblique foliation (i.e., S-plane) defined by the shape-preferred orientation of 

ellipsoidal quartz and mica (Fig. 2.2b, c, f) is transected by indistinct C-planes which 

are parallel to the bulk shear plane (XY plane of a finite strain ellipsoid). Under optical 

microscope, the elongated lenticular quartz phenocrysts exhibit undulose extinction, and 

recrystallized quartz grains are observed only distributed at the margins of some 

phenocrysts (Fig. 2.2d, e). Feldspars phenocrysts generally preserve their original 

euhedral shapes. Some biotite phenocrysts appear as mica fish (Fig. 2.2f). The 

asymmetric shapes of quartz (Fig. 2.2c, e) and mica fishes (Fig. 2.2f) also indicate a 

dextral sense of shear. The matrix mainly comprises fine-grained (up to ~50 µm) quartz, 

plagioclase, K-feldspar, and biotite. There is no chlorite in the sample, indicating that 

mylonitic deformation occurred under the temperature condition higher than the chlorite 

stability field (i.e., >~400–450 °C; Spear, 1993; Simpson et al., 2000). TiO2 contents in 

the quartz phenocrysts are generally less than 0.008 wt.% (unpublished data of Liu 

Chenghan), suggesting that the deformation temperature at 300 MPa may be lower than 
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~530 °C, based on the TitaniQ thermometry of Thomas et al. (2010). The water content 

of the deformed quartz is ~100–300 wt. ppm (unpublished data of Junichi Fukuda). 
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Fig. 2.2. Photographs of the deformed granite porphyry sample. (a) Photograph of the 

polished slabs of hand specimen. View from the northwest of the sample surface cut 

parallel to the lineation and normal to the foliation. (b, c) Photomicrographs of the thin 

section AWI-6 and AWI-3 under crossed-polarized light. (d, e) Photomicrographs of 

quartz phenocrysts 3-01 and 6-02. (f) Microstructure of mica fish. Qz: Quartz; Pl: 

Plagioclase; Kfs: K-feldspar; Bt: Biotite.  
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3. Methods 

3.1. Shape preferred orientation 

 To clarify the relationship between the strain magnitude and the dominant slip 

systems for each quartz phenocryst, the shape- and crystallographic orientation of quartz 

phenocrysts were measured for thin sections cut parallel to the lineation and normal to 

the foliation (referred to as XZ plane hereafter). Twenty-five quartz phenocrysts selected 

from two thin sections were analyzed in this study. The length of the long (a) and short 

(b) axis of the quartz phenocrysts and the angle (φ, anticlockwise positive) between the 

long axis and mylonitic lineation were analyzed by ImageJ software (Schneider et al., 

2012). Fig. 3.1 shows the method of measurement of the aspect ratio and φ to the best-

fit ellipse auto analyzed by ImageJ software. Here, the long (a) and short (b) axes of the 

phenocrysts are those of the fitted ellipse to the phenocryst by ImageJ. The aspect ratio 

(R) was obtained by a/b (Fig. 3.1). 
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Fig. 3.1. Photomicrograph of the method of measurement of the aspect ratio and φ of a 

deformed quartz phenocryst. The blue outline represents the phenocryst's outline 

boundary, while the red ellipse indicates the best-fit ellipse calculated using ImageJ 

software.  



 23 

3.2. Electron Backscatter Diffraction (EBSD): Principles and measurement methods 

 EBSD in recent years has become well-established to analyze rock microstructure 

(e.g., Prior et al., 1999). EBSD is a powerful microstructural characterization technique 

extensively used in materials science and geology. It provides valuable information 

about crystallographic orientations and the distribution of different mineral phases. 

EBSD is typically a detector attached to a Scanning Electron Microscope (SEM) that 

analyzes diffraction patterns from the sample surface to obtain crystallographic 

information. 

 The EBSD is the interaction between a focused high-energy electron beam and a 

tilted crystalline sample surface. Some of these incident electrons are backscattered and 

form a diffraction pattern (Kikuchi pattern) that contains crystallographic information 

about the sample. By capturing and analyzing the diffraction patterns, the 

crystallographic orientation and other related information of the sample can be 

determined (Schwartz et al., 2009). High-energy incident electrons interact with the 

sample surface, causing atomic scattering and producing backscattered electrons. These 

backscattered electrons diffracted by the crystal planes of the sample, forming distinct 

Kikuchi patterns. Kikuchi patterns are captured using a phosphor screen or other 

detectors installed in the SEM. Specialized software then analyzes these patterns to 

decode the crystallographic orientation information of the sample. 

 Figure 3.2 is a schematic diagram showing the main components of an EBSD 

system. An EBSD system typically comprises a SEM, which provides the high-energy 

electron beam and allows the sample to be tilted at a specific angle (70°) to optimize the 
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backscattered signal (Wilkinson et al., 2006). The detector, commonly a phosphor 

screen coupled with a CCD camera, captures the Kikuchi patterns. Proper sample 

preparation, including mechanical polishing and electro-polishing, is crucial to ensure a 

flat and clean sample surface for clear EBSD patterns (Humphreys, 2001). The analysis 

software decodes the Kikuchi patterns to generate crystallographic information. 

 

Fig. 3.2. Schematic diagram of the main components of an EBSD system (modified 

from Humphreys, 2001). 

  



 25 

 The measurement process begins with meticulous sample preparation to ensure the 

surface is free from scratches, contaminants, and oxidation layers, which are essential 

for obtaining high-quality EBSD patterns. In the SEM, parameters such as electron 

beam energy, beam current, and sample tilt angle (typically 70°) are optimized to 

enhance the backscattered signal. The sample is then placed in the SEM, and Kikuchi 

patterns are captured using the detector. These patterns are analyzed using specialized 

software to decode the crystallographic orientation, grain boundaries, and phase 

distribution information (Adams et al., 1993). The results are visualized as orientation 

maps, phase maps, and grain morphology maps, providing detailed insights into the 

sample's microstructure (Prior et al., 1999). 

 We analyzed the crystallographic orientations of quartz phenocrysts and matrix quartz 

grains using a Hitachi SU3500 scanning electron microscope (SEM) equipped with an 

electron backscatter diffraction (EBSD) system (HKL NordlysNano, Oxford Instruments) 

and AZtec Software at the GSJ Lab of the Geological Survey of Japan, AIST. Any surface 

damage was removed from the thin sections through treatment with a vibratory polisher 

(VibroMet2, Buehler) for 2 hours using colloidal silica before SEM analysis. EBSD 

measurements were conducted under an accelerating voltage of 15 kV, a working distance 

of 18 mm, and specimen tilting to 70° and under the low-vacuum mode. EBSD data were 

obtained using an automatic indexing system with a step size of 2–3 µm. For the 

acquisition of EBSD data, we used Oxford Instruments AZtec software. We used the 

MATLAB toolbox MTEX version 5.8 (Hielscher and Schaeben, 2008; Mainprice et al., 

2014) to analyze the EBSD data (Appendix). All index data in this study represent points 
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with a mean angular deviation (MAD) of <1°. In this study, grain boundaries are defined 

by a critical misorientation angle >10° because the transition from low to high angle 

boundaries has been suggested to occur in the range of 9°–14° (Shigematsu et al., 2006). 

 

3.3. Geometrically necessary dislocation density analysis 

 The portion of the dislocation density that contributes to lattice curvature at the scale 

of observation is classified as the geometrically necessary dislocation (GND) density. A 

Burgers circuit construction around an arbitrary group of dislocations reveals that only a 

fraction of them contribute to the net Burgers vector and thus correspond to the GND 

density. Dislocations are characterized by two types: edge dislocations and screw 

dislocations. For edge dislocation, the Burgers vector is normal to the dislocation line, 

while for screw dislocation, the Burgers vector is parallel the dislocation line. 

Geometrically necessary dislocations represent an extra storage of dislocations required 

to accommodate the lattice curvature (Gao and Huang, 2003) that arises whenever there 

is a non-uniform plastic deformation (Fig. 3.3). Figure 3.3 shows the schematic view of 

geometrically necessary dislocations in a plastically bent lattice. 
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Fig. 3.3. Geometrically necessary dislocations in a plastically bent lattice. (a) A periodic 

array of dislocations with Burgers vector and spacing will generate a lattice curvature. 

(b) A schematic view of geometrically necessary dislocations in a plastically bent lattice 

(Gao and Huang, 2003).  
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 We use conventional (Hough-transform based) EBSD to investigate geometrically 

necessary dislocation densities and various dislocation types. The approach primarily 

follows a novel method proposed by Wallis et al. (2019). This method uses high-angular 

resolution EBSD analysis for quantitatively characterize quartz subgrain structures 

through the estimation of types and densities of geometrically necessary dislocations. 

The method begins with an analysis of lattice curvature to derive a dislocation tensor α, 

which is then utilized to compute the density of geometrically necessary dislocations 

using the Nye-Kröner method. The presence of dislocations introduces spatial gradients 

of lattice orientation (measured as rotations) and elastic strain, which contribute to the 

components αij of α by 

 

 𝛼!" = ∑ 𝜌#𝑏!#𝑙"#$%&'
#()  (3.1) 

 

The components of αij relate to the densities, ρs, of smax different types of dislocation, 

with Burgers vectors bs and line directions ls. 

 In this study, the dislocation tensor α can be directly obtained from the EBSD data. 

When the number of dislocation types (Smax) are fewer than 6, the GND density can be 

calculate directly using equation (3.1), .However, when the dislocation types exceed six, 

as in the case with quartz where we consider 19 types of dislocation types grouped into 

six families (i.e. (c) <a> edge; {r/z} <a> edge; {m} <a> edge; {m} [c] edge; <a> screw; 

and [c] screw), the system becomes under-constrained, and no unique solution exists the 

equation (3.1). An optimization scheme is employed as a solution to further minimize 
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the total dislocation line energy (Wilkinson and Randman, 2010), which helps in 

determining the most suitable combination of dislocation types and densities. Notably, 

all dislocation types with <a> Burgers vectors contribute non-uniquely to specific 

components of the dislocation tensor. This implies that multiple dislocation types could 

potentially generate a specific component of lattice curvature. The frequent occurrence 

of the <a> screw type in the GND analysis can be attributed to the solution which aims 

to minimize the total dislocation line energy, defined as: 

 

 eedge
+$%&'(

= )
),-

 (3.2) 

 

, where ν is the Poisson's ratio. This could potentially explain the higher observed 

densities of <a> screw dislocations, as the method inherently favors configurations with 

lower total energy. 

 

3.4. Misorientation axis and inferred slip system 

 Misorientation is the difference in crystallographic orientation between two 

crystallites. For any two quartz lattices, there is a unique rotation axis and rotation angle 

that matches one lattice to the other (Fig. 3.4) and refer to these as the misorientation 

axis and the misorientation angle (Wheeler et al., 2001). The misorientation axis is a 

vector but it does not possess defined directional positive or negative ends. This 

characteristic stems from the equivalence of the rotational matching between adjacent 



30 

grains: the rotation matching grain B to grain A is the inverse of that matching grain A 

to grain B. Consequently, the selection of the initial grain in the calculation bears no 

geometric significance, as the misorientation axis remains the same irrespective of the 

order in which the grains are considered. 

 In this study, we employ Electron Backscatter Diffraction (EBSD) to characterize the 

crystal orientations and misorientations between adjacent grains. We utilize the MTEX 

software to process the EBSD data, enabling the statistical analysis of the orientation of 

misorientation axes orientations and the misorientation angles. Based on the specific 

misorientation analysis, we identified the slip systems (Fig. 3.4 and 3.5). Figure 3.4 

shows the relationship between the misorientation axis, subgrain boundary and slip 

plane for tilt and twist boundaries. Figure 3.5 shows the method of inferring slip 

systems from the relationship between misorientation axis and slip plane for tilt 

boundaries. 

 There are two distinct types of subgrain boundaries: tilt boundaries and twist 

boundaries. Tilt boundaries are formed by edge dislocations, whereas twist boundaries 

are formed by screw dislocations. During crystal deformation, different types of 

subgrain boundaries are formed, and their geometric relationships among the subgrain 

boundary, slip plane normal, and misorientation axis are different. Figure 3.4 illustrates 

the different relationships between the subgrain boundary, slip plane, and misorientation 

axis. For tilt boundaries, the subgrain boundary is perpendicular to the slip plane, and 

the misorientation axis is parallel to both the subgrain boundary and the slip plane. 

Additionally, the misorientation axis is perpendicular to both the slip plane normal and 
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the slip direction. For twist boundaries, the subgrain boundary is parallel to the slip 

plane, and the misorientation axis is perpendicular to both the subgrain boundary and 

the slip plane (Lloyd, 2004). 

 The concept of interpreting slip systems from misorientation axes at subgrain 

boundaries relates to the concepts of Lloyd and Freeman (1994), Lloyd et al. (1997) and 

Neumann (2000). It applies to slip due to edge dislocations resulting in a polygonized 

subgrain microstructure which dominantly consists of tilt boundaries. The activation of 

slip systems leads to the rotation of crystal orientations around the rotation axis defined 

by the slip system. For subgrain boundaries with tilt boundary characteristics, the 

misorientation axis is perpendicular to both the slip plane normal and the slip direction 

(e.g., Lloyd, 2004). Based on these concepts, the direction of the misorientation axis 

across subgrain boundaries formed by the activation of different slip systems varies 

within quartz crystals (Fig. 3.5a). By projecting these misorientation axes formed by 

different slip system activities into the quartz crystal coordinate, an inverse pole figure 

of the misorientation axes of tilt boundaries can be plotted (Fig. 3.5b; Neumann, 2000; 

Kilian and Heilbronner, 2017). We can reveal the dominant slip systems in quartz by 

comparing the misorientation axes of quartz phenocrysts across subgrain boundaries 

calculated from EBSD data with Fig. 3.5b. 
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Fig 3.4. Relationship between the subgrain boundary, slip plane and misorientation axis. 

(a) General relationship of tilt boundary. (b) General relationship of twist boundary 

(modified from Lloyd, 2004).  
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Fig 3.5. Concept of interpreting slip systems from misorientation axes at subgrain 

boundaries generated by simple slip (valid for tilt boundaries): (a) orientation of 

rotation axis of the basal <a> slip system of a quartz single crystal; (b) inverse pole 

figure with the rotation axes for common crystal slip systems in quartz, red area 

represents the rotation axis of basal <a> slip system (modified from Neumann, 2000 

and Kilian and Heilbronner, 2017). 
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4. Results 

4.1. Shape of phenocrysts 

 The results of aspect ratio (R) and long-axis orientation φ are listed in Table 4.1. The 

aspect ratios range between 1.5 and 6.3, whereas the φ values range between –7° and 

35° (Fig. 4.1). Almost all phenocrysts with aspect ratios above 2 are preferentially 

aligned and concentrated to φ of 0° to 20°. The harmonic mean of the aspect ratios of 

the deformed phenocrysts for the XZ plane is 2.7. We also measured the aspect ratios for 

the YZ plane and found the harmonic mean to be 1.9, so Flinn (1962)'s k value, defined 

as k = (RXY–1)/(RYZ–1), for the phenocrysts is estimated to be 0.4, indicating a general 

flattening. 

 

Fig. 4.1. Aspect ratios (R) versus long-axis orientations (φ) in the XZ section (Wang et 

al., 2024). 



 

Table 4.1.  Sum
m

ary of the m
icrostructural characteristics of quartz phenocrysts (W

ang et al., 2024)  

G
rain  A

spect ratio (R) 1 φ
2 

C
-axis orientation 

M
isorientation axis 3 

D
om

inant slip system
 

G
roup

4 

 3-01 
6.3 

11.2° 
near Y -axis 

parallel to [ c]  
prism

 <a>  
A

 
3 -02 

5.4 
9.1° 

in betw
een X- and Z-axes  

norm
al to {m

} 
basal < a> 

B
 

3-03 
3.7 

9.4° 
in betw

een Y- and Z- axes  
parallel to [c]  

prism
 <a>  

A
 

3 - 04A
 

1.8 
23.4° 

in betw
een X- and Z- axes 

parallel to [ c]  
prism

 <a>  
D

 
3 -04B

 
2.0 

1.1° 
near X -axis 

norm
al to { z}  

rhom
b < a>  

C
 

3- 04C
 

1.9 
19.6° 

in betw
een X- and Z- axes 

norm
al to { z}  

rhom
b < a>  

C
 

3 - 05 
3.1 

15.4° 
in betw

een Y- and Z- axes 
parallel to [ c]  

prism
 <a> 

A
 

3 -06A
 

2.5 
8.9° 

in betw
een X- and Z-axes 

parallel to < a > + norm
al to {m

}  
prism

 [ c ] + basal <a>  
B

 

3- 06B
 

4.5 
6.3° 

near Z-axis  
parallel to [c ] ± parallel to < a+c >  

prism
 <a> ± rhom

b < a+c > 
A

 

3- 08 
1.7 

–6.5° 
near X -axis 

parallel to < a> 
prism

 [c ] 
B

 
3 - 09 

3.1 
35.1° 

at equal angle to the three axes  
parallel to [c]  

prism
 <a> 

A
 

3 -10  
2.7 

13.4° 
in betw

een X - and Z- axes  
parallel to < a> 

prism
 [c ] 

B
 

3-12 
2.9 

–0.1° 
in betw

een X - and Z- axes 
parallel to < a > + norm

al to {m
}  

prism
 [ c ] + basal <a>  

B
 

3 -13A
 

3.9 
10.2° 

near Z- axis  
parallel to [c]  

prism
 <a> 

A
 

3 -13B
 

3.7  
–0.6 

near Z- axis  
parallel to [c]  

prism
 <a> 

D
 

3- 14 
4.4 

15.6° 
near Z- axis  

parallel to [c]  
prism

 <a> 
A

 
3 - 15 

2.7 
8.7°  

in betw
een X- and Z- axes 

norm
al to { m

} 
basal < a> 

B
 

3 - 16A
 

2.5 
20.4° 

near Z- axis  
parallel to [c]  

prism
 <a> 

A
 



  

3-16B
 

2.2 
16.8° 

in betw
een X- and Z-axes  

norm
al to {m

} + parallel to <a>  
basal < a> + prism

 [c]  
B

 

3 -16C
 

2.0 
4.2° 

in betw
een X- and Z -axes 

parallel to < a > + norm
al to { m

} 
prism

 [ c] + basal <a>  
B

 
6 -01A

 
1.6 

13.8° 
near Z -axis 

parallel to <a> + parallel to [c ]  
prism

 [c ] + prism
 <a> 

B
 

6-01B
 

3.1 
13.3° 

at equal angle to the three axes  
parallel to [ c]  

prism
 <a>  

A
 

6- 02 
3.1 

1.6° 
near Z -axis 

norm
al to { m

} + parallel to <a>  
basal <a> + prism

 [c]  
B

 
6-03 

6.2 
6.4° 

near Y -axis 
parallel to [c]  

prism
 <a>  

A
 

6- 04 
1.5 

11.2° 
near Z -axis 

parallel to [ c]  
prism

 <a>  
A

 

 1 The aspect ratio is the ratio of the length of the long axis to that of the short axis of the ellipse fitted to the quartz phenocryst. 
2 The angle betw

een the orientation of the long axis of the ellipse fitted to the quartz phenocryst and the orientation of the stretching 
lineation (= bulk shear direction) on the XZ-sections (anticlockw

ise positive, see also Fig. 4.1). 
3 The distribution of the m

isorientation rotation axis is for m
isorientation angles w

ith ≤4°. 
4 G

roups A
, B

, and C
 are characterized by the distribution of the m

isorientation axis parallel to the Y -axis in the specim
en  coordinate, 

w
hereas G

roup D
 is characterized by the distribution of the m

isorientation axis near the Z-axis  in the specim
en coordinate. Furtherm

ore, 

in the crystal coordinate, G
roups A

, B
, and C

 are characterized by the m
axim

um
 distribution of m

isorientation axis parallel to [ c ], parallel 

to <a> and/or norm
al to {m

}, and norm
al to rhom

bohedral planes, respectively.  
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4.2. C-axes orientation of quartz phenocrysts and matrix grains 

 The c-axis orientations of the 25 quartz phenocrysts and the matrix grains (945 

grains) are plotted in the pole figures (Fig. 4.2). The c-axes distribution in the matrix is 

represented by a small-circle girdle with a large opening angle in the range of 70°–78°, 

which correspond to deformation temperatures of ~500–600 °C based on the quartz c-

axis fabric opening-angle deformation thermometer of Faleiros et al. (2016). However, 

the matrix consists of multiple mineral phases, thus may not accurately reflects the 

deformation temperatures. For the phenocryst, some have c-axes scattered at the 

intermediate distances between the periphery of the pole figure and the Y-axis, while 

those scattered around the Z-axis distribute in the range with opening angles of ~60°–

80°. Only one phenocryst (3-04C) has its c-axis plotted near the X-axis. Two 

phenocrysts (phenocrysts 3-01 and 6-03) with their c-axes aligned nearly parallel to Y-

axis exhibit the highest aspect ratios (R = ~6, Table 4.1). The phenocrysts whose c-axes 

are located on the peripheral of the pole figure exhibit the lowest aspect ratios (R = 

~1.5). The R values are moderate for the phenocrysts whose c-axes are located between 

the Y-axis and the peripheral. For the matrix quartz grains, the overall concentration 

(highest MUD) is weak, with maxima appearing mainly at the intermediate distances 

between the periphery of the pole figure and the Y-axis (Fig. 4.2b), which is similar to 

the c-axes distributions of the phenocrysts (Fig. 4.2a). 



 39 

 

Fig. 4.2. C-axis crystallographic orientation of the quartz (Wang et al., 2024): (a) 

Phenocrysts (b) Matrix grains. The density of the distribution is shown by multiples of 

uniform distribution (MUD). Upper-hemisphere equal-area projection.  
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4.3. Misorientation analysis of subgrain boundary 

 In almost all quartz phenocrysts, subgrain boundaries have developed in 

approximately two directions with different misorientation angles: one parallel to the 

long axis and the other parallel to the short axis of phenocrysts (Figs. 2.2, 4.3, and 4.4). 

Figures 4.3 and 4.4 show intracrystalline deformation features related to the 

misorientation changes of the subgrain boundaries parallel to the long and short axes for 

phenocrysts 3-01 and 6-02; The red lines in the Figs. 4.3c and 4.3d represents the 

subgrain boundaries. The misorientation angle profiles across the subgrain boundaries 

parallel to short and long axis of the phenocrysts illustrated in Figs. 4.3b and 4.4b. They 

show the misorientation angle across the subgrain boundaries parallel to the short axis 

always below 4° (B–B’ in Figs 4.3b and 4.4b), while the misorientation angle across 

some subgrain boundaries parallel to the long axis above 4° (A–A’ in Figs. 4.3b and 

4.4b). The subgrain boundaries with misorientation angles >4° are commonly 

parallel/subparallel to the long axis forming spaced arrays of planar structures (Figs. 

4.3d and 4.4d), whereas those with ≤4° show a marked preponderance for alignment 

parallel/subparallel to the short axis and nearly perpendicular to the shear plane, 

regardless of their crystallographic orientation (Fig. 4.3c and 4.4c). The misorientation 

profiles across the subgrain boundaries parallel to the long axis (the left panel of Figs. 

4.3b and 4.4b) and across the subgrain boundaries parallel to the short axis (the right 

panel of Figs. 4.3b and 4.4b) exhibit distinct characteristics. The misorientation profile 

across the subgrain boundaries parallel to the long axis is characterized by an alternation 

(increase and decrease) of misorientation values for the subgrains, whereas that across 
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the subgrain boundaries parallel to the short axis shows progressive changes in 

orientation differences. The subgrain boundaries parallel to the long axis with 

misorientation angles >4° formed spaced arrays of planar structures. Thus, in this study, 

we will separately show the characteristics of the subgrain boundaries in the cases of 

≤4° and >4°–10° in quartz phenocrysts in the following sections. 

 In almost all the quartz phenocrysts, the misorientation axes across subgrain 

boundaries are aligned either parallel or nearly parallel to the Y-axis in the specimen 

coordinate, i.e., the rotation axis of simple shear deformation (Figs. 4.3e and 4.4e). The 

distributions of the misorientation axes of misorientation angles ≤4° and >4°are not 

significantly different in the specimen coordinates (Figs. 4.3e and 4.4e). However, those 

are sometimes different in the crystal coordinate. In the example shown in Fig. 4.4e, the 

misorientation axes across subgrain boundaries for misorientation angles ≤4° are normal 

to the m-plane, while those for misorientation angles >4°are parallel to the a-axis. 

 In the quartz phenocrysts analyzed in this study, subgrain boundaries with 

misorientation angles ≤4° are found to be parallel to the short axis (i.e., perpendicular to 

the lineation, which indicates the slip direction) (Figs. 4.3 and 4.4). Based on the 

geometrical relationship between the subgrain boundaries and the slip direction (e.g., 

Neumann, 2000; Lloyd, 2004), we consider these subgrain boundaries to be tilt 

boundaries which predominantly comprise edge dislocations. Figure 4.5 shows the 

GND of tilt and twist dislocations in the quartz phenocrysts 3-01, 6-01, and 6-02. The 

map represents the density of the entire EBSD data set for the phenocrysts, calculated 

using equation (3.1) In fact, the density of geometrically necessary dislocation (GND) 
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of edge dislocations is higher than that of screw dislocations in deformed quartz 

phenocrysts (Fig. 4.5), indicating that edge dislocations predominate in quartz 

phenocryst. The energy minimization approach applied to estimate the GND density is 

used to choose a solution that favors screw dislocations with <a> Burgers vectors, and 

thus it remains possible that edge dislocations with <a> Burgers vectors may be present 

in greater densities than those revealed by the GND analysis (Wallis et al., 2019). 

 On the other hand, for subgrain boundaries with misorientation angles >4° aligning 

parallel to the long axis, the alternating misorientation angles from the initial reference 

orientation for the subgrains may suggest that the subgrain boundaries might be kink 

band boundaries (Nishikawa and Takeshita, 1999, 2000; Montagnat et al., 2011), pile-

ups and an accumulation of screw dislocations (Hamann et al., 2007), or the subgrain 

boundaries just composed of dislocations with Burgers vectors of opposite sign. 

Therefore, our study did not focus on these subgrain boundaries. 
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Fig. 4.3. Intracrystalline deformation features (phenocryst 3-01) (Wang et al., 2024). (a) 

Map showing the distribution of misorientation angles from the grain mean orientation. 

(b) The misorientation angle profiles along the lines indicated in (a). The red vertical 

dashed lines represent subgrain boundaries. (c, d) Map showing the distribution of the 

subgrain boundaries with misorientation angles: (c) 2°–4° (d) >4°–10°. Inset: The rose 

diagram shows the orientation distribution and the mean orientation (red line) of the 

subgrain boundaries. (e) Crystallographic orientation data for quartz phenocrysts. From 

left to right, pole figure showing the distributions of c-axes orientations within the 

phenocryst, inverse pole figure showing the distributions of the misorientation axes in 

the crystal coordinate, and pole figure showing the misorientation axes in the sample 

coordinate. The density of the distribution is shown by the multiples of uniform 

densities (MUD); the color indicates the uniform densities multiplied by the values on 

the scale bar. Upper hemisphere equal area projection.  
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Fig. 4.4. Intracrystalline deformation features (phenocryst 6-02) (Wang et al., 2024). (a) 

Map showing the distribution of misorientation angles from the grain mean orientation. 

(b) The misorientation angle profiles along the lines indicated in (a). The red vertical 

dashed lines represent subgrain boundaries. (c, d) Map showing the distribution of 

subgrain boundaries with misorientation angles: (c) 2°–4° (d) >4°–10°. Inset: The rose 

diagram shows the orientation distribution and mean orientation (red line) of the 

subgrain boundaries. (e) Crystallographic orientation data for quartz phenocrysts. From 

left to right, pole figure showing the distributions of c-axes orientations within the 

phenocryst, inverse pole figure showing the distributions of the misorientation axes in 

the crystal coordinate, and pole figure showing the misorientation axes in the sample 

coordinate. The density of the distribution is shown by the MUD. Upper hemisphere 

equal area projection.  
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Fig. 4.5. Densities of geometrically necessary dislocations (GNDs) in some quartz 

phenocrysts (Wang et al., 2024). Results are presented as maps of the density of each 

type of dislocation, i.e., edge and screw dislocation, and also the sum of all dislocation 

types. Scale bars represent GND density (m–2). (a) Phenocryst 3-01. (b) Phenocryst 6-

01A. (c) Phenocryst 6-02. In the GND analysis, 19 dislocation types grouped into six 

families, i.e., (c) <a> edge, {r/z} <a> edge, {m} <a> edge, {m} [c] edge, <a> screw, 

and [c] screw.  
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4.4. Crystallographic orientations of the phenocryst and misorientation axes 

 I divided the quartz phenocrysts into four groups from A to D, based on the 

distribution of misorientation axes mainly in the inverse pole figure (i.e., crystal 

coordinate) across subgrain boundaries for misorientation angles ≤4° (i.e., subgrain 

boundary parallel to the short axes) and their crystallographic orientations. Almost all c-

axis orientations of Group B, C, and D phenocrysts are at the periphery of the pole 

figures, whereas most of the c-axis orientations of Group A phenocrysts are around the 

Y-axis (Figs. 4.6, 4.7, and 4.8; Table 4.1). Groups A and D are characterized by the 

misorientation axes in crystal coordinate that are parallel to the c-axis (Figs. 4.6 and 

4.8), while Group B are characterized by those that are normal to m-planes and/or 

parallel to a-axes (Fig. 4.7). Some phenocrysts belonging to Group B also show the 

concentration of the misorientation axes parallel to the c-axis. (Fig. 4.7). Group C is 

characterized by the misorientation axes normal to rhombohedral planes (Group C of 

Fig. 4.8). For Groups A, B, and C, the misorientation axes are almost 

parallel/subparallel to the Y-axis in the specimen coordinate, whereas those for Group D 

locate near the Z-axis (Figs. 4.6, 4.7, and 4.8; Table 4.1). 

 

4.5. Active slip systems 

 The activation of a slip system results in the rotation of the crystallographic 

orientations around a rotation axis defined by the slip system. In the case of subgrain 

boundaries with characteristics of tilt boundaries, the misorientation axis is normal to 

both the slip plane normal and slip direction (e.g., Lloyd, 2004). Based on these 
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concepts, the misorientation axes across the subgrain boundaries can be plotted in an 

inverse pole figure for tilt boundaries (Fig. 3.5b; Neumann, 2000; Kilian and 

Heilbronner, 2017). In Fig. 3.5b, although systems with slip directions oblique to the [c] 

and <a> directions are relatively hard to activate (Morales et al., 2014), the location of 

the misorientation axis indicative of an activity of <a+c> slip systems is also illustrated. 

 The comparison between the misorientation axes of quartz phenocrysts across each 

group (Figs. 4.6, 4.7, and 4.8) with Fig. 3.5b revealed that the prism <a> slip system is 

active in Groups A and D phenocrysts, and that the basal <a> and prism [c] slip systems 

is predominant in Group B phenocrysts. Although the phenocrysts in Group B differ 

from the monomineralic aggregates used in numerical simulations (e.g., Lister et al., 

1978; Hobbs, 1985), our observations indicate that the activity of the basal <a> slip 

system can lead to the formation of quartz CPO with peripheral c-axes, offering natural 

sample evidence for the conclusions derived from these numerical simulations. The 

misorientation axes in Group C phenocrysts normal to the rhombohedral planes suggest 

the activity of rhomb <a> slip, especially acute rhomb {π’} <a>. 

 In instances of dextral shear deformation, I observe a relationship between the 

dominant slip systems and the crystallographic orientations of the phenocryst. Figure 

4.9 shows the c-axis distribution of phenocrysts and shape preferred orientation, along 

with the inferred slip system and aspect ratios. For phenocrysts exhibiting a dominant 

prism <a> slip system, their c-axes align around the Y-axis or lie moderately between 

the Y and Z axes within the pole figure (Fig. 4.9a). Those with a dominant basal <a> 

slip system typically present their c-axes at the periphery of the fourth quadrant of the 
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pole figure (Fig. 4.9a), whereas those with dominant prism [c] generally locate their c-

axes at the periphery within the first and third quadrants (Fig. 4.9a). The orientation of 

the inferred slip plane is positive (anticlockwise as positive) angles to the shear 

direction (0°≤ θ <90°) after the dextral shear deformation (Figs. 4.6, 4.7, and 4.8). 

Notably, for the two dominant rhomb <a> slip system phenocrysts, one positions its c-

axis at the periphery of the pole figure around the X-axis, while the other is located near 

the Z-axis. 

 Most phenocrysts with dominant prism <a> slip system (Groups A and D) exhibit 

high aspect ratios (R >~3) (Fig. 4.9b). The c-axes of the phenocrysts with the highest 

aspect ratio (R = ~6) are located near the Y axis. Some phenocrysts with c-axes plotted 

between the Y and Z axis, also exhibit high aspect ratios (R =~4), while some others 

show smaller aspect ratios (R <~3). Some phenocrysts with dominant basal <a> (Group 

B) also exhibit high aspect ratio (R =~5), while others show small aspect ratio (R <~3) 

(Fig. 4.9b). Phenocrysts with dominant prism [c] (Group B) and rhomb <a> (Group C) 

slip systems always show low aspect ratio values ranges from 1.6 to 2.9 (Fig. 4.9b).
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Fig. 4.6. Crystallographic orientation data for Group A phenocrysts (Wang et al., 2024). 

From left to right for each phenocryst, the pole figures show the distributions of 

crystallographic orientations within a phenocryst, inverse pole figure shows the 

distributions of the misorientation axes in the crystal coordinate, the pole figure shows 

the misorientation axes in the sample coordinate, and the pole figure shows the 

crystallographic plane (red is prismatic plane, blue is the basal plane). The density of the 

distribution is shown by the MUD. Upper hemisphere equal area projection.  
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Fig. 4.7. Crystallographic orientation data for Group B phenocrysts (Wang et al., 2024). 

From left to right for each phenocryst, the pole figures show the distributions of 

crystallographic orientations within a phenocryst, the inverse pole figure shows the 

distributions of the misorientation axes in the crystal coordinate, the pole figure shows 

the misorientation axes in the sample coordinate, and the pole figure shows the 

crystallographic plane (red is prismatic plane, blue is the basal plane). The density of the 

distribution is shown by the MUD. Upper hemisphere equal area projection.  
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Fig. 4.8. Crystallographic orientation data for phenocrysts of Groups C and D (Wang et 

al., 2024). From left to right for each phenocryst, the pole figures show the distribution 

of crystallographic orientations within a phenocryst, the inverse pole figure show the 

distributions of the misorientation axes in the crystal coordinate, the pole figure shows 

the misorientation axes in the sample coordinate, and the pole figure shows the 

crystallographic plane (red is prismatic plane, blue is the basal plane). The density of the 

distribution is shown by the MUD. Upper hemisphere equal area projection.  
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Fig. 4.9. Relationship between the inferred slip systems and the shape preferred 

orientations and the c-axis distributions (Wang et al., 2024). (a) The c-axis distributions. 

Red circles are prism <a> phenocrysts; Light green circles are basal <a> phenocrysts; 

Dark green circles are prism [c] phenocrysts; blue circles are rhomb <a> phenocrysts. 

The diameter of the solid circles represents the values of their aspect ratios. Phenocryst 

numbers are also presented. Projected in the upper-hemisphere, equal-area projection. 

(b) The shape preferred orientations in the XZ section. {m}<a> is prism <a>, (c)<a> is 

basal<a>, {m}[c] is prism [c], {π'}<a> is rhomb <a>.  
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5. Discussion 

5.1. Dominant quartz slip systems inferred from the relationship between strain and 

active slip system 

 In my observations, the relationship between aspect ratios and dominant slip systems 

shows that phenocrysts with dominant basal <a> and prism <a> slip system exhibit 

higher aspect ratios (Fig. 4.9b). This finding has also been reported in experimentally 

deformed samples (e.g., Tokle et al., 2023); grains with dominant prism <a> and basal 

<a> slip systems in high-strain samples exhibit higher aspect ratios. The Group D 

phenocrysts show little deformation, because they are not favorably oriented for any slip 

systems, except for some minor activation of the prism <a> slip system (see some of the 

A-grains in Takeshita et al., 1999). The differences in the aspect ratios within each 

group can be attributed to the initial orientation of active slip plane(s); phenocrysts 

oriented favorably are highly deformed, while those oriented unfavorably are weakly 

deformed (e.g., Takeshita et al., 1999). The model of Ishii and Sawaguchi (2002) can 

explain variable aspect ratios of quartz phenocrysts with prism <a> and basal <a> slip 

systems (Fig. 5.1). Figure 5.1 shows the model for variable development of aspect 

ratios in quartz phenocrysts within deformed granite porphyries, attributed to the initial 

orientations of slip plane. Assuming an easy slip plane under the dextral simple shear, 

the initial orientation of the slip plane (θ0) relative to the shear direction (θ = 0°) 

controls both the aspect ratio and the orientation of the long axis of phenocrysts (φ). 

With increasing deformation, (1) the orientation φ is concentrated around 10°–30°, and 

(2) the slip planes with an initial orientation of 0°< θ0 ≤90° or –90°≤ θ0 ≤–30° rotate 
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clockwise, whereas those with an initial orientation of –30°< θ0 <0° rotate 

anticlockwise. As the results, the orientation of the easy slip plane becomes positive 

angles to the shear direction (0°≤ θ <90°) after the sufficient dextral simple shear. As 

shown in Fig. 4.9a, phenocrysts with dominant basal <a> and prism [c] slip systems 

present their c-axes at the periphery of the pole figure, located within distinct quadrants. 

The derived slip planes from these phenocrysts form positive angles (~30°–60°) to the 

dextral sense of shear direction, consistent with expectations of the proposed model. 

 In case of quartz phenocrysts with prism <a> and basal <a> slip systems, the 

symmetry of prism <a> and basal <a> need to be considered (Fig. 5.1). When one of 

the slip planes of prism <a> system or the basal <a> system is parallel to the bulk shear 

plane (θ0 = 0° in Fig. 5.1), the deformed quartz undergoes only simple shear 

deformation without any rotation on the glide plane. However, when the basal plane is 

highly oblique to the bulk shear plane (θ0 = 60° and –60° for basal <a> in Fig. 5.1), the 

quartz phenocryst initially is deformed through the basal <a> slip system and the prism 

[c] system becomes favorable for deformation after the glide plane rotation. In the case 

of an initial orientation is θ0 = 90° for the basal <a> slip system, the activation of prism 

[c] slip system is suitable, or the phenocryst may deform initially by prism [c] slip and 

subsequently by basal <a> slip as a progressive rigid-body rotation. If the strength of 

the prism [c] slip system is higher than that of basal <a>, the aspect ratios of these 

phenocrysts would be small. Consequently, the aspect ratios would be highly variable 

for phenocrysts with a favorable orientation for basal <a> and prism [c] slip systems. In 

contrast, for phenocrysts with a favorable orientation for prism <a> slip system (Group 



 57 

A), they can make one of the prism planes parallel or subparallel to the bulk shear plane 

due to its high symmetry, resulting in similar aspect ratios. The smaller aspect ratios are 

also expected in some cases (θ0 = 90° and –30° for prism <a> in Fig. 5.1). 

 Considering an initial condition where phenocrysts of different active slip systems 

having the respective active slip plane oriented similarly, the aspect ratios of the 

deformed phenocrysts is indicative of the relative strength (i.e., critical resolved shear 

stress CRSS) of the active slip systems. The aspect ratio of phenocryst 3-02 (with basal 

<a>, Group B) is as high (R = 5.4) as the highest values (R = 6.3, 6.2) of phenocrysts 

with prism <a> slip system (Fig. 4.9), implying that the relative strength of basal <a> 

slip system is similar to that of prism <a>. Furthermore, the aspect ratios of all 

phenocrysts with prism [c] slip system and rhomb <a> are smaller than those with basal 

<a> and prism <a> slip system, suggesting that the relative strength of prism [c] and 

rhomb <a> slip systems are higher than that of basal <a> and prism <a>slip system. It 

also implies that prism <a> and basal <a> slip systems are dominant slip systems, rather 

than prism [c] and rhomb <a> slip systems at temperature conditions of ~400–500 °C 

(lower amphibolite-facies conditions) in the upper to middle crust. The relative strength 

of prism <a> and basal <a> slip systems is possibly similar because their maximum 

aspect ratios are not significantly different. 
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Fig. 5.1. A model for the variable development of shape-preferred orientations of the 

quartz phenocrysts in the deformed granite porphyries (Wang et al., 2024). The circles 

represent the initial grains before the deformation. The ellipses represent the resultant 

grains after deformation. The dotted lines indicate the orientations of the inactive glide 
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planes. Solid lines show the orientations of active glide planes. Blue, green, and red 

dotted/solid lines represent glide planes of basal <a>, prism [c], and prism <a> slip 

systems, respectively. θ0 is the initial orientation of the glide plane. The final shapes of 

particles are at a simple shear strain of the matrix of 2.4. The ductility of particles with 

basal <a> or prism <a> is assumed to be the same as the matrix, but that with prism [c] 

to be half the matrix.  
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5.2. Basal <a> and prism <a> as co-active slip systems at lower amphibolite-facies 

conditions 

 Kilian and Heilbronner (2017) proposed a model of initial oriented nucleation and 

growth, forming textures with peripheral c-axis in pole figures, based on the 

observations on grain-shape fabric and the intragranular deformation intensity (i.e., 

mean grain kernel average misorientation) for the experimentally deformed Black Hills 

Quartzite of Heilbronner and Tullis (2002, 2006). Kilian and Heilbronner (2017) 

revealed that the increasing density of c-axes in the pole figure is moved away from the 

periphery to the center. The development and strengthening of a girdle component, 

and/or the formation of a central maximum can all be related to dislocation glide along 

multiple slip systems (Fig. 1.6). Furthermore, they summarized TEM observations from 

many previous studies (Kilian and Heilbronner, 2017 and references therein) and 

suggested that basal <a> related dislocation systems are not dominant or have very 

limited mobility. Thus, they concluded that the textures with peripheral c-axis in pole 

figures cannot be attributed to the activity of the basal <a> slip system. This model was 

supported by comparing their observations with other experimental works (e.g., Gleason 

et al., 1993; Trepmann and Stöckhert, 2013) where the grains with peripheral c-axis 

seem to be the first formed at high-stresses conditions. Gleason et al. (1993) conducted 

coaxial deformation experiments on quartz aggregates. They suggested that in the 

recrystallization mechanism regime at low temperatures and fast strain rates (i.e., 

regime 1 of Hirth and Tullis, 1992), strain-induced grain boundary migration 

recrystallization favors the growth of grains oriented poorly for basal slip. As a result, a 
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CPO developed with c-axes parallel to the σ1 direction. Because it does not indicate low 

activity of basal <a> for peripheral grains, but the orientation of basal slip is not 

favorable for slip, their experimental results did not deny the activity of the basal slip 

system in the deforming quartz aggregates. Morales et al. (2011) also suggested that the 

presence of peripheral c-axes does not necessarily require the dominant activity of basal 

<a> slip system based on their numerical analysis, but their simulation results could not 

deny the activity of basal <a> slip system in the deforming quartz aggregates. 

 This study reveals that the basal <a> and prism <a> slip systems are activated as 

“easy” slip systems in naturally deformed quartz at temperature conditions of ~400–

500 °C in the upper to middle crustal conditions. Therefore, the peripheral c-axes are 

indicative of the basal <a> slip system as the dominant slip system, as demonstrated by 

numerical simulation studies, and the interpretation of the activity of basal <a> slip 

based on their quartz c-axis fabrics is appropriate. This interpretation is supported by 

recent studies on experiments and natural samples (e.g., Muto et al., 2011; Halfpenny et 

al., 2012; Stünitz et al., 2017; Bestmann et al., 2021). 

 In this study, we analyzed quartz phenocrysts from a quartz porphyry deformed at 

temperature conditions of ~400–500 °C in the upper to middle crust, and revealed that 

the basal <a> and prism <a> slip systems are activated as “easy” slip systems in 

naturally deformed quartz. The activities of both slip systems do not significantly differ, 

and hence, they may be co-active slip systems in the samples analyzed in this study. 

This interpretation is consistent with that of the previous studies (e.g., Hobbs, 1985; 

Takeshita, 1996; Toy et al., 2008; Law, 2014; Bui et al., 2023).  
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5.3. Implications for rheology of the continental crust 

 In this study we reveal that basal <a> and prism <a> are co-active as easy slip 

systems in naturally deformed quartz under lower-amphibolite facies conditions. To 

illustrate the strength and rheology of the mid-crust are significantly influenced by the 

co-activation of basal <a> and prism <a> slip systems, we calculated the strength under 

mid-crustal conditions (i.e., ~400–500 °C) based on the dislocation creep flow laws 

expressed as: 

 

 𝜀̇ = 𝐴𝜎.𝑓/)0
1 𝑒2

*+
,-3 (5.1) 

 

where 𝜀 ̇is strain rate, σ is differential stress, n is the stress exponent,	𝑓/)0	is the water 

fugacity, r is the water fugacity exponent, Q is the activation enthalpy, R is the ideal gas 

constant, T is absolute temperature, and A is a material parameter. Water fugacity was 

calculated using Wither’s fugacity calculator following Shinevar et al. (2015) 

(https://publish.uwo.ca/~awither5/fugacity/index.htm).  

 I applied the two laboratory-fit flow laws proposed by Tokle et al. (2019): one with a 

stress exponent n ≈ 4 at lower stresses, and another with n ≈ 2.7 at higher stresses. The 

associated c-axis fabrics indicate the importance of easy slip systems, with the former 

applying to quartz aggregates dominated by prism <a> slip and the latter suitable where 

basal <a> slip is rate-limiting. I constructed plots of log strain rate versus log stress 

comparing the laboratory-fit flow laws at 400 °C and 500 °C (Fig. 5.2). The results 
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indicate that at strain rate of 10–15 s–1, the stress for dominant basal <a> slip system is 7 

MPa at 400 °C and 2 MPa 500 °C, whereas for dominant prism <a> slip system it is 18 

MPa and 7 MPa. As the strain rate increases, the difference in stress becomes more 

pronounced. At 10–12 s–1 strain rate, the stress for dominant basal <a> slip system is 91 

MPa at 400 °C and 26 MPa at 500 °C, whereas for dominant prism <a> slip system it is 

101 MPa and 36 MPa. This demonstrates that at ~400–500 °C temperature conditions, 

the crustal strength controlled by prism <a> slip system is significantly different from 

that controlled by basal <a> slip system. 

 I also referenced a plot of stress versus depth with two laboratory-fit flow laws for a 

strain rate of 10–13 s–1 from Tokle et al. (2019) (Fig. 5.3). The flow strength of quartz 

aggregates with a dominant basal <a> slip system is lower than that with a dominant 

prism <a> slip system by tens of megapascals under mid-crustal conditions. This is 

consistent with observations of natural samples, which the CRSS of basal <a> slip 

system is weaker than the prism <a> slip system. The flow law with n = 4 proposed by 

Tokle et al. (2019) suggested that the quartz aggregate may have been deforming 

through dislocation-accommodated grain boundary sliding. They adjust the parameters 

of the flow law and proposed extrapolated fit flow laws. The strength profile generated 

using this extrapolated fit flow laws suggests that under middle crustal temperature 

conditions, the basal <a> slip system is harder than the prism <a> slip system, which is 

inconsistent with natural observations (Fig. 1.2). This discrepancy could be attributed to 

the fact that the n = 4 extrapolated fit flow law, which reflects prism <a> slip-

accommodated grain boundary sliding, does not represent the strength of dislocation 
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creep by prism <a>. In mid-crustal conditions, the dominant slip system for quartz is 

neither exclusively prism <a> nor basal <a>, but rather their co-activation. The 

combined activation of these slip systems can lead to complex influences on the flow 

strength of quartz aggregates.  The actual stress may differ substantially from the stress 

predicted by the laboratory-fit quartz flow laws assuming single active slip systems.  

 Currently, the mechanisms of co-activation in quartz slip systems are not well 

understood. Therefore, we hypothesize a model assumes that the total strain rate is 

proportionally contributed by both basal <a> and prism <a> slip systems, suggesting an 

interdependent relationship where the activation of one slip system can replace the 

activity of the other. In this situation, the total strain rate is expressed as: 

 

 𝜀̇𝑐𝑜𝑚 = 𝛼𝜀̇𝑏𝑎𝑠𝑎𝑙 + (1 − 𝛼)𝜀𝑝̇𝑟𝑖𝑠𝑚		 (5.2) 

 

where the 𝜀̇𝑐𝑜𝑚 represents the combination strain rate of the basal <a> and prism <a> 

quartz flow law; 𝜀̇𝑏𝑎𝑠𝑎𝑙 represents the strain rate of basal <a> quartz flow law;	𝜀̇𝑝𝑟𝑖𝑠𝑚 

represents the strain rate of prism <a> quartz flow law; 𝛼 represents the proportion of 

basal <a> slip systems,. 𝛼 ranges from 0–100 %. This study has shown that the CRSS 

for basal <a> and prism <a> are nearly equal. It is widely accepted that basal <a> is the 

dominant slip system at lower temperatures. Therefore, the ratio 𝛼 of the slip systems is 

not constant. Thus, we assume an equal activity ratio (𝛼 = 0.5) for basal <a> slip system 

at 450 °C (depth = ~15 km). Here we assume the value of 𝛼 are constant 0.5 from 20 to 

15 km, and it changes from 15 km to 10 km increasing by 0.1 for every 1 km decrease 
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in depth. Based on this model, the strength profile lies between the strength profiles of 

prism <a> and basal <a> slip systems at a strain rate 10-13 s-1. The predicted strength 

profile can be compared to the experimental sample with a mixture c-axis fabrics 

plotted between the basal <a> and prism <a> flow laws (Fig. 5.3). Therefore, the co-

activation of basal <a> and prism <a> slip systems is crucial under mid-crustal 

conditions. Although, the hypotheses require experimental data and observations from 

natural samples for validation, the impact of the co-activation of basal <a> and prism 

<a> slip systems must be considered when discussing the mid-crustal strength. 

Regardless of the model, these findings underscore the importance of determining the 

dominant slip systems in quartz for accurate predictions of crustal strength. 
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Fig. 5.2. Log strain rate versus log stress for the laboratory-fit quartz flow laws at (a) 

400 °C; (b) 500 °C. Red and blue lines are applied for prism <a> slip and basal <a> 

slip, respectively. 

 

Fig. 5.3. The strength profile (stress versus depth) for a continental crust consistent with 

the laboratory-fit quartz flow laws for a strain rate of 10–13 s–1 and the predicted strength 

profile for combination of basal <a> and prism <a> slip systems. The black curve 

represents the combination of basal <a> and prism <a> slip systems.  
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5.4. Limitation and remaining question: Formation processes of subgrain boundaries 

parallel to long axis 

 While this research has provided significant insights into the dominant slip systems 

of naturally deformed quartz under mid-crustal conditions, several limitations and 

unanswered questions remain, and future research directions proposed to address these 

limitations. One key issue is the formation processes and mechanisms of subgrain 

boundaries parallel to the long axis of phenocrysts. The inference of slip systems in this 

study primarily relied on the misorientation axes of subgrain boundaries parallel to the 

short axis of phenocrysts. However, many subgrain boundaries developed parallel to the 

long axis of phenocrysts. This could suggest several potential formation mechanisms, 

such as kink band boundaries, pile-ups and accumulation of screw dislocations, or 

dislocations with Burgers vectors of opposite signs. However, the exact formation 

processes and mechanisms of these subgrain boundaries parallel to the long axis remain 

unclear. Further research is needed to understand their development and potential 

impact on the overall deformation mechanism. 

 I attempted to use GNDs analysis to characterize the dislocation combinations within 

subgrain boundaries. However, the analysis was conducted using EBSD data based on 

the Hough transform method. The resolution of Hough transform-based EBSD data is 

relatively low, leading to significant errors in the GNDs data. Moreover, the dislocation 

types determined by GNDs are based on minimum energy calculations and are related 

to the crystallographic orientation of the grains (Wallis et al., 2019). This may differ 
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from the actual dislocation combinations present in the quartz phenocrysts, which 

contain not only GNDs but also statistically stored dislocations (SSDs). 

 Future studies should aim to investigate the formation processes and mechanisms of 

subgrain boundaries parallel to the long axis of phenocrysts. This could involve detailed 

crystallographic analysis and modeling to understand the formation and evolution of 

these boundaries. Employing high-angular resolution EBSD (HR-EBSD) can 

significantly improve the accuracy of GND analysis by providing higher spatial 

resolution and more precise measurement of dislocation densities and types, reducing 

errors associated with Hough transform-based EBSD data. Additionally, using 

techniques like Transmission Electron Microscopy (TEM) can provide high-resolution 

observations and characterization of these subgrain boundaries. By performing in-situ 

TEM observations, researchers can observe the real-time formation and evolution of 

subgrain boundaries under controlled deformation conditions, providing dynamic 

insights into the mechanisms involved. Additionally, applying computational models to 

simulate the formation and evolution of these subgrain boundaries can help understand 

the stress and strain distributions that promote their development and predict their 

behavior under different deformation conditions. 
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6. Conclusions 

 I analyzed the crystallographic orientation and shape of quartz phenocryst in a 

granitic porphyry in the Cretaceous Ryoke granitoids of the Awaji Island, SW Japan, to 

clarify the dominant slip systems in naturally deformed quartz under crustal conditions. 

The relationship between the aspect ratios of phenocrysts deformed by the dominant 

prism <a> and basal <a> slip systems are higher than that between the aspect ratios of 

phenocrysts deformed by prism [c] and rhomb <a> slip systems. This implies that prism 

<a> and basal <a> slip systems are dominant slip systems, rather than prism [c] and 

rhomb <a> slip systems at temperature conditions of ~400–500 °C in the upper to 

middle crust. The c-axis orientations of quartz phenocrysts, where basal <a> is inferred 

to be the dominant slip system from the misorientation analysis, are distributed at a high 

angle to the bulk shear plane (XY-plane) in pole figures. In contrast, those where prism 

<a> slip system is inferred to be dominant are located normal to the bulk shear direction 

on the XY-plane. The observation supports the traditional view that peripheral c-axis 

fabrics indicate an activation of basal <a> slip system rather than the oriented 

nucleation and growth model for the peripheral fabrics. Based on the flow laws of Tokle 

et al. (2019), the flow strength of quartz aggregates with a dominant basal <a> slip 

system is lower than that with a dominant prism <a> slip system by tens of megapascals 

under mid-crustal conditions, where crustal strength is at its maximum. We proposed a 

proportional model of the combination of basal <a> and prism <a> slip systems, 

suggesting that middle crustal strength would be influenced by the co-activity slip 

systems.  
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Appendix 

The following are the MATLAB scripts for analyzing crystallographic preferred 

orientation (CPO), misorientation, and geometrically necessary dislocation (GND) 

analyses for trigonal quartz. These scripts, originally written by David Mainprice and 

David Wallis, were modified by the author to analyze quartz phenocrysts. 

 

A.1. MATLAB script for CPO analysis 

%% 

% ************************************************************************* 

% MTEX Script for EBSD Data 

% Script set for ploting crystallographic preferred orientation (CPO) 

% 

% written by David Mainprice    31/10/2014 (MTEX ver.4.5.0) 

% modified for Qtz 3/2/2022 (MTEX ver.5.8.0) on Matlab 2019b 

% modified for Qtz 10/3/2022 (MTEX ver.5.8.0) on Matlab 2022a 

% ************************************************************************* 

% Import of Oxford/HKL *.ctf (ASCII) file 

% ************************************************************************* 

% clear memory and close plots - for new analysis of EBSD data 

clear 

close all 

clc 

% Specify Crystal and Specimen Symmetries 

% crystal symmetry 

CS = {...  

  'notIndexed',... 

  crystalSymmetry('-3m1', [4.9 4.9 5.5], 'X||a*', 'Y||b', 'Z||c*', 'mineral', 'Quartz', 'color', [0.53 

0.81 0.98]),... 

  crystalSymmetry('12/m1', [8.6 13 7.2], [90,116.07,90]*degree, 'X||a*', 'Y||b*', 'Z||c', 'mineral', 

'Orthoclase', 'color', [0.56 0.74 0.56]),... 
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  crystalSymmetry('-1', [8.1 13 7.2], [94.19,116.61,87.68]*degree, 'X||a*', 'Z||c', 'mineral', 'Low 

albite', 'color', [0.85 0.65 0.13])}; 

 

% specimen symmetry : the MTEX4 default is triclinic so do not need this line 

SS = specimenSymmetry('triclinic');  

 

% plotting convention 

setMTEXpref('xAxisDirection','east'); % 'west' 

setMTEXpref('zAxisDirection','intoPlane'); % 'outOfPlane' 

 

% Specify File Names 

% path to files 

pname = 'C:\Users\henry\Desktop\EBSD\EBSD\AWI_6_003'; 

% which files to be imported 

fname = [pname '\AWI_006_003x.ctf'']; 

 

% Import the Data 

% create an EBSD variable containing the data 

ebsd = EBSD.load(fname,CS,'interface','ctf'','convertEuler2SpatialReferenceFrame','wizard'); 

 

% take only those measurements with MAD (Mean Angular Deviation) smaller then 1.0 

ebsd = ebsd(ebsd.mad<1); 

 

% ************************************************************************* 

% Calculate an ODF 

% ************************************************************************* 

% Generate simple Crystal Symmetry variables for all phases 

fprintf(' \n'); 

fprintf(' Crystal Symmetry (CS) : names of variables \n'); 

fprintf(' \n'); 

 

% phase names 

Phase_names = ebsd.mineralList; 



 85 

 

for i=1:length(CS) 

% indexed point for mineral 

     N_Points = length(ebsd(Phase_names(i))); 

% print only indexed phases 

    if((~strcmpi(Phase_names{i},'notIndexed')) && (N_Points > 0)) 

% retain first part of mineral name 

      P_Name = strtok(char(Phase_names{i}),' '); 

% make variables for CS with mineral names 

      myvariable = strcat(P_Name,'_CS'); 

      datavalues = CS{i}; 

% print variable names for CS 

      eval([sprintf(myvariable) ' = CS{i};']) 

      fprintf(' %s %s \n','Variable name =',myvariable); 

    end 

end 

 

disp(' ') 

disp(' Use mineral_CS to defined your CS in m-file ') 

disp(' ') 

 

% Calculate an ODF 

odf_Quartz = calcDensity(ebsd('Quartz').orientations,'halfwidth',10*degree); 

 

% Texture index 

Jindex_Quartz = textureindex(odf_Quartz) 

Mindex_Quartz = calcMIndex(odf_Quartz) 

 

% Create list of pole figures with hkls 100,010,001 

% MTEX cannot mix hkls and uvws 

% pole to planes can be specified by the option 'pole' or 'hkl'  

% directions are specified by the option 'uvw'  
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PFs_Quartz_hkil = [ ... 

    Miller(0,0,0,1,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(1,1,-2,0,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(1,0,-1,0,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(1,0,-1,1,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(0,1,-1,1,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(-1,1,0,2,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(0,1,-1,2,Quartz_CS,'hkil','phase','Quartz')] 

PFs_Quartz_uvtw = [ ... 

    Miller(0,0,0,1,Quartz_CS,'uvtw','phase','Quartz'),... 

    Miller(1,1,-2,0,Quartz_CS,'uvtw','phase','Quartz')] 

 

% <0001> (c-axis), <11-20> (a-axis), {10-10} (prism {m}), 

% {10-11}(positive rhomb {r}), {01-11} (negative rhomb {z}), 

% {10-12} (positive acute rhomb {pi}), {01-12} (negative acute rhomb {pi'}) 

 

%% 

% ************************************************************************* 

% Plot Quartz Pole Figures (PFs) for (hkls) in Sample co-ordinates (X,Y,Z) 

% One colorbar for all pole figures : use CLim(gcm,'equal') 

% ************************************************************************* 

close all 

setMTEXpref('FontSize',14) 

 

figure % upper hemisphere 

plotPDF(ebsd('Quartz').orientations,PFs_Quartz_hkil,'antipodal',... 

    'points','all', 'color','r','MarkerSize',4,'figSize','small') 

 

figure % upper hemisphere 

plotPDF(odf_Quartz,PFs_Quartz_hkil,'antipodal','resolution',5*degree,'figSize','small'); 

CLim(gcm,'equal') % single colorbar for all pole figures 

colorbar 
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% add labels for X,Y and Z sample directions on PFs 

% annotate([xvector,yvector,-

zvector],'label',{'X','Y','Z'},'backgroundcolor','w','MarkerSize',12,'FontSize',18); 

 

% gray for publications 

% colormap(white2blackColorMap) 

 

% ************************************************************************* 

% Plot Quartz Pole Figures (PFs) for [uvws] in Sample co-ordinates (X,Y,Z) 

% One colorbar for all pole figures : use CLim(gcm,'equal') 

% ************************************************************************* 

setMTEXpref('FontSize',14) 

 

figure % complete 

plotPDF(ebsd('Quartz').orientations,PFs_Quartz_uvtw,'complete',... 

    'points','all','MarkerSize',4,'figSize','small') 

 

figure % complete 

plotPDF(odf_Quartz,PFs_Quartz_uvtw,'complete','resolution',5*degree,'figSize','small'); 

CLim(gcm,'equal');colorbar 

 

%% 

% ************************************************************************* 

% Grain modelling 

% ************************************************************************* 

% disp(' ') 

% disp(' Grain segmentation angle option ') 

% disp(' Choose a high angle typically between 15 to 10 degrees for geological samples') 

% disp(' OR choose low angle of 2 degrees if you want to detect sub-grains') 

% segmentation_angle = input('The segmentation angle (e.g. 2-15):'); 

segmentation_angle = 10; 

segAngle = segmentation_angle*degree; 
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% disp(' ') 

% disp(' Keep non-indexed points option ') 

% disp('*1= Scientifically correct, not extrapolating raw indexed data') 

% disp('    model grains BUT keep non-index points : Default in MTEX 4') 

% disp(' 2= May be more geologically correct in some cases, use with care') 

% disp('    model grains AND include non-index points within grains boundaries') 

% disp('    N.B. this option does NOT ADD map pixels with neighbouring ORIENTATIONS') 

% non_indexed_option = input('Option an integer  (1-2):'); 

non_indexed_option = 1; 

 

% keep non-indexed in now default in MTEX4 

if(non_indexed_option == 1) 

    [grains,ebsd.grainId,ebsd.mis2mean] = calcGrains(ebsd,'angle',segAngle) 

end 

 

% remove non-indexed points, restrict to indexed points only 

if(non_indexed_option == 2) 

    [grains,ebsd.grainId,ebsd.mis2mean] = calcGrains(ebsd('indexed'),'angle',segAngle) 

end 

 

% number of grains all phases  

number_of_calcGrains = grains.length 

 

% plot 'grain' phase map 

close all 

figure 

setMTEXpref('FontSize',12) 

% Correct MatLab problem with colour buffer 

set(gcf,'renderer','zbuffer') 

plot(grains,'figSize','medium') 

 

% Removing small grains - not representative small grains, may be errors 

% disp(' ') 
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% disp(' Small grains option ') 

% disp(' Remove small grains containing less than a critical') 

% disp(' number of indexed points as they error prone or ') 

% disp(' If you require an accurate grain size and shape analysis') 

% disp(' the recommended minimum number indexed points per grain size is 10') 

% disp(' You can decide to keep all grain by accepting all grains with 0') 

% small_grains_option = input('Indexed points per grain an integer (e.g. 0-10):'); 

small_grains_option = 5; 

 

% remove grains containing less than critical number of indexed points,  

selected_grains = grains(grains.grainSize > small_grains_option) 

 

% number of small grains removed from all phase 

number_of_small_grains_removed = number_of_calcGrains - selected_grains.length 

 

n_Quartz_grains = selected_grains('Quartz').length 

 

figure 

setMTEXpref('FontSize',12) 

set(gcf,'renderer','zbuffer') 

plot(selected_grains,'figSize','medium') 

 

%% 

% ************************************************************************* 

% Plot 'selected' Quartz Pole Figures (PFs) for [hkil] per grain 

% in Sample co-ordinates (X,Y,Z) 

% One colorbar for all pole figures : use CLim(gcm,'equal') 

% ************************************************************************* 

% Calculate an ODF 

odf_Quartz = calcDensity(selected_grains('Quartz').meanOrientation,'halfwidth',10*degree); 

 

% Texture index 

Jindex_Quartz = textureindex(odf_Quartz) 
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Mindex_Quartz = calcMIndex(odf_Quartz) 

 

number_of_grains = length(selected_grains('Quartz')) 

 

PFs_Quartz_hkil = [ ... 

    Miller(0,0,0,1,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(1,1,-2,0,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(1,0,-1,0,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(1,0,-1,1,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(0,1,-1,1,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(-1,1,0,2,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(0,1,-1,2,Quartz_CS,'hkil','phase','Quartz')]; 

PFs_Quartz_uvtw = [ ... 

    Miller(0,0,0,1,Quartz_CS,'uvtw','phase','Quartz'),... 

    Miller(1,1,-2,0,Quartz_CS,'uvtw','phase','Quartz')]; 

 

% <0001> (c-axis), <11-20> (a-axis), {10-10} (prism {m}), 

% {10-11}(positive rhomb {r}), {01-11} (negative rhomb {z}), 

% {10-12} (positive acute rhomb {pi}), {01-12} (negative acute rhomb {pi'}) 

 

setMTEXpref('FontSize',14) 

figure % upper hemisphere 

plotPDF(selected_grains('Quartz').meanOrientation,PFs_Quartz_hkil,... 

    'antipodal','points','all','MarkerSize',4,'figSize','small') 

 

figure % upper hemisphere 

plotPDF(odf_Quartz,PFs_Quartz_hkil,'antipodal','resolution',5*degree,'figSize','small'); 

CLim(gcm,'equal');colorbar 

 

%% 

% ************************************************************************* 

% Select EBSD region of interest with your mouse: Polygonal region 

% ************************************************************************* 
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figure 

setMTEXpref('FontSize',15) 

plot(selected_grains,'figSize','medium') 

 

% selecting data points (not grains) by x,y coordinates 

% Instructions for using the mouse 

disp(' ') 

disp('Define selected region of map using the curse and mouse') 

disp('The last point does not need to exactly the first point') 

disp('as the program ensures the polygon is closed') 

disp('Left mouse button picks points') 

disp('Right mouse button picks last point somewhere near the first point') 

disp(' ') 

region = selectPolygon; 

 

% select region of polygon with condition 

 

condition = inpolygon(ebsd,region); 

 

% select EBSD data within region and printout to command window 

ebsd_subregion = ebsd(condition) 

 

% plot whole EBSD Orientation map with region of interest marked in red 

% figure 

plot(selected_grains,'figSize','medium') 

hold on 

plot(region(:,1),region(:,2),'r--','linewidth',2) 

hold off 

 

%% 

% ************************************************************************* 

% Select EBSD region of interest with your mouse: Rectangle region 

% ************************************************************************* 



92 

figure 

setMTEXpref('FontSize',15) 

plot(selected_grains,'figSize','large') 

 

% selecting data points (not grains) by x,y coordinates 

% Instructions for using the mouse 

disp(' ') 

disp('Rubberband selection rectangle region') 

disp('Drag mouse from top right corner with mouse') 

disp('button pressed (down), release (up) button to define botton right corner') 

disp(' ') 

k = waitforbuttonpress; % Wait for key press or mouse-button click 

point1 = get(gca,'CurrentPoint');    % button PRESS (down) detected 

finalRect = rbbox;                   % return figure units 

point2 = get(gca,'CurrentPoint');    % button RELEASE (up) detected 

point1 = point1(1,1:2);              % extract x 

point2 = point2(1,1:2);              %     and y 

p1 = min(point1,point2);             % calculate locations 

offset = abs(point1-point2);         % and dimensions 

% EBSD map subregion 

xy_subregion(1,:) = [p1(1) p1(1)+offset(1) p1(1)+offset(1) p1(1) p1(1)]; 

xy_subregion(2,:) = [p1(2) p1(2) p1(2)+offset(2) p1(2)+offset(2) p1(2)]; 

hold on 

axis manual 

 

% region = rectangle, N.B. transpose of xy_subregion 

region = xy_subregion'; 

 

% draw selection rectangle 

plot(region(:,1),region(:,2),'r--','linewidth',2) 

hold off 

 

% select region of rectangle with condition 
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condition = inpolygon(ebsd,region); 

 

% select EBSD data within region and printout to command window 

ebsd_subregion = ebsd(condition) 

 

%% 

% ************************************************************************* 

% Plot CPOs of data points (not grains!) in selected polygonal or rectangle subregion 

% for (hkls) and [uvw] in Sample co-ordinates (X,Y,Z) 

% One colorbar for all pole figures : use CLim(gcm,'equal') for subregion 

% ************************************************************************* 

% Calculate an ODF 

odf_Quartz = calcDensity(ebsd_subregion('Quartz').orientations,'halfwidth',10*degree); 

 

% Texture index 

Jindex_Quartz = textureindex(odf_Quartz) 

Mindex_Quartz = calcMIndex(odf_Quartz) 

 

number_of_dataPoints = length(ebsd_subregion('Quartz')) 

 

PFs_Quartz_hkil = [ ... 

    Miller(0,0,0,1,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(1,1,-2,0,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(1,0,-1,0,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(1,0,-1,1,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(0,1,-1,1,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(-1,1,0,2,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(0,1,-1,2,Quartz_CS,'hkil','phase','Quartz')]; 

PFs_Quartz_uvtw = [ ... 

    Miller(0,0,0,1,Quartz_CS,'uvtw','phase','Quartz'),... 

    Miller(1,1,-2,0,Quartz_CS,'uvtw','phase','Quartz')]; 

 

% <0001> (c-axis), <11-20> (a-axis), {10-10} (prism {m}), 
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% {10-11}(positive rhomb {r}), {01-11} (negative rhomb {z}), 

% {10-12} (positive acute rhomb {pi}), {01-12} (negative acute rhomb {pi'}) 

 

setMTEXpref('FontSize',14) 

figure % upper hemisphere 

plotPDF(ebsd_subregion('Quartz').orientations,PFs_Quartz_hkil,'antipodal',... 

    'points','all','MarkerSize',4,'figSize','small') 

 

figure % upper hemisphere 

plotPDF(odf_Quartz,PFs_Quartz_hkil,'antipodal','resolution',5*degree,'figSize','small'); 

CLim(gcm,'equal');colorbar 

 

%% 

% ************************************************************************* 

% Plot CPOs of grains (not data points!) in selected polygonal or rectangle subregion 

% for (hkls) and [uvw] in Sample co-ordinates (X,Y,Z) 

% One colorbar for all pole figures : use CLim(gcm,'equal') for subregion 

% ************************************************************************* 

% remove all not indexed pixels 

ebsd_subregion = ebsd_subregion('indexed'); 

% reconstruct grains 

[grains,ebsd_subregion.grainId,ebsd_subregion.mis2mean] = 

calcGrains(ebsd_subregion('indexed'),'angle',10*degree); 

% remove two pixel grains (less than 5 pixels) 

ebsd_subregion(grains(grains.grainSize<=5)) = []; 

[grains,ebsd_subregion.grainId,ebsd_subregion.mis2mean] = 

calcGrains(ebsd_subregion('indexed'),'angle',10*degree); 

% smooth them 

grains = grains.smooth 

 

% Calculate an ODF 

odf_Quartz = calcDensity(grains('Quartz').meanOrientation,'halfwidth',10*degree); 
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% Texture index 

Jindex_Quartz = textureindex(odf_Quartz) 

Mindex_Quartz = calcMIndex(odf_Quartz) 

 

number_of_grains = length(grains('Quartz')) 

 

PFs_Quartz_hkil = [ ... 

    Miller(0,0,0,1,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(1,1,-2,0,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(1,0,-1,0,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(1,0,-1,1,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(0,1,-1,1,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(-1,1,0,2,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(0,1,-1,2,Quartz_CS,'hkil','phase','Quartz')]; 

PFs_Quartz_uvtw = [ ... 

    Miller(0,0,0,1,Quartz_CS,'uvtw','phase','Quartz'),... 

    Miller(1,1,-2,0,Quartz_CS,'uvtw','phase','Quartz')]; 

 

% <0001> (c-axis), <11-20> (a-axis), {10-10} (prism {m}), 

% {10-11}(positive rhomb {r}), {01-11} (negative rhomb {z}), 

% {10-12} (positive acute rhomb {pi}), {01-12} (negative acute rhomb {pi'}) 

 

setMTEXpref('FontSize',14) 

figure % upper hemisphere 

plotPDF(grains('Quartz').meanOrientation,PFs_Quartz_hkil,'antipodal',... 

    'points','all','MarkerSize',4,'figSize','small') 

 

figure % upper hemisphere 

plotPDF(odf_Quartz,PFs_Quartz_hkil,'antipodal','resolution',5*degree,'figSize','small'); 

CLim(gcm,'equal');colorbar 
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A.2. MATLAB script for misorientation analysis 

%% 

% ************************************************************************* 

% MTEX Script for EBSD Data 

% Script set for misorientation analysis 

% 

% written by David Mainprice    31/10/2014 (MTEX ver.4.5.0) 

% modified for Qtz 3/2/2022 (MTEX ver.5.8.0) on Matlab 2019b 

% modified for Qtz 10/3/2022 (MTEX ver.5.8.0) on Matlab 2022a 

% ************************************************************************* 

% Import of Oxford/HKL *.ctf (ASCII) file 

% ************************************************************************* 

 

% clear memory and close plots - for new analysis of EBSD data 

clear 

close all 

 

% Specify Crystal and Specimen Symmetries 

% crystal symmetry 

CS = {...  

  'notIndexed',... 

  crystalSymmetry('-3m1', [4.9 4.9 5.5], 'X||a*', 'Y||b', 'Z||c*', 'mineral', 'Quartz', 'color', [0.53 

0.81 0.98])}; 

 

% specimen symmetry : the MTEX4 default is triclinic so do not need this line 

SS = specimenSymmetry('triclinic');  

 

% plotting convention 

setMTEXpref('xAxisDirection','east'); % 'west' 

setMTEXpref('zAxisDirection','intoPlane'); % 'outOfPlane' 

 

% Specify File Names 

% path to files 
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pname = '/C:\Users\henry\Desktop\EBSD\EBSD\AWI_3_001'; 

% which files to be imported 

fname = [pname '\AWI_3_001.ctf']; 

 

% Import the Data 

% create an EBSD variable containing the data 

ebsd = EBSD.load(fname,CS,'interface','ctf','convertEuler2SpatialReferenceFrame','wizard'); 

 

% take only those measurements with MAD (Mean Angular Deviation) smaller then 1.0 

ebsd = ebsd(ebsd.mad<1) 

 

% ************************************************************************* 

% Calculate an ODF 

% ************************************************************************* 

% Generate simple Crystal Symmetry variables for all phases 

fprintf(' \n'); 

fprintf(' Crystal Symmetry (CS) : names of variables \n'); 

fprintf(' \n'); 

 

% phase names 

Phase_names = ebsd.mineralList; 

 

for i=1:length(CS) 

% indexed point for mineral 

     N_Points = length(ebsd(Phase_names(i))); 

% print only indexed phases 

    if((~strcmpi(Phase_names{i},'notIndexed')) && (N_Points > 0)) 

% retain first part of mineral name 

      P_Name = strtok(char(Phase_names{i}),' '); 

% make variables for CS with mineral names 

      myvariable = strcat(P_Name,'_CS'); 

      datavalues = CS{i}; 

% print variable names for CS 
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      eval([sprintf(myvariable) ' = CS{i};']) 

      fprintf(' %s %s \n','Variable name =',myvariable); 

    end 

end 

 

disp(' ') 

disp(' Use mineral_CS to defined your CS in m-file ') 

disp(' ') 

 

% Calculate an ODF 

odf_Quartz = calcDensity(ebsd('Quartz').orientations,'halfwidth',10*degree); 

 

% Texture index 

% Jindex_Quartz = textureindex(odf_Quartz) 

% Mindex_Quartz = calcMIndex(odf_Quartz) 

 

% Create list of pole figures with hkls 100,010,001 

% MTEX cannot mix hkls and uvws 

% pole to planes can be specified by the option 'pole' or 'hkl'  

% directions are specified by the option 'uvw'  

 

PFs_Quartz_hkil = [ ... 

    Miller(0,0,0,1,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(1,1,-2,0,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(1,0,-1,0,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(1,0,-1,1,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(0,1,-1,1,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(-1,1,0,2,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(0,1,-1,2,Quartz_CS,'hkil','phase','Quartz')] 

PFs_Quartz_uvtw = [ ... 

    Miller(0,0,0,1,Quartz_CS,'uvtw','phase','Quartz'),... 

    Miller(1,1,-2,0,Quartz_CS,'uvtw','phase','Quartz')] 
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% <0001> (c-axis), <11-20> (a-axis), {10-10} (prism {m}), 

% {10-11}(positive rhomb {r}), {01-11} (negative rhomb {z}), 

% {10-12} (positive acute rhomb {pi}), {01-12} (negative acute rhomb {pi'}) 

 

%% 

% ************************************************************************* 

% Grain modelling 

% ************************************************************************* 

 

% set angles of low- and high-angle boundaries 

% low-abgle subgrain boundary=1; high-angle grain boundary=10  

 

% disp(' ') 

% disp(' Keep non-indexed points option ' 

% disp('*1= Scientifically correct, not extrapolating raw indexed data') 

% disp('    model grains BUT keep non-index points : Default in MTEX 4') 

% disp(' 2= May be more geologically correct in some cases, use with care') 

% disp('    model grains AND include non-index points within grains boundaries') 

% disp('    N.B. this option does NOT ADD map pixels with neighbouring ORIENTATIONS') 

% non_indexed_option = input('Option an integer  (1-2):'); 

non_indexed_option = 1; 

 

% keep non-indexed in now default in MTEX4 

if(non_indexed_option == 1) 

    [grains,ebsd.grainId,ebsd.mis2mean] = calcGrains(ebsd,'threshold',[1*degree,10*degree]) 

    % [grains,ebsd.grainId,ebsd.mis2mean] = calcGrains(ebsd,'angle',10*degree) 

end 

 

% remove non-indexed points, restrict to indexed points only 

if(non_indexed_option == 2) 

    [grains,ebsd.grainId,ebsd.mis2mean] = 

calcGrains(ebsd('indexed'),'threshold',[1*degree,10*degree]) 

    % [grains,ebsd.grainId,ebsd.mis2mean] = calcGrains(ebsd('indexed'),'angle',10*degree) 
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end 

 

% number of grains all phases  

number_of_calcGrains = grains.length 

 

% plot 'grain' phase map 

close all 

figure 

% Correct MatLab problem with colour buffer 

set(gcf,'renderer','zbuffer') 

plot(grains,'figSize','medium') 

 

% Removing small grains - not representative small grains, may be errors 

% disp(' ') 

% disp(' Small grains option ') 

% disp(' Remove small grains containing less than a critical') 

% disp(' number of indexed points as they error prone or ') 

% disp(' If you require an accurate grain size and shape analysis') 

% disp(' the recommended minimum number indexed points per grain size is 10') 

% disp(' You can decide to keep all grain by accepting all grains with 0') 

% small_grains_option = input('Indexed points per grain an integer (e.g. 0-10):'); 

small_grains_option = 5; 

 

% remove grains containing less than critical number of indexed points,  

selected_grains = grains(grains.grainSize > small_grains_option); 

 

% number of small grains removed from all phase 

number_of_small_grains_removed = number_of_calcGrains - selected_grains.length 

 

%n_Quartz_grains = selected_grains('Quartz').length 

% close all 

figure 

% Correct MatLab problem with colour buffer 
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set(gcf,'renderer','zbuffer') 

plot(selected_grains,'figSize','medium') 

 

%% 

% ************************************************************************* 

% Orientation, misorientation of grains 

% ************************************************************************* 

% Rotation ANGLE of mean orientation of each grain from reference orientation 

% Uniform colour for each grain mean orientation 

% get all rotations of mean rotation from the reference orientation 

% using all ebsd indexed points inside grains 

 

Mean_rotations = selected_grains('Quartz').meanRotation; 

figure 

plot(selected_grains('Quartz'),angle(Mean_rotations)/degree,'figSize','large') 

colorbar 

 

%% Misorientation ANGLE from mean within a grain 

% get all misorientations from the mean orientation 

% using all ebsd indexed points inside grains 

% error message non-existent field 'mis2meanRotation' if you have not used 

% new syntax [grains ebsd] = calcGrains(ebsd) 

 

% ignore grain boundary misorientations 

% [grains,ebsd.grainId] = calcGrains(ebsd) 

% selected_grains = grains(grains.grainSize > small_grains_option); 

 

figure 

plot(ebsd(selected_grains('Quartz')),... 

    ebsd(selected_grains('Quartz')).mis2mean.angle./degree,'figSize','medium') 

 

% caxis - allows you focus the scale of the angle range of interest 

% example 0 to 5 degrees 
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% caxis([0 10]) 

% mtexColorbar 

 

hold on 

plot(selected_grains.boundary) 

 

%% Misorientation AXIS from mean within a grain 

% get all misorientations from the mean orientation using all ebsd indexed points inside grains 

oM = ipfHSVKey(ebsd(selected_grains('Quartz'))) 

 

figure 

plot(ebsd(selected_grains('Quartz')),... 

    oM.Miller2Color(ebsd(selected_grains('Quartz')).mis2mean.axis),'figSize','medium') 

 

hold on 

plot(selected_grains.boundary) 

 

% caxis - allows you focus the scale of the range of interest 

% does not work with this plot, must be normalied colour scale caxis([0 30]) 

 

% Orientation IPF colourbar plot 

% Orthorhombic with Quartz symmetry and r = x = 1,0,0 

figure 

plot(oM,'figSize','small') 

 

%% Kernel Average Misorientation (KAM) 

% Intragranular average misorientation angle per orientation 

% plot(ebsd('Quartz'),ebsd('Quartz').KAM./ degree) 

 

% ignore grain boundary misorientations 

% [grains,ebsd.grainId] = calcGrains(ebsd) 

% selected_grains = grains(grains.grainSize > small_grains_option); 
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% ignore misorientation angles > threshold 

% consider also second order neigbors 

kam = KAM(ebsd(selected_grains('Quartz')),'threshold',10*degree,'order',2); 

 

figure 

plot(ebsd(selected_grains('Quartz')),kam./degree,'figSize','medium') 

mtexColorbar 

% setColorRange([0 2],'zerowhite') 

 

hold on 

plot(selected_grains.boundary) 

 

%% Grain Orientation Spread (GOS) 

% Intragranular average of misorientation angles to grain mean orientation 

% plot(ebsd('Quartz'),ebsd('Quartz').GOS./ degree) 

 

% ignore grain boundary misorientations 

% [grains,ebsd.grainId] = calcGrains(ebsd) 

% selected_grains = grains(grains.grainSize > small_grains_option); 

 

% take the avarage of the misorientation angles for each grain 

gos=selected_grains('Quartz').GOS/degree; 

 

figure 

plot(selected_grains('Quartz'),gos,'figSize','medium') 

mtexColorbar 

setColorRange([0 10],'zerowhite') 

 

hold on 

plot(selected_grains.boundary) 

 

 

%%  
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% ************************************************************************* 

% Plot all grains and select a grain using the a curser on the phase map and plot all pixels 

% ************************************************************************* 

 

% set angles of low- and high-angle boundaries 

% low-abgle subgrain boundary=1; high-angle grain boundary=10  

 

% disp(' ') 

% disp(' Keep non-indexed points option ') 

% disp('*1= Scientifically correct, not extrapolating raw indexed data') 

% disp('    model grains BUT keep non-index points : Default in MTEX 4') 

% disp(' 2= May be more geologically correct in some cases, use with care') 

% disp('    model grains AND include non-index points within grains boundaries') 

% disp('    N.B. this option does NOT ADD map pixels with neighbouring ORIENTATIONS') 

% non_indexed_option = input('Option an integer  (1-2):'); 

non_indexed_option = 1; 

 

% keep non-indexed in now default in MTEX4 

if(non_indexed_option == 1) 

    [grains,ebsd.grainId,ebsd.mis2mean] = calcGrains(ebsd,'threshold',[1*degree,10*degree]) 

end 

 

% remove non-indexed points, restrict to indexed points only 

if(non_indexed_option == 2) 

    [grains,ebsd.grainId,ebsd.mis2mean] = 

calcGrains(ebsd('indexed'),'threshold',[1*degree,10*degree]) 

end 

 

% number of grains all phases  

number_of_calcGrains = grains.length 

 

% plot 'grain' phase map 

close all 
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% figure 

% Correct MatLab problem with colour buffer 

% set(gcf,'renderer','zbuffer') 

% Default phase map 

% plot(grains,'figSize','small') 

 

% Removing small grains - not representative small grains, may be errors 

close all 

% disp(' ') 

% disp(' Small grains option ') 

% disp(' Remove small grains containing less than a critical') 

% disp(' number of indexed points as they error prone or ') 

% disp(' If you require an accurate grain size and shape analysis') 

% disp(' the recommended minimum number indexed points per grain size is 10') 

% disp(' You can decide to keep all grain by accepting all grains with 0') 

% small_grains_option = input('Indexed points per grain an integer (e.g. 0-10):'); 

small_grains_option = 5; 

 

% remove grains containing less than critical number of indexed points,  

selected_grains = grains(grains.grainSize > small_grains_option); 

% number of small grains removed from all phase 

number_of_small_grains_removed = number_of_calcGrains - selected_grains.length 

%n_Quartz_grains = selected_grains('Quartz').length 

figure 

% Correct MatLab problem with colour buffer 

set(gcf,'renderer','zbuffer') 

% MTEX 4 default map is phase map 

plot(selected_grains,'figSize','medium') 

 

% selecting a single grain by x,y coordinates 

disp(' ')  

disp('Select grain with cursor and one mouse click') 

disp(' ') 
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% Displays a cursor over the map and waits for one click on the selected grain  

[xgg, ygg] = ginput(1) 

% select single grain 

%selected_single_grain = findByLocation(grains,[xgg  ygg]) 

selected_single_grain = selected_grains(xgg,ygg); 

% grain id 

grain_id = selected_single_grain.id 

% grain centroid 

[centroid_x,centroid_y] = centroid(selected_single_grain) 

 

% plot selected grain : boundary and misorientation from mean orientation 

close all 

% plot grain boundary outline 

plot(selected_single_grain.boundary,'linewidth',2,'figSize','medium') 

hold on 

% plot ebsd orientation pixels 

plot(ebsd(selected_single_grain),ebsd(selected_single_grain).mis2mean.angle./degree,... 

    'figSize','small') 

% plot grain centroid 

% plot(centroid_x,centroid_y,'MarkerEdgeColor','k','MarkerFaceColor','r','MarkerSize',10) 

hold off 

mtexColorbar 

% mean orientation of selected single grain 

grain_mean_orientation = selected_single_grain.meanOrientation 

 

% plot crystallographic axes 

figure 

plotPDF(ebsd(selected_single_grain).orientations,PFs_Quartz_hkil,'antipodal',... 

    'points','all','MarkerSize',4,'figSize','small') 

figure 

plotPDF(ebsd(selected_single_grain).orientations,PFs_Quartz_hkil,'antipodal',.... 

    'lower','points','all','MarkerSize',4,'figSize','small') 

figure 
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plotPDF(ebsd(selected_single_grain).orientations,PFs_Quartz_uvtw,'antipodal',... 

    'points','all','MarkerSize',4,'figSize','small') 

figure 

plotPDF(ebsd(selected_single_grain).orientations,PFs_Quartz_uvtw,'antipodal',... 

    'lower','points','all','MarkerSize',4,'figSize','small') 

% bnd_Quartz=grains.boundary(selected_single_grain,'Quartz','Quartz') 

% figure 

% plotAxisDistribution(bnd_Quartz.misorientation,'antipodal','points','all','MarkerSize',5) 

 

%%  

%orientation map one mineral with Euler RGB colormap: uses colours in ODF sections 

% define the RGB to Bunge Euler angles to RGB orientation colormap 

oM = BungeColorKey(ebsd(selected_single_grain)) 

 

figure 

plot(ebsd(selected_single_grain),oM.orientation2color(ebsd(selected_single_grain).orientations),

'figSize','medium') 

title('All Euler','FontSize',14) 

 

% Orientation colour bar plot - euler angle ODF sections 

% figure 

% plot(oM) 

 

%% 

% ************************************************************************* 

% Misorientation line profile in a grain 

% ************************************************************************* 

% plot selected grain : boundary and misorientation from mean orientation 

close all 

 

% plot grain boundary outline 

plot(selected_single_grain.boundary,'linewidth',2,'figSize','large') 

hold on 
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% plot ebsd orientation pixels 

plot(ebsd(selected_single_grain),ebsd(selected_single_grain).mis2mean.angle./degree,... 

    'figSize','large') 

hold on 

 

% Define profile 

disp(' ')  

disp('Define misorientation profile: Two mouse clicks, one at each end of the profile') 

disp('NB!!: Misorientation profile should be along horizonttal or vertical line') 

disp(' ') 

 

% Displays a cursor over the map and waits for 2 mouse clicks for the start 

% and for the end of the line, respectively 

[X_line, Y_line] = ginput(2); 

 

% profile line 

XYprofile =  [X_line(1) Y_line(1); X_line(2)  Y_line(2)]; 

line(XYprofile(:,1),XYprofile(:,2),'linewidth',2,'color','white') 

hold off 

 

% Plot orientation difference profile 

% extract orientations along XYprofile 

ebsd_line = spatialProfile(ebsd(selected_single_grain),XYprofile) 

 

% Calcluate misorientation angle along XYprofile and plot results 

% NB!!: We can only plot for X1-X2 or Y1-Y2 profile 

Figure 

% Misorientation with respect the first point along profile 

plot(ebsd_line.x,... 

  angle(ebsd_line(1).orientations,ebsd_line.orientations)/degree,'color','b') % for horozontal line 

%plot(ebsd_line.y,... 

  angle(ebsd_line(1).orientations,ebsd_line.orientations)/degree,'color','b') % for vertical line 
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% Misorientation with respect the neighbouring point along profile (orientation gradient) 

hold all 

plot(0.5*(ebsd_line.x(1:end-1)+ebsd_line.x(2:end)),... 

   angle(ebsd_line(1:end-1).orientations,ebsd_line(2:end).orientations)/degree,'color','r') % for 

horozontal line 

%plot(0.5*(ebsd_line.y(1:end-1)+ebsd_line.y(2:end)),... 

%  angle(ebsd_line(1:end-1).orientations,ebsd_line(2:end).orientations)/degree,'color','r') % for 

vertical line 

xlabel('Position (microns)','FontSize',12) 

ylabel('Orientation difference in degrees','FontSize',12) 

title('Orientation difference profile','FontSize',12) 

legend('to reference orientation','orientation gradient','Location','northwest') 

hold off 

 

%% 

% ************************************************************************* 

% Plot the orientations along this line into inverse pole figures and 

% colorize them according to their y (or x)-coordinate 

% ************************************************************************* 

ori_1 = ebsd_line(1:end-1).orientations 

ori_2 = ebsd_line(2:end).orientations 

 

% misorientation axis with respect to crystal coordinate system 

% mori_cc = axis(inv(ori_1).*ori_2,crystalSymmetry('trigonal')) 

% mori_cc = axis(inv(ori_1).*ori_2,crystalSymmetry('triclinic')) 

mis12 = inv(ori_1).*ori_2,crystalSymmetry('trigonal') 

mori_cc = mis12.axis 

length(mori_cc) 

 

mis12_angle=angle(ori_1,ori_2)./degree 

length(mis12_angle) 
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mis12_angle_L=4 

 

% misorientation axis with respect to sample coordinate system 

mori_sc = axis(ori_1,ori_2) 

length(mori_sc) 

 

figure 

density = calcDensity(mori_cc,'halfwidth',10*degree); 

plot(density,'fundamentalRegion','figSize','small') 

mtexColorbar 

 

hold on 

plot(mori_cc,'markersize',6,'antipodal','figSize','small') 

hold on 

plot(mori_cc(mis12_angle > mis12_angle_L),'markersize',8,'antipodal','figSize','small') 

% title('crystal coordinate','FontSize',10) 

 

cs = crystalSymmetry('-3m1', [4.913 4.913 5.504],[90,90,120]*degree,... 

  'X||a*','Y||b','Z||c','mineral','Quartz') 

cd_Quartz_hkil = ... 

  [Miller(0,0,0,1,cs,'hkil'),Miller(-2,2,0,1,cs,'hkil'),Miller(-1,1,0,1,cs,'hkil'),... 

  Miller(-1,1,0,0,cs,'hkil'),Miller(-1,2,-1,2,cs,'hkil'),Miller(-1,2,-1,0,cs,'hkil'),... 

  Miller(0,1,-1,1,cs,'hkil'),Miller(0,2,-2,1,cs,'hkil'),Miller(0,1,-1,0,cs,'hkil'),... 

  Miller(-1,1,0,2,cs,'hkil'),Miller(0,1,-1,2,cs,'hkil'),Miller(-1,0,1,0,cs,'hkil'),... 

  Miller(-2,0,2,1,cs,'hkil'),Miller(-1,0,1,1,cs,'hkil'),Miller(-2,1,1,2,cs,'hkil'),... 

  Miller(-2,1,1,0,cs,'hkil'),Miller(-1,0,1,2,cs,'hkil')] 

hold on 

plot(cd_Quartz_hkil,'markersize',4,'labeled','MarkerFaceColor','k') 

 

figure 

plot(mori_sc,'markersize',6,'antipodal','figSize','small') 

hold on 

plot(mori_sc(mis12_angle > mis12_angle_L),'markersize',8,'antipodal','figSize','small') 
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% title('sample coordinate','FontSize',10) 

 

%% 

% ************************************************************************* 

% Misorientation analysis for a selected single grain below *degrees 

% ************************************************************************* 

 

figure 

% plot the ebsd data (IPF) 

plot(ebsd(selected_single_grain),ebsd(selected_single_grain).orientations,'faceAlpha',0.5,'figSiz

e','medium') 

hold on 

% plot grain boundaries 

plot(selected_single_grain.boundary,'linewidth',2,'linecolor','k') 

% compute transparency from misorientation angle 

alpha=selected_single_grain.innerBoundary.misorientation.angle/(5*degree); 

% plot the subgrain boundaries 

plot(selected_single_grain.innerBoundary,'linewidth',1.5,'edgeAlpha',alpha,'linecolor','b'); 

hold off 

 

% number of low-angle boundary segments inside each grain 

% figure 

% 

plot(selected_single_grain,selected_single_grain.subBoundarySize./selected_single_grain.grain

Size) 

% mtexColorbar 

 

% density of low-angle boundaries per grain as the length of the subgrain boundaries divided 

by the grain area 

% figure 

% plot(grains, grains.subBoundaryLength ./ grains.area) 

% mtexColorbar 
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% extract all subgrain boundary misorientation below * degrees 

mori = 

selected_single_grain.innerBoundary(selected_single_grain.innerBoundary.misorientation.angle

/degree<10,selected_single_grain.innerBoundary.misorientation.angle/degree>=2).misorientati

on; 

 

figure 

% and visualize the distribution of the misorientation axes 

% plot(mori.axis,'fundamentalRegion','contourf','LineStyle','none','figSize','medium') 

density = calcDensity(mori.axis,'halfwidth',10*degree); 

plot(density,'fundamentalRegion','figSize','medium') 

mtexColorbar 

 

hold on 

% plot crystal direction 

% cs=crystalSymmetry('-3m1',[4.913 4.913 5.504],[90,90,120]*degree,... 

% 'X||a*','Y||b','Z||c','mineral','Quartz') 

cs=crystalSymmetry('-3m1',[4.9 4.9 5.5],'X||a*','Y||b','Z||c*',... 

    'mineral','Quartz') 

 

cd_Quartz_hkil = ... 

  [Miller(0,0,0,1,cs,'hkil'),Miller(-2,2,0,1,cs,'hkil'),Miller(-1,1,0,1,cs,'hkil'),... 

  Miller(-1,1,0,0,cs,'hkil'),Miller(-1,2,-1,2,cs,'hkil'),Miller(-1,2,-1,0,cs,'hkil'),... 

  Miller(0,1,-1,1,cs,'hkil'),Miller(0,2,-2,1,cs,'hkil'),Miller(0,1,-1,0,cs,'hkil'),... 

  Miller(-1,1,0,2,cs,'hkil'),Miller(0,1,-1,2,cs,'hkil')] 

plot(cd_Quartz_hkil,'labeled','MarkerFaceColor','red') 

 

% <0001> (c-axis), <11-20> (a-axis), {10-10} (prism {m}), 

% {10-11}(positive rhomb {r}), {01-11} (negative rhomb {z}), 

% {10-12} (positive acute rhomb {pi}), {01-12} (negative acute rhomb {pi'}) 

 

%% 

% ************************************************************************* 
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% Misorientation analysis for a selected single grain: Tilt and twist boundaries 

% ************************************************************************* 

% extract subgrain boundaries 

subGB = 

selected_single_grain.innerBoundary(selected_single_grain.innerBoundary.misorientation.angle

/degree<=10,selected_single_grain.innerBoundary.misorientation.angle/degree>=2); 

 

% plot the misorientation axes in the fundamental sector 

figure 

plot(subGB.misorientation.axis,'fundamentalRegion','figSize','small') 

 

% compute and plot the density distribution of misorientation axes 

figure 

density = calcDensity(subGB.misorientation.axis,'halfwidth',10*degree); 

plot(density,'figSize','small') 

mtexColorbar 

 

% find the two prefered misorientation axes 

[~,hkil] = max(density,'numLocal',2); round(hkil) 

 

% compute and plot the misorientation axis in specimen coordinates 

oriGB = ebsd('id',subGB.ebsdId).orientations 

axS = axis(oriGB(:,1),oriGB(:,2),'antipodal') 

 

figure 

plot(axS,'MarkerAlpha',0.2,'MarkerSize',2,'figSize','small') 

 

density = calcDensity(axS,'halfwidth',10*degree); 

figure 

plot(density,'figSize','small') 

mtexColorbar 

 

[~,pos] = max(density) 
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annotate(pos) 

 

% We colorize in the following plot all subgrain boundaries according to the angle between 

% the boundary trace and the misorientation axis. Blue subgrain boundaries are  

% very likely tilt boundaries, while red subgrain boundaries are can be either tilt or twist 

boundaries. 

figure 

plot(ebsd(selected_single_grain),'faceAlpha',0.5,'figSize','large') 

 

% init override mode 

hold on 

 

% plot grain boundares 

% plot(grains.boundary,'linewidth',2) 

 

% colorize the subgrain boundaries according the angle between boundary 

% trace and misorientation axis 

plot(subGB,angle(subGB.direction,axS)./degree,'linewidth',2) 

mtexColorMap blue2red 

mtexColorbar 

 

hold off 

 

%% 

% ************************************************************************* 

% Misorientation analysis for all area of the specimen 

% ************************************************************************* 

% set angles of low- and high-angle boundaries 

% low-abgle subgrain boundary=1; high-angle grain boundary=10  

[grains,ebsd.grainId,ebsd.mis2mean]=calcGrains(ebsd('indexed'),'threshold',[1*degree,10*degr

ee]); 

 

% get the misorientations to mean 
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mori=ebsd('Quartz').mis2mean 

 

% plot a histogram of the misorientation angles 

close all 

plotAngleDistribution(mori,'figSize','medium') 

xlabel('Misorientation angles in degree') 

 

plot(ebsd('Quartz'),ebsd('Quartz').mis2mean.angle./degree,'figSize','medium') 

mtexColorMap WhiteJet 

mtexColorbar 

hold on 

plot(grains.boundary,'edgecolor','k','linewidth',.5,'figSize','medium') 

hold off 

 

%% Correlated misorientation angle distribution between two adjacent pixels in a selected 

single grain 

figure 

plotAngleDistribution(selected_single_grain.innerBoundary.misorientation,... 

   'DisplayName','Misorientation angle between two adjacent pixels','figSize','small') 

legend('show','Location','northeast') 

 

 

%% Boundary misorientation map 

figure 

plot(grains,'figSize','medium') 

hold on 

 

bnd_Quartz=grains.boundary('Quartz','Quartz') 

plot(bnd_Quartz,'linecolor','r','figSize','medium') 

hold off 

 

%% Correlated misorientation angle distribution between two adjacent grains 

figure 
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plotAngleDistribution(grains.boundary('Quartz','Quartz').misorientation,... 

    'DisplayName','Quartz-Quartz','figSize','small') 

legend('show','Location','northwest') 

 

%% Uncorrelated misorientation angle distribution 

% compute uncorrelated misorientations 

mori=calcMisorientation(ebsd('Quartz'),ebsd('Quartz')); 

 

figure 

% plot the angle distribution 

plotAngleDistribution(mori,'DisplayName','Quartz-Quartz','figSize','small') 

 

hold on 

plotAngleDistribution(odf_Quartz.CS,odf_Quartz.CS,'DisplayName','untextured') 

hold off 

legend('-dynamicLegend','Location','northwest') % update legend 

 

%% Axis distribution 

close all 

mori=calcMisorientation(ebsd('Quartz')); 

number_of_mori = length(mori) 

 

figure 

mtexFig=newMtexFigure; 

plotAxisDistribution(mori,'smooth','parent',mtexFig.gca) 

mtexTitle('uncorrelated axis distribution') 

mtexFig.drawNow('figSize','normal') 

mtexColorbar 

 

% figure 

% plotAxisDistribution(mori,'antipodal','points','all','MarkerSize',2) 

% title('uncorrelated axis distribution','FontSize',12) 

  



 117 

% selected misorientation angle intervals 

selected_mori_a = mori(angle(mori) > 1/360*(2*pi) & angle(mori) <= 10/360*(2*pi)); 

number_of_selected_mori_a = length(selected_mori_a) 

 

selected_mori_b = mori(angle(mori) > 10/360*(2*pi) & angle(mori) <= 20/360*(2*pi)); 

number_of_selected_mori_b = length(selected_mori_b) 

 

selected_mori_c = mori(angle(mori) > 20/360*(2*pi) & angle(mori) <= 30/360*(2*pi)); 

number_of_selected_mori_c = length(selected_mori_c) 

 

selected_mori_d = mori(angle(mori) > 30/360*(2*pi) & angle(mori) <= 90/360*(2*pi)); 

number_of_selected_mori_d = length(selected_mori_d) 

 

selected_mori_e = mori(angle(mori) > 175/360*(2*pi) & angle(mori) <= 180/360*(2*pi)); 

number_of_selected_mori_e = length(selected_mori_e) 

 

figure 

plotAxisDistribution(selected_mori_a,'antipodal','points','all','MarkerSize',8,... 

    'MarkerFaceColor','red') 

mtexTitle('uncorrelated axis distribution 2-10:R 11-20:G 21-30:B') 

hold on 

plotAxisDistribution(selected_mori_b,'antipodal','points','all','MarkerSize',4,... 

    'MarkerFaceColor','green') 

mtexColorbar 

hold off 

 

bnd_Quartz=grains.boundary('Quartz','Quartz') 

 

figure 

mtexFig = newMtexFigure; 

plotAxisDistribution(bnd_Quartz.misorientation,'antipodal','points','all','MarkerSize',2) 

mtexTitle('boundary axis distribution','FontSize',12) 

mtexFig.drawNow('figSize','normal') 
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hold on 

 

mtexFig.nextAxis 

plotAxisDistribution(bnd_Quartz.misorientation,'smooth','parent',mtexFig.gca) 

mtexTitle('boundary axis distribution') 

mtexColorbar 

 

%% 

% ************************************************************************* 

% Axis distribution of uncorrelated and correlated misorientation 

% for selected_grains 

% ************************************************************************* 

% close all 

 

grains = calcGrains(ebsd,'angle',10*degree) 

 

bnd_Quartz = grains.boundary('Quartz','Quartz') 

 

bnd_Quartz.misorientation 

 

figure 

plot(ebsd('Quartz'),'figsize','medium') 

 

hold on 

plot(bnd_Quartz,'figsize','medium','linecolor','red') 

plot(bnd_Quartz,bnd_Quartz.misorientation.angle./degree,'figsize','medium','linewidth',2) 

mtexColorMap blue2red 

mtexColorbar 

hold off 

 

%% 

% input specific angle intervals 

disp('Input the angle intergals for misorientation analysis') 
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angle_lower_limit = input('Angle intervals lower limit (>10):'); 

angle_upper_limit = input('Angle intervals upper limit (<180):'); 

 

selected_bnd_Quartz = bnd_Quartz(bnd_Quartz.misorientation.angle > 

angle_lower_limit*degree &... 

    bnd_Quartz.misorientation.angle < angle_upper_limit*degree);  

 

figure 

mtexFig = newMtexFigure; 

mori = calcMisorientation(ebsd('Quartz'),ebsd('Quartz')); 

selected_mori = mori(angle(mori) > angle_lower_limit/360*(2*pi) & angle(mori) < 

angle_upper_limit/360*(2*pi)); 

%plotAxisDistribution(selected_mori,'smooth','parent',mtexFig.gca) 

plotAxisDistribution(selected_mori,'antipodal','smooth','parent',mtexFig.gca) 

mtexTitle('uncorrelated axis distribution') 

mtexFig.drawNow('figSize','normal') 

hold on 

 

% plot crystal direction 

  cs = crystalSymmetry('-3m1', [4.913 4.913 5.504],[90,90,120]*degree,... 

  'X||a*','Y||b','Z||c','mineral','Quartz') 

 

% cd_Quartz_uvtw = ... 

%  [Miller(0,0,0,1,cs,'uvtw'),Miller(1,1,-2,0,cs,'uvtw')] % <0001> (c-axis), <11-20> (a-axis) 

cd_Quartz_hkil = ... 

  [Miller(0,0,0,1,cs,'hkil'),Miller(-2,2,0,1,cs,'hkil'),Miller(-1,1,0,1,cs,'hkil'),... 

  Miller(-1,1,0,0,cs,'hkil'),Miller(-1,2,-1,2,cs,'hkil'),Miller(-1,2,-1,0,cs,'hkil'),... 

  Miller(0,1,-1,1,cs,'hkil'),Miller(0,2,-2,1,cs,'hkil'),Miller(0,1,-1,0,cs,'hkil'),... 

  Miller(-1,1,0,2,cs,'hkil'),Miller(0,1,-1,2,cs,'hkil')] 

 

% plot(cd_Quartz_uvtw,'labeled','MarkerFaceColor','black') 

plot(cd_Quartz_hkil,'labeled','MarkerFaceColor','red') 

% hold on 
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% plot(cd_Quartz_hkil,'plane','linecolor','red','linewidth',1) 

 

mtexFig.nextAxis 

plotAxisDistribution(selected_bnd_Quartz.misorientation,'smooth','parent',mtexFig.gca) 

% 

plotAxisDistribution(selected_bnd_Quartz.misorientation,'antipodal','points','all','MarkerSize',2) 

mtexTitle('boundary axis distribution') 

mtexColorbar 

hold on 

% plot(cd_Quartz_uvtw,'labeled','MarkerFaceColor','black') 

% plot(cd_Quartz_hkil,'plane','linecolor','red','linewidth',1) 

plot(cd_Quartz_hkil,'labeled','MarkerFaceColor','red') 

 

%% 

 

%% 

% ************************************************************************ 

% plot crystal direction (full) 

% Considering the common slip systems of quartz, the following directions  

% and planes have been plotted: 

% <0001> (c-axis), <11-20> (a-axis), {10-10} (prism {m}), 

% {10-11}(positive rhomb {r}), {01-11} (negative rhomb {z}), 

% {10-12} (positive acute rhomb {pi}), {01-12} (negative acute rhomb {pi'}) 

% ************************************************************************* 

cs = crystalSymmetry('-3m1', [4.913 4.913 5.504],[90,90,120]*degree,... 

  'X||a*','Y||b','Z||c','mineral','Quartz') 

 

cd_Quartz_uvtw = ... 

  [Miller(0,0,0,1,cs,'uvtw'),Miller(1,1,-2,0,cs,'uvtw')] 

cd_Quartz_hkil = ... 

  [Miller(0,0,0,1,cs,'hkil'),Miller(-2,2,0,1,cs,'hkil'),Miller(-1,1,0,1,cs,'hkil'),... 

  Miller(-1,1,0,0,cs,'hkil'),Miller(-1,2,-1,2,cs,'hkil'),Miller(-1,2,-1,0,cs,'hkil'),... 

  Miller(0,1,-1,1,cs,'hkil'),Miller(0,2,-2,1,cs,'hkil'),Miller(0,1,-1,0,cs,'hkil'),... 
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  Miller(-1,1,0,2,cs,'hkil'),Miller(0,1,-1,2,cs,'hkil')] 

 

figure 

plot(cd_Quartz_uvtw,'labeled','MarkerFaceColor','black') 

hold on 

plot(cd_Quartz_hkil,'labeled','MarkerFaceColor','red') 

 

figure 

plot(cd_Quartz_uvtw,'upper','labeled','MarkerFaceColor','black') 

hold on 

plot(cd_Quartz_hkil,'upper','labeled','MarkerFaceColor','red') 

 

figure 

plot(cd_Quartz_uvtw,'antipodal','labeled','MarkerFaceColor','black') 

hold on 

plot(cd_Quartz_hkil,'antipodal','labeled','MarkerFaceColor','red') 

 

%% 

% ************************************************************************ 

% plot crystal direction (selected) 

% ************************************************************************* 

  cs = crystalSymmetry('-3m1', [4.913 4.913 5.504],[90,90,120]*degree,... 

  'X||a*','Y||b','Z||c','mineral','Quartz') 

 

cd_Quartz_uvtw = ... 

  [Miller(0,0,0,1,cs,'uvtw'),Miller(1,1,-2,0,cs,'uvtw')] 

cd_Quartz_hkil = ... 

  [Miller(0,0,0,1,cs,'hkil'),Miller(-2,2,0,1,cs,'hkil'),Miller(-1,1,0,1,cs,'hkil'),... 

  Miller(-1,1,0,0,cs,'hkil'),Miller(-1,2,-1,2,cs,'hkil'),Miller(-1,2,-1,0,cs,'hkil'),... 

  Miller(0,1,-1,1,cs,'hkil'),Miller(0,2,-2,1,cs,'hkil'),Miller(0,1,-1,0,cs,'hkil'),... 

  Miller(-1,1,0,2,cs,'hkil'),Miller(0,1,-1,2,cs,'hkil')] 

 

figure 
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% plot(cd_Quartz_uvtw,'labeled','MarkerFaceColor','black') 

plot(cd_Quartz_uvtw,'upper','antipodal','labeled','MarkerFaceColor','black') 

% hold on 

plot(cd_Quartz_hkil,'upper','plane','linecolor','red','linewidth',1) 

hold on 

 

% plot(cd_Quartz_hkil,'plane','linecolor','red','linewidth',1) 

plot(cd_Quartz_uvtw,'upper','antipodal','labeled','MarkerFaceColor','black') 

plot(cd_Quartz_hkil,'upper','antipodal','labeled','MarkerFaceColor','red') 

 

%% 

% ************************************************************************ 

% plot crystal direction (use for checking) 

% ************************************************************************* 

  cs = crystalSymmetry('-3m1', [4.913 4.913 5.504],[90,90,120]*degree,... 

  'X||a*','Y||b','Z||c','mineral','Quartz') 

 

m_1 = Miller(0,0,0,1,cs,'uvtw') 

m_2 = Miller(1,1,-2,0,cs,'uvtw') 

% m_3 = Miller(1,0,-1,0,cs,'uvtw') 

% m_4 = Miller(1,0,-1,1,0,cs,'uvtw') 

m_5 = Miller(0,0,0,1,cs,'hkil') 

m_6 = Miller(1,1,-2,0,cs,'hkil') 

m_7 = Miller(1,0,-1,0,cs,'hkil') 

m_8 = Miller(1,0,-1,1,cs,'hkil') 

 

figure 

plot(m_1,'upper','antipodal','labeled','MarkerFaceColor','black') 

hold on 

plot(m_2,'upper','antipodal','labeled','MarkerFaceColor','black') 

hold on 

% plot(m_3,'upper','antipodal','labeled','MarkerFaceColor','black') 

% hold on 
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% plot(m_4,'upper','antipodal','labeled','MarkerFaceColor','black') 

% hold on 

plot(m_5,'upper','plane','linecolor','r','linewidth',1) 

hold on 

plot(m_6,'upper','plane','linecolor','r','linewidth',1) 

hold on 

plot(m_7,'upper','plane','linecolor','r','linewidth',1) 

hold on 

plot(m_8,'upper','plane','linecolor','r','linewidth',1) 
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A.3. MATLAB script for GND analysis 
%% 

% ************************************************************************* 

% MTEX Script for EBSD Data 

% Script set for GND analysis 

% 

% ************************************************************************* 

% Import of Oxford/HKL *.ctf (ASCII) file 

% ************************************************************************* 

 

% clear memory and close plots - for new analysis of EBSD data 

clear 

close all 

 

% Specify Crystal and Specimen Symmetries 

% crystal symmetry 

% crystal symmetry 

CS = {...  

  'notIndexed',... 

  crystalSymmetry('-3m1', [4.9 4.9 5.5], 'X||a*', 'Y||b', 'Z||c*', 'mineral', 'Quartz', 'color', [0.53 

0.81 0.98])}; 

 

% specimen symmetry : the MTEX4 default is triclinic so do not need this line 

SS = specimenSymmetry('triclinic');  

 

% plotting convention 

setMTEXpref('xAxisDirection','east'); % 'west' 

setMTEXpref('zAxisDirection','intoPlane'); % 'outOfPlane' 

 

% Specify File Names 

% path to files 

pname = 'C:\Users\henry\Desktop\EBSD\EBSD\AWI_3_001' 

% which files to be imported 
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fname = [pname '\AWI_3_001.ctf']; 

 

% Import the Data 

% create an EBSD variable containing the data 

ebsd = EBSD.load(fname,CS,'interface','ctf','convertEuler2SpatialReferenceFrame','wizard'); 

 

% take only those measurements with MAD (Mean Angular Deviation) smaller then 1.3 

ebsd = ebsd(ebsd.mad<1) 

 

%% 

% reconstruct grains, remove all grains with less then 

% 5 pixels and smooth the grain boundaries. 

 

% reconstruct grains 

[grains,ebsd.grainId] = calcGrains(ebsd,'angle',15*degree); 

 

% remove small grains 

ebsd(grains(grains.grainSize<=5)) = []; 

 

% redo grain reconstruction 

[grains,ebsd.grainId] = calcGrains(ebsd,'angle',10*degree); 

 

% smooth grain boundaries 

grains = smooth(grains,5); 

 

hold on 

plot(grains.boundary,'linewidth',1) 

hold off 

 

%%  

%a key the colorizes according to misorientation angle and axis 

ipfKey = axisAngleColorKey(ebsd('Quartz')); 
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% set the grain mean orientations as reference orinetations 

ipfKey.oriRef = grains(ebsd('Quartz').grainId).meanOrientation; 

 

% plot the orientation data 

plot(ebsd('Quartz'),ipfKey.orientation2color(ebsd('Quartz').orientations),'micronBar','off','figSize

','medium') 

 

hold on 

plot(grains.boundary,'linewidth',1) 

hold off 

 

%% denoise orientation data 

F = halfQuadraticFilter; 

 

ebsd = smooth(ebsd('Quartz'),F,'fill',grains); 

 

% plot the denoised data 

ipfKey.oriRef = grains(ebsd('Quartz').grainId).meanOrientation; 

plot(ebsd('Quartz'),ipfKey.orientation2color(ebsd('Quartz').orientations),'micronBar','off','figSize

','medium') 

 

hold on 

plot(grains.boundary,'linewidth',1) 

hold off 

 

%%GND density map 

% The incomplete curvature tensor 

% consider only the Quartz phase  

ebsd = ebsd('Quartz').gridify; 

 

% compute the curvature tensor 

kappa = ebsd.curvature; 
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% kappa(2,3) 

% the components of the curvature tensor 

kappa12 = kappa{1,2}; 

size(kappa12) 

newMtexFigure('nrows',3,'ncols',3); 

 

% cycle through all components of the tensor 

for i = 1:3 

  for j = 1:3 

     

    nextAxis(i,j) 

    plot(ebsd,kappa{i,j},'micronBar','off') 

    hold on; plot(grains.boundary,'linewidth',1); hold off 

     

  end 

end 

 

% unify the color rage  - you may also use setColoRange equal 

setColorRange([-0.005,0.005]) 

drawNow(gcm,'figSize','large') 

 

%% The incomplete dislocation density tensor 

alpha = kappa.dislocationDensity; 

% sS=slipSystem.Quartz(Quartz_CS) 

%  alpha(2,3) 

% Cystallographic Dislocations 

% dSbasalA = dislocationSystem.BasalA(Quartz_CS); 

% dSprismA = dislocationSystem.PrismA(Quartz_CS); 

% dS = [dSprismA dSbasalA] 

dS = dislocationSystem.Quartz(Quartz_CS) 

% size of the unit cell 

a = norm(Quartz_CS.aAxis) 

% in bcc and fcc the norm of the burgers vector is sqrt(3)/2*a 
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norm(dS().b) 

%  The energy of dislocations 

nu= 0.1; 

% energy of the edge dislocations 

dS(dS.isEdge).u = 1; 

% energy of the screw dislocations 

dS(dS.isScrew).u = 0.9; 

% Question to verybody: what is the best way to set the enegry? I found 

% different formulae 

% 

% E = 1 - poisson ratio 

% E = c * G * |b|^2,  - G - Schubmodul / Shear Modulus Energy per (unit length)^2 

%A single dislocation causes a deformation that can be represented by the rank one tensor 

dS(1).tensor 

%Note that the unit of this tensors is the same as the unit used for describing the  

% length of the unit cell, which is in most cases Angstrom (au). Furthremore, we  

% observe that the tensor is given with respect to the crystal reference frame while 

% the dislocation densitiy tensors are given with respect to the specimen reference  

% frame. Hence, to make them compatible we have to rotate the dislocation tensors  

% into the specimen reference frame as well. This is done by 

dSRot = ebsd.orientations * dS 

 

%% Fitting dislocations to the incomplete dislocation denstiy tensor 

%Now we are ready for fitting the dislocation tensors to the dislocation densitiy  

% tensor in each pixel of the map. This is done by the command fitDislocationSystems. 

[rho,factor] = fitDislocationSystems(kappa,dSRot); 

% the restored dislocation density tensors 

alpha = sum(dSRot.tensor .* rho,2); 

 

% we have to set the unit manualy since it is not stored in rho 

alpha.opt.unit = '1/um'; 

 

% the restored dislocation density tensor for pixel 2 
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% alpha(2) 

 

% the dislocation density dervied from the curvature in pixel 2 

% kappa(2).dislocationDensity 

 

%we may also restore the complete curvature tensor with 

kappa = alpha.curvature; 

% plot it as before 

newMtexFigure('nrows',3,'ncols',3); 

 

% cycle through all components of the tensor 

for i = 1:3 

  for j = 1:3 

 

    nextAxis(i,j) 

    plot(ebsd,kappa{i,j},'micronBar','off') 

    hold on; plot(grains.boundary,'linewidth',2); hold off 

 

  end 

end 

 

setColorRange([-0.005,0.005]) 

drawNow(gcm,'figSize','large'); 

 

%% The total dislocation energy 

% The unit of the densities h in our example is 1/um * 1/au where 1/um comes 

% from the unit of the curvature tensor an 1/au from the unit of the Burgers  

% vector. In order to transform h to SI units, i.e., 1/m^2 we have to multiply 

% it with 10^16. This is exactly the values returned as the second output  

% factor by the function fitDislocationSystems. 

factor; 

 

% Multiplying the densities rho with this factor and the individual energies  
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% of the the dislocation systems we end up with the total dislocation energy.  

% Lets plot this at a logarithmic scale 

close all 

 

figure 

plot(ebsd,factor*sum(abs(rho.* dSRot.u),2),'micronbar','off') 

title('Total','FontSize',14) 

% mtexColorMap('hot') 

mtexColorbar 

 set(gca,'ColorScale','log'); % this works only starting with Matlab 2018a 

%  set(gca,'CLim',[10^13 10^14]); 

  set(gca,'CLim',[10^9 10^15]); 

 hold on 

plot(grains.boundary,'linewidth',1) 

hold off 

 

figure 

plot(ebsd,factor*sum(abs(rho.* dSRot.isEdge),2),'micronbar','off') 

title('Edge','FontSize',14) 

% mtexColorMap('hot') 

mtexColorbar 

 set(gca,'ColorScale','log'); % this works only starting with Matlab 2018a 

%  set(gca,'CLim',[10^13 10^14]); 

  set(gca,'CLim',[10^9 10^15]); 

 hold on 

plot(grains.boundary,'linewidth',1) 

hold off 

 

figure 

plot(ebsd,factor*sum(abs(rho.* dSRot.isScrew),2),'micronbar','off') 

title('Screw','FontSize',14) 

% mtexColorMap('hot') 

mtexColorbar 
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 set(gca,'ColorScale','log'); % this works only starting with Matlab 2018a 

%  set(gca,'CLim',[10^13 10^14]); 

  set(gca,'CLim',[10^9 10^15]); 

 hold on 

plot(grains.boundary,'linewidth',1) 

hold off 

 

figure 

plot(ebsd,factor*sum(abs(rho(:,1:3) .* dSRot.u(:,1:3)),2),'micronbar','off') 

title('Basal <a>','FontSize',14) 

% mtexColorMap('hot') 

mtexColorbar 

 set(gca,'ColorScale','log'); % this works only starting with Matlab 2018a 

%  set(gca,'CLim',[10^13 10^14]); 

  set(gca,'CLim',[10^9 10^15]); 

 hold on 

plot(grains.boundary,'linewidth',1) 

hold off 

 

figure 

plot(ebsd,factor*sum(abs(rho(:,4:6) .* dSRot.u(:,4:6)),2),'micronbar','off') 

title('Prism <a>','FontSize',14) 

% mtexColorMap('hot') 

mtexColorbar 

 set(gca,'ColorScale','log'); % this works only starting with Matlab 2018a 

%  set(gca,'CLim',[10^13 10^14]); 

 set(gca,'CLim',[10^9 10^15]); 

hold on 

plot(grains.boundary,'linewidth',1) 

hold off 

 

figure 

plot(ebsd,factor*sum(abs(rho(:,7:12) .* dSRot.u(:,7:12)),2),'micronbar','off') 



132 

title('Rhomb <a>','FontSize',14) 

% mtexColorMap('hot') 

mtexColorbar 

 set(gca,'ColorScale','log'); % this works only starting with Matlab 2018a 

%  set(gca,'CLim',[10^13 10^14]); 

  set(gca,'CLim',[10^9 10^15]); 

hold on 

plot(grains.boundary,'linewidth',1) 

hold off 

 

figure 

plot(ebsd,factor*sum(abs(rho(:,13:15) .* dSRot.u(:,13:15)),2),'micronbar','off') 

title('Prism [c]','FontSize',14) 

% mtexColorMap('hot') 

mtexColorbar 

 set(gca,'ColorScale','log'); % this works only starting with Matlab 2018a 

%  set(gca,'CLim',[10^13 10^14]); 

  set(gca,'CLim',[10^9 10^15]); 

hold on 

plot(grains.boundary,'linewidth',1) 

hold off 

 

figure 

plot(ebsd,factor*sum(abs(rho(:,16) .* dSRot.u(:,16)),2),'micronbar','off') 

title('[c] screw','FontSize',14) 

% mtexColorMap('hot') 

mtexColorbar 

 set(gca,'ColorScale','log'); % this works only starting with Matlab 2018a 

%  set(gca,'CLim',[10^13 10^14]); 

  set(gca,'CLim',[10^9 10^15]); 

hold on 

plot(grains.boundary,'linewidth',1) 

hold off 
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figure 

plot(ebsd,factor*sum(abs(rho(:,17:19) .* dSRot.u(:,17:19)),2),'micronbar','off') 

title('<a> screw','FontSize',14) 

% mtexColorMap('hot') 

mtexColorbar 

 set(gca,'ColorScale','log'); % this works only starting with Matlab 2018a 

%  set(gca,'CLim',[10^13 10^14]); 

  set(gca,'CLim',[10^9 10^15]); 

hold on 

plot(grains.boundary,'linewidth',1) 

hold off 
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A.4. MATLAB script for GND analysis of selected region and summarize the ratio of 

the dislocation types 

 

%% 

% ************************************************************************* 

% MTEX Script for EBSD Data 

% Script set for GND analysis of selected region 

% and summarize the ratio of the dislocation types 

% 

% ************************************************************************* 

% Import of Oxford/HKL *.ctf (ASCII) file 

% ************************************************************************* 

 

% clear memory and close plots - for new analysis of EBSD data 

clear 

close all 

 

% Specify Crystal and Specimen Symmetries 

% crystal symmetry 

% crystal symmetry 

CS = {...  

  'notIndexed',... 

  crystalSymmetry('-3m1', [4.9 4.9 5.5], 'X||a*', 'Y||b', 'Z||c*', 'mineral', 'Quartz', 'color', [0.53 

0.81 0.98])}; 

 

% specimen symmetry : the MTEX4 default is triclinic so do not need this line 

SS = specimenSymmetry('trigonal');  

 

% plotting convention 

setMTEXpref('xAxisDirection','east'); % 'west' 

setMTEXpref('zAxisDirection','intoPlane'); % 'outOfPlane' 

 

% Specify File Names 
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% path to files 

pname = 'C:\Users\henry\Desktop\EBSD\EBSD\AWI_3_001'; 

% which files to be imported 

fname = [pname '\AWI_3_001.ctf']; 

 

% Import the Data 

% create an EBSD variable containing the data 

ebsd = EBSD.load(fname,CS,'interface','ctf','convertEuler2SpatialReferenceFrame','wizard'); 

 

% take only those measurements with MAD (Mean Angular Deviation) smaller then 1.0 

ebsd = ebsd(ebsd.mad<1) 

 

% ************************************************************************* 

% Calculate an ODF 

% ************************************************************************* 

% Generate simple Crystal Symmetry variables for all phases 

fprintf(' \n'); 

fprintf(' Crystal Symmetry (CS) : names of variables \n'); 

fprintf(' \n'); 

 

% phase names 

Phase_names = ebsd.mineralList; 

 

for i=1:length(CS) 

% indexed point for mineral 

     N_Points = length(ebsd(Phase_names(i))); 

% print only indexed phases 

    if((~strcmpi(Phase_names{i},'notIndexed')) && (N_Points > 0)) 

% retain first part of mineral name 

      P_Name = strtok(char(Phase_names{i}),' '); 

% make variables for CS with mineral names 

      myvariable = strcat(P_Name,'_CS'); 

      datavalues = CS{i}; 
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% print variable names for CS 

      eval([sprintf(myvariable) ' = CS{i};']) 

      fprintf(' %s %s \n','Variable name =',myvariable); 

    end 

end 

 

disp(' ') 

disp(' Use mineral_CS to defined your CS in m-file ') 

disp(' ') 

 

% Calculate an ODF 

odf_Quartz = calcDensity(ebsd('Quartz').orientations,'halfwidth',10*degree); 

 

% Texture index 

% Jindex_Quartz = textureindex(odf_Quartz) 

% Mindex_Quartz = calcMIndex(odf_Quartz) 

 

% Create list of pole figures with hkls 100,010,001 

% MTEX cannot mix hkls and uvws 

% pole to planes can be specified by the option 'pole' or 'hkl'  

% directions are specified by the option 'uvw'  

 

PFs_Quartz_hkil = [ ... 

    Miller(0,0,0,1,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(1,1,-2,0,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(1,0,-1,0,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(1,0,-1,1,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(0,1,-1,1,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(-1,1,0,2,Quartz_CS,'hkil','phase','Quartz'), ... 

    Miller(0,1,-1,2,Quartz_CS,'hkil','phase','Quartz')] 

PFs_Quartz_uvtw = [ ... 

    Miller(0,0,0,1,Quartz_CS,'uvtw','phase','Quartz'),... 

    Miller(1,1,-2,0,Quartz_CS,'uvtw','phase','Quartz')] 
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% <0001> (c-axis), <11-20> (a-axis), {10-10} (prism {m}), 

% {10-11}(positive rhomb {r}), {01-11} (negative rhomb {z}), 

% {10-12} (positive acute rhomb {pi}), {01-12} (negative acute rhomb {pi'}) 

%% 

% ************************************************************************* 

% Grain modelling 

% ************************************************************************* 

 

% set angles of low- and high-angle boundaries 

% low-abgle subgrain boundary=1; high-angle grain boundary=10  

 

% disp(' ') 

% disp(' Keep non-indexed points option ') 

% disp('*1= Scientifically correct, not extrapolating raw indexed data') 

% disp('    model grains BUT keep non-index points : Default in MTEX 4') 

% disp(' 2= May be more geologically correct in some cases, use with care') 

% disp('    model grains AND include non-index points within grains boundaries') 

% disp('    N.B. this option does NOT ADD map pixels with neighbouring ORIENTATIONS') 

% non_indexed_option = input('Option an integer  (1-2):'); 

non_indexed_option = 1; 

 

% keep non-indexed in now default in MTEX4 

if(non_indexed_option == 1) 

    [grains,ebsd.grainId,ebsd.mis2mean] = calcGrains(ebsd,'threshold',[2*degree,10*degree]) 

end 

 

% remove non-indexed points, restrict to indexed points only 

if(non_indexed_option == 2) 

    [grains,ebsd.grainId,ebsd.mis2mean] = 

calcGrains(ebsd('indexed'),'threshold',[2*degree,10*degree]) 

end 
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% number of grains all phases  

number_of_calcGrains = grains.length 

 

% plot 'grain' phase map 

close all 

figure 

% Correct MatLab problem with colour buffer 

set(gcf,'renderer','zbuffer') 

plot(grains,'figSize','medium') 

 

% Removing small grains - not representative small grains, may be errors 

% disp(' ') 

% disp(' Small grains option ') 

% disp(' Remove small grains containing less than a critical') 

% disp(' number of indexed points as they error prone or ') 

% disp(' If you require an accurate grain size and shape analysis') 

% disp(' the recommended minimum number indexed points per grain size is 10') 

% disp(' You can decide to keep all grain by accepting all grains with 0') 

% small_grains_option = input('Indexed points per grain an integer (e.g. 0-10):'); 

small_grains_option = 5; 

 

% remove grains containing less than critical number of indexed points,  

selected_grains = grains(grains.grainSize > small_grains_option); 

 

% number of small grains removed from all phase 

number_of_small_grains_removed = number_of_calcGrains - selected_grains.length 

 

%n_Quartz_grains = selected_grains('Quartz').length 

% close all 

figure 

% Correct MatLab problem with colour buffer 

set(gcf,'renderer','zbuffer') 

plot(selected_grains,'figSize','medium') 
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%%  

% ************************************************************************* 

% Plot all grains and select a grain using the a curser on the phase map 

% ************************************************************************* 

 

% set angles of low- and high-angle boundaries 

% low-abgle subgrain boundary=1; high-angle grain boundary=10  

 

% disp(' ') 

% disp(' Keep non-indexed points option ') 

% disp('*1= Scientifically correct, not extrapolating raw indexed data') 

% disp('    model grains BUT keep non-index points : Default in MTEX 4') 

% 1 

% disp(' 2= May be more geologically correct in some cases, use with care') 

% disp('    model grains AND include non-index points within grains boundaries') 

% disp('    N.B. this option does NOT ADD map pixels with neighbouring ORIENTATIONS') 

% non_indexed_option = input('Option an integer  (1-2):'); 

non_indexed_option = 1; 

 

% keep non-indexed in now default in MTEX4 

if(non_indexed_option == 1) 

    [grains,ebsd.grainId,ebsd.mis2mean] = calcGrains(ebsd,'threshold',[1*degree,10*degree]) 

end 

% remove non-indexed points, restrict to indexed points only 

if(non_indexed_option == 2) 

    [grains,ebsd.grainId,ebsd.mis2mean] = 

calcGrains(ebsd('indexed'),'threshold',[1*degree,10*degree]) 

end 

% number of grains all phases  

number_of_calcGrains = grains.length 

% plot 'grain' phase map 

close all 

% figure 
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% Correct MatLab problem with colour buffer 

% set(gcf,'renderer','zbuffer') 

% Default phase map 

% plot(grains,'figSize','small') 

 

% Removing small grains - not representative small grains, may be errors 

close all 

% disp(' ') 

% disp(' Small grains option ')1 

% disp(' Remove small grains containing less than a critical') 

% disp(' number of indexed points as they error prone or ') 

% disp(' If you require an accurate grain size and shape analysis') 

% disp(' the recommended minimum number indexed points per grain size is 10') 

% disp(' You can decide to keep all grain by accepting all grains with 0') 

% small_grains_option = input('Indexed points per grain an integer (e.g. 0-10):'); 

small_grains_option = 5; 

 

% remove grains containing less than critical number of indexed points,  

selected_grains = grains(grains.grainSize > small_grains_option); 

% number of small grains removed from all phase 

number_of_small_grains_removed = number_of_calcGrains - selected_grains.length 

%n_Quartz_grains = selected_grains('Quartz').length 

figure 

% Correct MatLab problem with colour buffer 

set(gcf,'renderer','zbuffer') 

% MTEX 4 default map is phase map 

plot(selected_grains,'figSize','medium') 

 

% selecting a single grain by x,y coordinates 

disp(' ')  

disp('Select grain with cursor and one mouse click') 

disp(' ') 

% Displays a cursor over the map and waits for one click on the selected grain  
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[xgg, ygg] = ginput(1) 

% select single grain 

%selected_single_grain = findByLocation(grains,[xgg  ygg]) 

selected_single_grain = selected_grains(xgg,ygg); 

% grain id 

grain_id = selected_single_grain.id 

% grain centroid 

[centroid_x,centroid_y] = centroid(selected_single_grain) 

 

% plot selected grain : boundary and misorientation from mean orientation 

close all 

% subGB = 

selected_single_grain.innerBoundary(selected_single_grain.innerBoundary.misorientation.angle

/degree<10,selected_single_grain.innerBoundary.misorientation.angle/degree>=2); 

% plot grain boundary outline 

plot(selected_single_grain.boundary,'linewidth',2,'figSize','medium') 

hold on 

% plot ebsd orientation pixels 

plot(ebsd(selected_single_grain),ebsd(selected_single_grain).mis2mean.angle./degree,'figSize',

'small') 

% plot(subGB) 

% plot grain centroid 

% plot(centroid_x,centroid_y,'MarkerEdgeColor','k','MarkerFaceColor','r','MarkerSize',10) 

hold off 

mtexColorbar 

% mean orientation of selected single grain 

grain_mean_orientation = selected_single_grain.meanOrientation 

 

% plot crystallographic axes 

figure 

plotPDF(ebsd(selected_single_grain).orientations,PFs_Quartz_hkil,'antipodal',... 

    'points','all','MarkerSize',4,'figSize','small') 
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figure 

plotPDF(ebsd(selected_single_grain).orientations,PFs_Quartz_uvtw,'antipodal',... 

    'points','all','MarkerSize',4,'figSize','small') 

% bnd_Quartz=grains.boundary(selected_single_grain,'Quartz','Quartz') 

% figure 

% plotAxisDistribution(bnd_Quartz.misorientation,'antipodal','points','all','MarkerSize',5) 

 

%% Subgrain boundaries in a selected single grain colorized by misorientation angle 

figure 

plot(ebsd(selected_single_grain)); 

subGB = 

selected_single_grain.innerBoundary(selected_single_grain.innerBoundary.misorientation.angle

/degree<=10,selected_single_grain.innerBoundary.misorientation.angle/degree>=1); 

hold on 

% plot(subGB,'linewidth',1) 

plot(subGB,subGB.misorientation.angle./degree,'linewidth',1) 

mtexColorMap hot 

mtexColorbar 

hold off 

 

%%  

% ************************************************************************* 

% Select EBSD region of interest with your mouse: Rectangle region 

% ************************************************************************* 

figure 

setMTEXpref('FontSize',15) 

plot(selected_single_grain,'figSize','large') 

hold on 

% plot grain boundaries 

plot(selected_single_grain.innerBoundary(selected_single_grain.innerBoundary.misorientation.a

ngle/degree<=4,selected_single_grain.innerBoundary.misorientation.angle/degree>=2),'linewidt

h',1.5,'linecolor','b','micronbar','off') 
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plot(selected_single_grain.innerBoundary(selected_single_grain.innerBoundary.misorientation.a

ngle/degree<=10,selected_single_grain.innerBoundary.misorientation.angle/degree>4),'linewidt

h',1.5,'linecolor','r') 

hold off 

% selecting data points (not grains) by x,y coordinates 

% Instructions for using the mouse 

disp(' ') 

disp('Rubberband selection rectangle region') 

disp('Drag mouse from top right corner with mouse') 

disp('button pressed (down), release (up) button to define botton right corner') 

disp(' ') 

k = waitforbuttonpress; % Wait for key press or mouse-button click 

point1 = get(gca,'CurrentPoint');    % button PRESS (down) detected 

finalRect = rbbox;                   % return figure units 

point2 = get(gca,'CurrentPoint');    % button RELEASE (up) detected 

point1 = point1(1,1:2);              % extract x 

point2 = point2(1,1:2);              %     and y 

p1 = min(point1,point2);             % calculate locations 

offset = abs(point1-point2);         % and dimensions 

% EBSD map subregion 

xy_subregion(1,:) = [p1(1) p1(1)+offset(1) p1(1)+offset(1) p1(1) p1(1)]; 

xy_subregion(2,:) = [p1(2) p1(2) p1(2)+offset(2) p1(2)+offset(2) p1(2)]; 

hold on 

axis manual 

 

% region = rectangle, N.B. transpose of xy_subregion 

region = xy_subregion'; 

 

% draw selection rectangle 

plot(region(:,1),region(:,2),'r--','linewidth',2) 

hold off 

 

% select region of rectangle with condition 
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condition = inpolygon(ebsd,region); 

 

% select EBSD data within region and printout to command window 

ebsd_subregion = ebsd(condition); 

%% 

% ************************************************************************* 

% Select EBSD region of interest with your mouse: Polygonal region1 

% ************************************************************************* 

 

[selected_single_grain1,ebsd_subregion.grainId,ebsd_subregion.mis2mean]=calcGrains(ebsd_

subregion('Indexed'),'threshold',[1*degree,10*degree]) 

% plot the ebsd data (IPF) 

plot(selected_single_grain1) 

hold on 

% plot grain boundaries 

plot(selected_single_grain1.boundary,'linewidth',2,'linecolor','k') 

% 

plot(selected_single_grain1.innerBoundary(selected_single_grain1.innerBoundary.misorientatio

n.angle/degree<=4,selected_single_grain1.innerBoundary.misorientation.angle/degree>=2),'line

width',1.5,'linecolor','b','micronbar','off') 

% 

plot(selected_single_grain1.innerBoundary(selected_single_grain1.innerBoundary.misorientatio

n.angle/degree<=10,selected_single_grain1.innerBoundary.misorientation.angle/degree>4),'line

width',1.5,'linecolor','r') 

plot(selected_single_grain1.innerBoundary,selected_single_grain1.innerBoundary.misorientatio

n.angle./degree,'linewidth',2) 

mtexColorMap hot 

mtexColorbar 

hold off 

% selecting data points (not grains) by x,y coordinates 

% Instructions for using the mouse 

disp(' ') 

disp('Define selected region of map using the curse and mouse') 
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disp('The last point does not need to exactly the first point') 

disp('as the program ensures the polygon is closed') 

disp('Left mouse button picks points') 

disp('Right mouse button picks last point somewhere near the first point') 

disp(' ') 

region1 = selectPolygon; 

 

% select region of polygon with condition 

 

condition1 = inpolygon(ebsd,region1); 

 

% select EBSD data within region and printout to command window 

ebsd_subregion1 = ebsd(condition1) 

 

% plot whole EBSD Orientation map with region of interest marked in red 

% figure 

plot(ebsd_subregion); 

hold on 

% plot grain boundaries 

plot(selected_single_grain1.boundary,'linewidth',2,'linecolor','k') 

% 

plot(selected_single_grain1.innerBoundary(selected_single_grain1.innerBoundary.misorientatio

n.angle/degree<=4,selected_single_grain1.innerBoundary.misorientation.angle/degree>=2),'line

width',1.5,'linecolor','b','micronbar','off') 

% 

plot(selected_single_grain1.innerBoundary(selected_single_grain1.innerBoundary.misorientatio

n.angle/degree<=10,selected_single_grain1.innerBoundary.misorientation.angle/degree>4),'line

width',1.5,'linecolor','r') 

 

plot(region1(:,1),region1(:,2),'r--','linewidth',2) 

hold off 

ebsd1=ebsd_subregion1; 
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%% a key the colorizes according to misorientation angle and axis 

ipfKey = axisAngleColorKey(ebsd1('Quartz')); 

 

% set the grain mean orientations as reference orinetations 

ipfKey.oriRef = grains(ebsd1('Quartz').grainId).meanOrientation; 

 

% plot the data 

plot(ebsd1('Quartz'),ipfKey.orientation2color(ebsd1('Quartz').orientations),'micronBar','off','figSi

ze','medium') 

 

% hold on 

% plot(grains.boundary,'linewidth',2) 

% hold off 

 

%% denoise orientation data 

F = halfQuadraticFilter; 

 

ebsd1 = smooth(ebsd1('Quartz'),F,'fill',grains); 

 

% plot the denoised data 

ipfKey.oriRef = grains(ebsd1('Quartz').grainId).meanOrientation; 

plot(ebsd1('Quartz'),ipfKey.orientation2color(ebsd1('Quartz').orientations),'micronBar','off','figSi

ze','medium') 

 

% hold on 

% plot(grains.boundary,'linewidth',2) 

% hold off 

%% GND density map 

% The incomplete curvature tensor 

% consider only the Quartz(alpha) phase 

ebsd1=ebsd1('Quartz').gridify; 

%compute the curvature 
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kappa = ebsd1.curvature; 

% kappa(2,3) 

% the components of the curvature tensor 

kappa12 = kappa{1,2}; 

size(kappa12) 

newMtexFigure('nrows',3,'ncols',3); 

% cycle through all components of the tensor 

for i = 1:3 

    for j = 1:3 

 

        nextAxis(i,j) 

        plot(ebsd1,kappa{i,j},'micronBar','off') 

%         hold on; plot(grains.boundary,'linewidth',2); hold off 

    end 

end 

 

%unify the color rage - you may also use set ColoRange equal 

setColorRange([-0.005,0.005]) 

drawNow(gcm,'figSize','large') 

 

%% The incomplete dislocation density tensor 

alpha = kappa.dislocationDensity; 

% sS=slipSystem.Quartz(Quartz_CS) 

%  alpha(2,3) 

% Cystallographic Dislocations 

% dSbasalA = dislocationSystem.BasalA(Quartz_CS); 

% dSprismA = dislocationSystem.PrismA(Quartz_CS); 

% dS = [dSprismA dSbasalA] 

dS = dislocationSystem.Quartz(Quartz_CS) 

% size of the unit cell 

a = norm(Quartz_CS.aAxis) 

% in bcc and fcc the norm of the burgers vector is sqrt(3)/2*a 

norm(dS().b) 
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%  The energy of dislocations 

nu= 0.1; 

% energy of the edge dislocations 

dS(dS.isEdge).u = 1; 

% energy of the screw dislocations 

dS(dS.isScrew).u = 0.9; 

% Question to verybody: what is the best way to set the enegry? I found 

% different formulae 

% 

% E = 1 - poisson ratio 

% E = c * G * |b|^2,  - G - Schubmodul / Shear Modulus Energy per (unit length)^2 

%A single dislocation causes a deformation that can be represented by the rank one tensor 

dS(1).tensor 

%Note that the unit of this tensors is the same as the unit used for describing the  

% length of the unit cell, which is in most cases Angstrom (au). Furthremore, we  

% observe that the tensor is given with respect to the crystal reference frame while 

% the dislocation densitiy tensors are given with respect to the specimen reference  

% frame. Hence, to make them compatible we have to rotate the dislocation tensors  

% into the specimen reference frame as well. This is done by 

dSRot = ebsd1.orientations * dS 

%% Fitting dislocations to the incomplete dislocation denstiy tensor 

%Now we are ready for fitting the dislocation tensors to the dislocation densitiy  

% tensor in each pixel of the map. This is done by the command fitDislocationSystems. 

[rho,factor] = fitDislocationSystems(kappa,dSRot); 

% the restored dislocation density tensors 

alpha = sum(dSRot.tensor .* rho,2); 

 

% we have to set the unit manualy since it is not stored in rho 

alpha.opt.unit = '1/um'; 

 

% the restored dislocation density tensor for pixel 2 

% alpha(2) 
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% the dislocation density dervied from the curvature in pixel 2 

% kappa(2).dislocationDensity 

 

%we may also restore the complete curvature tensor with 

kappa = alpha.curvature; 

% plot it as before 

newMtexFigure('nrows',3,'ncols',3); 

 

% cycle through all components of the tensor 

for i = 1:3 

  for j = 1:3 

 

    nextAxis(i,j) 

    plot(ebsd1,kappa{i,j},'micronBar','off') 

%     hold on; plot(grains.boundary,'linewidth',2); hold off 

 

  end 

end 

 

setColorRange([-0.005,0.005]) 

drawNow(gcm,'figSize','large'); 

 

%% The total dislocation energy 

% The unit of the densities h in our example is 1/um * 1/au where 1/um comes 

% from the unit of the curvature tensor an 1/au from the unit of the Burgers  

% vector. In order to transform h to SI units, i.e., 1/m^2 we have to multiply 

% it with 10^16. This is exactly the values returned as the second output  

% factor by the function fitDislocationSystems. 

factor; 

 

% Multiplying the densities rho with this factor and the individual energies  

% of the the dislocation systems we end up with the total dislocation energy.  

% Lets plot this at a logarithmic scale 



150 

close all 

 

figure 

plot(ebsd1,factor*sum(abs(rho.* dSRot.u),2),'micronbar','off') 

title('Total','FontSize',14) 

% mtexColorMap('hot') 

mtexColorbar 

 set(gca,'ColorScale','log'); % this works only starting with Matlab 2018a 

%  set(gca,'CLim',[10^13 10^14]); 

  set(gca,'CLim',[10^9 10^15]); 

 hold on 

plot(selected_single_grain1.innerBoundary,'linewidth',1) 

% 

text(selected_single_grain1.innerBoundary.midPoint(:,1),selected_single_grain1.innerBoundary.

midPoint(:,2),sprintfc(' %d',Mangle)) 

hold off 

 

figure 

plot(ebsd1,factor*sum(abs(rho.* dSRot.isEdge),2),'micronbar','off') 

title('Edge','FontSize',14) 

% mtexColorMap('hot') 

mtexColorbar 

 set(gca,'ColorScale','log'); % this works only starting with Matlab 2018a 

%  set(gca,'CLim',[10^13 10^14]); 

  set(gca,'CLim',[10^9 10^15]); 

%  hold on 

% plot(grains.boundary,'linewidth',1) 

% hold off 

 

figure 

plot(ebsd1,factor*sum(abs(rho.* dSRot.isScrew),2),'micronbar','off') 

title('Screw','FontSize',14) 

% mtexColorMap('hot') 
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mtexColorbar 

 set(gca,'ColorScale','log'); % this works only starting with Matlab 2018a 

%  set(gca,'CLim',[10^13 10^14]); 

  set(gca,'CLim',[10^9 10^15]); 

%  hold on 

% plot(grains.boundary,'linewidth',1) 

% hold off 

 

figure 

plot(ebsd1,factor*sum(abs(rho(:,1:3) .* dSRot.u(:,1:3)),2),'micronbar','off') 

title('Basal <a>','FontSize',14) 

% mtexColorMap('hot') 

mtexColorbar 

 set(gca,'ColorScale','log'); % this works only starting with Matlab 2018a 

%  set(gca,'CLim',[10^13 10^14]); 

  set(gca,'CLim',[10^9 10^15]); 

%  hold on 

% plot(grains.boundary,'linewidth',1) 

% hold off 

 

figure 

plot(ebsd1,factor*sum(abs(rho(:,4:6) .* dSRot.u(:,4:6)),2),'micronbar','off') 

title('Prism <a>','FontSize',14) 

% mtexColorMap('hot') 

mtexColorbar 

 set(gca,'ColorScale','log'); % this works only starting with Matlab 2018a 

%  set(gca,'CLim',[10^13 10^14]); 

 set(gca,'CLim',[10^9 10^15]); 

% hold on 

% plot(grains.boundary,'linewidth',1) 

% hold off 

 

figure 



152 

plot(ebsd1,factor*sum(abs(rho(:,7:12) .* dSRot.u(:,7:12)),2),'micronbar','off') 

title('Rhomb <a>','FontSize',14) 

% mtexColorMap('hot') 

mtexColorbar 

 set(gca,'ColorScale','log'); % this works only starting with Matlab 2018a 

%  set(gca,'CLim',[10^13 10^14]); 

  set(gca,'CLim',[10^9 10^15]); 

% hold on 

% plot(grains.boundary,'linewidth',1) 

% hold off 

 

figure 

plot(ebsd1,factor*sum(abs(rho(:,13:15) .* dSRot.u(:,13:15)),2),'micronbar','off') 

title('Prism [c]','FontSize',14) 

% mtexColorMap('hot') 

mtexColorbar 

 set(gca,'ColorScale','log'); % this works only starting with Matlab 2018a 

%  set(gca,'CLim',[10^13 10^14]); 

  set(gca,'CLim',[10^9 10^15]); 

% hold on 

% plot(grains.boundary,'linewidth',1) 

% hold off 

 

figure 

plot(ebsd1,factor*sum(abs(rho(:,16) .* dSRot.u(:,16)),2),'micronbar','off') 

title('[c] screw','FontSize',14) 

% mtexColorMap('hot') 

mtexColorbar 

 set(gca,'ColorScale','log'); % this works only starting with Matlab 2018a 

%  set(gca,'CLim',[10^13 10^14]); 

  set(gca,'CLim',[10^9 10^15]); 

% hold on 

% plot(grains.boundary,'linewidth',1) 
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% hold off 

 

figure 

plot(ebsd1,factor*sum(abs(rho(:,17:19) .* dSRot.u(:,17:19)),2),'micronbar','off') 

title('<a> screw','FontSize',14) 

% mtexColorMap('hot') 

mtexColorbar 

 set(gca,'ColorScale','log'); % this works only starting with Matlab 2018a 

%  set(gca,'CLim',[10^13 10^14]); 

  set(gca,'CLim',[10^9 10^15]); 

% hold on 

% plot(grains.boundary,'linewidth',1) 

% hold off 

 

 

%% Summarize the GNDs ratio of different dislocation types in seleted region 

rho=abs(rho); 

% NaN=0 

rho(isnan(rho))=0; 

rhores=sum(rho.*dSRot.u); 

% res summarize the 19 dislocation types (1*19) 

res=sum(rhores,1) 

%res normalization 

nomalize=res./sum(res); 

% summarize the 19 dislocation types into 6 families 

Resratio=[sum(nomalize(:,1:3)),sum(nomalize(:,4:6)),sum(nomalize(:,7:12)),sum(nomalize(:,13:15)

),nomalize(:,16),sum(nomalize(:,17:19))] 


