Title	Projective modules over simple regular rings
Author	Kado, Jiro
Citation	Osaka Journal of Mathematics. 16(2); 405-412
Issue Date	$1979-06$
ISSN	$0030-6126$
Textversion	Publisher
Relation	The OJM has been digitized through Project Euclid platform http://projecteuclid.org/ojm starting from Vol. 1, No. 1.

Placed on: Osaka City University

PROJECTIVE MODULES OVER SIMPLE REGULAR RINGS

Jiro KADO

(Received July 7, 1978)
(Revised October 30, 1978)

Recently K.R. Goodearl and D. Handelman [6] have studied simple regular rings from the point of view of dimension-like functions. They have shown that there exists a unique dimension function on the lattice of principal right ideals of a simple, regular and directly finite ring satisfying the comparability axiom. In this note we study some structures of projective modules over such a ring by making use of the dimension function.

In the section 1 we show that if there exists a dimension function on the lattice of principal right ideals of a regular ring, then this can be extended to a function on the set of all projective modules.

In the section 2 we investigate some structures of projective modules over a simple, regular and directly finite ring satisfying the comparability axiom and show that a directly finite projective module is isomorphic to a direct sum of a finitely generated free module and a projective right ideal, and a directly infinite projective module is a free module.

In the final section directly finite, regular and right self-injective rings are investigated. We show that this ring is a finite direct product of simple rings if and only if any non-singular directly finite injective right module is a finitely generated module.

Throughout this paper a ring R is an associative ring with identity and modules are unitary right R-modules.

1. Dimension functions

For any (Von Neumann) regular ring R, let $L(R)$ be the lattice of principal right ideals and $P(R)(F P(R))$ the set of all projective (finitely generated projective) R-modules. We denote by $M \leqq N$ the fact that M is isomorphic to a submodule of N for two modules M, N. In particular if R is regular, then $A \leqq P$ for A in $F P(R)$ and P in $P(R)$ if and only if A is isomorphic to a direct summand of P [8, Lemma 4].

Definition [6, p. 807]. A dimension function D on $L(R)$ is a function from $L(R)$ into non-negative real numbers satisfying the following conditions;
(1) $D(J)=0$ if and only if $J=0$
(2) $D(R)=1$
(3) if $J \leqq K$, then $D(J) \leqq D(K)$
if $J \oplus K \in L(R)$, then $D(J \oplus K)=D(J)+D(K)$.
I. Halperin [7] proved that if a dimension function D exists on $L(R)$, then D can be uniquely extended to a function on $\operatorname{FP}(R)$. We shall show that this function D can be moreover extended to a function on $P(R)$ by making use of the following lemma.

Lemma 1.1 [10]. For any projective module P over a regular ring, P is isomorphic to a direct sum of principal right ideals and any two direct sum decompositions of P have an isomorphic refinement.

Let P be in $P(R)$. From now on, by $P=\oplus_{J \in \oiint M} J$ we denote the fact that there exists a set \mathfrak{M} of independent non-zero submodules isomorphic to some principal right ideal and P is a direct sum of the members of \mathfrak{M}. We put $D^{*}(P)=\sup \left\{\sum_{J \in \mathfrak{M}^{\prime}} D(J)\right.$; any finite subset \mathfrak{M}^{\prime} of $\left.\mathfrak{M}\right\}$ for any P in $P(R)$ and any decomposition $P=\oplus_{J \in \mathfrak{M}} J$. If the above supremum is not convergent, we put $D^{*}(P)=\infty$. Now we shall prove that $D^{*}(P)$ does not depend on the decomposition of P. Let $P=\oplus_{K \in \Omega} K$ be another decomposition. It is sufficient to prove that two numbers a, b defined by \mathfrak{M} and \mathfrak{R} coincide when \mathfrak{R} is a refinement of \mathfrak{M}. For any J in \mathfrak{M}, there exists a finite subset \mathfrak{R}^{\prime} of \mathfrak{R} such that $J=\oplus_{K \in \mathfrak{R}^{\prime}} K$. Hence we have $a \leqq b$. Conversely for any finite subset \mathfrak{R}^{\prime} of \mathfrak{M} and any K in \mathfrak{R}^{\prime}, there exists some J in \mathfrak{M} such that K is a direct summand of J. Therefore there exists a finite subset \mathfrak{M}^{\prime} of \mathfrak{M} such that $\sum_{K \in \mathfrak{R}^{\prime}} D(K) \leqq \sum_{J \in \mathfrak{M}^{\prime}}$ $D(J)$ and so we have $b \leqq a$.

Now D^{*} is a function from $P(R)$ into non-negative real numbers or ∞, and from the definition and by Lemma 1.1, we can easily prove the following properties;
(1) if $P \leqq Q$ in $P(R)$, then $D^{*}(P) \leqq D^{*}(Q)$
(2) if $P \oplus Q \in P(R)$, then $D^{*}(P \oplus Q)=D^{*}(P)+D^{*}(Q)$.

2. Projective modules

First we recall some definitions and some results in [6].
Definition. A ring R is directly finite if $x y=1$ implies $y x=1$ for x, y in R. A module M is directly finite if $\operatorname{End}_{R}(M)$ is directly finite. A ring R (a module M) is directly infinite if it is not directly finite. It is easily seen that a module M is directly finite if and only if M is not isomorphic to a proper direct summand of itself. A regular ring R satisfies the comparability axiom if we have either $J \leqq K$ or $K \leqq J$ for all J, K in $L(R)$. For a cardinal number α and
a module $M, \alpha M$ denotes a direct sum of α copies of M.
Note. Throughout this section R is a simple, regular and directly finite ring satisfying the comparability axiom. In this case, any finitely generated projective R-module is directly finite by [6, Corollary 3.10].

Example [6, pp. 815, 831 and 832]. Let F be a field and R_{n} the full matrix ring of degree 2^{n} over F. Let $f_{n}: R_{n} \rightarrow R_{n+1}$ be a diagonal homomorphism, i.e., $x \rightarrow\binom{x 0}{0}$, and let R be a direct limit of $\left\{R_{n}, f_{n}\right\}$. This ring R is a simple, regular and directly finite ring which satisfies the comparability axiom and which is not artinian. Further R is neither left nor right self-injective.

Lemma 2.1 [6, Theorem 3.13 and Proposition 3.14]. Let J be in $L(R)$. We put $D(J)=\sup \left\{m n^{-1} ; m \geqq 0, n>0, m R \leqq n J\right\}$. Then D is a unique dimension function on $L(R)$. Further, for all J, K in $L(R)$, we have $J \leqq K$ if and only if $D(J) \leqq D(K)$.

From now on, let D^{*} be the extension of the dimension function D as in the section 1. We consider projective modules over R from the point of view of D^{*}.

Lemma 2.2 Let A, B in $F P(R) . \quad A \leqq B$ if and only if $D^{*}(A) \leqq D^{*}(B)$. In particular, $A \cong B$ if and only if $D^{*}(A)=D^{*}(B)$.

Proof. We have $A \leqq B$ or $B \leqq A$ by [6, Lemma 3.7]. Then the proof of the first property is easy. If $D^{*}(A)=D^{*}(B)$, then $A \leqq B$ and $B \leqq A$. Hence A is isomorphic to a direct summand of itself. Then $A \cong B$, because A is directly finite.

The next is a key lemma for Theorem 2.4.
Lemma 2.3. For P in $P(R)$ and A in $F P(R), P \leqq A$ if and only if $D^{*}(P) \leq$ $D^{*}(A)$.

Proof. By the definition, "only if" part is trivial. We assume $D^{*}(P) \leqq$ $D^{*}(A)$ and $P=\oplus_{J \in \mathbb{M}} J$. First we know \mathfrak{M} is a countable set, because for each positive integer n, the set $\mathfrak{M}_{n}=\left\{J ; D(J)>n^{-1}\right\}$ is a finite set and $\mathfrak{M}=U_{n} \mathfrak{M}_{n}$. Now put $\mathfrak{M}=\left\{J_{n} ; n=1,2, \cdots\right\}$ and $P_{n}=\oplus_{1}^{n} J_{i}$, then we have $P=\cup_{n} P_{n}$. For each n, we can choose a monomorphism $f_{n}: P_{n} \rightarrow A$ by Lemma 2.2, because $D^{*}\left(P_{n}\right) \leqq D^{*}(A)$. If we construct monomorphism $g_{n}: P_{n} \rightarrow A$ for each n such that g_{n+1} is an extension of g_{n}, then we have $P \leqq A$. Put $g_{1}=f_{1}$ and assume we have g_{k} for all $k \leqq n$. We have decompositions $A=g_{n}\left(P_{n}\right) \oplus Q_{n}=f_{n+1}\left(P_{n}\right) \oplus$ $f_{n+1}\left(J_{n+1}\right) \oplus Q_{n+1}$ for some submodules Q_{n}, Q_{n+1}, because homomorphism g_{n}, f_{n+1} split. Then we have $Q_{n} \cong f_{n+1}\left(J_{n+1}\right) \oplus Q_{n+1}$ by [6, Theorem 3.9] and so we choose a monomorphism $h: f_{n+1}\left(J_{n+1}\right) \rightarrow Q_{n}$. Consequently $g_{n+1}=g_{n} \oplus h f_{n+1}: P_{n+1} \rightarrow A$ is an extension of g_{n}.

We shall determine the structures of projective modules over a simple, regular and directly finite ring satisfying the comparability axiom.

Theorem 2.4. Let R be a simple, regular and directly finite ring satisfying the comparability axiom. For a projective R-module P, the following conditions are equivalent.
(1) P is directly finite.
(2) $D^{*}(P)<\infty$
(3) P has a decomposition $P \cong n R \oplus J$ for some integer $n \geqq 0$ and some right ideal J.
(4) $P \leqq t R$ for some integer $t>0$.

Proof. (1) $\Rightarrow(2)$. We assume $D^{*}(P)=\infty$. Put $P=\oplus_{J \in M} J$, then there exists a sequence of finite subsets $\mathfrak{M}_{i}(i=1,2, \cdots)$ of \mathfrak{M} such that $\mathfrak{M}_{i} \cap \mathfrak{M}_{j}=\phi$ if $i \neq j$ and $D^{*}\left(\oplus_{J \in M_{i}} J\right) \geqq 1$ for each i. Put $P_{i}=\oplus_{J \in \not M_{i}} J$, then we have $R \leqq P_{i}$ by Lemma 2.2 and so we have $P_{i}=R_{i} \oplus Q_{i}$, where $R_{i} \cong R . \quad F=\oplus_{1}^{\infty} R_{i}$ is a direct summand of P and $2 F \cong F$. This contradicts that every direct summand of P is also directly finite.
$(2) \Rightarrow(3)$. We choose non-negative integer n such that $n<D^{*}(P) \leqq n+1$. If $n=0$, then we have $P \leqq R$ by Lemma 2.3. If n is positive, the first inequality implies that $n R \leqq P$ from the definition of D^{*} and by Lemma 2.2. Then we have $P=P_{1} \oplus P_{2}$, where $P_{1} \cong n R$. $D^{*}\left(P_{2}\right)=D^{*}(P)-D^{*}\left(P_{1}\right) \leqq 1$ implies $P_{2} \leqq R$ by Lemma 2.3.
$(3) \Rightarrow(4) \quad$ It is trivial.
$(4) \Rightarrow(1)$ If P is directly infinite, then there exists a set $\left\{P_{i}\right\}_{1}^{\infty}$ of independent non-zero cyclic submodules of P such that $P_{i} \cong P_{j}$ for all i, j. Then $D^{*}\left(\oplus_{1}^{\infty} P_{i}\right)=\infty$. This contradicts $D^{*}(P) \leqq t$.

Remark. A right ideal of R is projective if and only if it is countably generated. Further any right ideal has a projective submodule as an essential one [4, Lemmas 12 and 13].

The next three results follow to the advice of K. Oshiro.
Lemma 2.5. Let P and Q be countably generated but not finitely generated projective R-modules. If $D^{*}(P)=D^{*}(Q)$, then $P \cong Q$.

Proof. Since P and Q are not finitely generated, we put $P=\oplus_{1}^{\infty} P_{n}$ and $Q=\oplus_{1}^{\infty} Q_{m}$, where each P_{n} and Q_{m} are isomorphic to some non-zero members of $L(R)$. We prove that there exist two increasing sequences $1=n(1)<n(2)<$ $\cdots, 1 \leqq m(1)<m(2)<\cdots$, of positive integers and two sets $\left\{A_{i}\right\}_{1}^{\infty},\left\{B_{i}\right\}_{1}^{\infty}$ of independent non-zero submodules of P satisfying, for each i
(1) $\oplus_{n(i)+1}^{n(i+1)} P_{j}=B_{i} \oplus A_{i+1}$
(2) $\bigoplus_{m(i-1)+1}^{m(i)} Q_{t} \simeq A_{i} \oplus B_{i}$
where $A_{1}=P_{1}$ and $m(0)=0$.
First we choose integers $1 \leqq m(1), 1<n(2)$ such that $D^{*}\left(P_{1}\right)<D^{*}\left(\oplus_{1}^{m(1)} Q_{t}\right) \leqq$ $D^{*}\left(\oplus_{1}^{n(2)} P_{j}\right)$. Then, by Lemma 2.2, we have $P_{1} \oplus X \cong \oplus_{1}^{m(1)} Q_{t}$ and $\oplus_{1}^{m(1)} Q_{t} \oplus Y$ $\cong \oplus_{1}^{n(2)} P_{j}$, for some modules X, Y. Then we have $X \oplus Y \cong \oplus_{2}^{n(2)} P$ by [6, Theorem 3.9]. Put $n(1)=1, A_{1}=P_{1}$ and $B_{1} \oplus A_{2}=\oplus_{2}^{n(2)} P_{j}$, where $B_{1} \cong X$ and $A_{2} \cong Y$. Next we assume that there exist two increasing sequences, $n(1)<\cdots$ $<n(k+1), m(1)<\cdots<m(k)$ and two sets $\left\{A_{i}\right\}_{1}^{k+1},\left\{B_{i}\right\}_{1}^{k}$ of independent non-zero submodules of P satisfying the properties (1) and (2). Since $\oplus_{1}^{k}\left(A_{i} \oplus B_{i}\right) \cong$ $\oplus_{1}^{m(k)} Q_{t}$ and $D^{*}(P)=D^{*}(Q)$, then $D^{*}\left(A_{k+1} \oplus\left(\oplus_{n(k+1)+1}^{\infty} P_{i}\right)\right)=D^{*}\left(\oplus_{m(k)+1}^{\infty} Q_{t}\right)$. We can take positive integers $m(k+1), n(k+2)$ such that $m(k)<m(k+1), n(k)<n(k+2)$ and $\left.D^{*}\left(A_{k+1}\right)<D^{*}\left(\oplus_{m(k)+1}^{m(k+1)} Q_{t}\right) \leqq D^{*}\left(A_{k+1} \oplus\left(\oplus_{n}^{n(k+2)}{ }^{n+1}\right)^{2} P_{j}\right)\right)$. Then, again by Lemma 2.2, we obtain $A_{k+1} \oplus X^{\prime} \cong \oplus_{m(k)+1}^{m(k+1)} Q_{t}$ and $\oplus_{m(k)+1}^{m(k+1)} Q_{t} \oplus Y^{\prime} \cong A_{k+1} \oplus$ $\left(\oplus_{n(k+1)+1}^{n(k+2)} P_{j}\right)$, for some modules X^{\prime}, Y^{\prime}. Since $A_{k+1} \oplus X^{\prime} \oplus Y^{\prime} \cong A_{k+1} \oplus$ $\left(\oplus_{n(k+1)+1}^{n(k+2)} P_{j}\right)$, then we have a decomposition $\oplus_{n(k+1)+1}^{n(k+2)} P_{j}=B_{k+1} \oplus A_{k+2}$, where $B_{k+1} \cong X^{\prime}$ and $A_{k+2} \cong Y^{\prime}$, by [6, Theorem 3.9]. By the above procedure, we can construct independent non-zero submodules $A_{1}, B_{1}, A_{2}, B_{2}, \cdots$ which satisfy the properties (1) and (2). Since each P_{n} is contained in $B_{i} \oplus A_{i+1}$ for some i, then $P=\oplus_{1}^{\infty}\left(A_{i} \oplus B_{i}\right)$. On the other hand we have $Q=\bigoplus_{1}^{\infty}\left(\oplus_{m(i-1)+1}^{m(i)} Q_{t}\right)$. Therefore we conclude that $P \cong Q$.

Remark. The result obtained by applying Lemma 2.5 for P, Q in $P^{*}(R)$ means that the Grothendieck group generated by the isomorphism classes of directly finite projective R-modules is isomorphic to some subgroup of the additive group of \boldsymbol{R}. (Cf. [2, Corollaries. 10.14 and 10.16]).

Theorem 2.6. Let R be a simple, regular and directly finite ring satisfying the comparability axiom. Any directly infinite projective R-modules is a free R-module.

Proof. By Theorem 2.4 and Lemma 2.5, we already see that every directly infinite, countably generated projective R-module is isomorphic to $\aleph_{0} R$. Thus we shall show that every directly infinite projective R-module can be expressed as a direct sum of directly infinite, countably generated submodules. Let P $=\oplus_{\omega \in I} P_{\infty}$ be a directly infinite projective R-module, where each P_{a} is isomorphic to some non-zero J in $L(R)$. Let \mathfrak{B} be the set of all countably infinite subsets of I. We consider the family consisting of all subsets \mathfrak{F} of \mathfrak{B} satisfying the following properties;
(1) each members of \mathfrak{F} is pairwise disjoint
(2) $D^{*}\left(\oplus_{\omega \in K} P_{\infty}\right)=\infty$ for each K in \mathfrak{F}.

Since this family is a inductively ordered set using the inclusion relation, there exists a maximal member \mathfrak{F} by Zorn's Lemma. Put $I^{*}=U_{K \in \mathfrak{\vartheta}} K$. If $I^{*}=I$, then our proof is complete. Next we consider the case that $I^{*} \neq I$. First we shall show that $D^{*}\left(\oplus_{a \in I^{* *}} P_{a}\right)<\infty$, where $I^{* *}$ is the complement of I^{*}. Other-
wise we can take a countably infinite subset I^{\prime} of $I^{* *}$ such that $D^{*}\left(\oplus_{\alpha \in I^{\prime}} P_{\alpha}\right)$ $=\infty$. Then the set $\mathfrak{F} \cup\left\{I^{\prime}\right\}$ is strictly greater than \mathfrak{F}. This is a contradiction. By the proof of Lemma 2.3, we see that $I^{* *}$ is a countable set. Choose one member K^{\prime} of \mathfrak{F}, and put $\mathfrak{F}^{\prime}=\mathfrak{F}-\left\{K^{\prime}\right\}$, and $K^{\prime \prime}=K^{\prime} \cup I^{* *}$. Then $K^{\prime \prime}$ is a countably infinite set and $D^{*}\left(\oplus_{a \in K^{\prime \prime}} P_{\alpha}\right)=\infty$. The decomposition $P=$ $\left(\oplus_{K \in \mathcal{F}^{\prime}}\left(\oplus_{\alpha \in K} P_{\alpha}\right)\right) \oplus\left(\oplus_{\alpha \in K^{\prime \prime}} P_{a}\right)$ is a desired one.

Definition [5, p. 174]. Let A be a module. If $A=0$, define $\mu(A)=0$. If $A \neq 0$, define $\mu(A)$ to be the smallest infinite cardinal number α such that $\alpha A \nleftarrow A$.

Proposition 2.7. Let P and S be projective modules which are not finitely generated. If $P \leqq S$ and $S \leqq P$, then $P \cong S$.

Proof. Since $D^{*}(P)=D^{*}(S)$ by the definition of D^{*}, then they are both directly finite or both directly infinite by Theorem 2.4. If P and S are directly finite, then they are countably generated by the proof of Lemma 2.3. Thus we have $P \cong S$ by Lemma 2.5. If P and S are directly infinite, then $P \cong \alpha R$ and S $\cong \beta R$ for some infinite cardinal numbers α, β by Theorem 2.6. We can assume $\alpha \leq \beta$. Let Q be the maximal ring of quotients of R and we use the notation $E(A)$ to stand for an injective hull of a module A. Since $P \leqq S$ and $S \leqq P$, then $E(P) \cong E(S)$ by [1, Corollary]. On the other hand, $E(P) \cong E(\alpha Q)$ and $E(S)$ $\cong E(\beta Q)$ and also Q is a prime ring because it satisfies the comparability. Therefore, by [5, Theorem 6.32], $\max \left\{\alpha^{\prime}, \mu(Q)\right\}=\mu(E(P))=\mu(E(S))=\max \left\{\beta^{\prime}, \mu(Q)\right\}$, where α^{\prime} and β^{\prime} are the successores of α and β. Thus, if $\alpha<\beta$, then it must hold that $\left(\aleph_{1} \leqq\right) \alpha^{\prime}<\beta^{\prime} \leqq \mu(Q)$. Since $\aleph_{1}<\mu(Q), \aleph_{1} Q \leqq Q$. Therefore let $\left\{A_{\tau}\right\}_{\tau \in I}$ be a independent set of principal right ideals of Q such that $A_{\tau} \cong Q$ for each τ in I and the cardinality of I is $\boldsymbol{\aleph}_{1}$. Then $\left\{A_{\tau} \cap R\right\}_{\tau \in I}$ is a independent set of nonzero right ideals of R. This contradicts the fact that there is no uncountable direct sum of non-zero right ideals of R. Consequently we must have $\alpha=\beta$ and hence $P \cong S$.

3. Directly finite, regular and right self-injective ring

Lemma 3.1 [3, Lemma 5' and 6, Proposition 1.4]. A prime, directly finite, regular and right self-injective ring is a simple ring satisfying the comparability axiom.

Proposition 3.2. Let R be a directly finite, regular and right self-injective ring. Then R is a finite direct product of simple rings if and only if any non-singular directly finite injective R-module is finitely generated.

Proof. First we shall prove that "only if" part. There exists a set $\left\{e_{i}\right\}_{1}^{n}$ of orthogonal central idempotents such that $\sum_{1}^{n} e_{i}=1$ and each $e_{i} R$ is a simple
ring. Let M be a non-singular directly finite injective R-module. There exists a projective R-module P such that P is an essential submodule of M, because any non-singular finitely generated R-module is a projective and injective module (cf. [9, Theorem 2.7]). M is directly finite, and so P is also directly finite. Put $P_{i}=P e_{i}$ for each i, then each P_{i} is also a directly finite projective module as an $e_{i} R$-module. Therefore there exists a positive integer t such that $P_{i} \leq t\left(e_{i} R\right)$ for all i by Lemma 3.1 and Theorem 2.4. Thus $P \leq t R$, because $P=\oplus_{1}^{n} P_{i}$. This monomorphism can be extended to be monomorphism from M into $t R$. Then M is isomorphic to a direct summand of $t R$. Conversely we assume that R can be decomposed into no finite direct product of prime rings. Then R itself is not prime. Hence there exist non-zero two-sided ideals A, B such that $A B=0$. Let A^{\prime}, B^{\prime} be the injective hull of A, B in R, then they are also two-sided ideals and generated by central idempotents by [3, Lemma 1]. Since R is semi-prime, $A \cap B=0$. Then $A^{\prime} \cap B^{\prime}=0$. Hence there exist orthogonal central idempotents $\left\{e_{i}\right\}_{1}^{3}$ such that $\sum_{1}^{3} e_{i}=1$. By the assumption, at least one of $e_{i} R$, say $e_{j} R$, is not prime. Use the same argument for the ring $e_{j} R$, then there exists another set $\left\{e_{i}^{\prime}\right\}_{1}^{5}$ of orthogonal central idempotents of R such that $\sum_{1}^{5} e_{i}^{\prime}=1$. Repeating these procedures, we obtain a countably infinite set $\left\{e_{n}\right\}_{1}^{\infty}$ of orthogonal non-zero central idempotents. If $\oplus_{1}^{\infty} e_{n} R$ is not essential in R_{R}, we choose some central idempotent f which generates the injective hull of $\oplus_{1}^{\infty} e_{n} R$ and we consider $\left\{e_{n}, 1-f\right\}_{1}^{\infty}$. Therefore we may assume that $\oplus_{1}^{\infty} e_{n} R$ is essential in R_{R}. Since R_{R} is injective and $\oplus_{1}^{\infty} e_{n} R$ is a two-sided ideal, $R \cong E n d_{R}\left(\oplus_{1}^{\infty} e_{n} R\right)$. $E n d_{R}\left(\oplus_{1}^{\infty} e_{n} R\right) \cong \Pi_{n} E n d_{R}\left(e_{n} R\right) \cong \Pi_{n} e_{n} R$, because $\operatorname{Hom}_{R}\left(e_{n} R, e_{m} R\right)=0$ for $n \neq m$ and each e_{n} is a central idempotent. Consequently $R \cong \Pi_{n} e_{n} R$ by the mapping: $r \rightarrow$ $\left(e_{n} r\right)$. We put $M_{n}=n\left(e_{n} \mathrm{R}\right)$ for each n and we consider the R-module $\mathrm{M}=\Pi_{n} M_{n}$. This is obviously a non-singular injective R-module. We also know that it is directly finite, because $E n d_{R}(M) \cong \Pi_{n} E n d_{R}\left(M_{n}\right)$ and $E n d_{R}\left(M_{n}\right)$ is directly finite for all n. By the assumption, there exists a positive integer t such that $M \leq t R$. Now we choose an integer m which is larger than t. That $M_{m} \leq t R \cong \Pi_{n} t\left(e_{n} R\right)$ implies that $M_{m} \leq t\left(e_{m} R\right)$, because $\operatorname{Hom}_{R}\left(M_{m}, t\left(e_{n} R\right)\right)=0$ for all $n \neq m$. This contradicts that M_{m} is directly finite. Hence R is a finite direct product of prime rings. Prime directly finite regular right self-injective rings are simple by Lemma 3.1, and so we have proved.

Osaka City University

References

[1] R.T. Bumby: Modules which are isomorphic to submodules of each other, Arch. Math. 16 (1965), 184-185.
[2] K.R. Goodearl and K. Boyle: Dimension theory for non-singular injective modules, Mem. Amer. Math. Soc. 177 (1976).
[3] K.R. Goodearl: Prime ideals in regular self-injective rings, Canad. J. Math. 25 (1973), 829-839.
[4] K.R. Goodearl: Simple regular rings and rank fünctions, Math. Ann. 214 (1975), 267-287.
[5] K.R. Goodearl: Ring theory (nonsingular rings and modules) Monographs and Textbooks in Pure and Applied Mathematics No. 33 Marcel Dekker, Inc.
[6] K.R. Goodearl and D. Handelman: Simple self-injective rings, Comm. Algebra 3 (1975), 797-834.
[7] I. Halperin: Extension of the rank function, Studia Math. 27 (1966), 325-335.
[8] I. Kaplansky: Projective modules, Ann. of Math. 68 (1958), 372-377.
[9] F.L. Sandomierski: Nonsingular rings, Proc. Amer. Math. Soc. 19 (1968). 225-230.
[10] R.B. Warfield, Jr.: Exchange rings and decompositions of modules, Math. Ann. 199 (1972), 31-36.

