REGULARITY IN TIME OF THE SOLUTION OF PARABOLIC
INITIAL-BOUNDARY VALUE
PROBLEM IN L¹ SPACE

DONG GUN PARK

(Received June 25, 1986)

1. Introduction

This paper is concerned with the regularity in t of the solution of the initial-boundary value problem of the linear parabolic partial differential equation

\begin{align*}
(1.1) & \quad \partial u(x, t)/\partial t + A(x, t, D)u(x, t) = f(x, t), \quad \Omega \times (0, T], \\
(1.2) & \quad B_j(x, t, D)u(x, t) = 0, \quad j = 1, \ldots, m/2, \quad \partial \Omega \times (0, T], \\
(1.3) & \quad u(x, 0) = u_0(x), \quad \Omega.
\end{align*}

Here \(\Omega \) is a not necessarily bounded domain in \(\mathbb{R}^N \) with boundary \(\partial \Omega \) satisfying a certain smoothness hypothesis. For each \(t \in [0, T] \) \(A(x, t, D) \) is a strongly elliptic linear differential operator of order \(m \), and \(\{B_j(x, t, D)\}_{j=1}^{m/2} \) is a normal set of linear differential operators of respective orders \(m_j < m \). It is assumed that the realization \(-A_p(t) \) of \(-A(x, t, D) \) in \(L^p(\Omega) \) under the boundary conditions \(B_j(x, t, D)u|_{\partial \Omega} = 0, \quad j = 1, \ldots, m/2 \), generates an analytic semigroup in \(L^p(\Omega) \) for any \(p \in (1, \infty) \). A sufficient condition for that, which is also necessary when \(p = 2 \), is given in S. Agmon [1]. Assuming moreover that the coefficients of \(A(x, t, D), \{B_j(x, t, D)\}_{j=1}^{m/2} \) and some of their derivatives in \(x \) belong to Gevrey’s class \(\{M_k\} \) \([4], [6], [7] \) as functions of \(t \) and \(f \) also belongs to the same class as a function with values in \(L^p(\Omega) \), we show that the same is true of the solution of (1.1)–(1.3) considered as an evolution equation in \(L^p(\Omega) \) for any initial value \(u_0 \in L^p(\Omega) \). It should be noted here that if \(m_j = m - 1 \), the boundary condition \(B_j(x, t, D)u|_{\partial \Omega} = 0 \) is satisfied only in a variational sense.

In order to prove the result stated above we show that there exist positive constants \(K_0, K \) such that

\begin{equation}
(1.4) \quad ||(\partial/\partial t)^n(A(t) - \lambda)^{-1}|| \leq K_0 K^n M_n / |\lambda|,
\end{equation}

for any \(n = 0, 1, 2, \ldots, t \in [0, T] \) and \(\lambda \) in the sector \(\Sigma : |\arg \lambda| \geq \theta_0, 0 < \theta_0 < \pi/2 \), where \(A(t) \) is the realization of the operator \(A(x, t, D) \) in \(L^p(\Omega) \) under the boundary conditions \(B_j(x, t, D)u|_{\partial \Omega} = 0, \quad j = 1, \ldots, m/2 \). Once (1.4) is established, one
can apply the result of [9] to show that the estimates
\[||\frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} + \gamma \frac{\partial}{\partial s} \right)^m U(t, s) || \leq L_0 L^{n+m+k} M_{n+m+k} (t-s)^{-n-k} \]
hold for \(n, m, k = 0, 1, 2, \cdots \) for the evolution operator \(U(t, s) \) to the equation
\[du(t)/dt + A(t)u(t) = f(t), \quad 0 < t \leq T, \]
where \(L_0, L \) are some positive constants independent of \(n, m, k, t, s \). As for the solution \(u(t) \) of the inhomogeneous equation (1.6) satisfying the initial condition \(u(0) = u_0 \), if \(u_0 \) is an arbitrary element of \(L^p(\Omega) \) and \(f(t) \) is an infinitely differentiable function with values in \(L^q(\Omega) \) such that
\[||d^n f(t)/dt^n|| \leq F_0 F^n M_n, \quad 0 \leq t \leq T, \quad n = 0, 1, 2, \cdots, \]
for some constants \(F_0, F \), then we have
\[||d^n u(t)/dt^n|| \leq L_0 L^n M_n ||u_0|| t^{-n} + F_0 F^n M_n t^{-n}, \quad 0 < t \leq T \]
for \(n = 0, 1, 2, \cdots \), where \(F_0, F \) are constants depending only on \(d, F_0, F, L_0, L, T \).
Analogous results on the same equation in \(L^p(\Omega) \), \(1 < p < \infty \), were proved in [9]. It was shown in [8] that the evolution operator \(U(t, s) \) of (1.6) exists if the coefficients of \(A(x, t, D) \), \(\{B_j(x, t, D)\}_{j=1}^m \) and some of their derivatives in \(x \) are once continuously differentiable in \(t \).
In [10] with the aid of the idea of R. Beals [2] and L. Hörmander [5] the estimates of the kernels \(G(x, y, \tau) \), \(K_\lambda(x, y) \) of operators \(\exp(-\tau A_\lambda), (A_\lambda - \lambda)^{-1} \) were established for \(1 < p < \infty \), where \(A_\lambda = A_\lambda(t) \) for some fixed \(t \in [0, T] \). The operator \(\exp(-\tau A) \) in \(L^p(\Omega) \) was then defined as an integral operator with kernel \(G(x, y, \tau) \), and was shown to be an analytic semigroup with the infinitesimal generator \(-A = -A(t) \).
We use the same method to estimate the derivatives in \(t \) of the kernel of \((A(t) - \lambda)^{-1} \). In order to make the paper self-contained we reproduce part of the argument of [10] which is relevant to the proof of our main result.

2. Assumptions and main theorem

Let \(\Omega \) be a not necessarily bounded domain of \(\mathbb{R}^n \) locally regular of class \(C^{2m} \) and uniformly regular of class \(C^m \) in the sense of F.E. Browder [3]. The boundary of \(\Omega \) is denoted by \(\partial \Omega \). We put \(D = (\partial/\partial x_1, \cdots, \partial/\partial x_N) \).

Let
\[A(x, t, D) = \sum_{|\alpha| \leq m} a_\alpha(x, t) D^\alpha \]
be a linear differential operator of even order \(m \) with coefficients defined in \(\Omega \) for each fixed \(t \in [0, T] \), and let
\[B_j(x, t, D) = \sum_{|\beta| \leq m_j} b_{j\beta}(x, t)D^\beta, \quad j = 1, \ldots, m/2 \]

be a set of linear differential operators of respective orders \(m_j < m \) with coefficients defined on \(\partial \Omega \) for each fixed \(t \in [0, T] \).

The principal parts of \(A(x, t, D) \) and \(B_j(x, t, D) \) are denoted by \(A^\dagger(x, t, D) \) and \(B_j^\dagger(x, t, D) \) respectively.

Let \(\{M_k, k = 0, 1, 2, \ldots \} \) be a sequence of positive numbers which satisfy the following conditions ([4], [6], [7]): for some positive constants \(d_0, d_1, d_2 \)

\begin{align*}
(2.1) & \quad M_{k+1} \leq d_k^2 M_k \quad \text{for all } k \geq 0, \\
(2.2) & \quad \binom{k}{j} M_{k-j} M_j \leq d_k M_k \quad \text{for all } k, j \text{ such that } 0 \leq j \leq k, \\
(2.3) & \quad M_k \leq M_{k+1} \quad \text{for all } k \geq 0, \\
(2.4) & \quad M_{j+k} \leq d_2^{j+k} M_j M_k \quad \text{for all } j, k \geq 0.
\end{align*}

We assume the following:

(A.1) For each \(t \in [0, T] \) \(A(x, t, D) \) is strongly elliptic, i.e. for all real vectors \(\xi \neq 0 \), all \((x, t) \in \Omega \times [0, T] \)

\[(-1)^m \Re \ A^\dagger(x, t, \xi) > 0. \]

(A.2) \(\{B_j(x, t, D)\}_{j=1}^m \) is a normal set of boundary operators, i.e. \(\partial \Omega \) is noncharacteristic for each \(B_j(x, t, D) \) and \(m_j = m_k \) for \(j \neq k \).

(A.3) For any \((x, t) \in \partial \Omega \times [0, T] \) let \(\nu \) be the normal to \(\partial \Omega \) at \(x \) and \(\xi \neq 0 \) be parallel to \(\partial \Omega \) at \(x \). The polynomials in \(\tau \)

\[B_j^\dagger(x, t, \xi + \tau \nu), \quad j = 1, \ldots, m/2, \]

are linearly independent modulo the polynomial in \(\tau \), \(\prod_{k=1}^{m/2} (\tau - \tau_k^\dagger(\xi, \lambda; x, t)) \) for any complex number \(\lambda \) with non-positive real part where \(\tau_k^\dagger(\xi, \lambda; x, t) \) are the roots with positive imaginary part of the polynomial in \(\tau \), \((-1)^{m/2} A^\dagger(x, t, \xi + \tau \nu) - \lambda \).

(A.4) For each \(t \in [0, T] \) the formal adjoint

\[A^\dagger(x, t, D) = \sum_{|\alpha| \leq m} a_\alpha^\dagger(x, t) D^\alpha \]

and the adjoint system of boundary operators

\[B_j^\dagger(x, t, D) = \sum_{|\beta| \leq m_j} b_{j\beta}^\dagger(x, t) D^\beta, \quad j = 1, \ldots, m/2 \]

can be constructed.

(A.5) For \(|\alpha| = m \) \(a_\alpha(x, t) \) are uniformly continuous in \(\Omega \times [0, T] \). For \(|\alpha| \leq m a_\alpha(x, t), a_\alpha(x, t) \) have continuous derivatives in \(t \) of all orders in \(\Omega \times [0, T] \),
and there exist positive constants B_q, B such that

\[(2.5)\quad |(\partial/\partial t)^k a(x, t)| \leq B_q B^k M_k \quad (x, t) \in \overline{\Omega} \times [0, T] \]

\[(2.6)\quad |(\partial/\partial t)^k a(x, t)| \leq B_0 B^k M_k \quad (x, t) \in \partial \Omega \times [0, T] \]

for $k = 0, 1, 2, \ldots$. For $j = 1, \ldots, m/2$ $D^q b_{j\beta}(x, t)$, \(|\gamma| \leq m - m_j, |\beta| \leq m_j\)$, and $D^q b'_{j\beta}(x, t)$, \(|\gamma| \leq m - m'_j, |\beta| \leq m'_j\)$, have continuous derivatives in t of all orders on $\partial \Omega \times [0, T]$, and

\[(2.7)\quad |(\partial/\partial t)^k D^q b_{j\beta}(x, t)| \leq B_q B^k M_k \quad (x, t) \in \partial \Omega \times [0, T] \]

\[(2.8)\quad |(\partial/\partial t)^k D^q b'_{j\beta}(x, t)| \leq B_q B^k M_k \quad (x, t) \in \partial \Omega \times [0, T] \]

for $k = 0, 1, 2, \ldots$.

Let $W^{m,p}(\Omega)$ be the Banach space consisting of measurable functions defined in Ω whose distribution derivatives of order up to m belong to $L^p(\Omega)$. The norm of $W^{m,p}(\Omega)$ is defined and denoted by

\[\|u\|_{m,p} = \left(\sum_{|\alpha| \leq m} \int_{\Omega} |D^\alpha u|^p dx \right)^{1/p}.\]

We simply write $\|\|_p$ instead of $\|\|_{0,p}$ to denote L^p-norm. We use the notation $\|\|$ to denote both the norm of $L^1(\Omega)$ and that of bounded linear operators from $L^1(\Omega)$ to itself.

For each $t \in [0, T]$ $A(t)$ is the operator defined as follows.

The domain $D(A(t))$ is the totality of functions u satisfying the following three conditions:

(i) $u \in W^{m-1,q}(\Omega)$ for any q with $1 \leq q < N/(N-1)$,

(ii) $A(x, t, D)u \in L^1(\Omega)$ in the sense of distributions,

(iii) for any p with $0 < (N/m)(1-1/p) < 1$ and any $v \in W^{m,p'}(\Omega)$, $p' = p/(p-1)$ satisfying $B'_{j\beta}(x, t, D)v|_{\partial \Omega} = 0$, $j = 1, \ldots, m/2$,

\[(A(x, t, D)u, v) = (u, A'(x, t, D)v).\]

For $u \in D(A(t))$

\[(A(t)u)(x) = A(x, t, D)u(x).\]

We note that the boundary value of $B_j(x, t, D)u$ is defined and vanishes if $m_j < m-1$ for $u \in D(A(t))$.

It is known that $-A(t)$ generates an analytic semigroup in $L^1(\Omega)$. Hence there exist an angle $\theta_0 \in (0, \pi/2)$ and positive constants C_1, C_2 such that

\[(2.9)\quad \rho(-A(t)) \supset \Sigma \cap \{\lambda: |\lambda| \geq C_1\},\]

\[(2.10)\quad \|\lambda - A(t)\|^{-1} \leq C_2 / |\lambda| \quad \text{for} \quad \lambda \in \Sigma, |\lambda| \geq C_1,\]

where $\rho(A(t))$ stands for the resolvent set of $A(t)$ and Σ is the closed sector.
\{ \lambda: \theta_n \leq \text{arg} \lambda \leq 2\pi - \theta_n \} \cup \{0\}.

We write (1.1)–(1.3) as an evolution equation in \(L^1(\Omega) \):

\begin{equation}
\frac{du(t)}{dt} + A(t)u(t) = f(t), \quad 0 < t \leq T,
\end{equation}

\begin{equation}
u(0) = u_0.
\end{equation}

Let \(U(t, s) \) be the evolution operator of (2.11) which is a bounded operator valued function defined in \(\Delta \) satisfying

\begin{equation}
\frac{\partial U(t, s)}{\partial t} + A(t)U(t, s) = 0,
\end{equation}

\begin{equation}\frac{\partial U(t, s)}{\partial s} - U(t, s)A(s) = 0,
\end{equation}

\begin{equation}U(s, s) = I, \quad 0 \leq s \leq T,
\end{equation}

where \(\Delta = \{(s, t): 0 \leq s < t \leq T\} \) and \(\bar{\Delta} = \{(s, t): 0 \leq s \leq t \leq T\} \). The existence of such an operator is known by [8].

Our main result is the following:

Theorem. Under the assumptions stated above the evolution operator \(U(t, s) \) of (2.11) is infinitely differentiable in \((s, t) \in \Delta\). There exist constants \(L_0, L \) such that

\[||(\partial/\partial t)^n(\partial/\partial s)^m(\partial/\partial s)^k U(t, s)|| \leq L_0L^nM_{n+m+k}^s(t-s)^{-n-k}, \]

for \(n, m, k = 0, 1, 2, \ldots \).

Let \(u(t) \) be the solution of the initial value problem (2.11), (2.12). If \(u_0 \) is an arbitrary element of \(L^1(\Omega) \) and \(f(t) \) is an infinitely differentiable function with values in \(L^1(\Omega) \) such that

\[||d^n f(t)/dt^n|| \leq F_0F^nM_n, \quad 0 \leq t \leq T, \quad n = 0, 1, 2, \ldots, \]

for some constants \(F_0, F \), then we have

\[||d^n u(t)/dt^n|| \leq L_0L^nM_n||u_0||t^{-n} + F_0F^nM_n t^{1-n}, \quad 0 \leq t \leq T, \]

for \(n = 0, 1, 2, \ldots \), where \(F_0, F \) are constants depending only on \(d_1, F_0, F, L_0, L, T \).

According to [9] it suffices to prove the following proposition in order to establish the above theorem.

Proposition. For any complex number \(\lambda \) such that \(\lambda \in \Sigma \) and \(|\lambda| \geq C_1 \), \((A(t) - \lambda)^{-1}\) is infinitely differentiable in \(t \in [0, T] \), and there exist positive constants \(K_0, K \) such that for \(n = 0, 1, 2, \ldots \)

\begin{equation}
||(\partial/\partial t)^n(A(t) - \lambda)^{-1}|| \leq K_0K^nM_n/|\lambda|.
\end{equation}
3. Preliminaries

For $1 < p < \infty$ the operator $A_p(t)$ is defined as follows:

$$D(A_p(t)) = \{ u \in W^{m,p}(\Omega) : B_j(x, t, D)u = 0 \text{ on } \partial \Omega \text{ for } j = 1, \ldots, m/2 \} ,$$

$$(A_p(t)u)(x) = A(x, t, D)u(x) \quad \text{for } u \in D(A_p(t)) .$$

Replacing $A(x, t, D)$ and $\{B_j(x, t, D)\}_{j=1}^{m/2}$ by $A'(x, t, D)$ and $\{B'_j(x, t, D)\}_{j=1}^{m/2}$ the operator $A'_p(t)$ is defined. According to S. Agmon [1] $A_p(t)$ generates an analytic semigroup in $L^p(\Omega)$, and with the aid of the argument of F.E. Browder [3] it is shown that the relation $A_p^*(t) = A'_p(t)$ holds where the left member stands for the adjoint operator of $A_p(t)$.

In what follows we assume that the coefficients of $B_j(x, t, D)$, $B'_j(x, t, D)$, $j = 1, \ldots, m/2$, are extended to the whole of $\Omega \times [0, T]$ so that (2.7), (2.8) hold there.

Slightly extending the argument of S. Agmon [1] it can be shown that there exist an angle $\theta_0 \in (0, \pi/2)$ and a constant $C_p > 0$ for each $p \in (1, \infty)$ such that for any $u \in W^{m,p}(\Omega)$, a complex number λ satisfying $\theta_0 \leq \arg \lambda \leq 2\pi - \theta_0$, $|\lambda| > C_p$, and $t \in [0, T]$

$$\sum_{j=0}^{m/2} |\lambda|^{-m-j/m} |u_j|_{j,p} \leq C_p \left\{ \|(A(x, t, D) - \lambda)u\|_p \right. + \sum_{j=1}^{m/2} |\lambda|^{-m-j/m} \|g_j\|_p + \sum_{j=1}^{m/2} \|g_j\|_{m-j/m,p} \right\},$$

where g_j is an arbitrary function in $W^{m-j/m,p}(\Omega)$ such that $B_j(x, t, D)u = g_j$ on $\partial \Omega$ for each $j = 1, \ldots, m/2$.

For a complex vector $\eta \in C^N$ put

$$A(x, t, D+\eta) = \sum_{|a| \leq m} a_w(x, t)(D+\eta)^a ,$$

$$B_j(x, t, D+\eta) = \sum_{|b| \leq m} b_{j\theta}(x, t)(D+\eta)^b ,$$

(cf. L. Hörmander [5]). As is easily seen the adjoint system of

$$(A(x, t, D+\eta), \{B_j(x, t, D+\eta)\} \) \quad (A'(x, t, D-\eta), \{B'_j(x, t, D-\eta)\}) .$$

For $1 < p < \infty$ $A'_p(t)$, $A''_p(t)$ are the operators defined by

$$D(A'_p(t)) = \{ u \in W^{m,p}(\Omega) : B_j(x, t, D+\eta)u = 0 \text{ on } \partial \Omega \text{ for } j = 1, \ldots, m/2 \} ,$$

$$(A'_p(t)u)(x) = A(x, t, D+\eta)u(x) \quad \text{for } u \in D(A'_p(t)) ,$$

$$D(A''_p(t)) = \{ u \in W^{m,p}(\Omega) : B'_j(x, t, D+\eta)u = 0 \text{ on } \partial \Omega \text{ for } j = 1, \ldots, m/2 \} ,$$

$$(A''_p(t)u)(x) = A'(x, t, D+\eta)u(x) \quad \text{for } u \in D(A''_p(t)) .$$

Lemma 3.1. For any $p \in (1, \infty)$ there exist positive constants C_p, δ_p such that for $\theta_0 \leq \arg \lambda \leq 2\pi - \theta_0$, $|\lambda| > C_p$, $t \in [0, T]$, $|\eta| \leq \delta_p |\lambda|^{1/m}$ the following ine-
qualities hold:

(i) for $u \in W^{m, \rho}(\Omega)$, $g_j \in W^{-m, \rho}(\Omega)$ such that $B_j(x, t, D+\eta)u = g_j$ on $\partial \Omega$, $j = 1, \ldots, m/2$,

$$\sum_{i=0}^{m} |\lambda|^{(m-i)/m} ||u||_{i, \rho} \leq C_{\rho} \{ ||A(x, t, D+\eta) - \lambda||u||_{\rho}$$
$$+ \sum_{j=1}^{m/2} |\lambda|^{(m-m_j)/m} ||g_j||_{\rho} + \sum_{j=1}^{m/2} ||g_j||_{m-m_j, \rho} \} ;$$

(ii) for $v \in W^{-m, \rho}(\Omega)$, $h_j \in W^{-m, \rho}(\Omega)$ such that $B_j(x, t, D+\eta)v = h_j$ on $\partial \Omega$, $j = 1, \ldots, m/2$,

$$\sum_{i=0}^{m} |\lambda|^{(m-i)/m} ||v||_{i, \rho} \leq C_{\rho} \{ ||A'(x, t, D+\eta) - \lambda||v||_{\rho}$$
$$+ \sum_{j=1}^{m/2} |\lambda|^{(m-m_j)/m} ||h_j||_{\rho} + \sum_{j=1}^{m/2} ||h_j||_{m-m_j, \rho} \} .$$

Proof. In the proof of (i) we denote by C constants depending only on N, m, B_ρ, the upperbounds of the coefficients of $A(x, t, D)$ and the derivatives in x of the coefficients of $B_j(x, t, D)$ of order up to $m - m_j$, $j = 1, \ldots, m/2$. As is easily seen

$$||A(x, t, D) - \lambda||u||_{\rho}$$
$$\leq ||(A(x, t, D+\eta) - \lambda)u||_{\rho} + ||(A(x, t, D+\eta) - A(x, t, D))u||_{\rho}$$
$$\leq ||(A(x, t, D+\eta) - \lambda)u||_{\rho} + C \sum_{i=0}^{m-1} \frac{\eta}{|\eta|} ||u||_{i, \rho} .$$

If we put

$$g'_j = (B_j(x, t, D) - B_j(x, t, D+\eta))u + g_j ,$$

then $g'_j \in W^{-m, \rho}(\Omega)$ and $g_j = B_j(x, t, D)u$ on $\partial \Omega$, and

$$||g'_j||_{\rho} \leq C \sum_{i=0}^{m_j-1} \frac{\eta}{|\eta|} ||u||_{i, \rho} + ||g_j||_{\rho} ;$$

$$||g'_j||_{m-m_j, \rho} \leq C \sum_{i=m-m_j}^{m_j-1} \frac{\eta}{|\eta|} ||u||_{i, \rho} + ||g_j||_{m-m_j, \rho} .$$

In view of (3.1) and the above inequalities

$$\sum_{i=0}^{m} |\lambda|^{(m-i)/m} ||u||_{i, \rho} \leq C_{\rho} \{ ||A(x, t, D+\eta) - \lambda||u||_{\rho}$$
$$+ C \sum_{i=0}^{m-1} \frac{\eta}{|\eta|} ||u||_{i, \rho} + C \sum_{j=1}^{m/2} |\lambda|^{(m-m_j)/m} \sum_{i=0}^{m_j-1} \frac{\eta}{|\eta|} ||u||_{i, \rho}$$
$$+ \sum_{j=1}^{m/2} |\lambda|^{(m-m_j)/m} ||g_j||_{\rho} + C \sum_{j=1}^{m/2} \sum_{i=m-m_j}^{m_j-1} \frac{\eta}{|\eta|} ||u||_{i, \rho}$$
$$+ \sum_{j=1}^{m/2} ||g_j||_{m-m_j, \rho} \} .$$
If $0 < \delta_p \leq 1$ and $|\eta| \leq \delta_p |\lambda|^{1/m}$ the right member of the above inequality does not exceed

\[
C_p \{ \|(A(x, t, D+\eta) - \lambda)u\|_p + C\delta_p \sum_{i=0}^{m-1} |\lambda|^{(m-i)/m} \|u\|_{i,p} \\
+ C\delta_p \sum_{j=1}^{m/2} |\lambda|^{(m-m_j)/m} \sum_{i=0}^{m_j-1} |\lambda|^{(m-j)/m} \|u\|_{i,p} \\
+ \sum_{j=1}^{m/2} \|g_j\|_{m-m_j,p} \}
\]

Choosing δ_p sufficiently small we easily complete the proof of (i). The proof of (ii) is similar.

Especially if $u \in D(A^p_\lambda(t))$, $v \in D(A^{*p}_\lambda(t))$ then we can choose $g_j = 0$, $h_j = 0$ in Lemma 3.1. Hence we obtain:

Corollary. If $\theta_0 \leq \arg \lambda \leq 2\pi - \theta_0$, $|\lambda| > C_p$, $t \in [0, T]$, $|\eta| \leq \delta_p |\lambda|^{1/m}$, then $\lambda \in \rho(A^p_\lambda(t))$, $\lambda \in \rho(A^{*p}_\lambda(t))$ and the following inequalities hold:

(3.2) $\|(A^p_\lambda(t) - \lambda)^{-1}\|_{B(L^p, L^p)} \leq C_p'/|\lambda|$,

(3.3) $\|(A^{*p}_\lambda(t) - \lambda)^{-1}\|_{B(L^p, W^{m,p})} \leq C_p'$,

(3.4) $\|(A^{*p}_\lambda(t) - \lambda)^{-1}\|_{B(L^p, W^{m,p})} \leq C_p'$,

(3.5) $(A^p_\lambda(t))^* = A^{*p}_\lambda(-\bar{\bar{\mu}}(t))$.

Here and in what follows $B(L^p, L^p)$, $B(L^p, W^{m,p})$ stand for the sets of all bounded linear operators from $L^p(\Omega)$ to $L^p(\Omega)$, $W^{m,p}(\Omega)$ respectively.

Lemma 3.2. For any $p \in (1, \infty)$ there exist constants $C_{3,p}$, $C_{4,p}$ such that the following inequalities hold for any $n = 0, 1, 2, \ldots$, $\arg \lambda \in [\theta_0, 2\pi - \theta_0]$, $|\lambda| > C_p$,

(3.6) $\|(\partial/\partial t)^n(A^p_\lambda(t) - \lambda)^{-1}\|_{B(L^p, L^p)} \leq C_{3,p} C_{4,p}^n M_n / |\lambda|$,

(3.7) $\|(\partial/\partial t)^n(A^{*p}_\lambda(t) - \lambda)^{-1}\|_{B(L^p, W^{m,p})} \leq C_{3,p} C_{4,p}^n M_n$,

(3.8) $\|(\partial/\partial t)^n(A^{*p}_\lambda(t) - \lambda)^{-1}\|_{B(L^p, W^{m,p})} \leq C_{3,p} C_{4,p}^n M_n$.

Proof. In the proof of this lemma we use the notation C to denote constants depending only on m and N. Letting f be an arbitrary element of $L^p(\Omega)$, we put $u(t) = (A^p_\lambda(t) - \lambda)^{-1}f$. Then
Differentiating both sides of (3.9), (3.10) \(n \) times with respect to \(t \) we get

\[
(A(x, t, D+\eta) - \lambda)u^{(n)}(x, t) = \sum_{k=0}^{n-1} \binom{n}{k} A^{(n-k)}(x, t, D+\eta)u^{(k)}(x, t),
\]

\[
B_j(x, t, D+\eta)u^{(n)}(x, t) = -\sum_{k=0}^{n-1} \binom{n}{k} B_j^{(n-k)}(x, t, D+\eta)u^{(k)}(x, t),
\]

where \(A^{(n-k)} \) and \(B_j^{(n-k)} \) are differential operators obtained by differentiating \(n-k \) times the coefficients of \(A, B_j \) with respect to \(t \) and \(u^{(n)} = (\partial/\partial t)^nu \). Applying Lemma 3.1 we get

\[
\sum_{i=0}^{n} |\lambda|^{(m-i)/m}||u^{(i)}(t)||_{i,\rho} \leq C_\rho \left\{ \sum_{k=0}^{n-1} \binom{n}{k} A^{(n-k)}(x, t, D+\eta)u^{(k)}(t) ||_{\rho} + \sum_{j=1}^{\lfloor n/2 \rfloor} \sum_{k=0}^{n-1} \binom{n}{k} B_j^{(n-k)}(x, t, D+\eta)u^{(k)}(t) ||_{m-m_j, \rho} \right\}.
\]

The first term in the bracket of the right side of (3.11) does not exceed

\[
C \sum_{k=0}^{n-1} \binom{n}{k} B_k B^{n-k}M_{n-k} \sum_{i=0}^{n} |\lambda|^{(m-i)/m}||u^{(k)}(t)||_{i,\rho}
\]

\[
\leq C \sum_{k=0}^{n-1} \binom{n}{k} B_k B^{n-k}M_{n-k} \sum_{i=0}^{n} |\lambda|^{(m-i)/m}||u^{(k)}(t)||_{i,\rho}.
\]

It is easy to show that remaining terms in the bracket of the right side of (3.11) are not larger than the right side of (3.12). Hence

\[
\sum_{i=0}^{n} |\lambda|^{(m-i)/m}||u^{(i)}(t)||_{i,\rho} \leq C_\rho \sum_{k=0}^{n-1} \binom{n}{k} B_k B^{n-k}M_{n-k} \sum_{i=0}^{n} |\lambda|^{(m-i)/m}||u^{(k)}(t)||_{i,\rho}.
\]

Arguing as in [9: p. 542] we show the existence of constants \(C_{3,\rho}, C_{4,\rho} \) such that

\[
||u^{(n)}(t)||_{m,\rho} + |\lambda||u^{(n)}(t)||_{\rho} \leq C_{3,\rho}C_{4,\rho} M_n ||f||_{\rho}
\]

for \(n=0, 1, 2, \ldots \). Hence we have established (3.6), (3.7). The proof of (3.8) is similar.

We choose natural numbers \(l, s \) and exponents \(2=q_1<q_2<\cdots<q_s<q_{s+1}=\infty \),
2 = r_1 < r_2 < \cdots < r_{l-1} < r_{l+1} = \infty as follows (R. Beals [2]):

(i) in case \(m > N/2 \), \(l = 2 \) and \(s = 1 \), hence \(2 = q_1 < q_2 = \infty \) and \(2 = r_1 < r_2 = \infty \);

(ii) in case \(m < N/2 \), \(s > N/2m \), \(s-1 > s > N/2m \), \(q_j-1 - q_{j+1} < m/N \) for \(j = 1, \ldots, s-1 \), \(q_{s-1}^{-1} > m/N > q_s^{-1} \), \(m - N/q_s \) is not a non-negative integer, \(r_j-1 - r_{j+1}^{-1} < m/N \) for \(j = 1, \ldots, l-1 \), \(r_{l-1}^{-1} > m/N > r_{l}^{-1} \), \(m - N/r_{l-1} \) is not a non-negative integer;

(iii) in case \(m = N/2 \), \(l = 4 \), \(s = 2 \), \(2 = q_1 < q_2 = \infty \), \(2 = r_1 < r_2 < r_3 = \infty \).

Adding some positive constant to \(A(x, t, D) \) if necessary, we may suppose in view of Lemma 3.2 that for any non-negative integer \(n \), complex number \(\lambda \in \Sigma = \{ \lambda : \arg \lambda \in [\theta_0, 2\pi - \theta_0] \} \cup \{ 0 \} \), complex vector \(\eta \in \mathbb{C}^N \) such that \(|\eta| \leq \delta |\lambda|^{1/n} \) and \(t \in [0, T] \)

\[
\tag{3.13}
\| (\partial/\partial t)^p (A_2^p(t) - \lambda)^{-1} \|_{B(L_t^p, L_t^p)} \leq C_3 C_4^p M_n |\lambda|,
\]

\[
\tag{3.14}
\| (\partial/\partial t)^p (A_2^p(t) - \lambda)^{-1} \|_{B(L_t^p, L_t^{m,n})} \leq C_3 C_4^p M_n
\]

for \(p = q_1, q_2, \ldots, q_s \), and

\[
\tag{3.15}
\| (\partial/\partial t)^p (A_3^p(t) - \lambda)^{-1} \|_{B(L_t^p, L_t^p)} \leq C_3 C_4^p M_n |\lambda|,
\]

\[
\tag{3.16}
\| (\partial/\partial t)^p (A_3^p(t) - \lambda)^{-1} \|_{B(L_t^p, L_t^{m,n})} \leq C_3 C_4^p M_n
\]

for \(p = r_1, r_2, \ldots, r_{l-1} \), where \(C_3, C_4 \) and \(\delta \) are some positive constants.

According to Sobolev's imbedding theorem there exists a positive constant \(\gamma \) such that for \(j = 1, \ldots, s \)

\[
\tag{3.17}
W^{m,s_j}(\Omega) \subset L^{q_j+1}(\Omega) \quad \text{and} \quad \|u\|_{q_j+1} \leq \gamma \|u\|_{m,s_j} \|u\|^{1-s_j}_{q_j}
\]

where \(0 < a_j = (N/m)(q_j^{-1} - q_{j+1}^{-1}) < 1 \), and for \(j = 1, \ldots, l-1 \)

\[
\tag{3.18}
W^{m,r_j}(\Omega) \subset L^{r_j+1}(\Omega) \quad \text{and} \quad \|u\|_{r_j+1} \leq \gamma \|u\|_{m,r_j} \|u\|^{1-s_j}_{r_j}
\]

where \(0 < a_{s+j} = (N/m)(r_j^{-1} - r_{j+1}^{-1}) < 1 \).

4. Estimates of the kernel of the derivatives of \(\exp(-\tau A(t)) \) \((1) \)

In what follows we only consider the case (ii) of the previous section.

For complex numbers \(\lambda_1, \ldots, \lambda_s \in \Sigma \), a complex vector \(\eta \in \mathbb{C}^N \) such that

\[
\tag{4.1}
|\eta| \leq \delta \min \{ |\lambda_1|^{1/m}, \ldots, |\lambda_s|^{1/m} \},
\]

and \(t \in [0, T] \) we put

\[
\tag{4.2}
S(t) = (A_2^p(t) - \lambda_1)^{-1} \cdots (A_2^p(t) - \lambda_s)^{-1},
\]

\[
\tag{4.3}
T(t) = (A_2^p(t) - \lambda_{s+1})^{-1} \cdots (A_2^p(t) - \lambda_l)^{-1}.
\]

In view of (3.17)

\[
R((A_2^p(t) - \lambda_1)^{-1}) \subset W^{m,2}(\Omega) = W^{m,4}(\Omega) \subset L^2(\Omega).
\]
Hence, we may replace \((A_2^j(t) - \lambda_j)^{-1}\) in (4.2) by \((A_2^j(t) - \lambda_j)^{-1}\). Continuing this process we get

\[(4.4) \quad S(t) = (A_2^1(t) - \lambda_1)^{-1} \cdots (A_2^j(t) - \lambda_j)^{-1}(A_2(t) - \lambda_1)^{-1} .\]

By virtue of Sobolev's imbedding theorem we get

\[(4.5) \quad R(S(t)) \subset R((A_2^j(t) - \lambda_j)^{-1}) \subset B^{m-N/q_1} (\Omega) \]

where \(B^{m-N/q_1}(\Omega)\) is the set of all functions which have bounded, continuous derivatives of order up to \([m-N/q_1]\) in \(\Omega\) and have derivatives of order \([m-N/q_1]\) uniformly Holder continuous with exponent \(m-N/q_1-[m-N/q_1]\).

With the aid of (3.13), (3.14), (3.17) we get

\[(4.6) \quad \|\partial/\partial t\|^n (A_2^j(t) - \lambda_j)^{-1} f_{\xi_j} \leq \gamma \|\partial/\partial t\|^n (A_2^j(t) - \lambda_j)^{-1} f_{\xi_j} \leq C_2 \gamma \|\xi_j\|^n f_{\xi_j} ,\]

Using (4.4) and (4.6) for \(n=0\) we obtain

\[(4.7) \quad \|S(t)\|_{B^2 (\Omega)} \leq (\gamma C_2 M_0) \prod_{j=1}^\infty |\lambda_j|^{-s_j} .\]

Similarly we see that

\[(4.8) \quad R(T^\ast(t)) \subset B^{m-N/q_1} (\Omega) ,
\]

\[(4.9) \quad \|T^\ast(t)\|_{B^2 (\Omega)} = \|(A_2^j - \lambda_j)^{-1} \cdots (A_2 - \lambda_1)^{-1}\|_{B^2 (\Omega)} \leq (\gamma C_2 M_0)^{1-s} \prod_{j=1}^\infty |\lambda_j|^{-s_j} .\]

Lemma 4.1 ([2]). *Let S and T be bounded linear operators in \(L^p(\Omega)\) such that \(R(S) \subset L^\infty (\Omega)\) and \(R(T^\ast) \subset L^\infty (\Omega)\). Then ST has a kernel \(k \in L^\infty (\Omega \times \Omega)\) satisfying

\[(4.10) \quad |K_{\lambda_1, \cdots, \lambda_i}(x, y; t)| \leq (\gamma C_2 M_0)^i \prod_{j=1}^i |\lambda_j|^{-s_j} .\]

If \(\eta\) is pure imaginary, \(e^{\eta} f \in L^p(\Omega)\) if and only if \(f \in L^p(\Omega)\), and hence

\[(A_2^j(t) - \lambda)^{-1} f = e^{-\eta}(A_2^j(t) - \lambda)^{-1}(e^{\eta} f) ,\]
which implies
\[S(t)T(t)\psi = e^{-\eta}(A_2(t) - \lambda_i)^{-1} \cdots (A_2(t) - \lambda_j)^{-1}(e^{\eta}\psi) \, . \]

Hence, if we denote the kernel of
\[(A_2(t) - \lambda_i)^{-1} \cdots (A_2(t) - \lambda_j)^{-1} \]
by \(K_{\lambda_i, \ldots, \lambda_j}(x, y; t) \), we have
\[K_{\lambda_i, \ldots, \lambda_j}(x, y; t) = e^{(x-y)\eta} K_{\lambda_i, \ldots, \lambda_j}(x, y; t) \]
if \(\eta \) is pure imaginary. As is easily seen \(S(t)T(t) \) is a holomorphic function of \(\eta \) in \(|\eta| \leq \delta \min \{ |\lambda_1|^{1/m}, \ldots, |\lambda_v|^{1/m} \} \), and hence so is \(K_{\lambda_i, \ldots, \lambda_j}(x, y; t) \). Thus (4.11) also holds for complex vector \(\eta \). With the aid of (4.10), (4.11) we get when \(\eta \) is real
\[|K_{\lambda_i, \ldots, \lambda_j}(x, y; t)| \leq (\gamma C_3 M_0) e^{(x-y)\eta} \prod_{j=1}^v |\lambda_j|^{\sigma_j - 1} \, . \]

Minimizing the right side of this inequality with respect to \(\eta \) we obtain
\[|K_{\lambda_i, \ldots, \lambda_j}(x, y; t)| \leq (\gamma C_3 M_0) e^{(x-y)\eta} \prod_{j=1}^v |\lambda_j|^{\sigma_j - 1} \, . \]

Next, we estimate the derivatives of \(K_{\lambda_i, \ldots, \lambda_j}(x, y; t) \) in \(t \). For that purpose we first estimate the kernel of
\[(\partial/\partial t)^{s-k} S(t)T(t) = \sum_{k=0}^s \binom{n}{k} (\partial/\partial t)^{s-k} S(t)(\partial/\partial t)^k T(t) \, . \]
Using (4.4), (4.6),
\[||(\partial/\partial t)^{s-k} S(t)||_{B(L^2, L^\infty)} \]
\[= \sum_{k_1 + \cdots + k_s = s} (n-k)! \prod_{i=1}^s (\partial/\partial t)^{k_i} (A_2(t) - \lambda_i)^{-1} \leq (\gamma C_3 C_4)^{s-k} \prod_{j=1}^v |\lambda_j|^{\sigma_j - 1} \, . \]

Noting
\[(\sigma_1 + \cdots + \sigma_s) M_{k_1} \cdots M_{k_s} \leq d_1^{-1} M_{k_1 + \cdots + k_s} \]
which can be easily shown by induction, we get

\begin{equation}
\|(\partial/\partial t)^{s-k} S(t)\|_B(t^2, L^m) \\
\leq (\gamma C_5)' d_1^{l-1} C_4^{s-k} M_{n-k} \prod_{j=1}^{l} |\lambda_j|^{s_j-1} \\
\leq (\gamma C_5)' d_1^{l-1} (C_6)^{s-k} M_{n-k} \prod_{j=1}^{l} |\lambda_j|^{s_j-1}.
\end{equation}

Similarly

\begin{equation}
\|(\partial/\partial t)^{s-k} T^*(t)\|_B(t^2, L^m) \\
\leq (\gamma C_5)' d_1^{l-1} (C_6(l-s))^k M_{n-k} \sum_{j=1}^{l} |\lambda_j|^{s_j-1}.
\end{equation}

With the aid of (4.10), (4.13), (4.14), (4.15) we get

\[|(\partial/\partial t)^{n} K_{\lambda_1, \ldots, \lambda_n}(x, y; t)| \]
\[\leq \sum_{k=0}^{n} \binom{n}{k} (\gamma C_5)' d_1^{l-2} C_4^{s-k} (l-s)^k M_{n-k} M_{n} \prod_{j=1}^{l} |\lambda_j|^{s_j-1} \]
\[\leq (\gamma C_5)' d_1^{l-1} C_4^s \sum_{k=0}^{s} s^{s-k} (l-s)^k M_{n} \prod_{j=1}^{l} |\lambda_j|^{s_j-1} \]
\[\leq (\gamma C_5)' d_1^{l-1} C_4^s (n+1) (\max \{ s, l-s \})^n M_{n} \prod_{j=1}^{l} |\lambda_j|^{s_j-1} \]
\[\leq C_5 C_6 M_{n} \prod_{j=1}^{l} |\lambda_j|^{s_j-1}, \]

where \(C_5 = (\gamma C_5)' d_1^{l-1}, \ C_6 = e C_4 \max \{ s, l-s \}, \) where we used \(n+1 < e^n. \) By the argument through which we derived (4.12) we obtain

\begin{equation}
|((\partial/\partial t)^{n} K_{\lambda_1, \ldots, \lambda_n}(x, y; t)| \]
\[\leq C_5 C_6^s M_{n} \exp \left\{- \delta \min \{ |\lambda_1|^{1/m}, \ldots, |\lambda_l|^{1/m} \} |x-y| \right\} \prod_{j=1}^{l} |\lambda_j|^{s_j-1} \]
\[\leq C_5 C_6^s M_{n} \sum_{k=1}^{l} \exp \left\{- \delta \max \{ |\lambda_1|^{1/m}, |x-y| \} \right\} \prod_{j=1}^{l} |\lambda_j|^{s_j-1} .
\end{equation}

5. Estimates of the kernel of the derivatives of \(\exp (-\tau A(t)) \) (2)

We denote the kernel of \(\exp (-\tau A(t)) \) by \(G(x, y; \tau; t) \) which is also the kernel of \(\exp (-\tau A_\rho(t)), 1 < \rho < \infty. \)

Let \(\Gamma \) be a smooth contour running in \(\Sigma \) from \(\infty e^{-i\theta} \) to \(\infty e^{i\theta}. \) Then for \(|\arg \tau| < \pi/2 - \theta, \ t \in [0, T] \)

\[\exp (-l\tau A_\rho(t)) = \left\{ \frac{1}{2\pi i} \int_{\Gamma} e^{-\lambda t} (A_\rho(t) - \lambda)^{-1} d\lambda \right\}^l \\
= \left\{ \frac{1}{2\pi i} \right\}^l \int_{\Gamma} \cdots \int_{\Gamma} e^{-\lambda_1 t - \cdots - \lambda_l t} (A_\rho(t) - \lambda_1)^{-1} \cdots (A_\rho(t) - \lambda_l)^{-1} d\lambda_1 \cdots d\lambda_l .
\]
Hence

\[(5.1) \quad G(x, y, l\tau; t) = \left(\frac{1}{2\pi i}\right) \int_{\Gamma} \cdots \int_{\Gamma} e^{-\lambda_{1} \tau - \cdots - \lambda_{l} \tau} K_{\lambda_{1}, \ldots, \lambda_{l}}(x, y; t) d\lambda_{1} \cdots d\lambda_{l}.\]

For any fixed \(x, y, \tau\), let \(\Gamma_{x,y,\tau}\) be the contour defined by

\[\{\lambda : |\arg \lambda| = \theta_0, \quad |\lambda| \geq a\} \cup \{\lambda : \lambda = ae^{i\theta}, \quad \theta_0 \leq \theta \leq 2\pi - \theta_0\}\]

where

\[(5.2) \quad a = \varepsilon (|x-y|/|\tau|)^{m/(m-1)} = \varepsilon \rho /|\tau|, \quad \rho = |x-y|^{m/(m-1)} / \tau^{1/(m-1)}\]

and \(\varepsilon\) is a positive constant which will be fixed later. If \(|\arg \lambda| = \theta_0\) and hence \(\lambda = re^{i\theta}, r > 0\), then

\[Re \lambda \tau = Re \lambda Re \tau - Im \lambda Im \tau = r Re \tau (cos \theta_0 - sin \theta_0 (Im \tau / Re \tau)) \geq r Re \tau (cos \theta_0 - sin \theta_0 (|Im \tau| / Re \tau)).\]

Thus if \(\tau\) is in the region

\[(5.3) \quad \frac{|Im \tau|}{Re \tau} \leq (1 - \varepsilon_0) \cos \theta_0 \sin \theta_0\]

for some \(\varepsilon_0, 0 < \varepsilon_0 < 1\), then

\[(5.4) \quad Re \lambda \tau \geq r Re \tau \cdot \varepsilon_0 \cos \theta_0 \geq c_i |\tau|\]

where \(c_i\) is some positive constant depending only on \(\varepsilon_0, \theta_0\). Differentiating both sides of (5.1) \(n\) times with respect to \(t\), deforming the contour \(\Gamma\) to \(\Gamma_{x,y,\tau}\) and using (4.16) we get

\[(5.5) \quad [(\partial / \partial t)^{n} G(x, y, l\tau; t)] \leq \frac{1}{1/2\pi i} \int_{\Gamma_{x,y,\tau}} \cdots \int_{\Gamma_{x,y,\tau}} e^{-\lambda_{1} \tau - \cdots - \lambda_{l} \tau} K_{\lambda_{1}, \ldots, \lambda_{l}}(x, y; t) d\lambda_{1} \cdots d\lambda_{l} | \leq \frac{1}{1/2\pi i} \int_{\Gamma_{x,y,\tau}} \cdots \int_{\Gamma_{x,y,\tau}} e^{-Re \lambda_{1} \tau - \cdots - Re \lambda_{l} \tau} \times C_2 C_3^l M_n \sum_{k=1}^{l} \exp (-\delta |\lambda_k|^{l/(m-1)} |x-y|) \prod_{j=1}^{l} |\lambda_j|^{l/(m-1)} d\lambda_1 \cdots d\lambda_l | \leq \frac{1}{1/2\pi i} \int_{\Gamma_{x,y,\tau}} \cdots \int_{\Gamma_{x,y,\tau}} e^{-Re \lambda_{1} \tau - \cdots - Re \lambda_{l} \tau} \times \exp (-\delta |\lambda_k|^{l/(m-1)} |x-y|) \prod_{j=1}^{l} |\lambda_j|^{l/(m-1)} d\lambda_1 \cdots d\lambda_l |.
The summand with \(k = 1 \) in the last member of (5.5) is

\[
(5.6) \quad \int_{\Gamma_{x, y, t}} e^{-Re \lambda_i \tau} \exp \left(-\delta |\lambda_1|^{1/m} |x-y| \right) |\lambda_1|^{s_i-1} |d\lambda_1|
\times \prod_{j=2}^l \int_{\Gamma_{x, y, t}} e^{-Re \lambda_j \tau} |\lambda_j|^{s_j-1} |d\lambda_j|.
\]

If we write

\[
(5.7) \quad \int_{\Gamma_{x, y, t}} e^{-Re \lambda_i \tau} \exp \left(-\delta |\lambda_1|^{1/m} |x-y| \right) |\lambda_1|^{s_i-1} |d\lambda_1|
= \int_{|\lambda_1|<a} + \int_{|\lambda_1|>a} = I + II,
\]

then

\[
(5.8) \quad I \leq 2\pi a^{s_i} \exp \left(a |\tau| - \delta a^{1/m} |x-y| \right)
= 2\pi (\varepsilon p/|\tau|)^{s_i} \exp \left(\varepsilon p - \delta \varepsilon^{1/m} \rho \right)
\leq C_i |\tau|^{-s_i} \exp \left(2\varepsilon p - \delta \varepsilon^{1/m} \rho \right)
\]

where \(C_i \) is a positive constant such that

\[
2\pi \sigma^{s_{j}} \leq C_i \sigma^\sigma \quad \text{for} \quad \sigma > 0 , \quad j = 1, \ldots, l,
\]

and in view of (5.4)

\[
II \leq 2 \int_a^\infty \exp \left(-c_i r |\tau| - \delta r^{1/m} |x-y| \right) r^{s_i-1} dr.
\]

Suppose that \(x \neq y \). By the change of the variable \(r = a \sigma \) we get

\[
(5.9) \quad II = 2a^{s_i} \int_1^\infty \sigma^{s_i-1} \exp \left(-c_i \varepsilon p \sigma - \delta \varepsilon^{1/m} \rho \sigma^{1/m} \right) d\sigma
\leq 2a^{s_i} \exp \left(-\varepsilon p \sigma^{1/m} \right) \int_1^\infty \sigma^{s_i-1} \exp \left(-c_i \varepsilon p \sigma \right) d\sigma
= 2(\varepsilon p/|\tau|)^{s_i} \exp \left(-\varepsilon p \sigma^{1/m} \right) \Gamma(a_i) / (c_i \varepsilon p)^{s_i} = \frac{2 \Gamma(a_i)}{(c_i \varepsilon p)^{s_i}} \exp \left(-\varepsilon p \sigma^{1/m} \right).
\]

It is easy to show that (5.9) holds also in case \(x = y \). Combining (5.7), (5.8), (5.9) we get

\[
(5.10) \quad \int_{\Gamma_{x, y, t}} e^{-Re \lambda_i \tau} \exp \left(-\delta |\lambda_1|^{1/m} |x-y| \right) |\lambda_1|^{s_i-1} |d\lambda_1|
\leq C_8 |\tau|^{-s_i} \exp \left(2\varepsilon p - \delta \varepsilon^{1/m} \rho \right),
\]

where \(C_8 = C_7 + 2 \max \{ \Gamma(a_j) c_i^{s_i}; j = 1, \ldots, l \} \).

For \(j = 2, \ldots, l \)

\[
(5.11) \quad \int_{\Gamma_{x, y, t}} e^{-Re \lambda_j \tau} |\lambda_j|^{s_j-1} |d\lambda_j| = \int_{|\lambda_j|<a} + \int_{|\lambda_j|>a}
\]
\[e^{2\pi a \gamma^2} \frac{e^{2\pi \tau} + 2\Gamma(a_j)}{\Gamma(\kappa_j)\Gamma(\kappa_j)} \leq C \gamma^{-\zeta} \lambda^2 + 2\Gamma(a_j) \gamma^{\zeta} \lambda^2, \]

where \(C_0 = \max \{2\Gamma(a_j)\gamma^{-\zeta}; j = 1, \ldots, \ell \} \).

Combining (5.10) and (5.11), and noting \(\sum_{j=1}^\ell a_j = N/m \), we see that (5.6) is dominated by

\[C_0 |\tau|^{-N/m} \exp \{(2\varepsilon - \delta \varepsilon \lambda)\rho\}. \]

Other summands in the last member of (5.5) is analogously estimated, and so we get

\[|(\partial/\partial t)^*G(x, y, \tau; t)| \leq (2\pi)^{-1/4} C_0 C_5 C_6 M_s |\tau|^{-N/m} \exp \{(2\varepsilon - \delta \varepsilon \lambda)\rho\}. \]

Choosing \(\varepsilon \) so small that \(c_2 = \delta \varepsilon^{-m} - 2\varepsilon > 0 \), and replacing \(\tau \) by \(\tau/l \) we obtain

\[|(\partial/\partial t)^*G(x, y, \tau; t)| \leq C_1 C_5 C_s M_s |\tau|^{-N/m} \exp \left(-c_2 \frac{|x-y|^m (m-1)}{\tau^{1/(m-1)}} \right) \]

for \(\tau \) in the region (5.3), where \(C_1 = (2\pi)^{-1/4 + \varepsilon \lambda^2} C_5 C_6 \).

6. Estimates of the derivatives of the kernel of \((A(t) - \lambda)^{-1}\)

If we denote the kernel of \((A(t) - \lambda)^{-1}\) by \(K_\lambda(x, y; t) \), then

\[K_\lambda(x, y; t) = \int_0^\infty e^{\lambda t} G(x, y, \tau; t) d\tau. \]

First let \(\lambda \) be in the region

\[\{ \lambda : \Re \lambda > 0, \Im \lambda > 0, \Re \lambda / \Im \lambda \leq (1 - \varepsilon_1 \tan \theta_1) \} \cup \{ \lambda : \Re \lambda \leq 0, \Im \lambda > 0 \} \]

where \(\varepsilon_1 \) and \(\theta_1 \) are arbitrary fixed constants such that \(0 < \theta_1 < \pi/2 - \theta_0, 0 < \varepsilon_1 < 1 \).

Then the integral path in the right side of (6.1) may be altered to the ray \(\tau = re^{i\theta}, 0 < r < \infty \), since \(\Re \lambda \tau \leq -c_2 |\tau| |\lambda| \) for some positive constant \(c_2 \) on the ray. In view of (5.12)

\[|(\partial/\partial t)^*K_\lambda(x, y; t)| \leq \int_0^\infty e^{\lambda t} (\partial/\partial t)^*G(x, y, \tau; t) d\tau \]

\[\leq C_1 C_5 C_s M_s \int_0^\infty \exp \left(-c_2 |\tau| |\lambda| \right) |\tau|^{-N/m} \exp \left(-c_2 |x-y|^m (m-1) \tau^{-1/(m-1)} \right) d\tau. \]

First we consider the case \(N > m \). If \(x \neq y \), by the change of variable \(r = |x-y|^m s \)

\[\int_0^\infty \exp \left(-c_2 |\tau| |\lambda| \right) |\tau|^{-N/m} \exp \left(-c_2 |x-y|^m (m-1) \tau^{-1/(m-1)} \right) d\tau \]

\[= |x-y|^{m-N} \int_0^\infty s^{-N/m} \exp \left(-c_2 s^{-1/(m-1)} - c_2 |\lambda| \right) |x-y|^m s ds. \]
Putting $h=\left(\lambda \frac{1}{m} |x-y|\right)^{1-m}$ we see that the right side of the above equality does not exceed

$$|x-y|^m \int_0^h s^{-N/m} \exp \left(-c_4 h^{-\frac{1}{m}(m-1)} s \right) ds$$

$$+ |x-y|^m \int_h^\infty s^{-N/m} \exp \left(-c_4 h^{-\frac{m}{m}(m-1)} s \right) ds = I + II.$$

If $|\lambda|^{1/m} |x-y| < 1$, then

$$\int_0^h s^{-N/m} \exp \left(-c_4 s^{-\frac{1}{m}(m-1)} \right) ds \leq \int_0^\infty s^{-N/m} \exp \left(-c_4 s^{-\frac{1}{m}(m-1)} \right) ds$$

$$= C_{12} \leq C_{15} \exp \left(-\lambda \frac{1}{m} |x-y| \right).$$

Note that $C_{12} < \infty$ since $N/m > 1$. If $|\lambda|^{1/m} |x-y| \geq 1$, then letting C_{13} be a constant such that $\sigma (m-1) N/m \leq C_{13} \exp \left(-\frac{1}{m} \right)$ for any $\sigma > 0$ and noting that $h \leq 1$

$$\int_0^h s^{-N/m} \exp \left(-c_4 s^{-\frac{1}{m}(m-1)} \right) ds \leq C_{13} \int_0^\infty s^{-N/m} \exp \left(-2^{-1} c_4 s^{-\frac{1}{m}(m-1)} \right) ds$$

$$= C_{13} \exp \left(-2^{-1} c_4 |\lambda|^{1/m} |x-y| \right).$$

Thus

$$I \leq C_{14} |x-y|^m \exp \left(-2^{-1} c_4 |\lambda|^{1/m} |x-y| \right)$$

where $C_{14} = \max (C_{12}, C_{13})$. Next,

$$\int_h^\infty s^{-N/m} \left(-c_4 h^{-\frac{m}{m}(m-1)} s \right) ds \leq \exp \left(-c_4 h^{-\frac{1}{m}(m-1)} \right) \int_h^\infty s^{-N/m} ds$$

$$= (m/(N-m)) h^{-\frac{(N-m)}{m}} \exp \left(-c_4 h^{-\frac{1}{m}(m-1)} \right)$$

$$\leq C_{15} \exp \left(-2^{-1} c_4 h^{-\frac{1}{m}(m-1)} \right)$$

where C_{15} is a constant such that

$$(m/(N-m)) \sigma (m-1) (N-m)/m \leq C_{15} \exp \left(2^{-1} c_4 \sigma \right)$$

for any $\sigma > 0$.

Hence

$$II \leq C_{15} |x-y|^m \exp \left(-2^{-1} c_4 |\lambda|^{1/m} |x-y| \right).$$

Combining (6.3), (6.4), (6.5) we obtain

$$|\partial /\partial t|^N K_\lambda (x, y; t) \leq C_{16} C_7 M_\alpha |x-y|^m \exp \left(-c_4 |\lambda|^{1/m} |x-y| \right),$$

in case $N > m$, where $C_{16} = C_{14} + C_{15}$, $c_4 = \min (c_2, c_3)/2$.

Next, we consider the case $N = m$. If $x \neq y$, by the change of variable $r = |x-y|^m$,

$$\int_0^\infty r^{-1} \exp \left(-c_4 r^m |\lambda| \right) \exp \left(-c_2 |x-y|^m r^{-1/2} r^m \right) dr$$
where $h=(|\lambda|^{1/m}|x-y|)^{1-m}$ as before.

If $|\lambda|^{1/m}|x-y|<1$, then putting $b=(|\lambda|^{1/m}|x-y|)^{1-m}=h^{m/(1-m)}>1$ we see that the right side of (6.7) does not exceed

$$
(6.8) \quad \int_0^{\lambda} s^{-1} \exp \left(-c_2 s^{-1/(m-1)}\right) ds + \int_{\lambda}^1 s^{-1} \exp \left(-c_2 b^{-1} s\right) ds
\leq \int_0^1 s^{-1} \exp \left(-c_2 s^{-1/(m-1)}\right) ds + \int_{\lambda}^1 s^{-1} \exp \left(-c_2 s\right) ds
= C_{17} + \log b = C_{17} + m \log \left(|\lambda|^{1/m}|x-y|\right)^{-1}
$$

where C_{17} is a constant defined by the above relation. If $h^{1/(1-m)}=|\lambda|^{1/m}|x-y|\geq 1$, then the right side of (6.7) does not exceed

$$
(6.9) \quad \int_0^{\lambda} s^{-1} \exp \left(-c_2 s^{-1/(m-1)}\right) ds + \int_{\lambda}^1 s^{-1} \exp \left(-c_2 h^{-1/(m-1)} s - c_3 s^{-1/(m-1)}\right) ds
\leq \exp \left(-2^{-1} c_2 h^{-1/(m-1)}\right) \int_0^{\lambda} s^{-1} \exp \left(-2^{-1} c_2 s^{-1/(m-1)}\right) ds
+ \exp \left(-2^{-1} c_2 h^{-1/(m-1)}\right) \int_{\lambda}^1 s^{-1} \exp \left(-c_2 s^{-1/(m-1)}\right) ds
+ \int_{\lambda}^1 \int_0^{c_2 h^{-1/(m-1)}} \int_{\lambda}^1 \exp \left(-2^{-1} c_2 s\right) ds + \int_{\lambda}^1 s^{-1} \exp \left(-2^{-1} c_2 s\right) ds.
$$

In view of (6.8), (6.9) the right side of (6.7) is not greater than

$$
C_{19} \exp \left(-c_4 |\lambda|^{1/m}|x-y|\right) \left(1+\log^+ \left(|\lambda|^{1/m}|x-y|\right)^{-1}\right),
$$

where $C_{19} = \max(C_{17}, c_4^2, m c_4^2, C_{18})$ and $\log^+ \sigma = \log \sigma$ if $\sigma \geq 1$, $\log^+ \sigma = 0$ if $\sigma < 1$.

Thus in case $N=m$

$$
(6.10) \quad |(\partial/\partial t)^n K_4(x, y; t)|
\leq C_{19} C_{20} M_s \exp \left(-c_4 |\lambda|^{1/m}|x-y|\right) \left(1+\log^+ \left(|\lambda|^{1/m}|x-y|\right)^{-1}\right).
$$

Finally we consider the case $N<m$. Changing the variable by $r=s/|\lambda|$ and putting $\tilde{h}=|\lambda|^{1/m}|x-y|$

$$
\int_0^m \exp(-c_2 r |\lambda|) r^{-N/m} \exp \left(-c_2 s^{m/(m-1)-1/(m-1)}\right) dr
= |\lambda|^{N/m-1} \int_0^m s^{-N/m} \exp \left(-c_2 s\right) \exp \left(-c_2 \tilde{h}^{m/(m-1)} s^{-1/(m-1)}\right) ds
\leq |\lambda|^{N/m-1} \exp \left(-c_2 \tilde{h}\right) \int_0^{\tilde{h}} s^{-N/m} \exp \left(-c_2 s\right) ds
$$
\begin{align*}
+ |\lambda|^{N/m-1} \exp \left(-2^{-1} c_2 \bar{h} \right) \int_0^\infty s^{-N/m} \exp \left(-c_4 s/2\right) ds \\
\leq c_3^{N/m-1} \Gamma(1-N/m) |\lambda|^{N/m-1} \exp \left(-c_2 \bar{h}\right) \\
+ \left(c_3/2\right)^{N/m-1} \Gamma(1-N/m) |\lambda|^{N/m-1} \exp \left(-2^{-1} c_3 \bar{h}\right) \\
\leq C_20 |\lambda|^{N/m-1} \exp \left(-c_4 |\lambda|^{1/m} |x-y|\right),
\end{align*}

where \(C_20 = \{c_3^{N/m-1}+(c_3/2)^{N/m-1}\} \Gamma(1-N/m) \). Thus in case \(N < m \)

\begin{equation}
(6.11) \quad |(\partial/\partial t)^n K_0(x,y; t)| \leq C_{11} C_{20} C_2^n M_n |\lambda|^{N/m-1} \exp \left(-c_4 |\lambda|^{1/m} |x-y|\right).
\end{equation}

Summing up we see that the following estimate holds

\begin{equation}
(6.12) \quad |(\partial/\partial t)^n K_0(x,y; t)| \leq C_{21} C_2^n M_n \exp \left(-c_4 |\lambda|^{1/m} |x-y|\right) \times \left\{ \begin{array}{ll}
|x-y|^{m-N} & \text{if } N > m \\
1 + \log^+ \left(|\lambda|^{1/m} |x-y|\right)^{-1} & \text{if } N = m \\
|\lambda|^{N/m-1} & \text{if } N < m
\end{array} \right.
\end{equation}

for any \(n = 0, 1, 2, \ldots \), \((x,y) \in \Omega \times \Omega \), \(t \in [0, T] \), \(\lambda \) in the region (6.2) where \(C_{21} = \max(C_{16}, C_{11} C_{19}, C_{11} C_{20}) \). It is clear that the same estimate holds for \(\lambda \) in the region

\[\{ \lambda: \text{Re} \lambda > 0, \text{Im} \lambda < 0, \text{Re} \lambda/|\text{Im} \lambda| \leq (1-\varepsilon_i) \tan \theta_i \} \cup \{ \lambda: \text{Re} \lambda \leq 0, \text{Im} \lambda < 0 \}. \]

It follows readily from (6.12) that

\begin{equation}
(6.13) \quad \| (\partial/\partial t)^n (A(t) - \lambda)^{-1} \|_{B(L^1,L^\infty)} \leq C_{22} C_2^n M_n / |\lambda|
\end{equation}

for any \(n = 0, 1, 2, \ldots \), \(t \in [0, T] \), and \(\lambda \) in the region

\begin{equation}
(6.14) \quad \{ \lambda: \text{Re} \lambda > 0, \text{Re} \lambda/|\text{Im} \lambda| \leq (1-\varepsilon_i) \tan \theta_i \} \cup \{ \lambda: \text{Re} \lambda \leq 0 \}. \]
\end{equation}

Due to the closedness of \(\Sigma \) and the arbitrariness of \(\varepsilon_i \in (0, 1) \), \(\theta_i \in (0, \pi/2 - \theta_0) \) we see that there exist constants \(K_9, K \) such that (2.13) holds for any \(n = 0, 1, 2, \ldots \), \(\lambda \in \Sigma \), \(t \in [0, T] \), and the proof of the proposition and hence that of the main theorem is complete.

Acknowledgement

The author wishes to express the deepest appreciation to Professor H. Tanabe of Osaka University, the author's advisor, for his valuable suggestions and encouragement.

Bibliography

