LOGARITHMIC SOBOLEV INEQUALITIES
FOR DIFFERENTIABLE PATHS

RÉMI LÉANDRE

(Received March 20, 1998)

1. Introduction

Measures over differentiable paths can be interesting in two ways:
- The spin representation of a loop group is very well understood for $C^1$ loops ([25]).
- There is a Morse theory theory for $C^1$ loops, which is involved with the energy functional (See [11] and the references therein).

For the first of these two reasons, there exist measures which are introduced for differentiable paths or differentiable loops of a Lie group. In the case of a loop group, they are introduced in [20] or in [21], in order to understand what is a string structure over the Brownian bridge. Let us recall that string structures over the Brownian bridge are very important in order to define the Dirac operator over the loop space (See [26], [29], [14]).

In the case of an analytical approach of the Morse theory related to the symplectic action, we can work with the measure defined over the loop space by the classical Brownian bridge (See [19], [10]). But if the function over the loop space is the energy functional (See [11]), we need to introduce a new measure, which is involved with differentiable paths. It is the subject of [22].

In [22], we introduced a measure over the path space. We give integration by parts formulas for differentiable paths, and we establish a Sobolev Calculus, which is in the spirit of [13] and [17], [18]. The integration by parts formulas are very badly written in terms of the tangent vector fields which are considered in [22]. In [17] or in [6], there is the remark that if we follow Bismut's indication to write the shape of the tangent vector fields ([2]), the integration by parts formulas are better written.

In the first part, we consider the measure of [22] over the space of differentiable paths, and we establish a Bismut Calculus associated to it. The main result is the following: the transformation which gives a vector field in the manner of [13] or in the manner of [22] into a vector into a vector field of Bismut is path by path bounded, but not uniformly bounded. In order to control this transformation, we have to assume that a quantity of the form $\exp[I(\gamma)] (I(\gamma) \text{ is the square of the supremum of the modulus of the speed of the path})$ is in $L^2$. It is possible that this assumption is satisfied if
we introduce a small parameter, which leads to a formalism analogous to small time
asymptotics of heat kernels. (The reader who is interested by short time asymptotics
expansions can see the surveys of Kusuoka ([15]), Léandre ([16]) or Watanabe ([27])).
If this integrability condition is checked, or in other words, if the parameter of the
equation which gives the measure is small enough, the cylindrical functionals belong
to Bismut's Sobolev spaces with one derivative in $L^2$.

In the second part of this work, we show that there is a Clark-Ocone formula in
this context, associated to Bismut's derivatives of a functional, when we have fixed the
speed of the path in the starting time. The proof follows the ideas of [6].

This allows us, by following the method of [3] to deduce a Logarithmic Sobolev
inequality over the differentiable path space, if we suppose given the speed of the path
at the starting time. For that, we take the tangent space of [22]. But this gives a
weighted Logarithmic Sobolev inequality, because the transformation which gives a
tangent vector of [22] into a Bismut tangent vector is not uniformly bounded.

We thank S. Fang for helpfull discussions.

2. Bismut Calculus for Differentiable Paths

Let $M$ be a compact Riemannian manifold. We endow it with the Levi-Civita
connection. Let $B_s$ be a Brownian motion over $T_x(M)$ starting from $x$. We consider
the stochastic differential equation:

\begin{equation}
\begin{align*}
d\gamma_s &= \tau_s \epsilon (C + B_s) ds \\
\gamma_0 &= x
\end{align*}
\end{equation}

$\epsilon$ is a small parameter. $C$ follows a Gaussian law of covariance $Id$ and average 0 over
$T_x(M)$, independent of $B_s$. $\tau_s$ is the parallel transport over the path $\gamma_s$, starting from
$Id$.

[22] has introduced the following tangent space of a path $\gamma$: it is constituted of
the path $\tau_s H_s$, where $H_s$ has two derivatives with $H_0 = 0$. [22] considers the Hilbert
structure $\|H_0\|^2 + \int_0^1 \|ds^2 H_s\|^2 ds$. Let us recall one of the main theorem of [22]. Let $F$
be a cylindrical functional over $P_x(M)$, the based path space of $C^1$ differentiables
paths over $M$.

We get:

\begin{equation}
E[\langle dF, X \rangle] = E[F \text{div} X]
\end{equation}

if $X_t = \tau_t H_t$ where $H_t$ is deterministic. The expression of $\text{div} X$ is given in [22], and
is slightly complicated:
\[
\text{div} X = -\int_0^1 \langle \tau_s^{-1} R(d/ds \gamma_s, X_s) \frac{d/ds \gamma_s}{\epsilon}, \delta B_s \rangle \\
+ \int_0^1 \langle d^2/ds^2 H_s, \delta B_s \rangle \frac{1}{\epsilon} + \langle d/ds H'_0, C \rangle \frac{1}{\epsilon}
\]

(1.3)

\(R\) is the curvature tensor of the manifold. In order to simplify the expression of the divergence, we give the notion of Bismut's tangent vector field.

Let \(d/ds H_0\) and \(d^2/ds^2 K_s\) be deterministic given. A Bismut's vector field \(X_t^B\) is given by \(X_t^B = \tau_t H_t^B\) where \(H_t^B\) is the solution of the differential equation:

\[
\begin{align*}
H_t^B &= 0 \\
d/ds H_t^B &= \epsilon H_0 \\
d^2/ds^2 H_t^B &= \epsilon d^2/ds^2 K_t + \tau_t^{-1} R(d/ds \gamma_t, X_t^B) d/ds \gamma_t
\end{align*}
\]

(1.4)

By using the Gronwall lemma, we get that

\[
(\int_0^1 \|d^2/ds^2 H_t^B\|^2 dt)\frac{1}{2} \leq C((\int_0^1 \|d^2/ds^2 K\|^2 ds)\frac{1}{2} + \|d/ds H_0\|^2 + 1) \exp[C \sup \|d/ds \gamma_t\|^2]
\]

(1.5)

We can choose \(\epsilon\) small enough such that for a vector field \(d/ds H_0 + \int_0^s d^2/ds^2 K_u du\) adapted in \(L^2\), \(X_t^B\) is still adapted in \(L^2\).

We define a tangent vector as \(X_t^B(d/ds H_0, d^2/ds^2 K)\) associated to the solution of (1.4).

We get:

**Theorem I. 1.** Let \(\epsilon\) be small enough. Let \(d/ds H_0\) and let \(d^2/ds^2 K\) be deterministic. We get for all cylindrical functionals:

\[
E[< dF, X_t^B(d/ds H_0, d^2/ds^2 K) >] = E[< d/ds H_0, \frac{d/ds \gamma_0}{\epsilon} >] + \int_0^1 < \tau_s d^2/ds^2 K, \frac{\delta \nabla d/ds \gamma_s}{\epsilon} >
\]

(1.6)

\(\delta \nabla d/ds \gamma_s\) is the formal acceleration of \(\gamma_s\) given by \(\epsilon \tau_s \delta B_s\) and \(\delta\) is the Itô integral.

This integration by parts formula leads to a first order Sobolev Calculus, called Bismut's Sobolev Calculus, which is not equivalent to the Sobolev Calculus developed
in [22]. Namely the transformation \((d/dsH_0, d^2/ds^2K) \rightarrow X^B(d/dsH_0, d^2/ds^2K)\) is not bounded in \(\gamma\).

For a cylindrical functional, we put:

\[
< dF, X^B(d/dsH_0, d^2/ds^2K) > = < A, d/dsH_0 > + \int_0^1 < C, d^2/ds^2K_s > ds
\]

in a unique way. We call \(A = dF^0_B\) and \(C_s = dF^B_s\) such that:

\[
< dF, X^B(d/dsH_0, d^2/ds^2K) > = < dF^0_B, d/dsH_0 > + \int_0^1 < dF^B_s, d^2/ds^2K_s > ds
\]

We get:

**DEFINITION 1. 2:** The first order Bismut Sobolev norm \(W_{1,2}\) are given by:

\[
\|F\|_{1,2} = \|F\|_{L^2} + \|dF^0_B\|_{L^2} + \|(\int_0^1 \|dF^B_s\|^2 ds)^{\frac{1}{2}}\|_{L^2}
\]

From the estimate (1.5), we get:

**Theorem 1. 3.** If \(\epsilon\) is small enough, \(\|F\|_{1,2}\) is finite for any cylindrical functional \(F\).

3. **Clark-Ocone Formula**

We fix \(C\) in the equation (1.2). We get a Sobolev Calculus as in the previous part with \(C\) fixed, or in other words, if \(d/ds\gamma_0\) fixed. This implies that in the new Sobolev Calculus that \(H_0 = 0\). We suppose \(\epsilon\) small enough in order that the exponential which appears in (1.5) is in \(L^2\). We do in the sequel as if \(\epsilon = 1\), in order to simplify the formulas.

Let \(F\) be a cylindrical functional. Since \(C\) is supposed fixed, we have for a suitable vector fields \(Z_s(F)\) adapted to the filtration generated by the process \(B\),

\[
F = E[F] + \int_0^1 < \tau_s Z_s(F), \delta \nabla d/ds\gamma_s >
\]

Let \(Z_s\) be another adapted vector fields. We have:
\[ E[\int_0^1 < dF^B_s, Z_s > ds] = E[F \int_0^1 < \tau_s Z_s, \delta \nabla d/ds \gamma_s >] \]
\[ = E[\int_0^1 < \tau_s Z_s(F), \delta \nabla d/ds \gamma_s >] \]
\[ \int_0^1 < \tau_s Z_s, \delta \nabla d/ds \gamma_s >] \]
\[ = E[\int_0^1 Z_s(F)Z_s ds] \]

Moreover, we get the following Clark-Ocone formula (See [24], [6]):

**Theorem II. 1.**

\[ F = E[F] + \int_0^1 < \tau_s E^{G_s}[dF^B], \delta \nabla d/ds \gamma_s > \]

where \( G_s \) is the filtration spanned by \( B_s \).

**4. Logarithmic Sobolev Inequalities**

We follow exactly the method of Capitaine-Hsu-Ledoux ([3]), with \( C \) fixed. We do as if \( \epsilon \) was small enough.

We underline that there are the Bismut tangent space and the tangent space of [22]. This leads to an H-derivative in the sense of Bismut:

\[ < dF, X^B(d^2/ds^2 K_s) >= \int_0^1 < dF^B_s, d^2/ds^2 K_s > ds \]

and to an H-derivative in the sense of [22]:

\[ < dF, X(d^2/ds^2 K_s) >= \int_0^1 < dF^J_s, d^2/ds^2 K_s > ds \]

where \( X(d^2/ds^2 K_s) = \tau_t(\int_0^t \int_0^s d^2/ds^2 K_u dudv) \).

Moreover by the estimates (1.5), we get:

\[ \int_0^1 ||dF^B_s||^2 ds \leq C \exp[\lambda \sup ||B_s||^2] \int_0^1 ||dF^J_s||^2 ds \]

for \( \lambda \) small enough, by the assumption which is done.
The method of Capitaine-Hsu-Ledoux shows that:

\[
E[F^2 \log F^2] \leq E[F^2] \log E[F^2] + 2E \left[ \int_0^1 \|dF_s^B\|^2 ds \right]
\]

(3.4)

Let be \( I(\gamma) = \sup \|d/ds \gamma_t\|^2 \). Since \( \exp[\lambda \sup \|B_s\|^2] \leq C \exp[\lambda I(\gamma)] \), we deduce the following Logarithmic Sobolev inequality:

**Theorem III. 1.**

\[
E[F^2 \log F^2] \leq E[F^2] \log E[F^2] + CE[\exp[\lambda I(\gamma)]] \left[ \int_0^1 \|dF_s^J\|^2 ds \right]
\]

(3.5)

where the exponential is in \( L^2 \) for \( \epsilon \) small enough.

---

**References**


département de Mathématiques
Institut Elie Cartan
Faculté des Sciences
Université de Nancy I
54000. Vandoeuvre-les-Nancy
FRANCE